]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PWGDQ/dielectron/AliDielectronBtoJPSItoEleCDFfitFCN.h
Transition PWG3/dielectron --> PWGDQ/dielectron
[u/mrichter/AliRoot.git] / PWGDQ / dielectron / AliDielectronBtoJPSItoEleCDFfitFCN.h
CommitLineData
ba15fdfb 1#ifndef ALIDIELECTRONBTOJPSITOELECDFFITFCN_H\r
2#define ALIDIELECTRONBTOJPSITOELECDFFITFCN_H\r
3/* Copyright(c) 1998-2009, ALICE Experiment at CERN, All rights reserved. *\r
4 * See cxx source for full Copyright notice */\r
5\r
6//_________________________________________________________________________\r
7// Class AliDielectronBtoJPSItoEleCDFfitFCN\r
8// Definition of main function used in \r
9// unbinned log-likelihood fit for\r
10// the channel B -> JPsi + X -> e+e- + X\r
11// \r
12// Origin: C.Di Giglio\r
13// Contact: Carmelo.Digiglio@ba.infn.it , Giuseppe.Bruno@ba.infn.it\r
14//_________________________________________________________________________\r
15\r
16#include <TNamed.h>\r
17#include <TDatabasePDG.h>\r
18#include <TH1F.h>\r
19\r
20class TRandom3;\r
21class TF1;\r
22\r
23enum IntegralType {kBkg, \r
24 kBkgNorm, \r
25 kSig, \r
26 kSigNorm};\r
27\r
28enum PtBins {kallpt, \r
29 kptbin1,kptbin2,kptbin3,\r
30 kptbin4,kptbin5,kptbin6,\r
31 kptbin7,kptbin8,kptbin9};\r
32//_________________________________________________________________________________________________\r
33class AliDielectronBtoJPSItoEleCDFfitFCN : public TNamed {\r
34 public:\r
35 //\r
36 AliDielectronBtoJPSItoEleCDFfitFCN();\r
37 AliDielectronBtoJPSItoEleCDFfitFCN(const AliDielectronBtoJPSItoEleCDFfitFCN& source); \r
38 AliDielectronBtoJPSItoEleCDFfitFCN& operator=(const AliDielectronBtoJPSItoEleCDFfitFCN& source); \r
39 virtual ~AliDielectronBtoJPSItoEleCDFfitFCN();\r
40\r
41 Double_t EvaluateLikelihood(const Double_t* pseudoproperdecaytime,\r
42 const Double_t* invariantmass, const Int_t ncand) const;\r
43\r
44 Double_t GetResWeight() const { return fParameters[0]; }\r
45 Double_t GetFPlus() const { return fParameters[1]; }\r
46 Double_t GetFMinus() const { return fParameters[2]; }\r
47 Double_t GetFSym() const { return fParameters[3]; } \r
48 Double_t GetLamPlus() const { return fParameters[4]; }\r
49 Double_t GetLamMinus() const { return fParameters[5]; }\r
50 Double_t GetLamSym() const { return fParameters[6]; }\r
51 Double_t GetFractionJpsiFromBeauty() const { return fParameters[7]; }\r
52 Double_t GetFsig() const { return fParameters[8]; }\r
53 Double_t GetCrystalBallMmean() const { return fParameters[9]; }\r
54 Double_t GetCrystalBallNexp() const { return fParameters[10]; }\r
55 Double_t GetCrystalBallSigma() const { return fParameters[11]; }\r
56 Double_t GetCrystalBallAlpha() const { return fParameters[12]; }\r
57 Double_t GetCrystalBallNorm() const { return fParameters[13]; }\r
58 Double_t GetBkgInvMassNorm() const { return fParameters[14]; }\r
59 Double_t GetBkgInvMassMean() const { return fParameters[15]; }\r
60 Double_t GetBkgInvMassSlope() const { return fParameters[16]; } \r
61 Double_t GetBkgInvMassConst() const { return fParameters[17]; } \r
62 Double_t GetNormGaus1ResFunc() const { return fParameters[18]; }\r
63 Double_t GetNormGaus2ResFunc() const { return fParameters[19]; }\r
64 Double_t GetIntegralMassSig() const { return fintmMassSig; }\r
65 Double_t GetIntegralMassBkg() const { return fintmMassBkg; }\r
66 const Double_t* GetResolutionConstants() const { return fResolutionConstants; }\r
67 Bool_t GetCrystalBallParam() const { return fCrystalBallParam; }\r
68 TH1F * GetCsiMcHisto() const { return fhCsiMC; }\r
69\r
70 // return pointer to likelihood functions \r
71 TF1* GetCsiMC(Double_t xmin, Double_t xmax);\r
72 TF1* GetResolutionFunc(Double_t xmin, Double_t xmax);\r
73 TF1* GetEvaluateCDFDecayTimeBkgDistr(Double_t xmin, Double_t xmax);\r
74 TF1* GetEvaluateCDFDecayTimeSigDistr(Double_t xmin, Double_t xmax);\r
75\r
76 void SetResWeight (Double_t resWgt) {fParameters[0] = resWgt;}\r
77 void SetFPlus(Double_t plus) {fParameters[1] = plus;}\r
78 void SetFMinus(Double_t minus) {fParameters[2] = minus;}\r
79 void SetFSym(Double_t sym) {fParameters[3] = sym;}\r
80 void SetLamPlus(Double_t lamplus) {fParameters[4] = lamplus;}\r
81 void SetLamMinus(Double_t lamminus) {fParameters[5] = lamminus;}\r
82 void SetLamSym(Double_t lamsym) {fParameters[6] = lamsym;}\r
83 void SetFractionJpsiFromBeauty(Double_t B) {fParameters[7] = B;}\r
84 void SetFsig(Double_t Fsig) {fParameters[8] = Fsig;}\r
85 void SetCrystalBallMmean(Double_t CrystalBallMmean) {fParameters[9] = CrystalBallMmean;}\r
86 void SetCrystalBallNexp(Double_t CrystalBallNexp) {fParameters[10] = CrystalBallNexp;}\r
87 void SetCrystalBallSigma(Double_t CrystalBallSigma) {fParameters[11] = CrystalBallSigma;}\r
88 void SetCrystalBallAlpha(Double_t CrystalBallAlpha) {fParameters[12] = CrystalBallAlpha;}\r
89 void SetCrystalBallNorm(Double_t CrystalBallNorm) {fParameters[13] = CrystalBallNorm;}\r
90 void SetBkgInvMassNorm(Double_t BkgInvMassNorm) {fParameters[14] = BkgInvMassNorm;}\r
91 void SetBkgInvMassMean(Double_t BkgInvMassMean) {fParameters[15] = BkgInvMassMean;}\r
92 void SetBkgInvMassSlope(Double_t BkgInvMassSlope) {fParameters[16] = BkgInvMassSlope;}\r
93 void SetBkgInvMassConst(Double_t BkgInvMassConst) {fParameters[17] = BkgInvMassConst;}\r
94 void SetNormGaus1ResFunc(Double_t norm1) {fParameters[18] = norm1;}\r
95 void SetNormGaus2ResFunc(Double_t norm2) {fParameters[19] = norm2;}\r
96 void SetAllParameters(const Double_t* parameters);\r
97 void SetIntegralMassSig(Double_t integral) { fintmMassSig = integral; }\r
98 void SetIntegralMassBkg(Double_t integral) { fintmMassBkg = integral; }\r
99 void SetCsiMC(const TH1F* MCtemplate) {fhCsiMC = (TH1F*)MCtemplate->Clone("fhCsiMC");}\r
100\r
101 void SetResolutionConstants(Double_t* resolutionConst);\r
102 void SetMassWndHigh(Double_t limit) { fMassWndHigh = TDatabasePDG::Instance()->GetParticle(443)->Mass() + limit ;}\r
103 void SetMassWndLow(Double_t limit) { fMassWndLow = TDatabasePDG::Instance()->GetParticle(443)->Mass() - limit ;}\r
104 void SetCrystalBallFunction(Bool_t okCB) {fCrystalBallParam = okCB;}\r
105\r
106 void ComputeMassIntegral(); \r
107\r
108 void ReadMCtemplates(Int_t BinNum);\r
109\r
110 void PrintStatus();\r
111\r
112 private: \r
113 //\r
114 Double_t fParameters[20]; /* par[0] = weightRes; \r
115 par[1] = fPos;\r
116 par[2] = fNeg;\r
117 par[3] = fSym\r
118 par[4] = fOneOvLamPlus;\r
119 par[5] = fOneOvLamMinus;\r
120 par[6] = fOneOvLamSym;\r
121 par[7] = fFractionJpsiFromBeauty;\r
122 par[8] = fFsig;\r
123 par[9] = fCrystalBallMmean;\r
124 par[10] = fCrystalBallNexp;\r
125 par[11] = fCrystalBallSigma;\r
126 par[12] = fCrystalBallAlpha;\r
127 par[13] = fCrystalBallNorm;\r
128 par[14] = fBkgNorm;\r
129 par[15] = fBkgMean; \r
130 par[16] = fBkgSlope;\r
131 par[17] = fBkgConst;\r
132 par[18] = norm1Gaus;\r
133 par[19] = norm2Gaus;*/\r
134\r
135\r
136 Double_t fFPlus; // parameters of the log-likelihood function\r
137 Double_t fFMinus; // Slopes of the x distributions of the background \r
138 Double_t fFSym; // functions \r
139\r
140 Double_t fintmMassSig; // integral of invariant mass distribution for the signal\r
141 Double_t fintmMassBkg; // integral of invariant mass distribution for the bkg\r
142\r
143 TH1F *fhCsiMC; // X distribution used as MC template for JPSI from B\r
144 Double_t fResolutionConstants[4]; // constants for the parametrized resolution function R(X)\r
145 Double_t fMassWndHigh; // JPSI Mass window higher limit\r
146 Double_t fMassWndLow; // JPSI Mass window lower limit\r
147 Bool_t fCrystalBallParam; // Boolean to switch to Crystall Ball parameterisation\r
148\r
149 ////\r
150\r
151 Double_t EvaluateCDFfunc(Double_t x, Double_t m) const ;\r
152 Double_t EvaluateCDFfuncNorm(Double_t x, Double_t m) const ;\r
153\r
154 ////\r
155\r
156 Double_t EvaluateCDFfuncSignalPart(Double_t x, Double_t m) const ; // Signal part \r
157 Double_t EvaluateCDFDecayTimeSigDistr(Double_t x) const ;\r
5cc8c825 158 Double_t EvaluateCDFDecayTimeSigDistrFunc(const Double_t* x, const Double_t */*par*/) const { return EvaluateCDFDecayTimeSigDistr(x[0]);}\r
ba15fdfb 159 Double_t EvaluateCDFInvMassSigDistr(Double_t m) const ;\r
160 Double_t EvaluateCDFfuncBkgPart(Double_t x,Double_t m) const ; // Background part\r
161 Double_t EvaluateCDFDecayTimeBkgDistr(Double_t x) const ;\r
5cc8c825 162 Double_t EvaluateCDFDecayTimeBkgDistrFunc(const Double_t* x, const Double_t */*par*/) const { return EvaluateCDFDecayTimeBkgDistr(x[0]);}\r
ba15fdfb 163 Double_t EvaluateCDFInvMassBkgDistr(Double_t m) const ;\r
164\r
165 ////\r
166\r
167 Double_t FunB(Double_t x) const;\r
168 Double_t FunP(Double_t x) const ;\r
169 Double_t CsiMC(Double_t x) const;\r
5cc8c825 170 Double_t CsiMCfunc(const Double_t* x, const Double_t */*par*/) const { return CsiMC(x[0]);}\r
ba15fdfb 171 Double_t FunBkgPos(Double_t x) const ;\r
172 Double_t FunBkgNeg(Double_t x) const ;\r
173 Double_t FunBkgSym(Double_t x) const ;\r
174 Double_t ResolutionFunc(Double_t x) const ;\r
5cc8c825 175 Double_t ResolutionFuncf(const Double_t* x, const Double_t */*par*/) const { return ResolutionFunc(x[0]);}\r
ba15fdfb 176\r
177 ClassDef (AliDielectronBtoJPSItoEleCDFfitFCN,1); // Unbinned log-likelihood fit \r
178\r
179};\r
180\r
181#endif\r