]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PWGJE/EMCALJetTasks/UserTasks/AliAnalysisTaskJetV2.cxx
bugfix (dead code)
[u/mrichter/AliRoot.git] / PWGJE / EMCALJetTasks / UserTasks / AliAnalysisTaskJetV2.cxx
CommitLineData
eae37c5c 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17 * Jet V2 task
18 *
19 * this task is part of the emcal jet framework and should be run in the emcaljet train
20 * the following extensions to an accepted AliVEvent are expected:
21 * - (anti-kt) jets
22 * - background estimate rho
23 * - pico tracks
24 * aod's and esd's are handled transparently
25 * the task will attempt to estimate a phi-dependent background density rho
26 * by fitting vn harmonics to the dpt/dphi distribution
27 *
28 * author: Redmer Alexander Bertens, Utrecht Univeristy, Utrecht, Netherlands
29 * rbertens@cern.ch, rbertens@nikhef.nl, r.a.bertens@uu.nl
30 */
31
32// root includes
33#include <TStyle.h>
34#include <TRandom3.h>
35#include <TChain.h>
36#include <TMath.h>
37#include <TF1.h>
38#include <TF2.h>
39#include <TH1F.h>
40#include <TH2F.h>
3e6806b3 41#include <TH3F.h>
eae37c5c 42#include <TProfile.h>
9e1c2f31 43#include <TFile.h>
eae37c5c 44// aliroot includes
45#include <AliAnalysisTask.h>
46#include <AliAnalysisManager.h>
47#include <AliCentrality.h>
48#include <AliVVertex.h>
49#include <AliVTrack.h>
9e1c2f31 50#include <AliVVZERO.h>
eae37c5c 51#include <AliESDEvent.h>
52#include <AliAODEvent.h>
53#include <AliAODTrack.h>
9e1c2f31 54#include <AliOADBContainer.h>
eae37c5c 55// emcal jet framework includes
56#include <AliPicoTrack.h>
57#include <AliEmcalJet.h>
58#include <AliRhoParameter.h>
59#include <AliLocalRhoParameter.h>
60#include <AliAnalysisTaskJetV2.h>
61#include <AliClusterContainer.h>
62
63class AliAnalysisTaskJetV2;
64using namespace std;
65
66ClassImp(AliAnalysisTaskJetV2)
67
68AliAnalysisTaskJetV2::AliAnalysisTaskJetV2() : AliAnalysisTaskEmcalJet("AliAnalysisTaskJetV2", kTRUE),
41e50b0d 69 fDebug(0), fRunToyMC(kFALSE), fLocalInit(0), fAttachToEvent(kTRUE), fFillHistograms(kTRUE), fFillQAHistograms(kTRUE), fReduceBinsXByFactor(-1.), fReduceBinsYByFactor(-1.), fNoEventWeightsForQC(kTRUE), fCentralityClasses(0), fExpectedRuns(0), fExpectedSemiGoodRuns(0), fUserSuppliedV2(0), fUserSuppliedV3(0), fUserSuppliedR2(0), fUserSuppliedR3(0), fTracksCont(0), fClusterCont(0), fJetsCont(0), fLeadingJet(0), fLeadingJetAfterSub(0), fNAcceptedTracks(0), fNAcceptedTracksQCn(0), fFitModulationType(kNoFit), fFitGoodnessTest(kChi2Poisson), fQCRecovery(kTryFit), fUsePtWeight(kTRUE), fUsePtWeightErrorPropagation(kTRUE), fDetectorType(kVZEROComb), fAnalysisType(kCharged), fFitModulationOptions("QWLI"), fRunModeType(kGrid), fDataType(kESD), fCollisionType(kPbPb), fRandom(0), fRunNumber(-1), fMappedRunNumber(0), fInCentralitySelection(-1), fFitModulation(0), fFitControl(0), fMinPvalue(0.01), fMaxPvalue(1), fNameSmallRho(""), fCachedRho(0), fSoftTrackMinPt(0.15), fSoftTrackMaxPt(5.), fSemiGoodJetMinPhi(0.), fSemiGoodJetMaxPhi(4.), fSemiGoodTrackMinPhi(0.), fSemiGoodTrackMaxPhi(4.), fAbsVertexZ(10), fHistCentrality(0), fHistVertexz(0), fHistRunnumbersPhi(0), fHistRunnumbersEta(0), fHistPvalueCDFROOT(0), fHistPvalueCDFROOTCent(0), fHistChi2ROOTCent(0), fHistPChi2Root(0), fHistPvalueCDF(0), fHistPvalueCDFCent(0), fHistChi2Cent(0), fHistPChi2(0), fHistKolmogorovTest(0), fHistKolmogorovTestCent(0), fHistPKolmogorov(0), fHistRhoStatusCent(0), fHistUndeterminedRunQA(0), fMinDisanceRCtoLJ(0), fMaxCones(-1), fExcludeLeadingJetsFromFit(1.), fRebinSwapHistoOnTheFly(kTRUE), fPercentageOfFits(10.), fOutputList(0), fOutputListGood(0), fOutputListBad(0), fHistAnalysisSummary(0), fHistSwap(0), fProfV2(0), fProfV2Cumulant(0), fProfV3(0), fProfV3Cumulant(0), fHistPsiControl(0), fHistPsiSpread(0), fHistPsiVZEROA(0), fHistPsiVZEROC(0), fHistPsiVZERO(0), fHistPsiTPC(0), fHistPsiVZEROAV0M(0), fHistPsiVZEROCV0M(0), fHistPsiVZEROVV0M(0), fHistPsiTPCV0M(0), fHistPsiVZEROATRK(0), fHistPsiVZEROCTRK(0), fHistPsiVZEROTRK(0), fHistPsiTPCTRK(0), fHistRhoVsMult(0), fHistRhoVsCent(0), fHistRhoAVsMult(0), fHistRhoAVsCent(0), fVZEROgainEqualization(0x0), fVZEROgainEqualizationPerRing(kFALSE), fChi2A(0x0), fChi2C(0x0), fChi3A(0x0), fChi3C(0x0), fOADB(0x0)
9e1c2f31 70{
eae37c5c 71 for(Int_t i(0); i < 10; i++) {
72 fProfV2Resolution[i] = 0;
73 fProfV3Resolution[i] = 0;
74 fHistPicoTrackPt[i] = 0;
75 fHistPicoTrackMult[i] = 0;
76 fHistPicoCat1[i] = 0;
77 fHistPicoCat2[i] = 0;
78 fHistPicoCat3[i] = 0;
79 fHistClusterPt[i] = 0;
80 fHistClusterEtaPhi[i] = 0;
81 fHistClusterEtaPhiWeighted[i] = 0;
9aa4c594 82 fHistPsiTPCLeadingJet[i] = 0;
83 fHistPsiVZEROALeadingJet[i] = 0;
84 fHistPsiVZEROCLeadingJet[i] = 0;
85 fHistPsiVZEROCombLeadingJet[i] = 0;
3e6806b3 86 fHistPsi2Correlation[i] = 0;
41e50b0d 87 fHistLeadingJetBackground[i] = 0;
eae37c5c 88 fHistRhoPackage[i] = 0;
89 fHistRho[i] = 0;
90 fHistRCPhiEta[i] = 0;
91 fHistRhoVsRCPt[i] = 0;
92 fHistRCPt[i] = 0;
93 fHistDeltaPtDeltaPhi2[i] = 0;
94 fHistDeltaPtDeltaPhi2Rho0[i] = 0;
95 fHistRCPhiEtaExLJ[i] = 0;
96 fHistRhoVsRCPtExLJ[i] = 0;
97 fHistRCPtExLJ[i] = 0;
98 fHistDeltaPtDeltaPhi2ExLJ[i] = 0;
99 fHistDeltaPtDeltaPhi2ExLJRho0[i] = 0;
100 fHistJetPtRaw[i] = 0;
101 fHistJetPt[i] = 0;
102 fHistJetEtaPhi[i] = 0;
103 fHistJetPtArea[i] = 0;
104 fHistJetPtEta[i] = 0;
105 fHistJetPtConstituents[i] = 0;
106 fHistJetEtaRho[i] = 0;
107 fHistJetPsi2Pt[i] = 0;
108 fHistJetPsi2PtRho0[i] = 0;
109 }
9e1c2f31 110 for(Int_t i(0); i < 9; i++) {
111 for(Int_t j(0); j < 2; j++) {
112 for(Int_t k(0); k < 2; k++) {
113 fMeanQ[i][j][k] = 0.;
114 fWidthQ[i][j][k] = 0.;
115 fMeanQv3[i][j][k] = 0.;
116 fWidthQv3[i][j][k] = 0.;
117 }
118 }
119 }
120 for(Int_t i(0); i < 4; i++) {
121 fVZEROApol[i] = 0.;
122 fVZEROCpol[i] = 0.;
123 }
124 for(Int_t i(0); i < 8; i++) fUseVZERORing[i] = kTRUE;
125 // default constructor
eae37c5c 126}
127//_____________________________________________________________________________
128AliAnalysisTaskJetV2::AliAnalysisTaskJetV2(const char* name, runModeType type) : AliAnalysisTaskEmcalJet(name, kTRUE),
41e50b0d 129 fDebug(0), fRunToyMC(kFALSE), fLocalInit(0), fAttachToEvent(kTRUE), fFillHistograms(kTRUE), fFillQAHistograms(kTRUE), fReduceBinsXByFactor(-1.), fReduceBinsYByFactor(-1.), fNoEventWeightsForQC(kTRUE), fCentralityClasses(0), fExpectedRuns(0), fExpectedSemiGoodRuns(0), fUserSuppliedV2(0), fUserSuppliedV3(0), fUserSuppliedR2(0), fUserSuppliedR3(0), fTracksCont(0), fClusterCont(0), fJetsCont(0), fLeadingJet(0), fLeadingJetAfterSub(0), fNAcceptedTracks(0), fNAcceptedTracksQCn(0), fFitModulationType(kNoFit), fFitGoodnessTest(kChi2Poisson), fQCRecovery(kTryFit), fUsePtWeight(kTRUE), fUsePtWeightErrorPropagation(kTRUE), fDetectorType(kVZEROComb), fAnalysisType(kCharged), fFitModulationOptions("QWLI"), fRunModeType(type), fDataType(kESD), fCollisionType(kPbPb), fRandom(0), fRunNumber(-1), fMappedRunNumber(0), fInCentralitySelection(-1), fFitModulation(0), fFitControl(0), fMinPvalue(0.01), fMaxPvalue(1), fNameSmallRho(""), fCachedRho(0), fSoftTrackMinPt(0.15), fSoftTrackMaxPt(5.), fSemiGoodJetMinPhi(0.), fSemiGoodJetMaxPhi(4.), fSemiGoodTrackMinPhi(0.), fSemiGoodTrackMaxPhi(4.), fAbsVertexZ(10), fHistCentrality(0), fHistVertexz(0), fHistRunnumbersPhi(0), fHistRunnumbersEta(0), fHistPvalueCDFROOT(0), fHistPvalueCDFROOTCent(0), fHistChi2ROOTCent(0), fHistPChi2Root(0), fHistPvalueCDF(0), fHistPvalueCDFCent(0), fHistChi2Cent(0), fHistPChi2(0), fHistKolmogorovTest(0), fHistKolmogorovTestCent(0), fHistPKolmogorov(0), fHistRhoStatusCent(0), fHistUndeterminedRunQA(0), fMinDisanceRCtoLJ(0), fMaxCones(-1), fExcludeLeadingJetsFromFit(1.), fRebinSwapHistoOnTheFly(kTRUE), fPercentageOfFits(10.), fOutputList(0), fOutputListGood(0), fOutputListBad(0), fHistAnalysisSummary(0), fHistSwap(0), fProfV2(0), fProfV2Cumulant(0), fProfV3(0), fProfV3Cumulant(0), fHistPsiControl(0), fHistPsiSpread(0), fHistPsiVZEROA(0), fHistPsiVZEROC(0), fHistPsiVZERO(0), fHistPsiTPC(0), fHistPsiVZEROAV0M(0), fHistPsiVZEROCV0M(0), fHistPsiVZEROVV0M(0), fHistPsiTPCV0M(0), fHistPsiVZEROATRK(0), fHistPsiVZEROCTRK(0), fHistPsiVZEROTRK(0), fHistPsiTPCTRK(0), fHistRhoVsMult(0), fHistRhoVsCent(0), fHistRhoAVsMult(0), fHistRhoAVsCent(0), fVZEROgainEqualization(0x0), fVZEROgainEqualizationPerRing(kFALSE), fChi2A(0x0), fChi2C(0x0), fChi3A(0x0), fChi3C(0x0), fOADB(0x0)
9e1c2f31 130{
eae37c5c 131 for(Int_t i(0); i < 10; i++) {
132 fProfV2Resolution[i] = 0;
133 fProfV3Resolution[i] = 0;
134 fHistPicoTrackPt[i] = 0;
135 fHistPicoTrackMult[i] = 0;
136 fHistPicoCat1[i] = 0;
137 fHistPicoCat2[i] = 0;
138 fHistPicoCat3[i] = 0;
139 fHistClusterPt[i] = 0;
140 fHistClusterEtaPhi[i] = 0;
141 fHistClusterEtaPhiWeighted[i] = 0;
9aa4c594 142 fHistPsiTPCLeadingJet[i] = 0;
143 fHistPsiVZEROALeadingJet[i] = 0;
144 fHistPsiVZEROCLeadingJet[i] = 0;
145 fHistPsiVZEROCombLeadingJet[i] = 0;
3e6806b3 146 fHistPsi2Correlation[i] = 0;
41e50b0d 147 fHistLeadingJetBackground[i] = 0;
eae37c5c 148 fHistRhoPackage[i] = 0;
149 fHistRho[i] = 0;
150 fHistRCPhiEta[i] = 0;
151 fHistRhoVsRCPt[i] = 0;
152 fHistRCPt[i] = 0;
153 fHistDeltaPtDeltaPhi2[i] = 0;
154 fHistDeltaPtDeltaPhi2Rho0[i] = 0;
155 fHistRCPhiEtaExLJ[i] = 0;
156 fHistRhoVsRCPtExLJ[i] = 0;
157 fHistRCPtExLJ[i] = 0;
158 fHistDeltaPtDeltaPhi2ExLJ[i] = 0;
159 fHistDeltaPtDeltaPhi2ExLJRho0[i] = 0;
160 fHistJetPtRaw[i] = 0;
161 fHistJetPt[i] = 0;
162 fHistJetEtaPhi[i] = 0;
163 fHistJetPtArea[i] = 0;
164 fHistJetPtEta[i] = 0;
165 fHistJetPtConstituents[i] = 0;
166 fHistJetEtaRho[i] = 0;
167 fHistJetPsi2Pt[i] = 0;
168 fHistJetPsi2PtRho0[i] = 0;
9e1c2f31 169 }
170 for(Int_t i(0); i < 9; i++) {
171 for(Int_t j(0); j < 2; j++) {
172 for(Int_t k(0); k < 2; k++) {
173 fMeanQ[i][j][k] = 0.;
174 fWidthQ[i][j][k] = 0.;
175 fMeanQv3[i][j][k] = 0.;
176 fWidthQv3[i][j][k] = 0.;
177 }
178 }
179 }
180 for(Int_t i(0); i < 4; i++) {
181 fVZEROApol[i] = 0.;
182 fVZEROCpol[i] = 0.;
183 }
184 for(Int_t i(0); i < 8; i++) fUseVZERORing[i] = kTRUE;
185
eae37c5c 186 // constructor
187 DefineInput(0, TChain::Class());
188 DefineOutput(1, TList::Class());
189 switch (fRunModeType) {
190 case kLocal : {
191 gStyle->SetOptFit(1);
192 DefineOutput(2, TList::Class());
193 DefineOutput(3, TList::Class());
194 } break;
195 default: fDebug = -1; // suppress debug info explicitely when not running locally
196 }
197 switch (fCollisionType) {
198 case kPythia : {
199 fFitModulationType = kNoFit;
200 } break;
201 default : break;
202 }
203 if(fLocalRhoName=="") fLocalRhoName = Form("LocalRhoFrom_%s", GetName());
204}
205//_____________________________________________________________________________
206AliAnalysisTaskJetV2::~AliAnalysisTaskJetV2()
207{
208 // destructor
9274f9ad 209 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
f41baaab 210 if(fOutputList) {delete fOutputList; fOutputList = 0x0;}
211 if(fOutputListGood) {delete fOutputListGood; fOutputListGood = 0x0;}
212 if(fOutputListBad) {delete fOutputListBad; fOutputListBad = 0x0;}
213 if(fFitModulation) {delete fFitModulation; fFitModulation = 0x0;}
214 if(fHistSwap) {delete fHistSwap; fHistSwap = 0x0;}
215 if(fCentralityClasses) {delete fCentralityClasses; fCentralityClasses = 0x0;}
216 if(fExpectedRuns) {delete fExpectedRuns; fExpectedRuns = 0x0;}
217 if(fExpectedSemiGoodRuns) {delete fExpectedSemiGoodRuns; fExpectedSemiGoodRuns = 0x0;}
218 if(fFitControl) {delete fFitControl; fFitControl = 0x0;}
9e1c2f31 219 if(fVZEROgainEqualization) {delete fVZEROgainEqualization; fVZEROgainEqualization = 0x0;}
220 if(fChi2A) {delete fChi2A; fChi2A = 0x0;}
221 if(fChi2C) {delete fChi2C; fChi2C = 0x0;}
222 if(fChi3A) {delete fChi3A; fChi3A = 0x0;}
223 if(fChi3C) {delete fChi3C; fChi3C = 0x0;}
224 if(fOADB && !fOADB->IsZombie()) {
225 fOADB->Close(); fOADB = 0x0;
226 } else if (fOADB) fOADB = 0x0;
eae37c5c 227}
228//_____________________________________________________________________________
229void AliAnalysisTaskJetV2::ExecOnce()
230{
231 // Init the analysis
9274f9ad 232 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
eae37c5c 233 fLocalRho = new AliLocalRhoParameter(fLocalRhoName.Data(), 0);
234 if(fAttachToEvent) {
235 if(!(InputEvent()->FindListObject(fLocalRho->GetName()))) {
236 InputEvent()->AddObject(fLocalRho);
237 } else {
238 AliFatal(Form("%s: Container with name %s already present. Aborting", GetName(), fLocalRho->GetName()));
239 }
240 }
241 AliAnalysisTaskEmcalJet::ExecOnce(); // init the base class
242 AliAnalysisTaskEmcalJet::SetVzRange(-1.*fAbsVertexZ, fAbsVertexZ);
243 if(!GetJetContainer()) AliFatal(Form("%s: Couldn't find jet container. Aborting !", GetName()));
244}
245//_____________________________________________________________________________
f41baaab 246Bool_t AliAnalysisTaskJetV2::Notify()
247{
248 // determine the run number to see if the track and jet cuts should be refreshed for semi-good TPC runs
9274f9ad 249 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
f41baaab 250 if(fRunNumber != InputEvent()->GetRunNumber()) {
251 fRunNumber = InputEvent()->GetRunNumber(); // set the current run number
252 if(fDebug > 0) printf("__FUNC__ %s > NEW RUNNUMBER DETECTED \n ", __func__);
9e1c2f31 253 // check if this is 10h or 11h data
2e9c1578 254 switch (fCollisionType) {
255 case kPbPb10h : {
9e1c2f31 256 if(fDebug > 0) printf(" LHC10h data, assuming full acceptance, reading VZERO calibration DB \n ");
257 // for 10h data the vzero event plane calibration needs to be cached
258 ReadVZEROCalibration2010h();
259 // no need to change rho or acceptance for 10h, so we're done
2e9c1578 260 return kTRUE;
261 } break;
06d2671d 262 case kJetFlowMC : {
263 return kTRUE;
264 } break;
9e1c2f31 265 default : {
266 if(fDebug > 0) printf(" checking runnumber to adjust acceptance on the fly \n");
267 } break;
2e9c1578 268 }
f41baaab 269 // reset the cuts. should be a pointless operation except for the case where the run number changes
270 // from semi-good back to good on one node, which is not a likely scenario (unless trains will
271 // run as one masterjob)
f41baaab 272 switch (fAnalysisType) {
273 case kCharged: {
274 AliAnalysisTaskEmcalJet::SetJetPhiLimits(-10., 10.);
275 } break;
276 case kFull: {
277 AliAnalysisTaskEmcalJet::SetJetPhiLimits(1.405 + GetJetRadius(), 3.135 - GetJetRadius());
278 } break;
9e1c2f31 279 default: {
280 AliAnalysisTaskEmcal::SetTrackPhiLimits(-10., 10.);
281 } break;
f41baaab 282 }
283 if(fCachedRho) { // if there's a cached rho, it's the default, so switch back
284 if(fDebug > 0) printf("__FUNC__ %s > replacing rho with cached rho \n ", __func__);
285 fRho = fCachedRho; // reset rho back to cached value. again, should be pointless
286 }
287 Bool_t flaggedAsSemiGood(kFALSE); // not flagged as anything
288 for(Int_t i(0); i < fExpectedSemiGoodRuns->GetSize(); i++) {
289 if(fExpectedSemiGoodRuns->At(i) == fRunNumber) { // run is semi-good
290 if(fDebug > 0) printf("__FUNC__ %s > semi-good tpc run detected, adjusting acceptance \n ", __func__);
291 flaggedAsSemiGood = kTRUE;
292 switch (fAnalysisType) {
293 // for full jets the jet acceptance does not have to be changed as emcal does not
294 // cover the tpc low voltage readout strips
295 case kCharged: {
296 AliAnalysisTaskEmcalJet::SetJetPhiLimits(fSemiGoodJetMinPhi, fSemiGoodJetMaxPhi); // just an acceptance cut, jets are obtained from full azimuth, so no edge effects
297 } break;
298 default: break;
299 }
300 AliAnalysisTaskEmcal::SetTrackPhiLimits(fSemiGoodTrackMinPhi, fSemiGoodTrackMaxPhi); // only affects vn extraction, NOT jet finding
301 // for semi-good runs, also try to get the 'small rho' estimate, if it is available
302 AliRhoParameter* tempRho(dynamic_cast<AliRhoParameter*>(InputEvent()->FindListObject(fNameSmallRho.Data())));
303 if(tempRho) {
304 if(fDebug > 0) printf("__FUNC__ %s > switching to small rho, caching normal rho \n ", __func__);
305 fHistAnalysisSummary->SetBinContent(54, 1.); // bookkeep the fact that small rho is used
306 fCachedRho = fRho; // cache the original rho ...
307 fRho = tempRho; // ... and use the small rho
308 }
309 }
310 }
311 if(!flaggedAsSemiGood) {
312 // in case the run is not a semi-good run, check if it is recognized as another run
313 // only done to catch unexpected runs
314 for(Int_t i(0); i < fExpectedRuns->GetSize(); i++) {
315 if(fExpectedRuns->At(i) == fRunNumber) break; // run is known, break the loop else store the number in a random bin
316 fHistUndeterminedRunQA->SetBinContent(TMath::Nint(10.*gRandom->Uniform(0.,.9))+1, fRunNumber);
317 }
318 fHistAnalysisSummary->SetBinContent(53, 1.); // bookkeep which rho estimate is used
319 }
320 }
321 return kTRUE;
322}
323//_____________________________________________________________________________
eae37c5c 324Bool_t AliAnalysisTaskJetV2::InitializeAnalysis()
325{
326 // initialize the anaysis
327 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
328 // if not set, estimate the number of cones that would fit into the selected acceptance
329 if(fMaxCones <= 0) fMaxCones = TMath::CeilNint((TMath::Abs(GetJetContainer()->GetJetEtaMax()-GetJetContainer()->GetJetEtaMin())*TMath::Abs(GetJetContainer()->GetJetPhiMax()-GetJetContainer()->GetJetPhiMin()))/(TMath::Pi()*GetJetRadius()*GetJetRadius()));
330 // manually 'override' the default acceptance cuts of the emcal framework (use with caution)
331 if(fMinDisanceRCtoLJ==0) fMinDisanceRCtoLJ = GetJetRadius();
332 if(dynamic_cast<AliAODEvent*>(InputEvent())) fDataType = kAOD; // determine the datatype
333 else if(dynamic_cast<AliESDEvent*>(InputEvent())) fDataType = kESD;
334 fHistAnalysisSummary->SetBinContent(36, (int)fDataType);
335 if(!fRandom) fRandom = new TRandom3(0); // set randomizer and random seed
336 switch (fFitModulationType) {
337 case kNoFit : { SetModulationFit(new TF1("fix_kNoFit", "[0]", 0, TMath::TwoPi())); } break;
338 case kV2 : {
339 SetModulationFit(new TF1("fit_kV2", "[0]*([1]+[2]*[3]*TMath::Cos([2]*(x-[4])))", 0, TMath::TwoPi()));
340 fFitModulation->SetParameter(0, 0.); // normalization
341 fFitModulation->SetParameter(3, 0.2); // v2
342 fFitModulation->FixParameter(1, 1.); // constant
343 fFitModulation->FixParameter(2, 2.); // constant
344 } break;
345 case kV3: {
346 SetModulationFit(new TF1("fit_kV3", "[0]*([1]+[2]*[3]*TMath::Cos([2]*(x-[4])))", 0, TMath::TwoPi()));
347 fFitModulation->SetParameter(0, 0.); // normalization
348 fFitModulation->SetParameter(3, 0.2); // v3
349 fFitModulation->FixParameter(1, 1.); // constant
350 fFitModulation->FixParameter(2, 3.); // constant
351 } break;
352 default : { // for the combined fit, the 'direct fourier series' or the user supplied vn values we use v2 and v3
353 SetModulationFit(new TF1("fit_kCombined", "[0]*([1]+[2]*([3]*TMath::Cos([2]*(x-[4]))+[7]*TMath::Cos([5]*(x-[6]))))", 0, TMath::TwoPi()));
354 fFitModulation->SetParameter(0, 0.); // normalization
355 fFitModulation->SetParameter(3, 0.2); // v2
356 fFitModulation->FixParameter(1, 1.); // constant
357 fFitModulation->FixParameter(2, 2.); // constant
358 fFitModulation->FixParameter(5, 3.); // constant
359 fFitModulation->SetParameter(7, 0.2); // v3
360 } break;
361 }
362 switch (fRunModeType) {
363 case kGrid : { fFitModulationOptions += "N0"; } break;
364 default : break;
365 }
366 FillAnalysisSummaryHistogram();
367 return kTRUE;
368}
369//_____________________________________________________________________________
370TH1F* AliAnalysisTaskJetV2::BookTH1F(const char* name, const char* x, Int_t bins, Double_t min, Double_t max, Int_t c, Bool_t append)
371{
372 // book a TH1F and connect it to the output container
373 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
374 if(fReduceBinsXByFactor > 0 ) bins = TMath::Nint(bins/fReduceBinsXByFactor);
375 if(!fOutputList) return 0x0;
376 TString title(name);
377 if(c!=-1) { // format centrality dependent histograms accordingly
378 name = Form("%s_%i", name, c);
379 title += Form("_%i-%i", (int)(fCentralityClasses->At(c)), (int)(fCentralityClasses->At((1+c))));
380 }
381 title += Form(";%s;[counts]", x);
382 TH1F* histogram = new TH1F(name, title.Data(), bins, min, max);
383 histogram->Sumw2();
384 if(append) fOutputList->Add(histogram);
385 return histogram;
386}
387//_____________________________________________________________________________
3e6806b3 388TH2F* AliAnalysisTaskJetV2::BookTH2F(const char* name, const char* x, const char* y, Int_t binsx, Double_t minx, Double_t maxx, Int_t binsy, Double_t miny, Double_t maxy, Int_t c, Bool_t append)
eae37c5c 389{
390 // book a TH2F and connect it to the output container
391 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
392 if(fReduceBinsXByFactor > 0 ) binsx = TMath::Nint(binsx/fReduceBinsXByFactor);
393 if(fReduceBinsYByFactor > 0 ) binsy = TMath::Nint(binsy/fReduceBinsYByFactor);
394 if(!fOutputList) return 0x0;
395 TString title(name);
396 if(c!=-1) { // format centrality dependent histograms accordingly
397 name = Form("%s_%i", name, c);
398 title += Form("_%i-%i", (int)fCentralityClasses->At(c), (int)(fCentralityClasses->At((1+c))));
399 }
400 title += Form(";%s;%s", x, y);
401 TH2F* histogram = new TH2F(name, title.Data(), binsx, minx, maxx, binsy, miny, maxy);
402 histogram->Sumw2();
403 if(append) fOutputList->Add(histogram);
404 return histogram;
405}
406//_____________________________________________________________________________
3e6806b3 407TH3F* AliAnalysisTaskJetV2::BookTH3F(const char* name, const char* x, const char* y, const char* z, Int_t binsx, Double_t minx, Double_t maxx, Int_t binsy, Double_t miny, Double_t maxy, Int_t binsz, Double_t minz, Double_t maxz, Int_t c, Bool_t append)
408{
409 // book a TH2F and connect it to the output container
410 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
411 if(fReduceBinsXByFactor > 0 ) {
412 binsx = TMath::Nint(binsx/fReduceBinsXByFactor);
413 binsy = TMath::Nint(binsy/fReduceBinsXByFactor);
414 binsz = TMath::Nint(binsz/fReduceBinsXByFactor);
415 }
416 if(!fOutputList) return 0x0;
417 TString title(name);
418 if(c!=-1) { // format centrality dependent histograms accordingly
419 name = Form("%s_%i", name, c);
420 title += Form("_%i-%i", (int)fCentralityClasses->At(c), (int)(fCentralityClasses->At((1+c))));
421 }
422 title += Form(";%s;%s;%s", x, y, z);
423 TH3F* histogram = new TH3F(name, title.Data(), binsx, minx, maxx, binsy, miny, maxy, binsz, minz, maxz);
424 histogram->Sumw2();
425 if(append) fOutputList->Add(histogram);
426 return histogram;
427}
428//_____________________________________________________________________________
eae37c5c 429void AliAnalysisTaskJetV2::UserCreateOutputObjects()
430{
431 // create output objects. also initializes some default values in case they aren't
432 // loaded via the AddTask macro
433 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
434 fOutputList = new TList();
435 fOutputList->SetOwner(kTRUE);
436 if(!fCentralityClasses) { // classes must be defined at this point
437 Double_t c[] = {0., 20., 40., 60., 80., 100.};
438 fCentralityClasses = new TArrayD(sizeof(c)/sizeof(c[0]), c);
439 }
440 if(!fExpectedRuns) { // expected runs must be defined at this point
441 Int_t r[] = {167813, 167988, 168066, 168068, 168069, 168076, 168104, 168212, 168311, 168322, 168325, 168341, 168361, 168362, 168458, 168460, 168461, 168992, 169091, 169094, 169138, 169143, 169167, 169417, 169835, 169837, 169838, 169846, 169855, 169858, 169859, 169923, 169956, 170027, 170036, 170081, /* up till here original good TPC list */169975, 169981, 170038, 170040, 170083, 170084, 170085, 170088, 170089, 170091, 170152, 170155, 170159, 170163, 170193, 170195, 170203, 170204, 170205, 170228, 170230, 170264, 170268, 170269, 170270, 170306, 170308, 170309, /* original semi-good tpc list */169415, 169411, 169035, 168988, 168984, 168826, 168777, 168512, 168511, 168467, 168464, 168342, 168310, 168115, 168108, 168107, 167987, 167915, 167903, /*new runs, good according to RCT */ 169238, 169160, 169156, 169148, 169145, 169144 /* run swith missing OROC 8 but seem ok in QA */};
442 fExpectedRuns = new TArrayI(sizeof(r)/sizeof(r[0]), r);
443 }
2e9c1578 444 // set default semi-good runs only for 11h data
445 switch (fCollisionType) {
446 case kPbPb10h : break;
447 default : {
448 if(!fExpectedSemiGoodRuns) {
449 Int_t r[] = {169975, 169981, 170038, 170040, 170083, 170084, 170085, 170088, 170089, 170091, 170152, 170155, 170159, 170163, 170193, 170195, 170203, 170204, 170205, 170228, 170230, 170264, 170268, 170269, 170270, 170306, 170308, 170309};
450 fExpectedSemiGoodRuns = new TArrayI(sizeof(r)/sizeof(r[0]), r);
451 }
452 }
eae37c5c 453 }
2e9c1578 454
eae37c5c 455 // global QA
456 fHistCentrality = BookTH1F("fHistCentrality", "centrality", 102, -2, 100);
457 fHistVertexz = BookTH1F("fHistVertexz", "vertex z (cm)", 100, -12, 12);
458
b59d293b 459 // for some histograms adjust the bounds according to analysis acceptance
460 Double_t etaMin(-1.), etaMax(1.), phiMin(0.), phiMax(TMath::TwoPi());
461 switch (fAnalysisType) {
462 case kFull : {
463 etaMin = -.7;
464 etaMax = .7;
465 phiMin = 1.405;
466 phiMax = 3.135;
467 } break;
468 default : break;
469 }
470
eae37c5c 471 // pico track and emcal cluster kinematics
472 for(Int_t i(0); i < fCentralityClasses->GetSize()-1; i++) {
473 fHistPicoTrackPt[i] = BookTH1F("fHistPicoTrackPt", "p_{t} [GeV/c]", 100, 0, 100, i);
474 fHistPicoTrackMult[i] = BookTH1F("fHistPicoTrackMult", "multiplicity", 100, 0, 5000, i);
475 if(fFillQAHistograms) {
476 fHistPicoCat1[i] = BookTH2F("fHistPicoCat1", "#eta", "#phi", 50, -1, 1, 50, 0, TMath::TwoPi(), i);
477 fHistPicoCat2[i] = BookTH2F("fHistPicoCat2", "#eta", "#phi", 50, -1, 1, 50, 0, TMath::TwoPi(), i);
478 fHistPicoCat3[i] = BookTH2F("fHistPicoCat3", "#eta", "#phi", 50, -1, 1, 50, 0, TMath::TwoPi(), i);
479 if(fAnalysisType == AliAnalysisTaskJetV2::kFull) {
480 fHistClusterPt[i] = BookTH1F("fHistClusterPt", "p_{t} [GeV/c]", 100, 0, 100, i);
b59d293b 481 fHistClusterEtaPhi[i] = BookTH2F("fHistClusterEtaPhi", "#eta", "#phi", 100, etaMax, etaMax, 100, phiMin, phiMax, i);
482 fHistClusterEtaPhiWeighted[i] = BookTH2F("fHistClusterEtaPhiWeighted", "#eta", "#phi", 100, etaMin, etaMax, 100, phiMin, phiMax, i);
eae37c5c 483 }
41e50b0d 484 fHistPsiTPCLeadingJet[i] = BookTH3F("fHistPsiTPCLeadingJet", "p_{t} [GeV/c]", "#Psi_{TPC}", "#varphi_{jet}", 70, 0, 210, 50, -1.*TMath::Pi()/2., TMath::Pi()/2., 50, phiMin, phiMax, i);
485 fHistPsiVZEROALeadingJet[i] = BookTH3F("fHistPsiVZEROALeadingJet", "p_{t} [GeV/c]", "#Psi_{VZEROA}", "#varphi_{jet}", 70, 0, 210, 50, -1.*TMath::Pi()/2., TMath::Pi()/2., 50, phiMin, phiMax, i);
486 fHistPsiVZEROCLeadingJet[i] = BookTH3F("fHistPsiVZEROCLeadingJet", "p_{t} [GeV/c]", "#Psi_{VZEROC}", "#varphi_{jet}", 70, 0, 210, 50, -1.*TMath::Pi()/2., TMath::Pi()/2., 50, phiMin, phiMax, i);
487 fHistPsiVZEROCombLeadingJet[i] = BookTH3F("fHistPsiVZEROCombLeadingJet", "p_{t} [GeV/c]", "#Psi_{VZEROComb}", "#varphi_{jet}", 70, 0, 210, 50, -1.*TMath::Pi()/2., TMath::Pi()/2., 50, phiMin, phiMax, i);
3e6806b3 488 fHistPsi2Correlation[i] = BookTH3F("fHistPsi2Correlation", "#Psi_{TPC}", "#Psi_{VZEROA}", "#Psi_{VZEROC}", 20, -1.*TMath::Pi()/2., TMath::Pi()/2., 20, -1.*TMath::Pi()/2., TMath::Pi()/2., 20, -1.*TMath::Pi()/2., TMath::Pi()/2., i);
41e50b0d 489 fHistLeadingJetBackground[i] = BookTH2F("fHistLeadingJetBackground", "#Delta #eta (leading jet with, without sub)", "Delta #varphi (leading jet with, without sub)", 50, -2., 2, 50, 0., TMath::TwoPi(), i);
eae37c5c 490 }
491 }
492
493 if(fFillQAHistograms) {
494 // event plane estimates and quality
495 fHistPsiControl = new TProfile("fHistPsiControl", "fHistPsiControl", 10, 0, 10);
496 fHistPsiControl->Sumw2();
497 fHistPsiSpread = new TProfile("fHistPsiSpread", "fHistPsiSpread", 4, 0, 4);
498 fHistPsiSpread->Sumw2();
499 fHistPsiControl->GetXaxis()->SetBinLabel(1, "<#Psi_{2, VZEROA}>");
500 fHistPsiControl->GetXaxis()->SetBinLabel(2, "<#Psi_{2, VZEROC}>");
501 fHistPsiControl->GetXaxis()->SetBinLabel(3, "<#Psi_{2, TPC}>");
502 fHistPsiControl->GetXaxis()->SetBinLabel(4, "<#Psi_{2, TPC, #eta < 0}>");
503 fHistPsiControl->GetXaxis()->SetBinLabel(5, "<#Psi_{2, TPC, #eta > 0}>");
504 fHistPsiControl->GetXaxis()->SetBinLabel(6, "<#Psi_{3, VZEROA}>");
505 fHistPsiControl->GetXaxis()->SetBinLabel(7, "<#Psi_{3, VZEROC}>");
506 fHistPsiControl->GetXaxis()->SetBinLabel(8, "<#Psi_{3, TPC}>");
507 fHistPsiControl->GetXaxis()->SetBinLabel(9, "<#Psi_{3, TPC, #eta < 0}>");
508 fHistPsiControl->GetXaxis()->SetBinLabel(10, "<#Psi_{3, TPC, #eta > 0}>");
509 fHistPsiSpread->GetXaxis()->SetBinLabel(1, "<#Psi_{2, VZEROA} - #Psi_{2, VZEROC}>");
510 fHistPsiSpread->GetXaxis()->SetBinLabel(2, "<#Psi_{2, VZEROC} - #Psi_{2, TPC}>");
511 fHistPsiSpread->GetXaxis()->SetBinLabel(3, "<#Psi_{2, VZEROC} - #Psi_{2, TPC}>");
512 fHistPsiSpread->GetXaxis()->SetBinLabel(4, "<#Psi_{2, TPC, #eta < 0} - #Psi_{2, TPC, #eta > 0}>");
513 fOutputList->Add(fHistPsiControl);
514 fOutputList->Add(fHistPsiSpread);
515 fHistPsiVZEROA = BookTH1F("fHistPsiVZEROA", "#Psi_{VZEROA}", 40, -.5*TMath::Pi(), .5*TMath::Pi());
516 fHistPsiVZEROC = BookTH1F("fHistPsiVZEROC", "#Psi_{VZEROC}", 40, -.5*TMath::Pi(), .5*TMath::Pi());
517 fHistPsiVZERO = BookTH1F("fHistPsiVZERO", "#Psi_{VZERO}", 40, -.5*TMath::Pi(), .5*TMath::Pi());
518 fHistPsiTPC = BookTH1F("fHistPsiTPC", "#Psi_{TPC}", 40, -.5*TMath::Pi(), .5*TMath::Pi());
519 fHistPsiVZEROAV0M = BookTH2F("fHistPsiVZEROAV0M", "V0M", "#Psi_{2, VZEROA}", 60, 0, 60, 40, -.5*TMath::Pi(), .5*TMath::Pi());
520 fHistPsiVZEROCV0M = BookTH2F("fHistPsiVZEROCV0M", "V0M", "#Psi_{2, VZEROC}", 60, 0, 60, 40, -.5*TMath::Pi(), .5*TMath::Pi());
521 fHistPsiVZEROVV0M = BookTH2F("fHistPsiVZEROV0M", "V0M", "#Psi_{2, VZERO}", 60, 0, 60, 40, -.5*TMath::Pi(), .5*TMath::Pi());
9aa4c594 522 fHistPsiTPCV0M = BookTH2F("fHistPsiTPCV0M", "V0M", "#Psi_{2, TRK}", 60, 0, 60, 40, -.5*TMath::Pi(), .5*TMath::Pi());
eae37c5c 523 fHistPsiVZEROATRK = BookTH2F("fHistPsiVZEROATRK", "TRK", "#Psi_{2, VZEROA}", 60, 0, 60, 40, -.5*TMath::Pi(), .5*TMath::Pi());
524 fHistPsiVZEROCTRK = BookTH2F("fHistPsiVZEROCTRK", "TRK", "#Psi_{2, VZEROC}", 60, 0, 60, 40, -.5*TMath::Pi(), .5*TMath::Pi());
525 fHistPsiVZEROTRK = BookTH2F("fHistPsiVZEROTRK", "TRK", "#Psi_{2, VZERO}", 60, 0, 60, 40, -.5*TMath::Pi(), .5*TMath::Pi());
526 fHistPsiTPCTRK = BookTH2F("fHistPsiTPCTRK", "TRK", "#Psi_{2, TRK}", 60, 0, 60, 40, -.5*TMath::Pi(), .5*TMath::Pi());
527 }
528 // background
529 for(Int_t i(0); i < fCentralityClasses->GetSize()-1; i ++) {
530 fHistRhoPackage[i] = BookTH1F("fHistRhoPackage", "#rho [GeV/c]", 100, 0, 150, i);
531 fHistRho[i] = BookTH1F("fHistRho", "#rho [GeV/c]", 100, 0, 150, i);
532 }
533 fHistRhoVsMult = BookTH2F("fHistRhoVsMult", "multiplicity", "#rho [GeV/c]", 100, 0, 4000, 100, 0, 250);
534 fHistRhoVsCent = BookTH2F("fHistRhoVsCent", "centrality", "#rho [GeV/c]", 100, 0, 100, 100, 0, 250);
535 fHistRhoAVsMult = BookTH2F("fHistRhoAVsMult", "multiplicity", "#rho * A (jet) [GeV/c]", 100, 0, 4000, 100, 0, 50);
536 fHistRhoAVsCent = BookTH2F("fHistRhoAVsCent", "centrality", "#rho * A (jet) [GeV/c]", 100, 0, 100, 100, 0, 50);
537
538 TString detector("");
539 switch (fDetectorType) {
540 case kTPC : detector+="TPC";
541 break;
542 case kVZEROA : detector+="VZEROA";
543 break;
544 case kVZEROC : detector+="VZEROC";
545 break;
546 case kVZEROComb : detector+="VZEROComb";
547 break;
06d2671d 548 case kFixedEP : detector+="FixedEP";
549 break;
eae37c5c 550 default: break;
551 }
552 // delta pt distributions
553 for(Int_t i(0); i < fCentralityClasses->GetSize()-1; i ++) {
b59d293b 554 if(fFillQAHistograms) fHistRCPhiEta[i] = BookTH2F("fHistRCPhiEta", "#phi (RC)", "#eta (RC)", 40, phiMin, phiMax, 40, etaMin, etaMax, i);
eae37c5c 555 fHistRhoVsRCPt[i] = BookTH2F("fHistRhoVsRCPt", "p_{t} (RC) [GeV/c]", "#rho * A (RC) [GeV/c]", 100, 0, 300, 100, 0, 350, i);
556 fHistRCPt[i] = BookTH1F("fHistRCPt", "p_{t} (RC) [GeV/c]", 130, -20, 150, i);
b59d293b 557 if(fFillQAHistograms) fHistRCPhiEtaExLJ[i] = BookTH2F("fHistRCPhiEtaExLJ", "#phi (RC)", "#eta (RC)", 40, phiMin, phiMax, 40, etaMin, etaMax, i);
eae37c5c 558 fHistDeltaPtDeltaPhi2[i] = BookTH2F("fHistDeltaPtDeltaPhi2", Form("#phi - #Psi_{2, %s}", detector.Data()), "#delta p_{t} [GeV/c]", 40, 0, TMath::Pi(), 400, -70, 130, i);
559 fHistDeltaPtDeltaPhi2Rho0[i] = BookTH2F("fHistDeltaPtDeltaPhi2Rho0", Form("#phi - #Psi_{2, %s}", detector.Data()), "#delta p_{t} [GeV/c]", 40, 0, TMath::Pi(), 400, -70, 130, i);
560 fHistRhoVsRCPtExLJ[i] = BookTH2F("fHistRhoVsRCPtExLJ", "p_{t} (RC) [GeV/c]", "#rho * A (RC) [GeV/c]", 100, 0, 300, 100, 0, 350, i);
561 fHistRCPtExLJ[i] = BookTH1F("fHistRCPtExLJ", "p_{t} (RC) [GeV/c]", 130, -20, 150, i);
562 fHistDeltaPtDeltaPhi2ExLJ[i] = BookTH2F("fHistDeltaPtDeltaPhi2ExLJ", Form("#phi - #Psi_{2, %s}", detector.Data()), "#delta p_{t} [GeV/c]", 40, 0, TMath::Pi(), 400, -70, 130, i);
563 fHistDeltaPtDeltaPhi2ExLJRho0[i] = BookTH2F("fHistDeltaPtDeltaPhi2ExLJRho0", Form("#phi - #Psi_{2, %s}", detector.Data()), "#delta p_{t} [GeV/c]", 40, 0, TMath::Pi(), 400, -70, 130, i);
564 // jet histograms (after kinematic cuts)
565 fHistJetPtRaw[i] = BookTH1F("fHistJetPtRaw", "p_{t, jet} RAW [GeV/c]", 200, -50, 150, i);
566 fHistJetPt[i] = BookTH1F("fHistJetPt", "p_{t, jet} [GeV/c]", 350, -100, 250, i);
b59d293b 567 if(fFillQAHistograms) fHistJetEtaPhi[i] = BookTH2F("fHistJetEtaPhi", "#eta", "#phi", 100, etaMin, etaMax, 100, phiMin, phiMax, i);
eae37c5c 568 fHistJetPtArea[i] = BookTH2F("fHistJetPtArea", "p_{t, jet} [GeV/c]", "Area", 175, -100, 250, 30, 0, 0.9, i);
b59d293b 569 fHistJetPtEta[i] = BookTH2F("fHistJetPtEta", "p_{t, jet} [GeV/c]", "Eta", 175, -100, 250, 30, etaMin, etaMax, i);
9aa4c594 570 fHistJetPtConstituents[i] = BookTH2F("fHistJetPtConstituents", "p_{t, jet} [GeV/c]", "no. of constituents", 350, -100, 250, 60, 0, 150, i);
b59d293b 571 fHistJetEtaRho[i] = BookTH2F("fHistJetEtaRho", "#eta", "#rho", 100, etaMin, etaMax, 100, 0, 300, i);
eae37c5c 572 // in plane and out of plane spectra
573 fHistJetPsi2Pt[i] = BookTH2F("fHistJetPsi2Pt", Form("#phi_{jet} - #Psi_{2, %s}", detector.Data()), "p_{t, jet} [GeV/c]", 40, 0., TMath::Pi(), 350, -100, 250, i);
574 fHistJetPsi2PtRho0[i] = BookTH2F("fHistJetPsi2PtRho0", Form("#phi_{jet} - #Psi_{2, %s}", detector.Data()), "p_{t, jet} [GeV/c]", 40, 0., TMath::Pi(), 350, -100, 250, i);
575 // profiles for all correlator permutations which are necessary to calculate each second and third order event plane resolution
576 fProfV2Resolution[i] = new TProfile(Form("fProfV2Resolution_%i", i), Form("fProfV2Resolution_%i", i), 11, -0.5, 10.5);
577 fProfV2Resolution[i]->GetXaxis()->SetBinLabel(3, "<cos(2(#Psi_{VZEROA} - #Psi_{VZEROC}))>");
578 fProfV2Resolution[i]->GetXaxis()->SetBinLabel(4, "<cos(2(#Psi_{VZEROC} - #Psi_{VZEROA}))>");
579 fProfV2Resolution[i]->GetXaxis()->SetBinLabel(5, "<cos(2(#Psi_{VZEROA} - #Psi_{TPC}))>");
580 fProfV2Resolution[i]->GetXaxis()->SetBinLabel(6, "<cos(2(#Psi_{TPC} - #Psi_{VZEROA}))>");
581 fProfV2Resolution[i]->GetXaxis()->SetBinLabel(7, "<cos(2(#Psi_{VZEROC} - #Psi_{TPC}))>");
582 fProfV2Resolution[i]->GetXaxis()->SetBinLabel(8, "<cos(2(#Psi_{TPC} - #Psi_{VZEROC}))>");
583 fProfV2Resolution[i]->GetXaxis()->SetBinLabel(9, "<cos(2(#Psi_{VZERO} - #Psi_{TPC_A}))>");
584 fProfV2Resolution[i]->GetXaxis()->SetBinLabel(10, "<cos(2(#Psi_{VZERO} - #Psi_{TPC_B}))>");
585 fProfV2Resolution[i]->GetXaxis()->SetBinLabel(11, "<cos(2(#Psi_{TPC_A} - #Psi_{TPC_B}))>");
586 fOutputList->Add(fProfV2Resolution[i]);
587 fProfV3Resolution[i] = new TProfile(Form("fProfV3Resolution_%i", i), Form("fProfV3Resolution_%i", i), 11, -0.5, 10.5);
588 fProfV3Resolution[i]->GetXaxis()->SetBinLabel(3, "<cos(3(#Psi_{VZEROA} - #Psi_{VZEROC}))>");
589 fProfV3Resolution[i]->GetXaxis()->SetBinLabel(4, "<cos(3(#Psi_{VZEROC} - #Psi_{VZEROA}))>");
590 fProfV3Resolution[i]->GetXaxis()->SetBinLabel(5, "<cos(3(#Psi_{VZEROA} - #Psi_{TPC}))>");
591 fProfV3Resolution[i]->GetXaxis()->SetBinLabel(6, "<cos(3(#Psi_{TPC} - #Psi_{VZEROA}))>");
592 fProfV3Resolution[i]->GetXaxis()->SetBinLabel(7, "<cos(3(#Psi_{VZEROC} - #Psi_{TPC}))>");
593 fProfV3Resolution[i]->GetXaxis()->SetBinLabel(8, "<cos(3(#Psi_{TPC} - #Psi_{VZEROC}))>");
594 fProfV3Resolution[i]->GetXaxis()->SetBinLabel(9, "<cos(3(#Psi_{VZERO} - #Psi_{TPC_A}))>");
595 fProfV3Resolution[i]->GetXaxis()->SetBinLabel(10, "<cos(3(#Psi_{VZERO} - #Psi_{TPC_B}))>");
596 fProfV3Resolution[i]->GetXaxis()->SetBinLabel(11, "<cos(3(#Psi_{TPC_A} - #Psi_{TPC_B}))>");
597 fOutputList->Add(fProfV3Resolution[i]);
598 }
599 // vn profile
600 Float_t temp[fCentralityClasses->GetSize()];
601 for(Int_t i(0); i < fCentralityClasses->GetSize(); i++) temp[i] = fCentralityClasses->At(i);
602 fProfV2 = new TProfile("fProfV2", "fProfV2", fCentralityClasses->GetSize()-1, temp);
603 fProfV3 = new TProfile("fProfV3", "fProfV3", fCentralityClasses->GetSize()-1, temp);
604 fOutputList->Add(fProfV2);
605 fOutputList->Add(fProfV3);
606 switch (fFitModulationType) {
607 case kQC2 : {
608 fProfV2Cumulant = new TProfile("fProfV2Cumulant", "fProfV2Cumulant", fCentralityClasses->GetSize()-1, temp);
609 fProfV3Cumulant = new TProfile("fProfV3Cumulant", "fProfV3Cumulant", fCentralityClasses->GetSize()-1, temp);
610 fOutputList->Add(fProfV2Cumulant);
611 fOutputList->Add(fProfV3Cumulant);
612 } break;
613 case kQC4 : {
614 fProfV2Cumulant = new TProfile("fProfV2Cumulant", "fProfV2Cumulant", fCentralityClasses->GetSize()-1, temp);
615 fProfV3Cumulant = new TProfile("fProfV3Cumulant", "fProfV3Cumulant", fCentralityClasses->GetSize()-1, temp);
616 fOutputList->Add(fProfV2Cumulant);
617 fOutputList->Add(fProfV3Cumulant);
618 } break;
619 default : break;
620 }
621 // for the histograms initialized below, binning is fixed to runnumbers or flags
622 fReduceBinsXByFactor = 1;
623 fReduceBinsYByFactor = 1;
624 if(fFillQAHistograms) {
625 fHistRunnumbersEta = new TH2F("fHistRunnumbersEta", "fHistRunnumbersEta", fExpectedRuns->GetSize()+1, -.5, fExpectedRuns->GetSize()+.5, 100, -1.1, 1.1);
626 fHistRunnumbersEta->Sumw2();
627 fOutputList->Add(fHistRunnumbersEta);
628 fHistRunnumbersPhi = new TH2F("fHistRunnumbersPhi", "fHistRunnumbersPhi", fExpectedRuns->GetSize()+1, -.5, fExpectedRuns->GetSize()+.5, 100, -0.2, TMath::TwoPi()+0.2);
629 fHistRunnumbersPhi->Sumw2();
630 fOutputList->Add(fHistRunnumbersPhi);
631 for(Int_t i(0); i < fExpectedRuns->GetSize(); i++) {
632 fHistRunnumbersPhi->GetXaxis()->SetBinLabel(i+1, Form("%i", fExpectedRuns->At(i)));
633 fHistRunnumbersEta->GetXaxis()->SetBinLabel(i+1, Form("%i", fExpectedRuns->At(i)));
634 }
635 fHistRunnumbersPhi->GetXaxis()->SetBinLabel(fExpectedRuns->GetSize()+1, "undetermined");
636 fHistRunnumbersEta->GetXaxis()->SetBinLabel(fExpectedRuns->GetSize()+1, "undetermined");
637 }
638 fHistAnalysisSummary = BookTH1F("fHistAnalysisSummary", "flag", 54, -0.5, 54.5);
639 fHistSwap = new TH1F("fHistSwap", "fHistSwap", 20, 0, TMath::TwoPi());
640 if(fUsePtWeight) fHistSwap->Sumw2();
641
642 if(fUserSuppliedV2) fOutputList->Add(fUserSuppliedV2);
643 if(fUserSuppliedV3) fOutputList->Add(fUserSuppliedV3);
644 if(fUserSuppliedR2) fOutputList->Add(fUserSuppliedR2);
645 if(fUserSuppliedR3) fOutputList->Add(fUserSuppliedR3);
646 // increase readability of output list
647 fOutputList->Sort();
648 // cdf and pdf of chisquare distribution
649 fHistPvalueCDF = BookTH1F("fHistPvalueCDF", "CDF #chi^{2}", 50, 0, 1);
650 fHistPvalueCDFCent = BookTH2F("fHistPvalueCDFCent", "centrality", "p-value", 40, 0, 100, 40, 0, 1);
651 fHistChi2Cent = BookTH2F("fHistChi2Cent", "centrality", "#tilde{#chi^{2}}", 100, 0, 100, 100, 0, 5);
652 fHistPChi2 = BookTH2F("fHistPChi2", "p-value", "#tilde{#chi^{2}}", 1000, 0, 1, 100, 0, 5);
653 fHistKolmogorovTest = BookTH1F("fHistKolmogorovTest", "KolmogorovTest", 50, 0, 1);
654 fHistKolmogorovTestCent = BookTH2F("fHistKolmogorovTestCent", "centrality", "Kolmogorov p", 40, 0, 100, 45, 0, 1);
655 fHistPvalueCDFROOT = BookTH1F("fHistPvalueCDFROOT", "CDF #chi^{2} ROOT", 50, 0, 1);
656 fHistPvalueCDFROOTCent = BookTH2F("fHistPvalueCDFROOTCent", "centrality", "p-value ROOT", 40, 0, 100, 45, 0, 1);
657 fHistChi2ROOTCent = BookTH2F("fHistChi2ROOTCent", "centrality", "#tilde{#chi^{2}}", 40, 0, 100, 45, 0, 5);
658 fHistPChi2Root = BookTH2F("fHistPChi2Root", "p-value", "#tilde{#chi^{2}} ROOT", 1000, 0, 1, 100, 0, 5);
659 fHistPKolmogorov = BookTH2F("fHistPKolmogorov", "p-value", "kolmogorov p",40, 0, 1, 40, 0, 1);
660 fHistRhoStatusCent = BookTH2F("fHistRhoStatusCent", "centrality", "status [-1=lin was better, 0=ok, 1 = failed]", 101, -1, 100, 3, -1.5, 1.5);
661 fHistUndeterminedRunQA = BookTH1F("fHistUndeterminedRunQA", "runnumber", 10, 0, 10);
662
663 PostData(1, fOutputList);
664
665 switch (fRunModeType) {
666 case kLocal : {
667 fOutputListGood = new TList();
668 fOutputListGood->SetOwner(kTRUE);
669 fOutputListBad = new TList();
670 fOutputListBad->SetOwner(kTRUE);
671 PostData(2, fOutputListGood);
672 PostData(3, fOutputListBad);
673 } break;
674 default: break;
675 }
676
677 // get the containers
678 fTracksCont = GetParticleContainer("Tracks");
679 fClusterCont = GetClusterContainer(0); // get the default cluster container
680 fJetsCont = GetJetContainer("Jets");
681}
682//_____________________________________________________________________________
683Bool_t AliAnalysisTaskJetV2::Run()
684{
9e1c2f31 685 // called for each accepted event (call made from user exec of parent class)
eae37c5c 686 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
06d2671d 687 if(!fTracks||!fJets||!fRho) {
9aa4c594 688 if(!fTracks) printf(" > Failed to retrieve fTracks ! < \n");
689 if(!fJets) printf(" > Failed to retrieve fJets ! < \n");
690 if(!fRho) printf(" > Failed to retrieve fRho ! < \n");
06d2671d 691 return kFALSE;
692 }
eae37c5c 693 if(!fLocalInit) fLocalInit = InitializeAnalysis();
694 // reject the event if expected data is missing
695 if(!PassesCuts(InputEvent())) return kFALSE;
9aa4c594 696 // cache the leading jet within acceptance
697 fLeadingJet = GetLeadingJet();
eae37c5c 698 // set the rho value
699 fLocalRho->SetVal(fRho->GetVal());
06d2671d 700 // place holder arrays for the event planes
701 //
eae37c5c 702 // [0][0] psi2a [1,0] psi2c
703 // [0][1] psi3a [1,1] psi3c
704 Double_t vzero[2][2];
eae37c5c 705 /* for the combined vzero event plane
706 * [0] psi2 [1] psi3
707 * not fully implmemented yet, use with caution ! */
708 Double_t vzeroComb[2];
eae37c5c 709 // [0] psi2 [1] psi3
710 Double_t tpc[2];
06d2671d 711 // evaluate the actual event planes
712 switch (fDetectorType) {
713 case kFixedEP : {
714 // for fixed, fix all ep's to default values
715 tpc[0] = 0.; tpc[1] = 1.;
716 vzero[0][0] = 0.; vzero[0][1] = 1.;
717 vzero[1][0] = 0.; vzero[1][1] = 1.;
718 vzeroComb[0] = 0.; vzeroComb[1] = 1.;
719 } break;
720 default : {
721 // else grab the actual data
722 CalculateEventPlaneVZERO(vzero);
723 CalculateEventPlaneCombinedVZERO(vzeroComb);
724 CalculateEventPlaneTPC(tpc);
725 } break;
726 }
eae37c5c 727 Double_t psi2(-1), psi3(-1);
728 // arrays which will hold the fit parameters
729 switch (fDetectorType) { // determine the detector type for the rho fit
06d2671d 730 case kTPC : { psi2 = tpc[0]; psi3 = tpc[1]; } break;
731 case kVZEROA : { psi2 = vzero[0][0]; psi3 = vzero[0][1]; } break;
732 case kVZEROC : { psi2 = vzero[1][0]; psi3 = vzero[1][1]; } break;
733 case kVZEROComb : { psi2 = vzeroComb[0]; psi3 = vzeroComb[1];} break;
734 case kFixedEP : { psi2 = 0.; psi3 = 1.;} break;
eae37c5c 735 default : break;
736 }
737 switch (fFitModulationType) { // do the fits
738 case kNoFit : {
739 switch (fCollisionType) {
740 case kPythia : { // background is zero for pp jets
741 fFitModulation->FixParameter(0, 0);
742 fLocalRho->SetVal(0);
743 } break;
744 default : {
745 fFitModulation->FixParameter(0, fLocalRho->GetVal());
746 } break;
747 }
748 } break;
749 case kV2 : { // only v2
750 if(CorrectRho(psi2, psi3)) {
751 fProfV2->Fill(fCent, fFitModulation->GetParameter(3));
752 if(fUserSuppliedR2) {
753 Double_t r(fUserSuppliedR2->GetBinContent(fUserSuppliedR2->GetXaxis()->FindBin(fCent)));
754 if(r > 0) fFitModulation->SetParameter(3, fFitModulation->GetParameter(3)/r);
755 }
756 CalculateEventPlaneResolution(vzero, vzeroComb, tpc);
757 }
758 } break;
759 case kV3 : { // only v3
760 if(CorrectRho(psi2, psi3)) {
761 if(fUserSuppliedR3) {
762 Double_t r(fUserSuppliedR3->GetBinContent(fUserSuppliedR3->GetXaxis()->FindBin(fCent)));
763 if(r > 0) fFitModulation->SetParameter(3, fFitModulation->GetParameter(3)/r);
764 }
765 fProfV3->Fill(fCent, fFitModulation->GetParameter(3));
766 CalculateEventPlaneResolution(vzero, vzeroComb, tpc);
767 }
768 } break;
769 case kQC2 : { // qc2 analysis
770 if(CorrectRho(psi2, psi3)) {
771 if(fUserSuppliedR2 && fUserSuppliedR3) {
772 // note for the qc method, resolution is REVERSED to go back to v2obs
773 Double_t r2(fUserSuppliedR2->GetBinContent(fUserSuppliedR2->GetXaxis()->FindBin(fCent)));
774 Double_t r3(fUserSuppliedR3->GetBinContent(fUserSuppliedR3->GetXaxis()->FindBin(fCent)));
775 if(r2 > 0) fFitModulation->SetParameter(3, fFitModulation->GetParameter(3)*r2);
776 if(r3 > 0) fFitModulation->SetParameter(7, fFitModulation->GetParameter(7)*r3);
777 }
778 if (fUsePtWeight) { // use weighted weights
779 Double_t dQCnM11 = (fNoEventWeightsForQC) ? 1. : QCnM11();
780 fProfV2->Fill(fCent, fFitModulation->GetParameter(3), dQCnM11);
781 fProfV3->Fill(fCent, fFitModulation->GetParameter(7), dQCnM11);
782 } else {
783 Double_t dQCnM = (fNoEventWeightsForQC) ? 2. : QCnM();
784 fProfV2->Fill(fCent, fFitModulation->GetParameter(3), dQCnM*(dQCnM-1));
785 fProfV3->Fill(fCent, fFitModulation->GetParameter(7), dQCnM*(dQCnM-1));
786 }
787 CalculateEventPlaneResolution(vzero, vzeroComb, tpc);
788 }
789 } break;
790 case kQC4 : {
791 if(CorrectRho(psi2, psi3)) {
792 if(fUserSuppliedR2 && fUserSuppliedR3) {
793 // note for the qc method, resolution is REVERSED to go back to v2obs
794 Double_t r2(fUserSuppliedR2->GetBinContent(fUserSuppliedR2->GetXaxis()->FindBin(fCent)));
795 Double_t r3(fUserSuppliedR3->GetBinContent(fUserSuppliedR3->GetXaxis()->FindBin(fCent)));
796 if(r2 > 0) fFitModulation->SetParameter(3, fFitModulation->GetParameter(3)*r2);
797 if(r3 > 0) fFitModulation->SetParameter(7, fFitModulation->GetParameter(7)*r3);
798 }
799 if (fUsePtWeight) { // use weighted weights
800 fProfV2->Fill(fCent, TMath::Power(fFitModulation->GetParameter(3),0.5)/*, QCnM1111()*/);
801 fProfV3->Fill(fCent, TMath::Power(fFitModulation->GetParameter(7),0.5)/*, QCnM1111()*/);
802 } else {
803 fProfV2->Fill(fCent, TMath::Power(fFitModulation->GetParameter(3),0.5)/*, QCnM()*(QCnM()-1)*(QCnM()-2)*(QCnM()-3)*/);
804 fProfV3->Fill(fCent, TMath::Power(fFitModulation->GetParameter(7),0.5)/*, QCnM()*(QCnM()-1)*(QCnM()-2)*(QCnM()-3)*/);
805 }
806 }
807 CalculateEventPlaneResolution(vzero, vzeroComb, tpc);
808 } break;
809 default : {
810 if(CorrectRho(psi2, psi3)) {
811 if(fUserSuppliedR2 && fUserSuppliedR3) {
812 Double_t r2(fUserSuppliedR2->GetBinContent(fUserSuppliedR2->GetXaxis()->FindBin(fCent)));
813 Double_t r3(fUserSuppliedR3->GetBinContent(fUserSuppliedR3->GetXaxis()->FindBin(fCent)));
814 if(r2 > 0) fFitModulation->SetParameter(3, fFitModulation->GetParameter(3)/r2);
815 if(r3 > 0) fFitModulation->SetParameter(7, fFitModulation->GetParameter(7)/r3);
816 }
817 fProfV2->Fill(fCent, fFitModulation->GetParameter(3));
818 fProfV3->Fill(fCent, fFitModulation->GetParameter(7));
819 CalculateEventPlaneResolution(vzero, vzeroComb, tpc);
820 }
821 } break;
822 }
823 // if all went well, update the local rho parameter
824 fLocalRho->SetLocalRho(fFitModulation);
41e50b0d 825 // and only at this point can the leading jet after rho subtraction be evaluated
826 if(fFillQAHistograms) fLeadingJetAfterSub = GetLeadingJet(fLocalRho);
eae37c5c 827 // fill a number of histograms. event qa needs to be filled first as it also determines the runnumber for the track qa
828 if(fFillQAHistograms) FillQAHistograms(InputEvent());
829 if(fFillHistograms) FillHistogramsAfterSubtraction(psi2, vzero, vzeroComb, tpc);
830 // send the output to the connected output container
831 PostData(1, fOutputList);
832 switch (fRunModeType) {
833 case kLocal : {
834 PostData(2, fOutputListGood);
835 PostData(3, fOutputListBad);
836 } break;
837 default: break;
838 }
eae37c5c 839 return kTRUE;
840}
841//_____________________________________________________________________________
06d2671d 842void AliAnalysisTaskJetV2::Exec(Option_t* c)
843{
844 // for stand alone, avoid framework event setup
845 switch (fCollisionType) {
846 case kJetFlowMC : {
847 // need to call ExecOnce as it is not loaded otherwise
848 if(!fLocalRho) AliAnalysisTaskJetV2::ExecOnce();
849 AliAnalysisTaskJetV2::Run();
850 } break;
851 default : {
852 AliAnalysisTaskSE::Exec(c);
853 } break;
854 }
855}
856//_____________________________________________________________________________
9e1c2f31 857Double_t AliAnalysisTaskJetV2::CalculateEventPlaneChi(Double_t res)
858{
4a4073c4 859 // return chi for given resolution to combine event plane estimates from two subevents
860 // see Phys. Rev. C no. CS6346 (http://arxiv.org/abs/nucl-ex/9805001)
861 Double_t chi(2.), delta(1.), con((TMath::Sqrt(TMath::Pi()))/(2.*TMath::Sqrt(2)));
9e1c2f31 862 for (Int_t i(0); i < 15; i++) {
863 chi = ((con*chi*TMath::Exp(-chi*chi/4.)*(TMath::BesselI0(chi*chi/4.)+TMath::BesselI1(chi*chi/4.))) < res) ? chi + delta : chi - delta;
864 delta = delta / 2.;
865 }
866 return chi;
867}
868//_____________________________________________________________________________
eae37c5c 869void AliAnalysisTaskJetV2::CalculateEventPlaneVZERO(Double_t vzero[2][2]) const
870{
9e1c2f31 871 // get the vzero event plane (a and c separately)
6c3fa11d 872 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
9e1c2f31 873 switch (fCollisionType) {
874 case kPbPb10h : {
875 // for 10h data, get the calibrated q-vector from the database
876 Double_t QA2[] = {-999., -999.};
877 Double_t QA3[] = {-999., -999.};
878 Double_t QC2[] = {-999., -999.};
879 Double_t QC3[] = {-999., -999.};
880 CalculateQvectorVZERO(QA2, QA3, QC2, QC3);
881 vzero[0][0] = .5*TMath::ATan2(QA2[1], QA2[0]);
882 vzero[1][0] = .5*TMath::ATan2(QC2[1], QC2[0]);
883 vzero[0][1] = (1./3.)*TMath::ATan2(QA3[1], QA3[0]);
884 vzero[1][1] = (1./3.)*TMath::ATan2(QC3[1], QC3[0]);
885 } break;
886 default: {
887 // by default use the ep from the event header (make sure EP selection task is enabeled!)
888 Double_t a(0), b(0), c(0), d(0), e(0), f(0), g(0), h(0);
889 vzero[0][0] = InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 8, 2, a, b);
890 vzero[1][0] = InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 9, 2, c, d);
891 vzero[0][1] = InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 8, 3, e, f);
892 vzero[1][1] = InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 9, 3, g, h);
893 return;
894 }
eae37c5c 895 }
9e1c2f31 896}
897//_____________________________________________________________________________
898void AliAnalysisTaskJetV2::CalculateEventPlaneCombinedVZERO(Double_t* comb) const
899{
900 // return the combined vzero event plane
eae37c5c 901 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
9e1c2f31 902 switch (fCollisionType) {
903 // for 10h data call calibration info
904 case kPbPb10h : {
905 // get the calibrated q-vectors
906 Double_t Q2[] = {-999., -999.};
907 Double_t Q3[] = {-999., -999.};
908 // return if something isn't ok from the calibration side
909 CalculateQvectorCombinedVZERO(Q2, Q3);
910 comb[0] = .5*TMath::ATan2(Q2[1], Q2[0]);
911 comb[1] = (1./3.)*TMath::ATan2(Q3[1], Q3[0]);
912 } break;
913 default : {
914 // for all other types use calibrated event plane from the event header
915 Double_t a(0), b(0), c(0), d(0);
916 comb[0] = InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 10, 2, a, b);
917 comb[1] = InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 10, 3, c, d);
918 } break;
eae37c5c 919 }
eae37c5c 920}
921//_____________________________________________________________________________
922void AliAnalysisTaskJetV2::CalculateEventPlaneTPC(Double_t* tpc)
923{
924 // grab the TPC event plane
925 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
926 fNAcceptedTracks = 0; // reset the track counter
927 Double_t qx2(0), qy2(0); // for psi2
928 Double_t qx3(0), qy3(0); // for psi3
929 if(fTracksCont) {
930 Float_t excludeInEta = -999;
931 if(fExcludeLeadingJetsFromFit > 0 ) { // remove the leading jet from ep estimate
932 if(fLeadingJet) excludeInEta = fLeadingJet->Eta();
933 }
934 for(Int_t iTPC(0); iTPC < fTracksCont->GetNEntries(); iTPC++) {
935 AliVParticle* track = fTracksCont->GetParticle(iTPC);
936 if(!PassesCuts(track) || track->Pt() < fSoftTrackMinPt || track->Pt() > fSoftTrackMaxPt) continue;
937 if(fExcludeLeadingJetsFromFit > 0 &&( (TMath::Abs(track->Eta() - excludeInEta) < GetJetContainer()->GetJetRadius()*fExcludeLeadingJetsFromFit ) || (TMath::Abs(track->Eta()) - GetJetContainer()->GetJetRadius() - GetJetContainer()->GetJetEtaMax() ) > 0 )) continue;
938 fNAcceptedTracks++;
939 qx2+= TMath::Cos(2.*track->Phi());
940 qy2+= TMath::Sin(2.*track->Phi());
941 qx3+= TMath::Cos(3.*track->Phi());
942 qy3+= TMath::Sin(3.*track->Phi());
943 }
944 }
945 tpc[0] = .5*TMath::ATan2(qy2, qx2);
946 tpc[1] = (1./3.)*TMath::ATan2(qy3, qx3);
eae37c5c 947}
948//_____________________________________________________________________________
949void AliAnalysisTaskJetV2::CalculateEventPlaneResolution(Double_t vzero[2][2], Double_t* vzeroComb, Double_t* tpc)
950{
951 // fill the profiles for the resolution parameters
9e1c2f31 952 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
eae37c5c 953 fProfV2Resolution[fInCentralitySelection]->Fill(2., TMath::Cos(2.*(vzero[0][0] - vzero[1][0])));
954 fProfV2Resolution[fInCentralitySelection]->Fill(3., TMath::Cos(2.*(vzero[1][0] - vzero[0][0])));
955 fProfV2Resolution[fInCentralitySelection]->Fill(4., TMath::Cos(2.*(vzero[0][0] - tpc[0])));
956 fProfV2Resolution[fInCentralitySelection]->Fill(5., TMath::Cos(2.*(tpc[0] - vzero[0][0])));
957 fProfV2Resolution[fInCentralitySelection]->Fill(6., TMath::Cos(2.*(vzero[1][0] - tpc[0])));
958 fProfV2Resolution[fInCentralitySelection]->Fill(7., TMath::Cos(2.*(tpc[0] - vzero[1][0])));
959 fProfV3Resolution[fInCentralitySelection]->Fill(2., TMath::Cos(3.*(vzero[0][0] - vzero[1][0])));
960 fProfV3Resolution[fInCentralitySelection]->Fill(3., TMath::Cos(3.*(vzero[1][0] - vzero[0][0])));
961 fProfV3Resolution[fInCentralitySelection]->Fill(4., TMath::Cos(3.*(vzero[0][0] - tpc[0])));
962 fProfV3Resolution[fInCentralitySelection]->Fill(5., TMath::Cos(3.*(tpc[0] - vzero[0][0])));
963 fProfV3Resolution[fInCentralitySelection]->Fill(6., TMath::Cos(3.*(vzero[1][0] - tpc[0])));
964 fProfV3Resolution[fInCentralitySelection]->Fill(7., TMath::Cos(3.*(tpc[0] - vzero[1][0])));
965 // for the resolution of the combined vzero event plane, use two tpc halves as uncorrelated subdetectors
966 Double_t qx2a(0), qy2a(0); // for psi2a, negative eta
967 Double_t qx3a(0), qy3a(0); // for psi3a, negative eta
968 Double_t qx2b(0), qy2b(0); // for psi2a, positive eta
969 Double_t qx3b(0), qy3b(0); // for psi3a, positive eta
970 if(fTracks) {
971 Int_t iTracks(fTracks->GetEntriesFast());
972 for(Int_t iTPC(0); iTPC < iTracks; iTPC++) {
973 AliVTrack* track = static_cast<AliVTrack*>(fTracks->At(iTPC));
974 if(!PassesCuts(track) || track->Pt() < fSoftTrackMinPt || track->Pt() > fSoftTrackMaxPt) continue;
975 if(track->Eta() < 0 ) {
976 qx2a+= TMath::Cos(2.*track->Phi());
977 qy2a+= TMath::Sin(2.*track->Phi());
978 qx3a+= TMath::Cos(3.*track->Phi());
979 qy3a+= TMath::Sin(3.*track->Phi());
980 } else if (track->Eta() > 0) {
981 qx2b+= TMath::Cos(2.*track->Phi());
982 qy2b+= TMath::Sin(2.*track->Phi());
983 qx3b+= TMath::Cos(3.*track->Phi());
984 qy3b+= TMath::Sin(3.*track->Phi());
985 }
986 }
987 }
988 Double_t tpca2(.5*TMath::ATan2(qy2a, qx2a));
989 Double_t tpca3((1./3.)*TMath::ATan2(qy3a, qx3a));
990 Double_t tpcb2(.5*TMath::ATan2(qy2b, qx2b));
991 Double_t tpcb3((1./3.)*TMath::ATan2(qy3b, qx3b));
992 fProfV2Resolution[fInCentralitySelection]->Fill(8., TMath::Cos(2.*(vzeroComb[0] - tpca2)));
993 fProfV2Resolution[fInCentralitySelection]->Fill(9., TMath::Cos(2.*(vzeroComb[0] - tpcb2)));
994 fProfV2Resolution[fInCentralitySelection]->Fill(10., TMath::Cos(2.*(tpca2 - tpcb2)));
995 fProfV3Resolution[fInCentralitySelection]->Fill(8., TMath::Cos(3.*(vzeroComb[1] - tpca3)));
996 fProfV3Resolution[fInCentralitySelection]->Fill(9., TMath::Cos(3.*(vzeroComb[1] - tpcb3)));
997 fProfV3Resolution[fInCentralitySelection]->Fill(10., TMath::Cos(3.*(tpca3 - tpcb3)));
998}
999//_____________________________________________________________________________
9e1c2f31 1000void AliAnalysisTaskJetV2::CalculateQvectorVZERO(Double_t Qa2[2], Double_t Qc2[2], Double_t Qa3[2], Double_t Qc3[2]) const
1001{
1002 // return the calibrated 2nd and 3rd order q-vectors for vzeroa and vzeroc
1003 // function takes arrays as arguments, which correspond to vzero info in the following way
1004 //
1005 // Qa2[0] = Qx2 for vzero A Qa2[1] = Qy2 for vzero A (etc)
1006
1007 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1008 // placeholders for geometric information
1009 Double_t phi(-999.), weight(-999.);
1010 // reset placeholders for Q-vector components
1011 Qa2[0] = 0.; Qc2[0] = 0.; Qa3[0] = 0.; Qc3[0] = 0.;
1012 Qa2[1] = 0.; Qc2[1] = 0.; Qa3[1] = 0.; Qc3[1] = 0.;
1013
1014 for(Int_t i(0); i < 64; i++) {
1015 // loop over all scintillators, construct Q-vectors in the same loop
1016 phi = TMath::PiOver4()*(0.5+i%8);
1017 weight = 0.;
1018 // note that disabled rings have already been excluded in ReadVZEROCalibration2010h
1019 if(i<32) { // v0c side
1020 if(i < 8) weight = InputEvent()->GetVZEROData()->GetMultiplicity(i)*fVZEROCpol[0]/fVZEROgainEqualization->GetBinContent(1+i);
1021 else if (i < 16 ) weight = InputEvent()->GetVZEROData()->GetMultiplicity(i)*fVZEROCpol[1]/fVZEROgainEqualization->GetBinContent(1+i);
1022 else if (i < 24 ) weight = InputEvent()->GetVZEROData()->GetMultiplicity(i)*fVZEROCpol[2]/fVZEROgainEqualization->GetBinContent(1+i);
1023 else if (i < 32 ) weight = InputEvent()->GetVZEROData()->GetMultiplicity(i)*fVZEROCpol[3]/fVZEROgainEqualization->GetBinContent(1+i);
1024 // fill Q-vectors for v0c side
1025 Qc2[0]+=weight*TMath::Cos(2.*phi);
1026 Qc3[0]+=weight*TMath::Cos(3.*phi);
1027 Qc2[1]+=weight*TMath::Sin(2.*phi);
1028 Qc3[1]+=weight*TMath::Sin(3.*phi);
1029 } else { // v0a side
1030 if( i < 40) weight = InputEvent()->GetVZEROData()->GetMultiplicity(i)*fVZEROApol[0]/fVZEROgainEqualization->GetBinContent(1+i);
1031 else if ( i < 48 ) weight = InputEvent()->GetVZEROData()->GetMultiplicity(i)*fVZEROApol[1]/fVZEROgainEqualization->GetBinContent(1+i);
1032 else if ( i < 56 ) weight = InputEvent()->GetVZEROData()->GetMultiplicity(i)*fVZEROApol[2]/fVZEROgainEqualization->GetBinContent(1+i);
1033 else if ( i < 64 ) weight = InputEvent()->GetVZEROData()->GetMultiplicity(i)*fVZEROApol[3]/fVZEROgainEqualization->GetBinContent(1+i);
1034 // fill Q-vectors for v0a side
1035 Qa2[0]+=weight*TMath::Cos(2.*phi);
1036 Qa3[0]+=weight*TMath::Cos(3.*phi);
1037 Qa2[1]+=weight*TMath::Sin(2.*phi);
1038 Qa3[1]+=weight*TMath::Sin(3.*phi);
1039 }
1040 }
1041 // get the cache index and read the correction terms from the cache
1042 Int_t VZEROcentralityBin(GetVZEROCentralityBin());
1043 Double_t Qx2amean = fMeanQ[VZEROcentralityBin][1][0];
1044 Double_t Qx2arms = fWidthQ[VZEROcentralityBin][1][0];
1045 Double_t Qy2amean = fMeanQ[VZEROcentralityBin][1][1];
1046 Double_t Qy2arms = fWidthQ[VZEROcentralityBin][1][1];
1047
1048 Double_t Qx2cmean = fMeanQ[VZEROcentralityBin][0][0];
1049 Double_t Qx2crms = fWidthQ[VZEROcentralityBin][0][0];
1050 Double_t Qy2cmean = fMeanQ[VZEROcentralityBin][0][1];
1051 Double_t Qy2crms = fWidthQ[VZEROcentralityBin][0][1];
1052
1053 Double_t Qx3amean = fMeanQv3[VZEROcentralityBin][1][0];
1054 Double_t Qx3arms = fWidthQv3[VZEROcentralityBin][1][0];
1055 Double_t Qy3amean = fMeanQv3[VZEROcentralityBin][1][1];
1056 Double_t Qy3arms = fWidthQv3[VZEROcentralityBin][1][1];
1057
1058 Double_t Qx3cmean = fMeanQv3[VZEROcentralityBin][0][0];
1059 Double_t Qx3crms = fWidthQv3[VZEROcentralityBin][0][0];
1060 Double_t Qy3cmean = fMeanQv3[VZEROcentralityBin][0][1];
1061 Double_t Qy3crms = fWidthQv3[VZEROcentralityBin][0][1];
1062
1063 // update the weighted q-vectors with the re-centered values
1064 Qa2[0] = (Qa2[0] - Qx2amean)/Qx2arms;
1065 Qa2[1] = (Qa2[1] - Qy2amean)/Qy2arms;
1066 Qc2[0] = (Qc2[0] - Qx2cmean)/Qx2crms;
1067 Qc2[1] = (Qc2[1] - Qy2cmean)/Qy2crms;
1068
1069 Qa3[0] = (Qa3[0] - Qx3amean)/Qx3arms;
1070 Qa3[1] = (Qa3[1] - Qy3amean)/Qy3arms;
1071 Qc3[0] = (Qc3[0] - Qx3cmean)/Qx3crms;
1072 Qc3[1] = (Qc3[0] - Qy3cmean)/Qy3crms;
1073}
1074//_____________________________________________________________________________
1075void AliAnalysisTaskJetV2::CalculateQvectorCombinedVZERO(Double_t Q2[2], Double_t Q3[2]) const
1076{
1077 // calculate calibrated q-vector of the combined vzeroa, vzeroc system
1078 // this is somewhat ugly as CalculateQvectorCombinedVZERO is called more than once per event
1079 // but for now it will have to do ...
1080 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1081
1082 // first step: retrieve the q-vectors component-wise per vzero detector
1083 Double_t QA2[] = {-999., -999.};
1084 Double_t QA3[] = {-999., -999.};
1085 Double_t QC2[] = {-999., -999.};
1086 Double_t QC3[] = {-999., -999.};
1087 CalculateQvectorVZERO(QA2, QA3, QC2, QC3);
1088
1089 // get cache index and retrieve the chi weights for this centrality
1090 Int_t VZEROcentralityBin(GetVZEROCentralityBin());
1091 Double_t chi2A(fChi2A->At(VZEROcentralityBin));
1092 Double_t chi2C(fChi2C->At(VZEROcentralityBin));
1093 Double_t chi3A(fChi3A->At(VZEROcentralityBin));
1094 Double_t chi3C(fChi3C->At(VZEROcentralityBin));
1095
1096 // combine the vzera and vzeroc signal
1097 Q2[0] = chi2A*chi2A*QA2[0]+chi2C*chi2C*QC2[0];
1098 Q2[1] = chi2A*chi2A*QA2[1]+chi2C*chi2C*QC2[1];
1099 Q3[0] = chi3A*chi3A*QA3[0]+chi3C*chi3C*QC3[0];
1100 Q3[1] = chi3A*chi3A*QC3[1]+chi3C*chi3C*QC3[1];
1101}
1102//_____________________________________________________________________________
eae37c5c 1103void AliAnalysisTaskJetV2::CalculateRandomCone(Float_t &pt, Float_t &eta, Float_t &phi,
1104 AliParticleContainer* tracksCont, AliClusterContainer* clusterCont, AliEmcalJet* jet) const
1105{
1106 // get a random cone
1107 if(fDebug > 1) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1108 pt = 0; eta = 0; phi = 0;
1109 Float_t etaJet(999), phiJet(999), dJet(999); // no jet: same as jet very far away
1110 if(jet) { // if a leading jet is given, use its kinematic properties to exclude it
1111 etaJet = jet->Eta();
1112 phiJet = jet->Phi();
1113 }
1114 // the random cone acceptance has to equal the jet acceptance
1115 // this also insures safety when runnnig on the semi-good tpc runs for 11h data,
1116 // where jet acceptance is adjusted to reduced acceptance - hence random cone acceptance as well
1117 Float_t minPhi(GetJetContainer()->GetJetPhiMin()), maxPhi(GetJetContainer()->GetJetPhiMax());
1118 if(maxPhi > TMath::TwoPi()) maxPhi = TMath::TwoPi();
1119 if(minPhi < 0 ) minPhi = 0.;
1120 // construct a random cone and see if it's far away enough from the leading jet
1121 Int_t attempts(1000);
1122 while(kTRUE) {
1123 attempts--;
1124 eta = gRandom->Uniform(GetJetContainer()->GetJetEtaMin(), GetJetContainer()->GetJetEtaMax());
1125 phi = gRandom->Uniform(minPhi, maxPhi);
1126
1127 dJet = TMath::Sqrt((etaJet-eta)*(etaJet-eta)+(phiJet-phi)*(phiJet-phi));
1128 if(dJet > fMinDisanceRCtoLJ) break;
1129 else if (attempts == 0) {
1130 printf(" > No random cone after 1000 tries, giving up ... !\n");
1131 return;
1132 }
1133 }
1134 // get the charged energy (if tracks are provided)
1135 if(tracksCont) {
1136 AliVParticle* track = tracksCont->GetNextAcceptParticle(0);
1137 while(track) {
1138 Float_t etaTrack(track->Eta()), phiTrack(track->Phi());
1139 // get distance from cone
1140 if(TMath::Abs(phiTrack-phi) > TMath::Abs(phiTrack - phi + TMath::TwoPi())) phiTrack+=TMath::TwoPi();
1141 if(TMath::Abs(phiTrack-phi) > TMath::Abs(phiTrack - phi - TMath::TwoPi())) phiTrack-=TMath::TwoPi();
1142 if(TMath::Sqrt(TMath::Abs((etaTrack-eta)*(etaTrack-eta)+(phiTrack-phi)*(phiTrack-phi))) <= GetJetRadius()) pt += track->Pt();
1143 track = tracksCont->GetNextAcceptParticle();
1144 }
1145 }
1146 // get the neutral energy (if clusters are provided)
1147 if(clusterCont) {
b59d293b 1148 TLorentzVector momentum;
eae37c5c 1149 AliVCluster* cluster = clusterCont->GetNextAcceptCluster(0);
1150 while(cluster) {
eae37c5c 1151 cluster->GetMomentum(momentum, const_cast<Double_t*>(fVertex));
1152 Float_t etaClus(momentum.Eta()), phiClus(momentum.Phi());
1153 // get distance from cone
1154 if(TMath::Abs(phiClus-phi) > TMath::Abs(phiClus - phi + TMath::TwoPi())) phiClus+=TMath::TwoPi();
1155 if(TMath::Abs(phiClus-phi) > TMath::Abs(phiClus - phi - TMath::TwoPi())) phiClus-=TMath::TwoPi();
1156 if(TMath::Sqrt(TMath::Abs((etaClus-eta)*(etaClus-eta)+(phiClus-phi)*(phiClus-phi))) <= GetJetRadius()) pt += momentum.Pt();
1157 cluster = clusterCont->GetNextAcceptCluster();
1158 }
1159 }
1160}
1161//_____________________________________________________________________________
1162Double_t AliAnalysisTaskJetV2::CalculateQC2(Int_t harm) {
1163 // get the second order q-cumulant, a -999 return will be caught in the qa routine of CorrectRho
1164 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1165 Double_t reQ(0), imQ(0), modQ(0), M11(0), M(0);
1166 if(fUsePtWeight) { // for the weighted 2-nd order q-cumulant
1167 QCnQnk(harm, 1, reQ, imQ); // get the weighted 2-nd order q-vectors
1168 modQ = reQ*reQ+imQ*imQ; // get abs Q-squared
1169 M11 = QCnM11(); // equals S2,1 - S1,2
1170 return (M11 > 0) ? ((modQ - QCnS(1,2))/M11) : -999;
1171 } // else return the non-weighted 2-nd order q-cumulant
1172 QCnQnk(harm, 0, reQ, imQ); // get the non-weighted 2-nd order q-vectors
1173 modQ = reQ*reQ+imQ*imQ; // get abs Q-squared
1174 M = QCnM();
1175 return (M > 1) ? (modQ - M)/(M*(M-1)) : -999;
1176}
1177//_____________________________________________________________________________
1178Double_t AliAnalysisTaskJetV2::CalculateQC4(Int_t harm) {
1179 // get the fourth order q-cumulant, a -999 return will be caught in the qa routine of CorrectRho
1180 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1181 Double_t reQn1(0), imQn1(0), reQ2n2(0), imQ2n2(0), reQn3(0), imQn3(0), M1111(0), M(0);
1182 Double_t a(0), b(0), c(0), d(0), e(0), f(0), g(0); // terms of the calculation
1183 if(fUsePtWeight) { // for the weighted 4-th order q-cumulant
1184 QCnQnk(harm, 1, reQn1, imQn1);
1185 QCnQnk(harm*2, 2, reQ2n2, imQ2n2);
1186 QCnQnk(harm, 3, reQn3, imQn3);
1187 // fill in the terms ...
1188 a = (reQn1*reQn1+imQn1*imQn1)*(reQn1*reQn1+imQn1*imQn1);
1189 b = reQ2n2*reQ2n2 + imQ2n2*imQ2n2;
1190 c = -2.*(reQ2n2*reQn1*reQn1-reQ2n2*imQn1*imQn1+2.*imQ2n2*reQn1*imQn1);
1191 d = 8.*(reQn3*reQn1+imQn3*imQn1);
1192 e = -4.*QCnS(1,2)*(reQn1*reQn1+imQn1*imQn1);
1193 f = -6.*QCnS(1,4);
1194 g = 2.*QCnS(2,2);
1195 M1111 = QCnM1111();
1196 return (M1111 > 0) ? (a+b+c+d+e+f+g)/M1111 : -999;
1197 } // else return the unweighted case
1198 Double_t reQn(0), imQn(0), reQ2n(0), imQ2n(0);
1199 QCnQnk(harm, 0, reQn, imQn);
1200 QCnQnk(harm*2, 0, reQ2n, imQ2n);
1201 // fill in the terms ...
1202 M = QCnM();
1203 if(M < 4) return -999;
1204 a = (reQn*reQn+imQn*imQn)*(reQn*reQn+imQn*imQn);
1205 b = reQ2n*reQ2n + imQ2n*imQ2n;
1206 c = -2.*(reQ2n*reQn*reQn-reQ2n*imQn*imQn+2.*imQ2n*reQn*imQn);
1207 e = -4.*(M-2)*(reQn*reQn+imQn*imQn);
1208 f = 2.*M*(M-3);
1209 return (a+b+c+e+f)/(M*(M-1)*(M-2)*(M-3));
1210}
1211//_____________________________________________________________________________
1212void AliAnalysisTaskJetV2::QCnQnk(Int_t n, Int_t k, Double_t &reQ, Double_t &imQ) {
1213 // get the weighted n-th order q-vector, pass real and imaginary part as reference
1214 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1215 if(!fTracks) return;
1216 fNAcceptedTracksQCn = 0;
1217 Int_t iTracks(fTracks->GetEntriesFast());
1218 for(Int_t iTPC(0); iTPC < iTracks; iTPC++) {
1219 AliVTrack* track = static_cast<AliVTrack*>(fTracks->At(iTPC));
1220 if(!PassesCuts(track) || track->Pt() < fSoftTrackMinPt || track->Pt() > fSoftTrackMaxPt) continue;
1221 fNAcceptedTracksQCn++;
1222 // for the unweighted case, k equals zero and the weight doesn't contribute to the equation below
1223 reQ += TMath::Power(track->Pt(), k) * TMath::Cos(((double)n)*track->Phi());
1224 imQ += TMath::Power(track->Pt(), k) * TMath::Sin(((double)n)*track->Phi());
1225 }
1226}
1227//_____________________________________________________________________________
1228void AliAnalysisTaskJetV2::QCnDiffentialFlowVectors(
1229 TClonesArray* pois, TArrayD* ptBins, Bool_t vpart, Double_t* repn, Double_t* impn,
1230 Double_t *mp, Double_t *reqn, Double_t *imqn, Double_t* mq, Int_t n)
1231{
9e1c2f31 1232 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1233 // get unweighted differential flow vectors
eae37c5c 1234 Int_t iPois(pois->GetEntriesFast());
1235 if(vpart) {
1236 for(Int_t i(0); i < iPois; i++) {
1237 for(Int_t ptBin(0); ptBin < ptBins->GetSize()-1; ptBin++) {
1238 AliVTrack* poi = static_cast<AliVTrack*>(pois->At(i));
1239 if(PassesCuts(poi)) {
1240 if(poi->Pt() >= ptBins->At(ptBin) && poi->Pt() < ptBins->At(ptBin+1)) {
1241 // fill the flow vectors assuming that all poi's are in the rp selection (true by design)
1242 repn[ptBin]+=TMath::Cos(((double)n)*poi->Phi());
1243 impn[ptBin]+=TMath::Sin(((double)n)*poi->Phi());
1244 mp[ptBin]++;
1245 reqn[ptBin]+=TMath::Cos(((double)n)*poi->Phi());
1246 imqn[ptBin]+=TMath::Sin(((double)n)*poi->Phi());
1247 mq[ptBin]++;
1248 }
1249 }
1250 }
1251 }
1252 } else {
1253 for(Int_t i(0); i < iPois; i++) {
1254 for(Int_t ptBin(0); ptBin < ptBins->GetSize()-1; ptBin++) {
1255 AliEmcalJet* poi = static_cast<AliEmcalJet*>(pois->At(i));
1256 if(PassesCuts(poi)) {
1257 Double_t pt(poi->Pt()-poi->Area()*fLocalRho->GetLocalVal(poi->Phi(), GetJetContainer()->GetJetRadius(), fLocalRho->GetVal()));
1258 if(pt >= ptBins->At(ptBin) && pt < ptBins->At(ptBin+1)) {
1259 repn[ptBin]+=TMath::Cos(((double)n)*poi->Phi());
1260 impn[ptBin]+=TMath::Sin(((double)n)*poi->Phi());
1261 mp[ptBin]++; // qn isn't filled, no overlap between poi's and rp's
1262 }
1263 }
1264 }
1265 }
1266 }
1267}
1268//_____________________________________________________________________________
1269Double_t AliAnalysisTaskJetV2::QCnS(Int_t i, Int_t j) {
1270 // get the weighted ij-th order autocorrelation correction
1271 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1272 if(!fTracks || i <= 0 || j <= 0) return -999;
1273 Int_t iTracks(fTracks->GetEntriesFast());
1274 Double_t Sij(0);
1275 for(Int_t iTPC(0); iTPC < iTracks; iTPC++) {
1276 AliVTrack* track = static_cast<AliVTrack*>(fTracks->At(iTPC));
1277 if(!PassesCuts(track) || track->Pt() < fSoftTrackMinPt || track->Pt() > fSoftTrackMaxPt) continue;
1278 Sij+=TMath::Power(track->Pt(), j);
1279 }
1280 return TMath::Power(Sij, i);
1281}
1282//_____________________________________________________________________________
1283Double_t AliAnalysisTaskJetV2::QCnM() {
1284 // get multiplicity for unweighted q-cumulants. function QCnQnk should be called first
1285 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1286 return (Double_t) fNAcceptedTracksQCn;
1287}
1288//_____________________________________________________________________________
1289Double_t AliAnalysisTaskJetV2::QCnM11() {
1290 // get multiplicity weights for the weighted two particle cumulant
1291 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1292 return (QCnS(2,1) - QCnS(1,2));
1293}
1294//_____________________________________________________________________________
1295Double_t AliAnalysisTaskJetV2::QCnM1111() {
1296 // get multiplicity weights for the weighted four particle cumulant
1297 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1298 return (QCnS(4,1)-6*QCnS(1,2)*QCnS(2,1)+8*QCnS(1,3)*QCnS(1,1)+3*QCnS(2,2)-6*QCnS(1,4));
1299}
1300//_____________________________________________________________________________
1301Bool_t AliAnalysisTaskJetV2::QCnRecovery(Double_t psi2, Double_t psi3) {
1302 // decides how to deal with the situation where c2 or c3 is negative
1303 // returns kTRUE depending on whether or not a modulated rho is used for the jet background
1304 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1305 if(TMath::AreEqualAbs(fFitModulation->GetParameter(3), .0, 1e-10) && TMath::AreEqualAbs(fFitModulation->GetParameter(7), .0,1e-10)) {
1306 fFitModulation->SetParameter(7, 0);
1307 fFitModulation->SetParameter(3, 0);
1308 fFitModulation->SetParameter(0, fLocalRho->GetVal());
1309 return kTRUE; // v2 and v3 have physical null values
1310 }
1311 switch (fQCRecovery) {
1312 case kFixedRho : { // roll back to the original rho
1313 fFitModulation->SetParameter(7, 0);
1314 fFitModulation->SetParameter(3, 0);
1315 fFitModulation->SetParameter(0, fLocalRho->GetVal());
1316 return kFALSE; // rho is forced to be fixed
1317 }
1318 case kNegativeVn : {
1319 Double_t c2(fFitModulation->GetParameter(3));
1320 Double_t c3(fFitModulation->GetParameter(7));
1321 if( c2 < 0 ) c2 = -1.*TMath::Sqrt(-1.*c2);
1322 if( c3 < 0 ) c3 = -1.*TMath::Sqrt(-1.*c3);
1323 fFitModulation->SetParameter(3, c2);
1324 fFitModulation->SetParameter(7, c3);
1325 return kTRUE; // is this a physical quantity ?
1326 }
1327 case kTryFit : {
1328 fitModulationType tempType(fFitModulationType); // store temporarily
1329 fFitModulationType = kCombined;
1330 fFitModulation->SetParameter(7, 0);
1331 fFitModulation->SetParameter(3, 0);
1332 Bool_t pass(CorrectRho(psi2, psi3)); // do the fit and all quality checks
1333 fFitModulationType = tempType; // roll back for next event
1334 return pass;
1335 }
1336 default : return kFALSE;
1337 }
1338 return kFALSE;
1339}
1340//_____________________________________________________________________________
1341Bool_t AliAnalysisTaskJetV2::CorrectRho(Double_t psi2, Double_t psi3)
1342{
1343 // get rho' -> rho(phi)
1344 // two routines are available, both can be used with or without pt weights
1345 // [1] get vn from q-cumulants or as an integrated value from a user supplied histogram
1346 // in case of cumulants, both cumulants and vn values are stored. in both cases, v2 and v3
1347 // are expected. a check is performed to see if rho has no negative local minimum
1348 // for full description, see Phys. Rev. C 83, 044913
1349 // since the cn distribution has negative values, vn = sqrt(cn) can be imaginary sometimes
1350 // in this case one can either roll back to the 'original' rixed rho, do a fit for vn or take use
1351 // vn = - sqrt(|cn|)
1352 // [2] fitting a fourier expansion to the de/dphi distribution
1353 // the fit can be done with either v2, v3 or a combination.
1354 // in all cases, a cut can be made on the p-value of the chi-squared value of the fit
1355 // and a check can be performed to see if rho has no negative local minimum
1356 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1357 Int_t freeParams(2); // free parameters of the fit (for NDF)
1358 switch (fFitModulationType) { // for approaches where no fitting is required
1359 case kQC2 : {
1360 fFitModulation->FixParameter(4, psi2);
1361 fFitModulation->FixParameter(6, psi3);
1362 fFitModulation->FixParameter(3, CalculateQC2(2)); // set here with cn, vn = sqrt(cn)
1363 fFitModulation->FixParameter(7, CalculateQC2(3));
1364 // first fill the histos of the raw cumulant distribution
1365 if (fUsePtWeight) { // use weighted weights
1366 Double_t dQCnM11 = (fNoEventWeightsForQC) ? 1. : QCnM11();
1367 fProfV2Cumulant->Fill(fCent, fFitModulation->GetParameter(3), dQCnM11);
1368 fProfV3Cumulant->Fill(fCent, fFitModulation->GetParameter(7), dQCnM11);
1369 } else {
1370 Double_t dQCnM = (fNoEventWeightsForQC) ? 2. : QCnM();
1371 fProfV2Cumulant->Fill(fCent, fFitModulation->GetParameter(3), dQCnM*(dQCnM-1));
1372 fProfV3Cumulant->Fill(fCent, fFitModulation->GetParameter(7), dQCnM*(dQCnM-1));
1373 }
1374 // then see if one of the cn value is larger than zero and vn is readily available
1375 if(fFitModulation->GetParameter(3) > 0 && fFitModulation->GetParameter(7) > 0) {
1376 fFitModulation->FixParameter(3, TMath::Sqrt(fFitModulation->GetParameter(3)));
1377 fFitModulation->FixParameter(7, TMath::Sqrt(fFitModulation->GetParameter(7)));
1378 } else if (!QCnRecovery(psi2, psi3)) return kFALSE; // try to recover the cumulant, this will set v2 and v3
1379 if(fFitModulation->GetMinimum(0, TMath::TwoPi()) < 0) { // general check
1380 fFitModulation->SetParameter(7, 0);
1381 fFitModulation->SetParameter(3, 0);
1382 fFitModulation->SetParameter(0, fLocalRho->GetVal());
1383 return kFALSE;
1384 }
1385 return kTRUE;
1386 } break;
1387 case kQC4 : {
1388 fFitModulation->FixParameter(4, psi2);
1389 fFitModulation->FixParameter(6, psi3);
1390 fFitModulation->FixParameter(3, CalculateQC4(2)); // set here with cn, vn = sqrt(cn)
1391 fFitModulation->FixParameter(7, CalculateQC4(3));
1392 // first fill the histos of the raw cumulant distribution
1393 if (fUsePtWeight) { // use weighted weights
1394 fProfV2Cumulant->Fill(fCent, fFitModulation->GetParameter(3)/*, QCnM1111()*/);
1395 fProfV3Cumulant->Fill(fCent, fFitModulation->GetParameter(7)/*, QCnM1111()*/);
1396 } else {
1397 fProfV2Cumulant->Fill(fCent, fFitModulation->GetParameter(3)/*, QCnM1111()*/);
1398 fProfV3Cumulant->Fill(fCent, fFitModulation->GetParameter(7)/*, QCnM1111()*/);
1399 }
1400 // then see if one of the cn value is larger than zero and vn is readily available
1401 if(fFitModulation->GetParameter(3) > 0 && fFitModulation->GetParameter(7) > 0) {
1402 fFitModulation->FixParameter(3, TMath::Sqrt(fFitModulation->GetParameter(3)));
1403 fFitModulation->FixParameter(7, TMath::Sqrt(fFitModulation->GetParameter(7)));
1404 } else if (!QCnRecovery(psi2, psi3)) return kFALSE; // try to recover the cumulant, this will set v2 and v3
1405 if(fFitModulation->GetMinimum(0, TMath::TwoPi()) < 0) { // general check
1406 fFitModulation->SetParameter(7, 0);
1407 fFitModulation->SetParameter(3, 0);
1408 fFitModulation->SetParameter(0, fLocalRho->GetVal());
1409 return kFALSE;
1410 }
1411 } break;
1412 case kIntegratedFlow : {
1413 // use v2 and v3 values from an earlier iteration over the data
1414 fFitModulation->FixParameter(3, fUserSuppliedV2->GetBinContent(fUserSuppliedV2->GetXaxis()->FindBin(fCent)));
1415 fFitModulation->FixParameter(4, psi2);
1416 fFitModulation->FixParameter(6, psi3);
1417 fFitModulation->FixParameter(7, fUserSuppliedV3->GetBinContent(fUserSuppliedV3->GetXaxis()->FindBin(fCent)));
1418 if(fFitModulation->GetMinimum(0, TMath::TwoPi()) < 0) {
1419 fFitModulation->SetParameter(7, 0);
1420 fFitModulation->SetParameter(3, 0);
1421 fFitModulation->SetParameter(0, fLocalRho->GetVal());
1422 return kFALSE;
1423 }
1424 return kTRUE;
1425 }
1426 default : break;
1427 }
1428 TString detector("");
1429 switch (fDetectorType) {
1430 case kTPC : detector+="TPC";
1431 break;
1432 case kVZEROA : detector+="VZEROA";
1433 break;
1434 case kVZEROC : detector+="VZEROC";
1435 break;
1436 case kVZEROComb : detector+="VZEROComb";
1437 break;
06d2671d 1438 case kFixedEP : detector+="FixedEP";
1439 break;
eae37c5c 1440 default: break;
1441 }
1442 Int_t iTracks(fTracks->GetEntriesFast());
1443 Double_t excludeInEta = -999;
1444 Double_t excludeInPhi = -999;
1445 Double_t excludeInPt = -999;
1446 if(iTracks <= 0 || fLocalRho->GetVal() <= 0 ) return kFALSE; // no use fitting an empty event ...
1447 if(fExcludeLeadingJetsFromFit > 0 ) {
1448 if(fLeadingJet) {
1449 excludeInEta = fLeadingJet->Eta();
1450 excludeInPhi = fLeadingJet->Phi();
1451 excludeInPt = fLeadingJet->Pt();
1452 }
1453 }
1454 // check the acceptance of the track selection that will be used
1455 // if one uses e.g. semi-good tpc tracks, accepance in phi is reduced to 0 < phi < 4
1456 // the defaults (-10 < phi < 10) which accept all, are then overwritten
1457 Double_t lowBound(0.), upBound(TMath::TwoPi()); // bounds for fit
1458 if(GetParticleContainer()->GetParticlePhiMin() > lowBound) lowBound = GetParticleContainer()->GetParticlePhiMin();
1459 if(GetParticleContainer()->GetParticlePhiMax() < upBound) upBound = GetParticleContainer()->GetParticlePhiMax();
6c3fa11d 1460 fHistSwap->Reset(); // clear the histogram
eae37c5c 1461 TH1F _tempSwap; // on stack for quick access
1462 TH1F _tempSwapN; // on stack for quick access, bookkeeping histogram
1463 if(fRebinSwapHistoOnTheFly) {
1464 if(fNAcceptedTracks < 49) fNAcceptedTracks = 49; // avoid aliasing effects
1465 _tempSwap = TH1F("_tempSwap", "_tempSwap", TMath::CeilNint(TMath::Sqrt(fNAcceptedTracks)), lowBound, upBound);
1466 if(fUsePtWeightErrorPropagation) _tempSwapN = TH1F("_tempSwapN", "_tempSwapN", TMath::CeilNint(TMath::Sqrt(fNAcceptedTracks)), lowBound, upBound);
1467 if(fUsePtWeight) _tempSwap.Sumw2();
1468 }
1469 else _tempSwap = *fHistSwap; // now _tempSwap holds the desired histo
1470 // non poissonian error when using pt weights
1471 Double_t totalpts(0.), totalptsquares(0.), totalns(0.);
1472 for(Int_t i(0); i < iTracks; i++) {
9e1c2f31 1473 AliVTrack* track = static_cast<AliVTrack*>(fTracks->At(i));
1474 if(fExcludeLeadingJetsFromFit > 0 &&( (TMath::Abs(track->Eta() - excludeInEta) < GetJetContainer()->GetJetRadius()*fExcludeLeadingJetsFromFit ) || (TMath::Abs(track->Eta()) - GetJetContainer()->GetJetRadius() - GetJetContainer()->GetJetEtaMax() ) > 0 )) continue;
1475 if(!PassesCuts(track) || track->Pt() > fSoftTrackMaxPt || track->Pt() < fSoftTrackMinPt) continue;
1476 if(fUsePtWeight) {
1477 _tempSwap.Fill(track->Phi(), track->Pt());
1478 if(fUsePtWeightErrorPropagation) {
1479 totalpts += track->Pt();
1480 totalptsquares += track->Pt()*track->Pt();
1481 totalns += 1;
1482 _tempSwapN.Fill(track->Phi());
eae37c5c 1483 }
9e1c2f31 1484 }
1485 else _tempSwap.Fill(track->Phi());
eae37c5c 1486 }
1487 if(fUsePtWeight && fUsePtWeightErrorPropagation) {
1488 // in the case of pt weights overwrite the poissonian error estimate which is assigned by root by a more sophisticated appraoch
1489 // the assumption here is that the bin error will be dominated by the uncertainty in the mean pt in a bin and in the uncertainty
1490 // of the number of tracks in a bin, the first of which will be estimated from the sample standard deviation of all tracks in the
1491 // event, for the latter use a poissonian estimate. the two contrubitions are assumed to be uncorrelated
9e1c2f31 1492 if(totalns < 2) return kFALSE; // not one track passes the cuts > 2 avoids possible division by 0 later on
eae37c5c 1493 for(Int_t l = 0; l < _tempSwap.GetNbinsX(); l++) {
1494 if(_tempSwapN.GetBinContent(l+1) == 0) {
1495 _tempSwap.SetBinContent(l+1,0);
1496 _tempSwap.SetBinError(l+1,0);
1497 }
1498 else {
1499 Double_t vartimesnsq = totalptsquares*totalns - totalpts*totalpts;
1500 Double_t variance = vartimesnsq/(totalns*(totalns-1.));
1501 Double_t SDOMSq = variance / _tempSwapN.GetBinContent(l+1);
1502 Double_t SDOMSqOverMeanSq = SDOMSq * _tempSwapN.GetBinContent(l+1) * _tempSwapN.GetBinContent(l+1) / (_tempSwapN.GetBinContent(l+1) * _tempSwapN.GetBinContent(l+1));
1503 Double_t poissonfrac = 1./_tempSwapN.GetBinContent(l+1);
1504 Double_t vartotalfrac = SDOMSqOverMeanSq + poissonfrac;
1505 Double_t vartotal = vartotalfrac * _tempSwap.GetBinContent(l+1) * _tempSwap.GetBinContent(l+1);
1506 if(vartotal > 0.0001) _tempSwap.SetBinError(l+1,TMath::Sqrt(vartotal));
1507 else {
1508 _tempSwap.SetBinContent(l+1,0);
1509 _tempSwap.SetBinError(l+1,0);
1510 }
1511 }
1512 }
1513 }
eae37c5c 1514 fFitModulation->SetParameter(0, fLocalRho->GetVal());
1515 switch (fFitModulationType) {
1516 case kNoFit : {
1517 fFitModulation->FixParameter(0, fLocalRho->GetVal() );
1518 freeParams = 0;
1519 } break;
1520 case kV2 : {
1521 fFitModulation->FixParameter(4, psi2);
1522 freeParams = 1;
1523 } break;
1524 case kV3 : {
1525 fFitModulation->FixParameter(4, psi3);
1526 freeParams = 1;
1527 } break;
1528 case kCombined : {
1529 fFitModulation->FixParameter(4, psi2);
1530 fFitModulation->FixParameter(6, psi3);
1531 freeParams = 2;
1532 } break;
1533 case kFourierSeries : {
1534 // in this approach, an explicit calculation will be made of vn = sqrt(xn^2+yn^2)
1535 // where x[y] = Integrate[r(phi)cos[sin](n phi)dphi, 0, 2pi]
1536 Double_t cos2(0), sin2(0), cos3(0), sin3(0), sumPt(0);
1537 for(Int_t i(0); i < iTracks; i++) {
1538 AliVTrack* track = static_cast<AliVTrack*>(fTracks->At(i));
1539 if(!PassesCuts(track) || track->Pt() > fSoftTrackMaxPt || track->Pt() < fSoftTrackMinPt) continue;
1540 sumPt += track->Pt();
1541 cos2 += track->Pt()*TMath::Cos(2*PhaseShift(track->Phi()-psi2));
1542 sin2 += track->Pt()*TMath::Sin(2*PhaseShift(track->Phi()-psi2));
1543 cos3 += track->Pt()*TMath::Cos(3*PhaseShift(track->Phi()-psi3));
1544 sin3 += track->Pt()*TMath::Sin(3*PhaseShift(track->Phi()-psi3));
1545 }
1546 fFitModulation->SetParameter(3, TMath::Sqrt(cos2*cos2+sin2*sin2)/fLocalRho->GetVal());
1547 fFitModulation->SetParameter(4, psi2);
1548 fFitModulation->SetParameter(6, psi3);
1549 fFitModulation->SetParameter(7, TMath::Sqrt(cos3*cos3+sin3*sin3)/fLocalRho->GetVal());
1550 } break;
1551 default : break;
1552 }
1553 if(fRunToyMC) {
1554 // toy mc, just here to check procedure, azimuthal profile is filled from hypothesis so p-value distribution should be flat
1555 Int_t _bins = _tempSwap.GetXaxis()->GetNbins();
1556 TF1* _tempFit = new TF1("temp_fit_kCombined", "[0]*([1]+[2]*([3]*TMath::Cos([2]*(x-[4]))+[7]*TMath::Cos([5]*(x-[6]))))", 0, TMath::TwoPi());
1557 _tempFit->SetParameter(0, fFitModulation->GetParameter(0)); // normalization
1558 _tempFit->SetParameter(3, 0.1); // v2
1559 _tempFit->FixParameter(1, 1.); // constant
1560 _tempFit->FixParameter(2, 2.); // constant
1561 _tempFit->FixParameter(5, 3.); // constant
1562 _tempFit->FixParameter(4, fFitModulation->GetParameter(4));
1563 _tempFit->FixParameter(6, fFitModulation->GetParameter(6));
1564 _tempFit->SetParameter(7, 0.1); // v3
1565 _tempSwap.Reset(); // rese bin content
1566 for(int _binsI = 0; _binsI < _bins*_bins; _binsI++) _tempSwap.Fill(_tempFit->GetRandom());
1567 }
1568 _tempSwap.Fit(fFitModulation, fFitModulationOptions.Data(), "", lowBound, upBound);
1569 // the quality of the fit is evaluated from 1 - the cdf of the chi square distribution
1570 // three methods are available, all with their drawbacks. all are stored, one is selected to do the cut
1571 Int_t NDF(_tempSwap.GetXaxis()->GetNbins()-freeParams);
9e1c2f31 1572 if(NDF == 0 || (float)NDF <= 0.) return kFALSE;
eae37c5c 1573 Double_t CDF(1.-ChiSquareCDF(NDF, ChiSquare(_tempSwap, fFitModulation)));
1574 Double_t CDFROOT(1.-ChiSquareCDF(NDF, fFitModulation->GetChisquare()));
1575 Double_t CDFKolmogorov(KolmogorovTest(_tempSwap, fFitModulation));
1576 // fill the values and centrality correlation (redundant but easy on the eyes)
1577 fHistPvalueCDF->Fill(CDF);
1578 fHistPvalueCDFCent->Fill(fCent, CDF);
1579 fHistPvalueCDFROOT->Fill(CDFROOT);
1580 fHistPvalueCDFROOTCent->Fill(fCent, CDFROOT);
1581 fHistKolmogorovTest->Fill(CDFKolmogorov);
1582 fHistChi2ROOTCent->Fill(fCent, fFitModulation->GetChisquare()/((float)NDF));
1583 fHistChi2Cent->Fill(fCent, ChiSquare(_tempSwap, fFitModulation)/((float)NDF));
1584 fHistKolmogorovTestCent->Fill(fCent, CDFKolmogorov);
1585 fHistPChi2Root->Fill(CDFROOT, fFitModulation->GetChisquare()/((float)NDF));
1586 fHistPChi2->Fill(CDF, ChiSquare(_tempSwap, fFitModulation)/((float)NDF));
1587 fHistPKolmogorov->Fill(CDF, CDFKolmogorov);
1588
1589 // variable CDF is used for making cuts, so we fill it with the selected p-value
1590 switch (fFitGoodnessTest) {
1591 case kChi2ROOT : {
1592 CDF = CDFROOT;
1593 } break;
1594 case kChi2Poisson : break; // CDF is already CDF
1595 case kKolmogorov : {
1596 CDF = CDFKolmogorov;
1597 } break;
1598 default: break;
1599 }
1600
1601 if(fFitControl) {
1602 // as an additional quality check, see if fitting a control fit has a higher significance
1603 _tempSwap.Fit(fFitControl, fFitModulationOptions.Data(), "", lowBound, upBound);
1604 Double_t CDFControl(-1.);
1605 switch (fFitGoodnessTest) {
1606 case kChi2ROOT : {
1607 CDFControl = 1.-ChiSquareCDF(fFitControl->GetNDF(), fFitModulation->GetChisquare());
1608 } break;
1609 case kChi2Poisson : {
1610 CDFControl = 1.-ChiSquareCDF(fFitControl->GetNDF(), ChiSquare(_tempSwap, fFitModulation));
1611 } break;
1612 case kKolmogorov : {
1613 CDFControl = KolmogorovTest(_tempSwap, fFitControl);
1614 } break;
1615 default: break;
1616 }
1617 if(CDFControl > CDF) {
1618 CDF = -1.; // control fit is more significant, so throw out the 'old' fit
1619 fHistRhoStatusCent->Fill(fCent, -1);
1620 }
1621 }
9e1c2f31 1622 if(CDF >= fMinPvalue && CDF <= fMaxPvalue && ( fFitModulation->GetMinimum(0, TMath::TwoPi()) > 0)) {
1623 // fit quality. not that although with limited acceptance the fit is performed on just
1624 // part of phase space, the requirement that energy desntiy is larger than zero is applied
1625 // to the FULL spectrum
eae37c5c 1626 fHistRhoStatusCent->Fill(fCent, 0.);
1627 // for LOCAL didactic purposes, save the best and the worst fits
1628 // this routine can produce a lot of output histograms (it's not memory 'safe') and will not work on GRID
1629 // since the output will become unmergeable (i.e. different nodes may produce conflicting output)
1630 switch (fRunModeType) {
1631 case kLocal : {
1632 if(fRandom->Uniform(0, 100) > fPercentageOfFits) break;
1633 static Int_t didacticCounterBest(0);
1634 TProfile* didacticProfile = (TProfile*)_tempSwap.Clone(Form("Fit_%i_1-CDF_%.3f_cen_%i_%s", didacticCounterBest, CDF, fInCentralitySelection, detector.Data()));
1635 TF1* didacticFit = (TF1*)fFitModulation->Clone(Form("fit_%i_CDF_%.3f_cen_%i_%s", didacticCounterBest, CDF, fInCentralitySelection, detector.Data()));
1636 switch(fFitModulationType) {
1637 case kCombined : {
1638 // to make a nice picture also plot the separate components (v2 and v3) of the fit
1639 // only done for cobined fit where there are actually components to split ...
1640 TF1* v0(new TF1("dfit_kV2", "[0]", 0, TMath::TwoPi()));
1641 v0->SetParameter(0, didacticFit->GetParameter(0)); // normalization
1642 v0->SetLineColor(kMagenta);
1643 v0->SetLineStyle(7);
1644 didacticProfile->GetListOfFunctions()->Add(v0);
1645 TF1* v2(new TF1("dfit_kV2", "[0]*([1]+[2]*[3]*TMath::Cos([2]*(x-[4])))", 0, TMath::TwoPi()));
1646 v2->SetParameter(0, didacticFit->GetParameter(0)); // normalization
1647 v2->SetParameter(3, didacticFit->GetParameter(3)); // v2
1648 v2->FixParameter(1, 1.); // constant
1649 v2->FixParameter(2, 2.); // constant
1650 v2->FixParameter(4, didacticFit->GetParameter(4)); // psi2
1651 v2->SetLineColor(kGreen);
1652 didacticProfile->GetListOfFunctions()->Add(v2);
1653 TF1* v3(new TF1("dfit_kV3", "[0]*([1]+[2]*[3]*TMath::Cos([5]*(x-[4])))", 0, TMath::TwoPi()));
1654 v3->SetParameter(0, didacticFit->GetParameter(0)); // normalization
1655 v3->SetParameter(3, didacticFit->GetParameter(7)); // v3
1656 v3->FixParameter(1, 1.); // constant
1657 v3->FixParameter(2, 2.); // constant
1658 v3->FixParameter(4, didacticFit->GetParameter(6)); // psi3
1659 v3->FixParameter(5, 3.); // constant
1660 v3->SetLineColor(kCyan);
1661 didacticProfile->GetListOfFunctions()->Add(v3);
1662 }
1663 default : break;
1664 }
1665 didacticProfile->GetListOfFunctions()->Add(didacticFit);
1666 didacticProfile->GetYaxis()->SetTitle("#frac{d #sum #it{p}_{T}}{d #varphi} [GeV/#it{c}]");
1667 didacticProfile->GetXaxis()->SetTitle("#varphi");
1668 fOutputListGood->Add(didacticProfile);
1669 didacticCounterBest++;
1670 TH2F* didacticSurface = BookTH2F(Form("surface_%s", didacticProfile->GetName()), "#phi", "#eta", 50, 0, TMath::TwoPi(), 50, -1, 1, -1, kFALSE);
1671 for(Int_t i(0); i < iTracks; i++) {
1672 AliVTrack* track = static_cast<AliVTrack*>(fTracks->At(i));
1673 if(PassesCuts(track)) {
1674 if(fUsePtWeight) didacticSurface->Fill(track->Phi(), track->Eta(), track->Pt());
1675 else didacticSurface->Fill(track->Phi(), track->Eta());
1676 }
1677 }
1678 if(fExcludeLeadingJetsFromFit) { // visualize the excluded region
1679 TF2 *f2 = new TF2(Form("%s_LJ", didacticSurface->GetName()),"[0]*TMath::Gaus(x,[1],[2])*TMath::Gaus(y,[3],[4])", 0, TMath::TwoPi(), -1, 1);
1680 f2->SetParameters(excludeInPt/3.,excludeInPhi,.1,excludeInEta,.1);
1681 didacticSurface->GetListOfFunctions()->Add(f2);
1682 }
1683 fOutputListGood->Add(didacticSurface);
1684 } break;
1685 default : break;
1686 }
1687 } else { // if the fit is of poor quality revert to the original rho estimate
1688 switch (fRunModeType) { // again see if we want to save the fit
1689 case kLocal : {
1690 static Int_t didacticCounterWorst(0);
1691 if(fRandom->Uniform(0, 100) > fPercentageOfFits) break;
1692 TProfile* didacticProfile = (TProfile*)_tempSwap.Clone(Form("Fit_%i_1-CDF_%.3f_cen_%i_%s", didacticCounterWorst, CDF, fInCentralitySelection, detector.Data() ));
1693 TF1* didacticFit = (TF1*)fFitModulation->Clone(Form("fit_%i_p_%.3f_cen_%i_%s", didacticCounterWorst, CDF, fInCentralitySelection, detector.Data()));
1694 didacticProfile->GetListOfFunctions()->Add(didacticFit);
1695 fOutputListBad->Add(didacticProfile);
1696 didacticCounterWorst++;
1697 } break;
1698 default : break;
1699 }
1700 switch (fFitModulationType) {
1701 case kNoFit : break; // nothing to do
1702 case kCombined : fFitModulation->SetParameter(7, 0); // no break
1703 case kFourierSeries : fFitModulation->SetParameter(7, 0); // no break
1704 default : { // needs to be done if there was a poor fit
1705 fFitModulation->SetParameter(3, 0);
1706 fFitModulation->SetParameter(0, fLocalRho->GetVal());
1707 } break;
1708 }
1709 if(CDF > -.5) fHistRhoStatusCent->Fill(fCent, 1.);
1710 return kFALSE; // return false if the fit is rejected
1711 }
1712 return kTRUE;
1713}
1714//_____________________________________________________________________________
1715Bool_t AliAnalysisTaskJetV2::PassesCuts(AliVEvent* event)
1716{
1717 // event cuts
1718 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
06d2671d 1719 switch (fCollisionType) {
1720 case kJetFlowMC : {
1721 fInCentralitySelection = 0;
1722 return kTRUE;
1723 } break;
1724 default : break;
1725 }
eae37c5c 1726 if(!event || !AliAnalysisTaskEmcal::IsEventSelected()) return kFALSE;
1727 if(TMath::Abs(InputEvent()->GetPrimaryVertex()->GetZ()) > 10.) return kFALSE;
1728 // aod and esd specific checks
1729 switch (fDataType) {
1730 case kESD: {
1731 AliESDEvent* esdEvent = static_cast<AliESDEvent*>(InputEvent());
1732 if( (!esdEvent) || (TMath::Abs(esdEvent->GetPrimaryVertexSPD()->GetZ() - esdEvent->GetPrimaryVertex()->GetZ()) > .5) ) return kFALSE;
1733 } break;
1734 case kAOD: {
1735 AliAODEvent* aodEvent = static_cast<AliAODEvent*>(InputEvent());
1736 if( (!aodEvent) || (TMath::Abs(aodEvent->GetPrimaryVertexSPD()->GetZ() - aodEvent->GetPrimaryVertex()->GetZ()) > .5) ) return kFALSE;
1737 } break;
1738 default: break;
1739 }
1740 fCent = InputEvent()->GetCentrality()->GetCentralityPercentile("V0M");
1741 if(fCent <= fCentralityClasses->At(0) || fCent >= fCentralityClasses->At(fCentralityClasses->GetSize()-1) || TMath::Abs(fCent-InputEvent()->GetCentrality()->GetCentralityPercentile("TRK")) > 5.) return kFALSE;
1742 // determine centrality class
1743 fInCentralitySelection = -1;
1744 for(Int_t i(0); i < fCentralityClasses->GetSize()-1; i++) {
1745 if(fCent >= fCentralityClasses->At(i) && fCent <= fCentralityClasses->At(1+i)) {
1746 fInCentralitySelection = i;
1747 break; }
1748 }
1749 if(fInCentralitySelection<0) return kFALSE; // should be null op
eae37c5c 1750 // see if input containers are filled
1751 if(fTracks->GetEntries() < 1) return kFALSE;
1752 if(fRho->GetVal() <= 0 ) return kFALSE;
1753 if(fAnalysisType == AliAnalysisTaskJetV2::kFull && !fClusterCont) return kFALSE;
1754 return kTRUE;
1755}
1756//_____________________________________________________________________________
eae37c5c 1757void AliAnalysisTaskJetV2::FillHistogramsAfterSubtraction(Double_t psi2, Double_t vzero[2][2], Double_t* vzeroComb, Double_t* tpc)
1758{
1759 // fill histograms
1760 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1761 FillTrackHistograms();
1762 if(fAnalysisType == AliAnalysisTaskJetV2::kFull) FillClusterHistograms();
1763 FillJetHistograms(psi2);
1764 if(fFillQAHistograms) FillEventPlaneHistograms(vzero, vzeroComb, tpc);
1765 FillRhoHistograms();
1766 FillDeltaPtHistograms(psi2);
1767}
1768//_____________________________________________________________________________
1769void AliAnalysisTaskJetV2::FillTrackHistograms() const
1770{
1771 // fill track histograms
1772 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1773 Int_t iTracks(fTracks->GetEntriesFast()), iAcceptedTracks(0);
1774 for(Int_t i(0); i < iTracks; i++) {
1775 AliVTrack* track = static_cast<AliVTrack*>(fTracks->At(i));
1776 if(!PassesCuts(track)) continue;
1777 iAcceptedTracks++;
1778 fHistPicoTrackPt[fInCentralitySelection]->Fill(track->Pt());
1779 if(fFillQAHistograms) FillQAHistograms(track);
1780 }
1781 fHistPicoTrackMult[fInCentralitySelection]->Fill(iAcceptedTracks);
1782}
1783//_____________________________________________________________________________
1784void AliAnalysisTaskJetV2::FillClusterHistograms() const
1785{
1786 // fill cluster histograms
1787 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1788 if(!fClusterCont) return;
1789 Int_t iClusters(fClusterCont->GetNClusters());
b59d293b 1790 TLorentzVector clusterLorentzVector;
eae37c5c 1791 for(Int_t i(0); i < iClusters; i++) {
1792 AliVCluster* cluster = fClusterCont->GetCluster(i);
1793 if (!PassesCuts(cluster)) continue;
eae37c5c 1794 cluster->GetMomentum(clusterLorentzVector, const_cast<Double_t*>(fVertex));
1795 fHistClusterPt[fInCentralitySelection]->Fill(clusterLorentzVector.Pt());
1796 fHistClusterEtaPhi[fInCentralitySelection]->Fill(clusterLorentzVector.Eta(), clusterLorentzVector.Phi());
1797 fHistClusterEtaPhiWeighted[fInCentralitySelection]->Fill(clusterLorentzVector.Eta(), clusterLorentzVector.Phi(), clusterLorentzVector.Pt());
1798 }
1799 return;
1800}
1801//_____________________________________________________________________________
1802void AliAnalysisTaskJetV2::FillEventPlaneHistograms(Double_t vzero[2][2], Double_t* vzeroComb, Double_t* tpc) const
1803{
3e6806b3 1804 // fill event plane histograms, only called in qa mode
eae37c5c 1805 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1806 fHistPsiControl->Fill(0.5, vzero[0][0]); // vzero a psi2
1807 fHistPsiControl->Fill(1.5, vzero[1][0]); // vzero c psi2
1808 fHistPsiControl->Fill(2.5, tpc[0]); // tpc psi 2
1809 fHistPsiControl->Fill(5.5, vzero[0][1]); // vzero a psi3
1810 fHistPsiControl->Fill(6.5, vzero[1][1]); // vzero b psi3
1811 fHistPsiControl->Fill(7.5, tpc[1]); // tpc psi 3
1812 fHistPsiVZEROA->Fill(vzero[0][0]);
1813 fHistPsiVZEROC->Fill(vzero[1][0]);
1814 fHistPsiVZERO->Fill(vzeroComb[0]);
1815 fHistPsiTPC->Fill(tpc[0]);
1816 fHistPsiSpread->Fill(0.5, TMath::Abs(vzero[0][0]-vzero[1][0]));
1817 fHistPsiSpread->Fill(1.5, TMath::Abs(vzero[0][0]-tpc[0]));
1818 fHistPsiSpread->Fill(2.5, TMath::Abs(vzero[1][0]-tpc[0]));
1819 // event plane vs centrality QA histo's to check recentering
1820 Double_t TRK(InputEvent()->GetCentrality()->GetCentralityPercentile("TRK"));
1821 Double_t V0M(InputEvent()->GetCentrality()->GetCentralityPercentile("V0M"));
1822 fHistPsiVZEROAV0M->Fill(V0M, vzero[0][0]);
1823 fHistPsiVZEROCV0M->Fill(V0M, vzero[1][0]);
1824 fHistPsiVZEROVV0M->Fill(V0M, vzeroComb[0]);
9aa4c594 1825 fHistPsiTPCV0M->Fill(V0M, tpc[0]);
eae37c5c 1826 fHistPsiVZEROATRK->Fill(TRK, vzero[0][0]);
1827 fHistPsiVZEROCTRK->Fill(TRK, vzero[1][0]);
1828 fHistPsiVZEROTRK->Fill(TRK, vzeroComb[0]);
1829 fHistPsiTPCTRK->Fill(TRK, tpc[0]);
9aa4c594 1830 // leading jet vs event plane bias
1831 if(fLeadingJet) {
1832 Double_t rho(fLocalRho->GetLocalVal(fLeadingJet->Phi(), GetJetContainer()->GetJetRadius(), fLocalRho->GetVal()));
94b007e2 1833 Double_t pt(fLeadingJet->Pt() - fLeadingJet->Area()*rho);
1834 fHistPsiTPCLeadingJet[fInCentralitySelection]->Fill(pt, tpc[0], fLeadingJet->Phi());
1835 fHistPsiVZEROALeadingJet[fInCentralitySelection]->Fill(pt, vzero[0][0], fLeadingJet->Phi());
1836 fHistPsiVZEROCLeadingJet[fInCentralitySelection]->Fill(pt, vzero[1][0], fLeadingJet->Phi());
1837 fHistPsiVZEROCombLeadingJet[fInCentralitySelection]->Fill(pt, vzeroComb[0], fLeadingJet->Phi());
9aa4c594 1838 }
3e6806b3 1839 // correlation of event planes
1840 fHistPsi2Correlation[fInCentralitySelection]->Fill(tpc[0], vzero[0][0], vzero[1][0]);
eae37c5c 1841}
1842//_____________________________________________________________________________
1843void AliAnalysisTaskJetV2::FillRhoHistograms()
1844{
1845 // fill rho histograms
1846 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1847 fHistRhoPackage[fInCentralitySelection]->Fill(fLocalRho->GetVal()); // save the rho estimate from the emcal jet package
1848 // get multiplicity FIXME inefficient
1849 Int_t iJets(fJets->GetEntriesFast());
1850 Double_t rho(fLocalRho->GetLocalVal(TMath::Pi(), TMath::Pi(), fLocalRho->GetVal()));
1851 fHistRho[fInCentralitySelection]->Fill(rho);
1852 fHistRhoVsMult->Fill(fTracks->GetEntries(), rho);
1853 fHistRhoVsCent->Fill(fCent, rho);
1854 for(Int_t i(0); i < iJets; i++) {
1855 AliEmcalJet* jet = static_cast<AliEmcalJet*>(fJets->At(i));
1856 if(!PassesCuts(jet)) continue;
1857 fHistRhoAVsMult->Fill(fTracks->GetEntries(), rho * jet->Area());
1858 fHistRhoAVsCent->Fill(fCent, rho * jet->Area());
1859 }
1860}
1861//_____________________________________________________________________________
1862void AliAnalysisTaskJetV2::FillDeltaPtHistograms(Double_t psi2) const
1863{
1864 // fill delta pt histograms
1865 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1866 Int_t i(0);
1867 const Float_t areaRC = GetJetRadius()*GetJetRadius()*TMath::Pi();
1868 // we're retrieved the leading jet, now get a random cone
1869 for(i = 0; i < fMaxCones; i++) {
1870 Float_t pt(0), eta(0), phi(0);
1871 // get a random cone without constraints on leading jet position
1872 CalculateRandomCone(pt, eta, phi, fTracksCont, fClusterCont, 0x0);
1873 if(pt > 0) {
1874 if(fFillQAHistograms) fHistRCPhiEta[fInCentralitySelection]->Fill(phi, eta);
1875 fHistRhoVsRCPt[fInCentralitySelection]->Fill(pt, fLocalRho->GetLocalVal(phi, GetJetContainer()->GetJetRadius(), fLocalRho->GetVal())*areaRC);
1876 fHistRCPt[fInCentralitySelection]->Fill(pt);
1877 fHistDeltaPtDeltaPhi2[fInCentralitySelection]->Fill(PhaseShift(phi-psi2, 2.), pt - areaRC*fLocalRho->GetLocalVal(phi, GetJetContainer()->GetJetRadius(), fLocalRho->GetVal()));
1878 fHistDeltaPtDeltaPhi2Rho0[fInCentralitySelection]->Fill(PhaseShift(phi-psi2, 2.), pt - areaRC*fLocalRho->GetVal());
1879
1880 }
1881 // get a random cone excluding leading jet area
1882 CalculateRandomCone(pt, eta, phi, fTracksCont, fClusterCont, fLeadingJet);
1883 if(pt > 0) {
1884 if(fFillQAHistograms) fHistRCPhiEtaExLJ[fInCentralitySelection]->Fill(phi, eta);
1885 fHistRhoVsRCPtExLJ[fInCentralitySelection]->Fill(pt, fLocalRho->GetLocalVal(phi, GetJetContainer()->GetJetRadius(), fLocalRho->GetVal())*areaRC);
1886 fHistRCPtExLJ[fInCentralitySelection]->Fill(pt);
1887 fHistDeltaPtDeltaPhi2ExLJ[fInCentralitySelection]->Fill(PhaseShift(phi-psi2, 2.), pt - areaRC*fLocalRho->GetLocalVal(phi, GetJetContainer()->GetJetRadius(), fLocalRho->GetVal()));
1888 fHistDeltaPtDeltaPhi2ExLJRho0[fInCentralitySelection]->Fill(PhaseShift(phi-psi2, 2.), pt - areaRC*fLocalRho->GetVal());
1889 }
1890 }
1891}
1892//_____________________________________________________________________________
1893void AliAnalysisTaskJetV2::FillJetHistograms(Double_t psi2)
1894{
1895 // fill jet histograms
1896 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1897 Int_t iJets(fJets->GetEntriesFast());
1898 for(Int_t i(0); i < iJets; i++) {
1899 AliEmcalJet* jet = static_cast<AliEmcalJet*>(fJets->At(i));
1900 if(PassesCuts(jet)) {
1901 Double_t pt(jet->Pt()), area(jet->Area()), eta(jet->Eta()), phi(jet->Phi());
1902 Double_t rho(fLocalRho->GetLocalVal(phi, GetJetContainer()->GetJetRadius(), fLocalRho->GetVal()));
1903 fHistJetPtRaw[fInCentralitySelection]->Fill(pt);
1904 fHistJetPt[fInCentralitySelection]->Fill(pt-area*rho);
1905 if(fFillQAHistograms) fHistJetEtaPhi[fInCentralitySelection]->Fill(eta, phi);
1906 fHistJetPtArea[fInCentralitySelection]->Fill(pt-area*rho, area);
1907 fHistJetPtEta[fInCentralitySelection]->Fill(pt-area*rho, eta);
1908 fHistJetPsi2Pt[fInCentralitySelection]->Fill(PhaseShift(phi-psi2, 2.), pt-area*rho);
1909 fHistJetPsi2PtRho0[fInCentralitySelection]->Fill(PhaseShift(phi-psi2, 2.), pt-area*fLocalRho->GetVal());
9aa4c594 1910 fHistJetPtConstituents[fInCentralitySelection]->Fill(pt-area*rho, jet->GetNumberOfConstituents());
eae37c5c 1911 fHistJetEtaRho[fInCentralitySelection]->Fill(eta, pt/area);
1912 }
1913 }
1914}
1915//_____________________________________________________________________________
1916void AliAnalysisTaskJetV2::FillQAHistograms(AliVTrack* vtrack) const
1917{
1918 // fill qa histograms for pico tracks
028d6739 1919 if(fDebug > 1) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1920 if(!vtrack) return;
eae37c5c 1921 AliPicoTrack* track = static_cast<AliPicoTrack*>(vtrack);
1922 fHistRunnumbersPhi->Fill(fMappedRunNumber, track->Phi());
1923 fHistRunnumbersEta->Fill(fMappedRunNumber, track->Eta());
1924 Int_t type((int)(track->GetTrackType()));
1925 switch (type) {
1926 case 0:
1927 fHistPicoCat1[fInCentralitySelection]->Fill(track->Eta(), track->Phi());
1928 break;
1929 case 1:
1930 fHistPicoCat2[fInCentralitySelection]->Fill(track->Eta(), track->Phi());
1931 break;
1932 case 2:
1933 fHistPicoCat3[fInCentralitySelection]->Fill(track->Eta(), track->Phi());
1934 break;
1935 default: break;
1936 }
1937}
1938//_____________________________________________________________________________
1939void AliAnalysisTaskJetV2::FillQAHistograms(AliVEvent* vevent)
1940{
1941 // fill qa histograms for events
9e1c2f31 1942 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
eae37c5c 1943 if(!vevent) return;
1944 fHistVertexz->Fill(vevent->GetPrimaryVertex()->GetZ());
1945 fHistCentrality->Fill(fCent);
1946 Int_t runNumber(InputEvent()->GetRunNumber());
30232c90 1947 if(fLeadingJet && fLeadingJetAfterSub) fHistLeadingJetBackground[fInCentralitySelection]->Fill(TMath::Abs(fLeadingJet->Eta()-fLeadingJetAfterSub->Eta()), PhaseShift(fLeadingJet->Phi()-fLeadingJetAfterSub->Phi()));
028d6739 1948 for(fMappedRunNumber = 0; fMappedRunNumber < fExpectedRuns->GetSize(); fMappedRunNumber++) {
9e1c2f31 1949 if(fExpectedRuns->At(fMappedRunNumber) == runNumber) return;
eae37c5c 1950 }
028d6739 1951 if(fDebug > 0) printf("\n > TASK %s CANNOT IDENTIFY RUN - CONFIGURATION COULD BE INCORRECT < \n", GetName());
eae37c5c 1952}
1953//_____________________________________________________________________________
1954void AliAnalysisTaskJetV2::FillAnalysisSummaryHistogram() const
1955{
1956 // fill the analysis summary histrogram, saves all relevant analysis settigns
1957 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1958 fHistAnalysisSummary->GetXaxis()->SetBinLabel(2, "fJetRadius");
1959 fHistAnalysisSummary->SetBinContent(2, GetJetContainer()->GetJetRadius());
1960 fHistAnalysisSummary->GetXaxis()->SetBinLabel(3, "fJetEtaMin");
1961 fHistAnalysisSummary->SetBinContent(3, GetJetContainer()->GetJetEtaMin());
1962 fHistAnalysisSummary->GetXaxis()->SetBinLabel(4, "fJetEtaMax");
1963 fHistAnalysisSummary->SetBinContent(4, GetJetContainer()->GetJetEtaMax());
1964 fHistAnalysisSummary->GetXaxis()->SetBinLabel(5, "fJetPhiMin");
1965 fHistAnalysisSummary->SetBinContent(5, GetJetContainer()->GetJetPhiMin());
1966 fHistAnalysisSummary->GetXaxis()->SetBinLabel(6, "fJetPhiMax");
1967 fHistAnalysisSummary->SetBinContent(6, GetJetContainer()->GetJetPhiMin());
1968 fHistAnalysisSummary->GetXaxis()->SetBinLabel(16, "fForceBeamType");
1969 fHistAnalysisSummary->SetBinContent(16, fForceBeamType);
1970 fHistAnalysisSummary->GetXaxis()->SetBinLabel(17, "fMinCent");
1971 fHistAnalysisSummary->SetBinContent(17, fMinCent);
1972 fHistAnalysisSummary->GetXaxis()->SetBinLabel(18, "fMaxCent");
1973 fHistAnalysisSummary->SetBinContent(18, fMaxCent);
1974 fHistAnalysisSummary->GetXaxis()->SetBinLabel(19, "fMinVz");
1975 fHistAnalysisSummary->SetBinContent(19, fMinVz);
1976 fHistAnalysisSummary->GetXaxis()->SetBinLabel(20, "fMaxVz");
1977 fHistAnalysisSummary->SetBinContent(20, fMaxVz);
1978 fHistAnalysisSummary->GetXaxis()->SetBinLabel(21, "fOffTrigger");
1979 fHistAnalysisSummary->SetBinContent(21, fOffTrigger);
1980 fHistAnalysisSummary->GetXaxis()->SetBinLabel(34, "fitModulationType");
1981 fHistAnalysisSummary->SetBinContent(34, (int)fFitModulationType);
1982 fHistAnalysisSummary->GetXaxis()->SetBinLabel(35, "runModeType");
1983 fHistAnalysisSummary->SetBinContent(35, (int)fRunModeType);
1984 fHistAnalysisSummary->GetXaxis()->SetBinLabel(36, "data type");
1985 fHistAnalysisSummary->SetBinContent(36, (int)fDataType);
1986 fHistAnalysisSummary->GetXaxis()->SetBinLabel(37, "iterator");
1987 fHistAnalysisSummary->SetBinContent(37, 1.);
1988 fHistAnalysisSummary->GetXaxis()->SetBinLabel(38, "fMinPvalue");
1989 fHistAnalysisSummary->SetBinContent(38, fMinPvalue);
1990 fHistAnalysisSummary->GetXaxis()->SetBinLabel(39, "fMaxPvalue");
1991 fHistAnalysisSummary->SetBinContent(39, fMaxPvalue);
1992 fHistAnalysisSummary->GetXaxis()->SetBinLabel(40, "fExcludeLeadingJetsFromFit");
1993 fHistAnalysisSummary->SetBinContent(40, fExcludeLeadingJetsFromFit);
1994 fHistAnalysisSummary->GetXaxis()->SetBinLabel(41, "fRebinSwapHistoOnTheFly");
1995 fHistAnalysisSummary->SetBinContent(41, (int)fRebinSwapHistoOnTheFly);
1996 fHistAnalysisSummary->GetXaxis()->SetBinLabel(42, "fUsePtWeight");
1997 fHistAnalysisSummary->SetBinContent(42, (int)fUsePtWeight);
eae37c5c 1998 fHistAnalysisSummary->GetXaxis()->SetBinLabel(44, "fSoftTrackMinPt");
1999 fHistAnalysisSummary->SetBinContent(44, fSoftTrackMinPt);
2000 fHistAnalysisSummary->GetXaxis()->SetBinLabel(45, "fSoftTrackMaxPt");
2001 fHistAnalysisSummary->SetBinContent(45, fSoftTrackMaxPt);
2002 fHistAnalysisSummary->GetXaxis()->SetBinLabel(46, "fMaxCones");
2003 fHistAnalysisSummary->SetBinContent(46, fMaxCones);
2004 fHistAnalysisSummary->GetXaxis()->SetBinLabel(47, "used rho");
2005 fHistAnalysisSummary->GetXaxis()->SetBinLabel(48, "used small rho");
2006}
2007//_____________________________________________________________________________
2008void AliAnalysisTaskJetV2::Terminate(Option_t *)
2009{
2010 // terminate
2011 switch (fRunModeType) {
2012 case kLocal : {
9e1c2f31 2013 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
eae37c5c 2014 AliAnalysisTaskJetV2::Dump();
2015 for(Int_t i(0); i < fHistAnalysisSummary->GetXaxis()->GetNbins(); i++) printf( " > flag: %s \t content %.2f \n", fHistAnalysisSummary->GetXaxis()->GetBinLabel(1+i), fHistAnalysisSummary->GetBinContent(1+i));
2016 } break;
2017 default : break;
2018 }
2019}
2020//_____________________________________________________________________________
2021void AliAnalysisTaskJetV2::SetModulationFit(TF1* fit)
2022{
2023 // set modulation fit
9e1c2f31 2024 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
eae37c5c 2025 if (fFitModulation) delete fFitModulation;
2026 fFitModulation = fit;
2027}
2028//_____________________________________________________________________________
2029void AliAnalysisTaskJetV2::SetUseControlFit(Bool_t c)
2030{
2031 // set control fit
9e1c2f31 2032 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
eae37c5c 2033 if (fFitControl) delete fFitControl;
2034 if (c) {
2035 fFitControl = new TF1("controlFit", "pol0", 0, TMath::TwoPi());
2036 } else fFitControl = 0x0;
2037}
2038//_____________________________________________________________________________
2039TH1F* AliAnalysisTaskJetV2::GetResolutionFromOuptutFile(detectorType det, Int_t h, TArrayD* cen)
2040{
2041 // INTERFACE METHOD FOR OUTPUTFILE
2042 // get the detector resolution, user has ownership of the returned histogram
9e1c2f31 2043 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
eae37c5c 2044 if(!fOutputList) {
2045 printf(" > Please add fOutputList first < \n");
2046 return 0x0;
2047 }
2048 TH1F* r(0x0);
2049 (cen) ? r = new TH1F("R", "R", cen->GetSize()-1, cen->GetArray()) : r = new TH1F("R", "R", 10, 0, 10);
2050 if(!cen) r->GetXaxis()->SetTitle("number of centrality bin");
2051 r->GetYaxis()->SetTitle(Form("Resolution #Psi_{%i}", h));
2052 for(Int_t i(0); i < 10; i++) {
2053 TProfile* temp((TProfile*)fOutputList->FindObject(Form("fProfV%iResolution_%i", h, i)));
2054 if(!temp) break;
2055 Double_t a(temp->GetBinContent(3)), b(temp->GetBinContent(5)), c(temp->GetBinContent(7));
2056 Double_t d(temp->GetBinContent(9)), e(temp->GetBinContent(10)), f(temp->GetBinContent(11));
2057 Double_t _a(temp->GetBinError(3)), _b(temp->GetBinError(5)), _c(temp->GetBinError(7));
2058 Double_t _d(temp->GetBinError(9)), _e(temp->GetBinError(10)), _f(temp->GetBinError(11));
2059 if(a <= 0 || b <= 0 || c <= 0 || d <= 0 || e <= 0 || f <= 0) continue;
2060 switch (det) {
2061 case kVZEROA : {
2062 r->SetBinContent(1+i, TMath::Sqrt((a*b)/c));
2063 if(i==0) r->SetNameTitle("VZEROA resolution", "VZEROA resolution");
2064 r->SetBinError(1+i, TMath::Sqrt(_a*_a+_b*_b+_c*_c));
2065 } break;
2066 case kVZEROC : {
2067 r->SetBinContent(1+i, TMath::Sqrt((a*c)/b));
2068 if(i==0) r->SetNameTitle("VZEROC resolution", "VZEROC resolution");
2069 r->SetBinError(1+i, TMath::Sqrt(_a*_a+_b*_b+_c*_c));
2070 } break;
2071 case kTPC : {
2072 r->SetBinContent(1+i, TMath::Sqrt((b*c)/a));
2073 if(i==0) r->SetNameTitle("TPC resolution", "TPC resolution");
2074 r->SetBinError(1+i, TMath::Sqrt(_a*_a+_b*_b+_c*_c));
2075 } break;
2076 case kVZEROComb : {
2077 r->SetBinContent(1+i, TMath::Sqrt((d*e)/f));
2078 if(i==0) r->SetNameTitle("VZEROComb resolution", "VZEROComb resolution");
2079 r->SetBinError(1+i, TMath::Sqrt(_d*_d+_e*_e+_f*_f));
2080 } break;
2081 default : break;
2082 }
2083 }
2084 return r;
2085}
2086//_____________________________________________________________________________
2087TH1F* AliAnalysisTaskJetV2::CorrectForResolutionDiff(TH1F* v, detectorType det, TArrayD* cen, Int_t c, Int_t h)
2088{
2089 // INTERFACE METHOD FOR OUTPUT FILE
2090 // correct the supplied differential vn histogram v for detector resolution
9e1c2f31 2091 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
eae37c5c 2092 TH1F* r(GetResolutionFromOuptutFile(det, h, cen));
2093 if(!r) {
2094 printf(" > Couldn't find resolution < \n");
2095 return 0x0;
2096 }
2097 Double_t res(1./r->GetBinContent(1+r->FindBin(c)));
2098 TF1* line = new TF1("line", "pol0", 0, 200);
2099 line->SetParameter(0, res);
2100 v->Multiply(line);
2101 return v;
2102}
2103//_____________________________________________________________________________
2104TH1F* AliAnalysisTaskJetV2::CorrectForResolutionInt(TH1F* v, detectorType det, TArrayD* cen, Int_t h)
2105{
2106 // INTERFACE METHOD FOR OUTPUT FILE
2107 // correct the supplied intetrated vn histogram v for detector resolution
2108 // integrated vn must have the same centrality binning as the resolotion correction
9e1c2f31 2109 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
eae37c5c 2110 TH1F* r(GetResolutionFromOuptutFile(det, h, cen));
2111 v->Divide(v, r);
2112 return v;
2113}
2114//_____________________________________________________________________________
2115TH1F* AliAnalysisTaskJetV2::GetDifferentialQC(TProfile* refCumulants, TProfile* diffCumlants, TArrayD* ptBins, Int_t h)
2116{
2117 // get differential QC
9e1c2f31 2118 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
eae37c5c 2119 Double_t r(refCumulants->GetBinContent(h-1)); // v2 reference flow
2120 if(r > 0) r = TMath::Sqrt(r);
2121 TH1F* qc = new TH1F(Form("QC2v%i", h), Form("QC2v%i", h), ptBins->GetSize()-1, ptBins->GetArray());
2122 Double_t a(0), b(0), c(0); // dummy variables
2123 for(Int_t i(0); i < ptBins->GetSize(); i++) {
2124 if(r > 0) {
2125 a = diffCumlants->GetBinContent(1+i);
2126 b = diffCumlants->GetBinError(1+i);
2127 c = a/r;
2128 qc->SetBinContent(1+i, c);
2129 (a <= 0 || b <= 0) ? qc->SetBinError(1+i, b) : qc->SetBinError(1+i, TMath::Sqrt(c*c*b*b/(a*a)));
2130 }
2131 }
2132 return qc;
2133}
2134
2135//_____________________________________________________________________________
9e1c2f31 2136void AliAnalysisTaskJetV2::ReadVZEROCalibration2010h()
2137{
2138 // necessary for calibration of 10h vzero event plane. code copied from flow package
2139 // (duplicate, but i didn't want to introduce an ulgy dependency )
2140 // this function is only called when the runnumber changes
2141 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
2142
2143 // 1) check if the proper chi weights for merging vzero a and vzero c ep are present
2144 // if not, use sane defaults. centrality binning is equal to that given in the fVZEROcentralityBin snippet
2145 //
2146 // chi values can be calculated using the static helper function
2147 // AliAnalysisTaskJetV2::CalculateEventPlaneChi(Double_t res) where res is the event plane
2148 // resolution in a given centrality bin
2149 //
2150 // the resolutions that were used for these defaults are
2151 // this might need a bit of updating as they were read 'by-eye' from a performance plot ..
2152 // Double_t R2VZEROA[] = {.35, .40, .48, .50, .48, .45, .38, .26, .16};
2153 // Double_t R2VZEROC[] = {.45, .60, .70, .73, .68, .60, .40, .36, .17};
2154 // Double_t R3VZEROA[] = {.22, .23, .22, .19, .15, .12, .08, .00, .00};
2155 // Double_t R3VZEROC[] = {.30, .30, .28, .25, .22, .17, .11, .00, .00};
2156
2157 Double_t chiC2[] = {0.771423, 1.10236, 1.38116, 1.48077, 1.31964, 1.10236, 0.674622, 0.600403, 0.273865};
2158 Double_t chiA2[] = {0.582214, 0.674622, 0.832214, 0.873962, 0.832214, 0.771423, 0.637146, 0.424255, 0.257385};
2159 Double_t chiC3[] = {0.493347, 0.493347, 0.458557, 0.407166, 0.356628, 0.273865, 0.176208, 6.10352e-05, 6.10352e-05};
2160 Double_t chiA3[] = {0.356628, 0.373474, 0.356628, 0.306702, 0.24115, 0.192322, 0.127869, 6.10352e-05, 6.10352e-05};
2161
2162 if(!fChi2A) fChi2A = new TArrayD(9, chiA2);
2163 if(!fChi2C) fChi2C = new TArrayD(9, chiC2);
2164 if(!fChi3A) fChi3A = new TArrayD(9, chiA3);
2165 if(!fChi3C) fChi3C = new TArrayD(9, chiC3);
2166
2167 // 2) open database file
2168 fOADB = TFile::Open("$ALICE_ROOT/OADB/PWGCF/VZERO/VZEROcalibEP.root");
2169 if(fOADB->IsZombie()){
2170 printf("OADB file $ALICE_ROOT/OADB/PWGCF/VZERO/VZEROcalibEP.root cannot be opened, CALIBRATION FAILED !");
2171 return;
2172 }
2173
2174 AliOADBContainer *cont = (AliOADBContainer*) fOADB->Get("hMultV0BefCorr");
2175 if(!cont){
2176 // see if database is readable
2177 printf("OADB object hMultV0BefCorr is not available in the file\n");
2178 return;
2179 }
2180 Int_t run(fRunNumber);
2181 if(!(cont->GetObject(run))){
2182 // if the run isn't recognized fall back to a default run
2183 printf("OADB object hMultVZEROBefCorr is not available for run %i (used default run 137366)\n",run);
2184 run = 137366;
2185 }
2186 // step 3) get the proper multiplicity weights from the vzero signal
2187 fVZEROgainEqualization = ((TH2F*)cont->GetObject(run))->ProfileX();
2188 if(!fVZEROgainEqualization) {
2189 AliFatal(Form("%s: Fatal error, couldn't read fVZEROgainEqualization from OADB object < \n", GetName()));
2190 return;
2191 }
2192
2193 TF1* fpol0 = new TF1("fpol0","pol0");
2194 if(fVZEROgainEqualizationPerRing) {
2195 // do the calibration per ring
2196 // start with the vzero c rings (segments 0 through 31)
2197 fVZEROgainEqualization->Fit(fpol0, "", "", 0, 8);
2198 (fUseVZERORing[0]) ? SetVZEROCpol(0, fpol0->GetParameter(0)) : SetVZEROCpol(0, 0.);
2199 fVZEROgainEqualization->Fit(fpol0, "", "", 8, 16);
2200 (fUseVZERORing[1]) ? SetVZEROCpol(1, fpol0->GetParameter(0)) : SetVZEROCpol(1, 0.);
2201 fVZEROgainEqualization->Fit(fpol0, "", "", 16, 24);
2202 (fUseVZERORing[2]) ? SetVZEROCpol(2, fpol0->GetParameter(0)) : SetVZEROCpol(2, 0.);
2203 fVZEROgainEqualization->Fit(fpol0, "", "", 24, 32);
2204 (fUseVZERORing[3]) ? SetVZEROCpol(3, fpol0->GetParameter(0)) : SetVZEROCpol(3, 0.);
2205 // same thing for vero A
2206 fVZEROgainEqualization->Fit(fpol0, "", "", 32, 40);
2207 (fUseVZERORing[4]) ? SetVZEROApol(0, fpol0->GetParameter(0)) : SetVZEROApol(0, 0.);
2208 fVZEROgainEqualization->Fit(fpol0, "", "", 40, 48);
2209 (fUseVZERORing[5]) ? SetVZEROApol(1, fpol0->GetParameter(0)) : SetVZEROApol(1, 0.);
2210 fVZEROgainEqualization->Fit(fpol0, "", "", 48, 56);
2211 (fUseVZERORing[6]) ? SetVZEROApol(2, fpol0->GetParameter(0)) : SetVZEROApol(2, 0.);
2212 fVZEROgainEqualization->Fit(fpol0, "", "", 56, 64);
2213 (fUseVZERORing[7]) ? SetVZEROApol(3, fpol0->GetParameter(0)) : SetVZEROApol(3, 0.);
2214 } else {
2215 // do the calibration in one go. the calibration will still be
2216 // stored per ring, but each ring has the same weight now
2217 // this should be the default for the analysis as the database is tuned to this configuration
2218 fVZEROgainEqualization->Fit(fpol0,"","",0,31);
2219 for(Int_t i(0); i < 4; i++) SetVZEROCpol(i, fpol0->GetParameter(0));
2220 fVZEROgainEqualization->Fit(fpol0,"","",32,64);
2221 for(Int_t i(0); i < 4; i++) SetVZEROApol(i, fpol0->GetParameter(0));
2222 }
2223
2224 // step 4) extract the information to re-weight the q-vectors
2225 for(Int_t iside=0;iside<2;iside++){
2226 for(Int_t icoord=0;icoord<2;icoord++){
2227 for(Int_t i=0;i < 9;i++){
2228 char namecont[100];
2229 if(iside==0 && icoord==0)
2230 snprintf(namecont,100,"hQxc2_%i",i);
2231 else if(iside==1 && icoord==0)
2232 snprintf(namecont,100,"hQxa2_%i",i);
2233 else if(iside==0 && icoord==1)
2234 snprintf(namecont,100,"hQyc2_%i",i);
2235 else if(iside==1 && icoord==1)
2236 snprintf(namecont,100,"hQya2_%i",i);
2237
2238 cont = (AliOADBContainer*) fOADB->Get(namecont);
2239 if(!cont){
2240 printf("OADB object %s is not available in the file\n",namecont);
2241 return;
2242 }
2243
2244 if(!(cont->GetObject(run))){
2245 printf("OADB object %s is not available for run %i (used run 137366)\n",namecont,run);
2246 run = 137366;
2247 }
2248
2249 // store info for all centralities to cache
2250 fMeanQ[i][iside][icoord] = ((TH1F *) cont->GetObject(run))->GetMean();
2251 fWidthQ[i][iside][icoord] = ((TH1F *) cont->GetObject(run))->GetRMS();
2252
2253 //for v3
2254 if(iside==0 && icoord==0)
2255 snprintf(namecont,100,"hQxc3_%i",i);
2256 else if(iside==1 && icoord==0)
2257 snprintf(namecont,100,"hQxa3_%i",i);
2258 else if(iside==0 && icoord==1)
2259 snprintf(namecont,100,"hQyc3_%i",i);
2260 else if(iside==1 && icoord==1)
2261 snprintf(namecont,100,"hQya3_%i",i);
2262
2263 cont = (AliOADBContainer*) fOADB->Get(namecont);
2264 if(!cont){
2265 printf("OADB object %s is not available in the file\n",namecont);
2266 return;
2267 }
2268
2269 if(!(cont->GetObject(run))){
2270 printf("OADB object %s is not available for run %i (used run 137366)\n",namecont,run);
2271 run = 137366;
2272 }
2273 // store info for all centralities to cache
2274 fMeanQv3[i][iside][icoord] = ((TH1F *) cont->GetObject(run))->GetMean();
2275 fWidthQv3[i][iside][icoord] = ((TH1F *) cont->GetObject(run))->GetRMS();
2276 }
2277 }
2278 }
2279 // cleanup. the opened file is closed in the destructor, otherwise fVZEROgainEqualization is no longer available
2280 delete fpol0;
2281}
2282//_____________________________________________________________________________
2283Int_t AliAnalysisTaskJetV2::GetVZEROCentralityBin() const
2284{
2285 // return cache index number corresponding to the event centrality
2286 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
2287 Float_t v0Centr(InputEvent()->GetCentrality()->GetCentralityPercentile("V0M"));
2288 if(v0Centr < 5) return 0;
2289 else if(v0Centr < 10) return 1;
2290 else if(v0Centr < 20) return 2;
2291 else if(v0Centr < 30) return 3;
2292 else if(v0Centr < 40) return 4;
2293 else if(v0Centr < 50) return 5;
2294 else if(v0Centr < 60) return 6;
2295 else if(v0Centr < 70) return 7;
2296 else return 8;
2297}
2298//_____________________________________________________________________________
41e50b0d 2299AliEmcalJet* AliAnalysisTaskJetV2::GetLeadingJet(AliLocalRhoParameter* localRho) {
2300 // return pointer to the highest pt jet (before background subtraction) within acceptance
2301 // only rudimentary cuts are applied on this level, hence the implementation outside of
2302 // the framework
2303 Int_t iJets(fJets->GetEntriesFast());
2304 Double_t pt(0);
2305 AliEmcalJet* leadingJet(0x0);
2306 if(!localRho) {
2307 for(Int_t i(0); i < iJets; i++) {
2308 AliEmcalJet* jet = static_cast<AliEmcalJet*>(fJets->At(i));
2309 if(!PassesSimpleCuts(jet)) continue;
2310 if(jet->Pt() > pt) {
2311 leadingJet = jet;
2312 pt = leadingJet->Pt();
2313 }
2314 }
2315 return leadingJet;
2316 } else {
2317 // return leading jet after background subtraction
2318 Double_t rho(0);
2319 for(Int_t i(0); i < iJets; i++) {
2320 AliEmcalJet* jet = static_cast<AliEmcalJet*>(fJets->At(i));
2321 if(!PassesSimpleCuts(jet)) continue;
2322 rho = localRho->GetLocalVal(jet->Phi(), GetJetContainer()->GetJetRadius(), localRho->GetVal());
2323 if((jet->Pt()-jet->Area()*rho) > pt) {
2324 leadingJet = jet;
2325 pt = (leadingJet->Pt()-jet->Area()*rho);
2326 }
2327 }
2328 return leadingJet;
2329
2330 }
2331 return 0x0;
2332}
2333//_____________________________________________________________________________