]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PWGJE/StrangenessInJets/AliAnalysisTaskV0sInJets.h
Centrality binning reduced to one bin 0-10 %. pt_V0 range reduced. mass_K0S range...
[u/mrichter/AliRoot.git] / PWGJE / StrangenessInJets / AliAnalysisTaskV0sInJets.h
CommitLineData
7729cc34 1#ifndef AliAnalysisTaskV0sInJets_cxx
2#define AliAnalysisTaskV0sInJets_cxx
3
4// task for analysis of V0s (K0S, (anti-)Lambda) in charged jets
5// Author: Vit Kucera (vit.kucera@cern.ch)
6
7class TH1D;
8class TH2D;
9class THnSparse;
10class TRandom;
11class TClonesArray;
12
13class AliAODv0;
14class AliAODVertex;
15class AliAODJet;
16
17#include "AliAnalysisTaskSE.h"
18#include "THnSparse.h"
19//#include "AuxFunctions.h"
20
21class AliAnalysisTaskV0sInJets : public AliAnalysisTaskSE
22{
23public:
24 AliAnalysisTaskV0sInJets(); // Default constructor
25 AliAnalysisTaskV0sInJets(const char* name); // Constructor
26 virtual ~AliAnalysisTaskV0sInJets(); // Destructor
27 virtual void UserCreateOutputObjects();
28 virtual void UserExec(Option_t* option);
29 virtual void Terminate(Option_t*){}
30
31 void SetTypeAOD(Int_t type = 1) {fiAODAnalysis = type;}
32 void SetJetBranchName(char* line){fsJetBranchName = line;}
9706bde3 33 void SetJetBgBranchName(char* line){fsJetBgBranchName = line;}
87e23d3e 34 void SetCuts(Double_t z = 10,Double_t r = 1,Double_t cL = 0,Double_t cH = 80){fdCutVertexZ = z; fdCutVertexR2 = r*r;fdCutCentLow = cL;fdCutCentHigh = cH;}
35 void SetPtJetMin(Double_t ptMin = 0){fdCutPtJetMin = ptMin;}
36 void SetPtTrackMin(Double_t ptMin = 0){fdCutPtTrackMin = ptMin;}
37 void SetJetRadius(Double_t r = 0.4){fdRadiusJet = r;}
7729cc34 38 void SetJetSelection(Bool_t select = kTRUE){fbJetSelection = select;}
39 void SetMCAnalysis(Bool_t select = kTRUE){fbMCAnalysis = select;}
40// void SetTreeOutput(Bool_t select = kTRUE){fbTreeOutput = select;}
41 void FillQAHistogramV0(AliAODVertex* vtx, const AliAODv0* vZero, Int_t iIndexHisto, Bool_t IsCandK0s, Bool_t IsCandLambda, Bool_t IsInPeakK0s, Bool_t IsInPeakLambda);
42// virtual Double_t MassPeakSigma(Double_t pt, Int_t particle);
43// virtual Double_t MassPeakSigma(Int_t iCent, Double_t pt, Int_t particle);
44 void FillCandidates(Double_t mK, Double_t mL, Double_t mAL, Bool_t isK, Bool_t isL, Bool_t isAL, Int_t iCut, Int_t iCent);
45 Bool_t IsParticleInCone(const AliVParticle* part1, const AliVParticle* part2, Double_t dRMax) const; // decides whether a particle is inside a jet cone
46 Bool_t OverlapWithJets(const TClonesArray* array, const AliVParticle* cone, Double_t dDistance) const; // decides whether a cone overlaps with other jets
9706bde3 47 AliAODJet* GetRandomCone(const TClonesArray* array, Double_t dEtaConeMax, Double_t dDistance) const; // generate a random cone which does not overlap with selected jets
48 AliAODJet* GetMedianCluster(const TClonesArray* array, Double_t dEtaConeMax) const; // get median kt cluster
7729cc34 49 Double_t AreaCircSegment(Double_t dRadius, Double_t dDistance) const; // area of circular segment
50
51 void SetCutDCAToPrimVtxMin(Double_t val = 0.1){fdCutDCAToPrimVtxMin = val;}
52 void SetCutDCADaughtersMax(Double_t val = 1.){fdCutDCADaughtersMax = val;}
53 void SetCutNSigmadEdxMax(Double_t val = 3.){fdCutNSigmadEdxMax = val;}
54 void SetCutCPAMin(Double_t val = 0.998){fdCutCPAMin = val;}
55 void SetCutNTauMax(Double_t val = 5.){fdCutNTauMax = val;}
56
87e23d3e 57 static Bool_t IsSelectedForJets(AliAODEvent* fAOD, Double_t dVtxZCut, Double_t dVtxR2Cut, Double_t dCentCutLo, Double_t dCentCutUp, Bool_t bCutDeltaZ=kFALSE, Double_t dDeltaZMax=100.);
7729cc34 58 static Int_t GetCentralityBinIndex(Double_t centrality);
59 static Int_t GetCentralityBinEdge(Int_t index);
60 static TString GetCentBinLabel(Int_t index);
61 static Double_t MassPeakSigmaOld(Double_t pt, Int_t particle);
62
63 // upper edges of centrality bins
9706bde3 64 static const Int_t fgkiNBinsCent = 1; // number of centrality bins
7729cc34 65 static const Int_t fgkiCentBinRanges[fgkiNBinsCent]; // upper edges of centrality bins
66 // axis: pT of V0
67 static const Double_t fgkdBinsPtV0[2]; // [GeV/c] minimum and maximum or desired binning of the axis (intended for the rebinned axis)
68 static const Int_t fgkiNBinsPtV0; // number of bins (intended for the rebinned axis)
69 static const Int_t fgkiNBinsPtV0Init; // initial number of bins (uniform binning)
70 // axis: pT of jets
71 static const Double_t fgkdBinsPtJet[2]; // [GeV/c] minimum and maximum or desired binning of the axis (intended for the rebinned axis)
72 static const Int_t fgkiNBinsPtJet; // number of bins (intended for the rebinned axis)
73 static const Int_t fgkiNBinsPtJetInit; // initial number of bins (uniform binning)
74 // axis: K0S invariant mass
75 static const Int_t fgkiNBinsMassK0s; // number of bins (uniform binning)
87e23d3e 76 static const Double_t fgkdMassK0sMin; // minimum
77 static const Double_t fgkdMassK0sMax; // maximum
7729cc34 78 // axis: Lambda invariant mass
79 static const Int_t fgkiNBinsMassLambda; // number of bins (uniform binning)
87e23d3e 80 static const Double_t fgkdMassLambdaMin; // minimum
81 static const Double_t fgkdMassLambdaMax; // maximum
7729cc34 82
83private:
9706bde3 84 AliAODEvent* fAODIn; //! Input AOD event
85 AliAODEvent* fAODOut; //! Output AOD event
86 TList* fOutputListStd; //! Output list for standard analysis results
87 TList* fOutputListQA; //! Output list for quality assurance
88 TList* fOutputListCuts; //! Output list for checking cuts
89 TList* fOutputListMC; //! Output list for MC related results
90// TTree* ftreeOut; //! output tree
7729cc34 91
92 Int_t fiAODAnalysis; // switch for input AOD/ESD
93
94 // V0 selection
95 Double_t fdCutDCAToPrimVtxMin; // [cm] min DCA of daughters to the prim vtx
96 Double_t fdCutDCADaughtersMax; // [sigma of TPC tracking] max DCA between daughters
97 Double_t fdCutNSigmadEdxMax; // [sigma dE/dx] max difference between measured and expected signal of dE/dx in the TPC
98 Double_t fdCutCPAMin; // min cosine of the pointing angle
99 Double_t fdCutNTauMax; // [tau] max proper lifetime in multiples of the mean lifetime
100 // jet selection
101 TString fsJetBranchName; // name of the branch with jets
9706bde3 102 TString fsJetBgBranchName; // name of the branch with kt clusters used for the rho calculation
87e23d3e 103 Double_t fdCutPtJetMin; // [GeV/c] minimum jet pt
104 Double_t fdCutPtTrackMin; // [GeV/c] minimum pt of leading jet-track
105 Double_t fdRadiusJet; // R of jet finder used for finding V0s in the jet cone
7729cc34 106 Bool_t fbJetSelection; // switch for the analysis of V0s in jets
107
108 Bool_t fbMCAnalysis; // switch for the analysis of simulated data
109// Bool_t fbTreeOutput; // switch for the output tree
9706bde3 110 TRandom* fRandom; //! random-number generator
7729cc34 111
112 // event cuts
87e23d3e 113 Double_t fdCutVertexZ; // [cm] maximum |z| of primary vertex
114 Double_t fdCutVertexR2; // [cm^2] maximum r^2 of primary vertex
115 Double_t fdCutCentLow; // [%] minimum centrality
116 Double_t fdCutCentHigh; // [%] maximum centrality
7729cc34 117/*
118 // output branches
9706bde3 119 TClonesArray* fBranchV0Rec; //! output branch for reconstructed V0s
120 TClonesArray* fBranchV0Gen; //! output branch for generated V0s
121 TClonesArray* fBranchJet; //! output branch for selected jets
122 AliEventInfoObject* fEventInfo; //! class to store info about events
7729cc34 123*/
9706bde3 124 Double_t fdCentrality; //!
7729cc34 125
126 // event histograms
9706bde3 127 TH1D* fh1EventCounterCut; //! number of events for different selection steps
128 TH1D* fh1EventCounterCutCent[fgkiNBinsCent]; //! number of events for different selection steps and different centralities
129 TH1D* fh1EventCent; //! number of events for different centralities
130 TH1D* fh1EventCent2; //! number of events for different centralities
131 TH2D* fh2EventCentTracks; //! number of tracks vs centrality
132 TH1D* fh1VtxZ[fgkiNBinsCent]; //! z coordinate of the primary vertex
133 TH2D* fh2VtxXY[fgkiNBinsCent]; //! xy coordinates of the primary vertex
134 TH1D* fh1V0CandPerEvent; //! number of V0 cand per event
7729cc34 135
136 // jet histograms
9706bde3 137 TH1D* fh1PtJet[fgkiNBinsCent]; //! pt spectra of jets for normalisation of in-jet V0 spectra
138 TH1D* fh1EtaJet[fgkiNBinsCent]; //! jet eta
139 TH2D* fh2EtaPtJet[fgkiNBinsCent]; //! jet eta-pT
140 TH1D* fh1PhiJet[fgkiNBinsCent]; //! jet phi
141 TH1D* fh1NJetPerEvent[fgkiNBinsCent]; //! number of jets per event
142 TH1D* fh1NRndConeCent; //! number of generated random cones in centrality bins
143 TH2D* fh2EtaPhiRndCone[fgkiNBinsCent]; //! random cone eta-pT
144 TH1D* fh1NMedConeCent; //! number of found median-cluster cones in centrality bins
145 TH2D* fh2EtaPhiMedCone[fgkiNBinsCent]; //! median-cluster cone eta-phi
146 TH1D* fh1AreaExcluded; //! area of excluded cones for outside-cones V0s
7729cc34 147
148 static const Int_t fgkiNCategV0 = 17; // number of V0 selection steps
149
150 // QA histograms
151 static const Int_t fgkiNQAIndeces = 2; // 0 - before cuts, 1 - after cuts
9706bde3 152 TH1D* fh1QAV0Status[fgkiNQAIndeces]; //! online vs offline reconstructed V0 candidates
153 TH1D* fh1QAV0TPCRefit[fgkiNQAIndeces]; //! TPC refit on vs off
154 TH1D* fh1QAV0TPCRows[fgkiNQAIndeces]; //! crossed TPC pad rows
155 TH1D* fh1QAV0TPCFindable[fgkiNQAIndeces]; //! findable clusters
156 TH1D* fh1QAV0TPCRowsFind[fgkiNQAIndeces]; //! ratio rows/clusters
157 TH1D* fh1QAV0Eta[fgkiNQAIndeces]; //! pseudorapidity
158 TH2D* fh2QAV0EtaRows[fgkiNQAIndeces]; //! pseudorapidity vs TPC rows
159 TH2D* fh2QAV0PtRows[fgkiNQAIndeces]; //! pt vs TPC rows
160 TH2D* fh2QAV0PhiRows[fgkiNQAIndeces]; //! azimuth vs TPC rows
161 TH2D* fh2QAV0NClRows[fgkiNQAIndeces]; //! clusters vs TPC rows
162 TH2D* fh2QAV0EtaNCl[fgkiNQAIndeces]; //! pseudorapidity vs clusters
7729cc34 163
164 // K0s
9706bde3 165 TH1D* fh1V0CounterCentK0s[fgkiNBinsCent]; //! number of K0s candidates after various cuts
166 TH1D* fh1V0InvMassK0sAll[fgkiNCategV0]; //! V0 invariant mass, selection steps
167 TH2D* fh2QAV0EtaPtK0sPeak[fgkiNQAIndeces]; //! daughters pseudorapidity vs V0 pt, in mass peak
168 TH2D* fh2QAV0EtaEtaK0s[fgkiNQAIndeces]; //! daughters pseudorapidity vs pseudorapidity
169 TH2D* fh2QAV0PhiPhiK0s[fgkiNQAIndeces]; //! daughters azimuth vs azimuth
170 TH1D* fh1QAV0RapK0s[fgkiNQAIndeces]; //! V0 rapidity
171 TH2D* fh2QAV0PtPtK0sPeak[fgkiNQAIndeces]; //! daughters pt vs pt, in mass peak
172 TH2D* fh2ArmPodK0s[fgkiNQAIndeces]; //! Armenteros-Podolanski
173 TH1D* fh1V0CandPerEventCentK0s[fgkiNBinsCent]; //! number of K0s candidates per event, in centrality bins
174 TH1D* fh1V0InvMassK0sCent[fgkiNBinsCent]; //! V0 invariant mass, in centrality bins
7729cc34 175 // K0s Inclusive
9706bde3 176 THnSparse* fhnV0InclusiveK0s[fgkiNBinsCent]; //! V0 inv mass vs pt before and after cuts, in centrality bins
7729cc34 177 // K0s Cones
9706bde3 178 THnSparse* fhnV0InJetK0s[fgkiNBinsCent]; //! V0 invariant mass vs V0 pt vs jet pt, in centrality bins
179 THnSparse* fhnV0InPerpK0s[fgkiNBinsCent]; //! V0 invariant mass vs V0 pt vs jet pt, in centrality bins
180 THnSparse* fhnV0InRndK0s[fgkiNBinsCent]; //! V0 invariant mass vs V0 pt vs jet pt, in centrality bins
181 THnSparse* fhnV0InMedK0s[fgkiNBinsCent]; //! V0 invariant mass vs V0 pt vs jet pt, in centrality bins
182 THnSparse* fhnV0OutJetK0s[fgkiNBinsCent]; //! V0 invariant mass vs V0 pt, in centrality bins
183 THnSparse* fhnV0NoJetK0s[fgkiNBinsCent]; //! V0 invariant mass vs V0 pt, in centrality bins
184
185 TH2D* fh2V0PtJetAngleK0s[fgkiNBinsCent]; //! pt jet vs angle V0-jet, in centrality bins
186 TH1D* fh1DCAInK0s[fgkiNBinsCent]; //! DCA between daughters of V0 inside jets, in centrality bins
187 TH1D* fh1DCAOutK0s[fgkiNBinsCent]; //! DCA between daughters of V0 outside jets, in centrality bins
188 TH1D* fh1DeltaZK0s[fgkiNBinsCent]; //! z-distance between V0 vertex and primary vertex, in centrality bins
7729cc34 189 // MC histograms
190 // inclusive
9706bde3 191 TH1D* fh1V0K0sPtMCGen[fgkiNBinsCent]; //! pt spectrum of all generated K0s in event
192 TH2D* fh2V0K0sPtMassMCRec[fgkiNBinsCent]; //! pt-mass spectrum of successfully reconstructed K0s in event
193 TH1D* fh1V0K0sPtMCRecFalse[fgkiNBinsCent]; //! pt spectrum of false reconstructed K0s in event
7729cc34 194 // inclusive eta-pT efficiency
9706bde3 195 TH2D* fh2V0K0sEtaPtMCGen[fgkiNBinsCent]; //! eta-pt spectrum of all generated K0s in event
196 THnSparse* fh3V0K0sEtaPtMassMCRec[fgkiNBinsCent]; //! eta-pt-mass spectrum of successfully reconstructed K0s in event
7729cc34 197 // MC daughter eta inclusive
9706bde3 198// THnSparse* fhnV0K0sInclDaughterEtaPtPtMCGen[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 generated
199 THnSparse* fhnV0K0sInclDaughterEtaPtPtMCRec[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 reconstructed
7729cc34 200 // in jets
9706bde3 201 TH2D* fh2V0K0sInJetPtMCGen[fgkiNBinsCent]; //! pt spectrum of generated K0s in jet
202 THnSparse* fh3V0K0sInJetPtMassMCRec[fgkiNBinsCent]; //! mass-pt spectrum of successfully reconstructed K0s in jet
7729cc34 203 // in jets eta-pT efficiency
9706bde3 204 THnSparse* fh3V0K0sInJetEtaPtMCGen[fgkiNBinsCent]; //! eta-pt spectrum of generated K0s in jet
205 THnSparse* fh4V0K0sInJetEtaPtMassMCRec[fgkiNBinsCent]; //! mass-eta-pt spectrum of successfully reconstructed K0s in jet
7729cc34 206 // MC daughter eta in JC
9706bde3 207// THnSparse* fhnV0K0sInJetsDaughterEtaPtPtMCGen[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 generated
208 THnSparse* fhnV0K0sInJetsDaughterEtaPtPtMCRec[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 reconstructed
7729cc34 209
210 // resolution
9706bde3 211 TH2D* fh2V0K0sMCResolMPt[fgkiNBinsCent]; //! K0s mass resolution vs pt
212 TH2D* fh2V0K0sMCPtGenPtRec[fgkiNBinsCent]; //! K0s generated pt vs reconstructed pt
7729cc34 213
214 // Lambda
9706bde3 215 TH1D* fh1V0CounterCentLambda[fgkiNBinsCent]; //! number of Lambda candidates after various cuts
216 TH1D* fh1V0InvMassLambdaAll[fgkiNCategV0]; //!
217 TH2D* fh2QAV0EtaPtLambdaPeak[fgkiNQAIndeces]; //!
218 TH2D* fh2QAV0EtaEtaLambda[fgkiNQAIndeces]; //!
219 TH2D* fh2QAV0PhiPhiLambda[fgkiNQAIndeces]; //!
220 TH1D* fh1QAV0RapLambda[fgkiNQAIndeces]; //!
221 TH2D* fh2QAV0PtPtLambdaPeak[fgkiNQAIndeces]; //!
222 TH2D* fh2ArmPodLambda[fgkiNQAIndeces]; //!
223 TH1D* fh1V0CandPerEventCentLambda[fgkiNBinsCent]; //!
224 TH1D* fh1V0InvMassLambdaCent[fgkiNBinsCent]; //!
7729cc34 225 // Lambda Inclusive
9706bde3 226 THnSparse* fhnV0InclusiveLambda[fgkiNBinsCent]; //!
7729cc34 227 // Lambda Cones
9706bde3 228 THnSparse* fhnV0InJetLambda[fgkiNBinsCent]; //!
229 THnSparse* fhnV0InPerpLambda[fgkiNBinsCent]; //!
230 THnSparse* fhnV0InRndLambda[fgkiNBinsCent]; //!
231 THnSparse* fhnV0InMedLambda[fgkiNBinsCent]; //!
232 THnSparse* fhnV0OutJetLambda[fgkiNBinsCent]; //!
233 THnSparse* fhnV0NoJetLambda[fgkiNBinsCent]; //!
234
235 TH2D* fh2V0PtJetAngleLambda[fgkiNBinsCent]; //!
236 TH1D* fh1DCAInLambda[fgkiNBinsCent]; //!
237 TH1D* fh1DCAOutLambda[fgkiNBinsCent]; //!
238 TH1D* fh1DeltaZLambda[fgkiNBinsCent]; //!
7729cc34 239 // MC histograms
240 // inclusive
9706bde3 241 TH1D* fh1V0LambdaPtMCGen[fgkiNBinsCent]; //!
242 TH2D* fh2V0LambdaPtMassMCRec[fgkiNBinsCent]; //!
243 TH1D* fh1V0LambdaPtMCRecFalse[fgkiNBinsCent]; //!
7729cc34 244 // inclusive eta-pT efficiency
9706bde3 245 TH2D* fh2V0LambdaEtaPtMCGen[fgkiNBinsCent]; //!
246 THnSparse* fh3V0LambdaEtaPtMassMCRec[fgkiNBinsCent]; //!
7729cc34 247 // MC daughter eta inclusive
9706bde3 248// THnSparse* fhnV0LambdaInclDaughterEtaPtPtMCGen[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 generated
249 THnSparse* fhnV0LambdaInclDaughterEtaPtPtMCRec[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 reconstructed
7729cc34 250 // in jets
9706bde3 251 TH2D* fh2V0LambdaInJetPtMCGen[fgkiNBinsCent]; //!
252 THnSparse* fh3V0LambdaInJetPtMassMCRec[fgkiNBinsCent]; //!
7729cc34 253 // in jets eta-pT efficiency
9706bde3 254 THnSparse* fh3V0LambdaInJetEtaPtMCGen[fgkiNBinsCent]; //!
255 THnSparse* fh4V0LambdaInJetEtaPtMassMCRec[fgkiNBinsCent]; //!
7729cc34 256 // MC daughter eta in JC
9706bde3 257// THnSparse* fhnV0LambdaInJetsDaughterEtaPtPtMCGen[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 generated
258 THnSparse* fhnV0LambdaInJetsDaughterEtaPtPtMCRec[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 reconstructed
7729cc34 259
260 // resolution
9706bde3 261 TH2D* fh2V0LambdaMCResolMPt[fgkiNBinsCent]; //!
262 TH2D* fh2V0LambdaMCPtGenPtRec[fgkiNBinsCent]; //!
7729cc34 263 // feed-down
9706bde3 264 THnSparseD* fhnV0LambdaInclMCFD[fgkiNBinsCent]; //!
265 THnSparseD* fhnV0LambdaInJetsMCFD[fgkiNBinsCent]; //!
266 THnSparseD* fhnV0LambdaBulkMCFD[fgkiNBinsCent]; //!
267 TH1D* fh1V0XiPtMCGen[fgkiNBinsCent]; //!
7729cc34 268
269 // ALambda
9706bde3 270 TH1D* fh1V0CounterCentALambda[fgkiNBinsCent]; //! number of ALambda candidates after various cuts
271 TH1D* fh1V0InvMassALambdaAll[fgkiNCategV0]; //!
272 TH2D* fh2QAV0EtaPtALambdaPeak[fgkiNQAIndeces]; //!
273 TH2D* fh2QAV0EtaEtaALambda[fgkiNQAIndeces]; //!
274 TH2D* fh2QAV0PhiPhiALambda[fgkiNQAIndeces]; //!
275 TH1D* fh1QAV0RapALambda[fgkiNQAIndeces]; //!
276 TH2D* fh2QAV0PtPtALambdaPeak[fgkiNQAIndeces]; //!
277 TH2D* fh2ArmPodALambda[fgkiNQAIndeces]; //!
278 TH1D* fh1V0CandPerEventCentALambda[fgkiNBinsCent]; //!
279 TH1D* fh1V0InvMassALambdaCent[fgkiNBinsCent]; //!
280 TH1D* fh1V0ALambdaPt[fgkiNBinsCent]; //!
7729cc34 281 // ALambda Inclusive
9706bde3 282 THnSparse* fhnV0InclusiveALambda[fgkiNBinsCent]; //!
7729cc34 283 // ALambda Cones
9706bde3 284 THnSparse* fhnV0InJetALambda[fgkiNBinsCent]; //!
285 THnSparse* fhnV0InPerpALambda[fgkiNBinsCent]; //!
286 THnSparse* fhnV0InRndALambda[fgkiNBinsCent]; //!
287 THnSparse* fhnV0InMedALambda[fgkiNBinsCent]; //!
288 THnSparse* fhnV0OutJetALambda[fgkiNBinsCent]; //!
289 THnSparse* fhnV0NoJetALambda[fgkiNBinsCent]; //!
290
291 TH2D* fh2V0PtJetAngleALambda[fgkiNBinsCent]; //!
292 TH1D* fh1DCAInALambda[fgkiNBinsCent]; //!
293 TH1D* fh1DCAOutALambda[fgkiNBinsCent]; //!
294 TH1D* fh1DeltaZALambda[fgkiNBinsCent]; //!
7729cc34 295 // MC histograms
296 // inclusive
9706bde3 297 TH1D* fh1V0ALambdaPtMCGen[fgkiNBinsCent]; //!
298 TH1D* fh1V0ALambdaPtMCRec[fgkiNBinsCent]; //!
299 TH2D* fh2V0ALambdaPtMassMCRec[fgkiNBinsCent]; //!
300 TH1D* fh1V0ALambdaPtMCRecFalse[fgkiNBinsCent]; //!
7729cc34 301 // inclusive eta-pT efficiency
9706bde3 302 TH2D* fh2V0ALambdaEtaPtMCGen[fgkiNBinsCent]; //!
303 THnSparse* fh3V0ALambdaEtaPtMassMCRec[fgkiNBinsCent]; //!
7729cc34 304 // MC daughter eta inclusive
9706bde3 305// THnSparse* fhnV0ALambdaInclDaughterEtaPtPtMCGen[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 generated
306 THnSparse* fhnV0ALambdaInclDaughterEtaPtPtMCRec[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 reconstructed
7729cc34 307 // in jets
9706bde3 308 TH2D* fh2V0ALambdaInJetPtMCGen[fgkiNBinsCent]; //!
309 TH2D* fh2V0ALambdaInJetPtMCRec[fgkiNBinsCent]; //!
310 THnSparse* fh3V0ALambdaInJetPtMassMCRec[fgkiNBinsCent]; //!
7729cc34 311 // in jets eta-pT efficiency
9706bde3 312 THnSparse* fh3V0ALambdaInJetEtaPtMCGen[fgkiNBinsCent]; //!
313 THnSparse* fh4V0ALambdaInJetEtaPtMassMCRec[fgkiNBinsCent]; //!
7729cc34 314 // MC daughter eta in JC
9706bde3 315// THnSparse* fhnV0ALambdaInJetsDaughterEtaPtPtMCGen[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 generated
316 THnSparse* fhnV0ALambdaInJetsDaughterEtaPtPtMCRec[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 reconstructed
7729cc34 317
318 // resolution
9706bde3 319 TH2D* fh2V0ALambdaMCResolMPt[fgkiNBinsCent]; //!
320 TH2D* fh2V0ALambdaMCPtGenPtRec[fgkiNBinsCent]; //!
7729cc34 321 // feed-down
9706bde3 322 THnSparseD* fhnV0ALambdaInclMCFD[fgkiNBinsCent]; //!
323 THnSparseD* fhnV0ALambdaInJetsMCFD[fgkiNBinsCent]; //!
324 THnSparseD* fhnV0ALambdaBulkMCFD[fgkiNBinsCent]; //!
325 TH1D* fh1V0AXiPtMCGen[fgkiNBinsCent]; //!
326
327 TH1D* fh1QAV0Pt[fgkiNQAIndeces]; //! pt
328 TH1D* fh1QAV0Charge[fgkiNQAIndeces]; //! charge
329 TH1D* fh1QAV0DCAVtx[fgkiNQAIndeces]; //! DCA of daughters to prim vtx
330 TH1D* fh1QAV0DCAV0[fgkiNQAIndeces]; //! DCA between daughters
331 TH1D* fh1QAV0Cos[fgkiNQAIndeces]; //! cosine of pointing angle (CPA)
332 TH1D* fh1QAV0R[fgkiNQAIndeces]; //! radial distance between prim vtx and decay vertex
333 TH1D* fh1QACTau2D[fgkiNQAIndeces]; //! lifetime calculated in xy
334 TH1D* fh1QACTau3D[fgkiNQAIndeces]; //! lifetime calculated in xyz
335 TH2D* fh2ArmPod[fgkiNQAIndeces]; //! Armenteros-Podolanski
336 TH2D* fh2CCK0s; //! K0s candidates in Lambda peak
337 TH2D* fh2CCLambda; //! Lambda candidates in K0s peak
338 THnSparse* fh3CCMassCorrelBoth; //! mass correlation of candidates
339 THnSparse* fh3CCMassCorrelKNotL; //! mass correlation of candidates
340 THnSparse* fh3CCMassCorrelLNotK; //! mass correlation of candidates
7729cc34 341
342 // Cut tuning
343 // crossed/findable, daughter pt, dca, cpa, r, pseudorapidity, y, decay length, PID sigma
9706bde3 344 TH2D* fh2CutTPCRowsK0s[fgkiNQAIndeces]; //! inv mass vs TPC rows
345 TH2D* fh2CutTPCRowsLambda[fgkiNQAIndeces]; //!
346 TH2D* fh2CutPtPosK0s[fgkiNQAIndeces]; //! inv mass vs pt of positive daughter
347 TH2D* fh2CutPtNegK0s[fgkiNQAIndeces]; //! inv mass vs pt of negative daughter
348 TH2D* fh2CutPtPosLambda[fgkiNQAIndeces]; //!
349 TH2D* fh2CutPtNegLambda[fgkiNQAIndeces]; //!
350 TH2D* fh2CutDCAVtx[fgkiNQAIndeces]; //! inv mass vs DCA of daughters to prim vtx
351 TH2D* fh2CutDCAV0[fgkiNQAIndeces]; //! inv mass vs DCA between daughters
352 TH2D* fh2CutCos[fgkiNQAIndeces]; //! inv mass vs CPA
353 TH2D* fh2CutR[fgkiNQAIndeces]; //! inv mass vs R
354 TH2D* fh2CutEtaK0s[fgkiNQAIndeces]; //! inv mass vs pseudorapidity
355 TH2D* fh2CutEtaLambda[fgkiNQAIndeces]; //!
356 TH2D* fh2CutRapK0s[fgkiNQAIndeces]; //! inv mass vs rapidity
357 TH2D* fh2CutRapLambda[fgkiNQAIndeces]; //!
358 TH2D* fh2CutCTauK0s[fgkiNQAIndeces]; //! inv mass vs lifetime
359 TH2D* fh2CutCTauLambda[fgkiNQAIndeces]; //!
360 TH2D* fh2CutPIDPosK0s[fgkiNQAIndeces]; //! inv mass vs number of dE/dx sigmas for positive daughter
361 TH2D* fh2CutPIDNegK0s[fgkiNQAIndeces]; //! inv mass vs number of dE/dx sigmas for negative daughter
362 TH2D* fh2CutPIDPosLambda[fgkiNQAIndeces]; //!
363 TH2D* fh2CutPIDNegLambda[fgkiNQAIndeces]; //!
364
365 TH2D* fh2Tau3DVs2D[fgkiNQAIndeces]; //! pt vs ratio 3D lifetime / 2D lifetime
7729cc34 366
367 AliAnalysisTaskV0sInJets(const AliAnalysisTaskV0sInJets&); // not implemented
368 AliAnalysisTaskV0sInJets& operator=(const AliAnalysisTaskV0sInJets&); // not implemented
369
370 ClassDef(AliAnalysisTaskV0sInJets, 3) // example of analysis
371};
372
373#endif