]> git.uio.no Git - u/mrichter/AliRoot.git/blame - RALICE/AliMath.cxx
08-mar-2003 NvE Compiler option /GR introduced for MSVC++ in mklibs.bat to explicitly...
[u/mrichter/AliRoot.git] / RALICE / AliMath.cxx
CommitLineData
4c039060 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
f531a546 16// $Id$
4c039060 17
959fbac5 18///////////////////////////////////////////////////////////////////////////
19// Class AliMath
20// Various mathematical tools which may be very convenient while
21// performing physics analysis.
22//
23// Example : Probability of a Chi-squared value
24// =========
25//
26// AliMath M;
27// Float_t chi2=20; // The chi-squared value
28// Int_t ndf=12; // The number of degrees of freedom
29// Float_t p=M.Prob(chi2,ndf); // The probability that at least a Chi-squared
30// // value of chi2 will be observed, even for a
31// // correct model
32//
33//--- Author: Nick van Eijndhoven 14-nov-1998 UU-SAP Utrecht
f531a546 34//- Modified: NvE $Date$ UU-SAP Utrecht
959fbac5 35///////////////////////////////////////////////////////////////////////////
36
d88f97cc 37#include "AliMath.h"
c72198f1 38#include "Riostream.h"
d88f97cc 39
40ClassImp(AliMath) // Class implementation to enable ROOT I/O
41
c72198f1 42AliMath::AliMath() : TObject()
d88f97cc 43{
44// Default constructor
45}
46///////////////////////////////////////////////////////////////////////////
47AliMath::~AliMath()
48{
49// Destructor
50}
51///////////////////////////////////////////////////////////////////////////
c72198f1 52AliMath::AliMath(AliMath& m) : TObject(m)
53{
54// Copy constructor
55}
56///////////////////////////////////////////////////////////////////////////
29beb80d 57Double_t AliMath::Gamma(Double_t z)
d88f97cc 58{
59// Computation of gamma(z) for all z>0.
60//
61// The algorithm is based on the article by C.Lanczos [1] as denoted in
62// Numerical Recipes 2nd ed. on p. 207 (W.H.Press et al.).
63//
64// [1] C.Lanczos, SIAM Journal of Numerical Analysis B1 (1964), 86.
65//
66//--- Nve 14-nov-1998 UU-SAP Utrecht
67
68 if (z<=0.)
69 {
70 cout << "*Gamma(z)* Wrong argument z = " << z << endl;
71 return 0;
72 }
73
29beb80d 74 Double_t v=LnGamma(z);
d88f97cc 75 return exp(v);
76}
77///////////////////////////////////////////////////////////////////////////
29beb80d 78Double_t AliMath::Gamma(Double_t a,Double_t x)
d88f97cc 79{
80// Computation of the incomplete gamma function P(a,x)
81//
82// The algorithm is based on the formulas and code as denoted in
83// Numerical Recipes 2nd ed. on p. 210-212 (W.H.Press et al.).
84//
85//--- Nve 14-nov-1998 UU-SAP Utrecht
86
87 if (a<=0.)
88 {
89 cout << "*Gamma(a,x)* Invalid argument a = " << a << endl;
90 return 0;
91 }
92
93 if (x<=0.)
94 {
95 if (x<0) cout << "*Gamma(a,x)* Invalid argument x = " << x << endl;
96 return 0;
97 }
98
99 if (x<(a+1.))
100 {
101 return GamSer(a,x);
102 }
103 else
104 {
105 return GamCf(a,x);
106 }
107}
108///////////////////////////////////////////////////////////////////////////
29beb80d 109Double_t AliMath::LnGamma(Double_t z)
d88f97cc 110{
111// Computation of ln[gamma(z)] for all z>0.
112//
113// The algorithm is based on the article by C.Lanczos [1] as denoted in
114// Numerical Recipes 2nd ed. on p. 207 (W.H.Press et al.).
115//
116// [1] C.Lanczos, SIAM Journal of Numerical Analysis B1 (1964), 86.
117//
118// The accuracy of the result is better than 2e-10.
119//
120//--- Nve 14-nov-1998 UU-SAP Utrecht
121
122 if (z<=0.)
123 {
124 cout << "*LnGamma(z)* Wrong argument z = " << z << endl;
125 return 0;
126 }
127
128 // Coefficients for the series expansion
129 Double_t c[7];
130 c[0]= 2.5066282746310005;
131 c[1]= 76.18009172947146;
132 c[2]=-86.50532032941677;
133 c[3]= 24.01409824083091;
134 c[4]= -1.231739572450155;
135 c[5]= 0.1208650973866179e-2;
136 c[6]= -0.5395239384953e-5;
137
138 Double_t x=z;
139 Double_t y=x;
140 Double_t tmp=x+5.5;
141 tmp=(x+0.5)*log(tmp)-tmp;
142 Double_t ser=1.000000000190015;
143 for (Int_t i=1; i<7; i++)
144 {
145 y+=1.;
146 ser+=c[i]/y;
147 }
29beb80d 148 Double_t v=tmp+log(c[0]*ser/x);
d88f97cc 149 return v;
150}
151///////////////////////////////////////////////////////////////////////////
29beb80d 152Double_t AliMath::GamSer(Double_t a,Double_t x)
d88f97cc 153{
154// Computation of the incomplete gamma function P(a,x)
155// via its series representation.
156//
157// The algorithm is based on the formulas and code as denoted in
158// Numerical Recipes 2nd ed. on p. 210-212 (W.H.Press et al.).
159//
160//--- Nve 14-nov-1998 UU-SAP Utrecht
161
162 Int_t itmax=100; // Maximum number of iterations
29beb80d 163 Double_t eps=3.e-7; // Relative accuracy
d88f97cc 164
165 if (a<=0.)
166 {
167 cout << "*GamSer(a,x)* Invalid argument a = " << a << endl;
168 return 0;
169 }
170
171 if (x<=0.)
172 {
173 if (x<0) cout << "*GamSer(a,x)* Invalid argument x = " << x << endl;
174 return 0;
175 }
176
29beb80d 177 Double_t gln=LnGamma(a);
178 Double_t ap=a;
179 Double_t sum=1./a;
180 Double_t del=sum;
d88f97cc 181 for (Int_t n=1; n<=itmax; n++)
182 {
183 ap+=1.;
184 del=del*x/ap;
185 sum+=del;
186 if (fabs(del)<fabs(sum*eps)) break;
187 if (n==itmax) cout << "*GamSer(a,x)* a too large or itmax too small" << endl;
188 }
29beb80d 189 Double_t v=sum*exp(-x+a*log(x)-gln);
d88f97cc 190 return v;
191}
192///////////////////////////////////////////////////////////////////////////
29beb80d 193Double_t AliMath::GamCf(Double_t a,Double_t x)
d88f97cc 194{
195// Computation of the incomplete gamma function P(a,x)
196// via its continued fraction representation.
197//
198// The algorithm is based on the formulas and code as denoted in
199// Numerical Recipes 2nd ed. on p. 210-212 (W.H.Press et al.).
200//
201//--- Nve 14-nov-1998 UU-SAP Utrecht
202
203 Int_t itmax=100; // Maximum number of iterations
29beb80d 204 Double_t eps=3.e-7; // Relative accuracy
205 Double_t fpmin=1.e-30; // Smallest Double_t value allowed here
d88f97cc 206
207 if (a<=0.)
208 {
209 cout << "*GamCf(a,x)* Invalid argument a = " << a << endl;
210 return 0;
211 }
212
213 if (x<=0.)
214 {
215 if (x<0) cout << "*GamCf(a,x)* Invalid argument x = " << x << endl;
216 return 0;
217 }
218
29beb80d 219 Double_t gln=LnGamma(a);
220 Double_t b=x+1.-a;
221 Double_t c=1./fpmin;
222 Double_t d=1./b;
223 Double_t h=d;
224 Double_t an,del;
d88f97cc 225 for (Int_t i=1; i<=itmax; i++)
226 {
29beb80d 227 an=double(-i)*(double(i)-a);
d88f97cc 228 b+=2.;
229 d=an*d+b;
230 if (fabs(d)<fpmin) d=fpmin;
231 c=b+an/c;
232 if (fabs(c)<fpmin) c=fpmin;
233 d=1./d;
234 del=d*c;
235 h=h*del;
236 if (fabs(del-1.)<eps) break;
237 if (i==itmax) cout << "*GamCf(a,x)* a too large or itmax too small" << endl;
238 }
29beb80d 239 Double_t v=exp(-x+a*log(x)-gln)*h;
d88f97cc 240 return (1.-v);
241}
242///////////////////////////////////////////////////////////////////////////
29beb80d 243Double_t AliMath::Erf(Double_t x)
d88f97cc 244{
245// Computation of the error function erf(x).
246//
247//--- NvE 14-nov-1998 UU-SAP Utrecht
248
249 return (1.-Erfc(x));
250}
251///////////////////////////////////////////////////////////////////////////
29beb80d 252Double_t AliMath::Erfc(Double_t x)
d88f97cc 253{
254// Computation of the complementary error function erfc(x).
255//
256// The algorithm is based on a Chebyshev fit as denoted in
257// Numerical Recipes 2nd ed. on p. 214 (W.H.Press et al.).
258//
259// The fractional error is always less than 1.2e-7.
260//
261//--- Nve 14-nov-1998 UU-SAP Utrecht
262
263 // The parameters of the Chebyshev fit
29beb80d 264 const Double_t a1=-1.26551223, a2=1.00002368,
265 a3= 0.37409196, a4=0.09678418,
266 a5=-0.18628806, a6=0.27886807,
267 a7=-1.13520398, a8=1.48851587,
268 a9=-0.82215223, a10=0.17087277;
d88f97cc 269
29beb80d 270 Double_t v=1.; // The return value
d88f97cc 271
29beb80d 272 Double_t z=fabs(x);
d88f97cc 273
274 if (z <= 0.) return v; // erfc(0)=1
275
29beb80d 276 Double_t t=1./(1.+0.5*z);
d88f97cc 277
278 v=t*exp((-z*z)
279 +a1+t*(a2+t*(a3+t*(a4+t*(a5+t*(a6+t*(a7+t*(a8+t*(a9+t*a10)))))))));
280
281 if (x < 0.) v=2.-v; // erfc(-x)=2-erfc(x)
282
283 return v;
284}
285///////////////////////////////////////////////////////////////////////////
29beb80d 286Double_t AliMath::Prob(Double_t chi2,Int_t ndf)
d88f97cc 287{
288// Computation of the probability for a certain Chi-squared (chi2)
289// and number of degrees of freedom (ndf).
290//
291// Calculations are based on the incomplete gamma function P(a,x),
292// where a=ndf/2 and x=chi2/2.
293//
294// P(a,x) represents the probability that the observed Chi-squared
295// for a correct model should be less than the value chi2.
296//
297// The returned probability corresponds to 1-P(a,x),
298// which denotes the probability that an observed Chi-squared exceeds
299// the value chi2 by chance, even for a correct model.
300//
301//--- NvE 14-nov-1998 UU-SAP Utrecht
302
303 if (ndf <= 0) return 0; // Set CL to zero in case ndf<=0
304
305 if (chi2 <= 0.)
306 {
307 if (chi2 < 0.)
308 {
309 return 0;
310 }
311 else
312 {
313 return 1;
314 }
315 }
316
317// Alternative which is exact
318// This code may be activated in case the gamma function gives problems
319// if (ndf==1)
320// {
29beb80d 321// Double_t v=1.-Erf(sqrt(chi2)/sqrt(2.));
d88f97cc 322// return v;
323// }
324
325// Gaussian approximation for large ndf
326// This code may be activated in case the gamma function shows a problem
29beb80d 327// Double_t q=sqrt(2.*chi2)-sqrt(double(2*ndf-1));
d88f97cc 328// if (n>30 && q>0.)
329// {
29beb80d 330// Double_t v=0.5*(1.-Erf(q/sqrt(2.)));
d88f97cc 331// return v;
332// }
333
334 // Evaluate the incomplete gamma function
29beb80d 335 Double_t a=double(ndf)/2.;
336 Double_t x=chi2/2.;
d88f97cc 337 return (1.-Gamma(a,x));
338}
339///////////////////////////////////////////////////////////////////////////
29beb80d 340Double_t AliMath::BesselI0(Double_t x)
341{
342// Computation of the modified Bessel function I_0(x) for any real x.
343//
344// The algorithm is based on the article by Abramowitz and Stegun [1]
345// as denoted in Numerical Recipes 2nd ed. on p. 230 (W.H.Press et al.).
346//
347// [1] M.Abramowitz and I.A.Stegun, Handbook of Mathematical Functions,
348// Applied Mathematics Series vol. 55 (1964), Washington.
349//
350//--- NvE 12-mar-2000 UU-SAP Utrecht
351
352 // Parameters of the polynomial approximation
353 const Double_t p1=1.0, p2=3.5156229, p3=3.0899424,
354 p4=1.2067492, p5=0.2659732, p6=3.60768e-2, p7=4.5813e-3;
355
356 const Double_t q1= 0.39894228, q2= 1.328592e-2, q3= 2.25319e-3,
357 q4=-1.57565e-3, q5= 9.16281e-3, q6=-2.057706e-2,
358 q7= 2.635537e-2, q8=-1.647633e-2, q9= 3.92377e-3;
359
360 Double_t ax=fabs(x);
361
362 Double_t y=0,result=0;
363
364 if (ax < 3.75)
365 {
366 y=pow(x/3.75,2);
367 result=p1+y*(p2+y*(p3+y*(p4+y*(p5+y*(p6+y*p7)))));
368 }
369 else
370 {
371 y=3.75/ax;
372 result=(exp(ax)/sqrt(ax))*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*(q6+y*(q7+y*(q8+y*q9))))))));
373 }
374
375 return result;
376}
377///////////////////////////////////////////////////////////////////////////
378Double_t AliMath::BesselK0(Double_t x)
379{
380// Computation of the modified Bessel function K_0(x) for positive real x.
381//
382// The algorithm is based on the article by Abramowitz and Stegun [1]
383// as denoted in Numerical Recipes 2nd ed. on p. 230 (W.H.Press et al.).
384//
385// [1] M.Abramowitz and I.A.Stegun, Handbook of Mathematical Functions,
386// Applied Mathematics Series vol. 55 (1964), Washington.
387//
388//--- NvE 12-mar-2000 UU-SAP Utrecht
389
390 // Parameters of the polynomial approximation
391 const Double_t p1=-0.57721566, p2=0.42278420, p3=0.23069756,
392 p4= 3.488590e-2, p5=2.62698e-3, p6=1.0750e-4, p7=7.4e-5;
393
394 const Double_t q1= 1.25331414, q2=-7.832358e-2, q3= 2.189568e-2,
395 q4=-1.062446e-2, q5= 5.87872e-3, q6=-2.51540e-3, q7=5.3208e-4;
396
397 if (x <= 0)
398 {
399 cout << " *BesselK0* Invalid argument x = " << x << endl;
400 return 0;
401 }
402
403 Double_t y=0,result=0;
404
405 if (x <= 2)
406 {
407 y=x*x/4.;
408 result=(-log(x/2.)*BesselI0(x))+(p1+y*(p2+y*(p3+y*(p4+y*(p5+y*(p6+y*p7))))));
409 }
410 else
411 {
412 y=2./x;
413 result=(exp(-x)/sqrt(x))*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*(q6+y*q7))))));
414 }
415
416 return result;
417}
418///////////////////////////////////////////////////////////////////////////
419Double_t AliMath::BesselI1(Double_t x)
420{
421// Computation of the modified Bessel function I_1(x) for any real x.
422//
423// The algorithm is based on the article by Abramowitz and Stegun [1]
424// as denoted in Numerical Recipes 2nd ed. on p. 230 (W.H.Press et al.).
425//
426// [1] M.Abramowitz and I.A.Stegun, Handbook of Mathematical Functions,
427// Applied Mathematics Series vol. 55 (1964), Washington.
428//
429//--- NvE 12-mar-2000 UU-SAP Utrecht
430
431 // Parameters of the polynomial approximation
432 const Double_t p1=0.5, p2=0.87890594, p3=0.51498869,
433 p4=0.15084934, p5=2.658733e-2, p6=3.01532e-3, p7=3.2411e-4;
434
435 const Double_t q1= 0.39894228, q2=-3.988024e-2, q3=-3.62018e-3,
436 q4= 1.63801e-3, q5=-1.031555e-2, q6= 2.282967e-2,
437 q7=-2.895312e-2, q8= 1.787654e-2, q9=-4.20059e-3;
438
439 Double_t ax=fabs(x);
440
441 Double_t y=0,result=0;
442
443 if (ax < 3.75)
444 {
445 y=pow(x/3.75,2);
446 result=x*(p1+y*(p2+y*(p3+y*(p4+y*(p5+y*(p6+y*p7))))));
447 }
448 else
449 {
450 y=3.75/ax;
451 result=(exp(ax)/sqrt(ax))*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*(q6+y*(q7+y*(q8+y*q9))))))));
452 if (x < 0) result=-result;
453 }
454
455 return result;
456}
457///////////////////////////////////////////////////////////////////////////
458Double_t AliMath::BesselK1(Double_t x)
459{
460// Computation of the modified Bessel function K_1(x) for positive real x.
461//
462// The algorithm is based on the article by Abramowitz and Stegun [1]
463// as denoted in Numerical Recipes 2nd ed. on p. 230 (W.H.Press et al.).
464//
465// [1] M.Abramowitz and I.A.Stegun, Handbook of Mathematical Functions,
466// Applied Mathematics Series vol. 55 (1964), Washington.
467//
468//--- NvE 12-mar-2000 UU-SAP Utrecht
469
470 // Parameters of the polynomial approximation
471 const Double_t p1= 1., p2= 0.15443144, p3=-0.67278579,
472 p4=-0.18156897, p5=-1.919402e-2, p6=-1.10404e-3, p7=-4.686e-5;
473
474 const Double_t q1= 1.25331414, q2= 0.23498619, q3=-3.655620e-2,
475 q4= 1.504268e-2, q5=-7.80353e-3, q6= 3.25614e-3, q7=-6.8245e-4;
476
477 if (x <= 0)
478 {
479 cout << " *BesselK1* Invalid argument x = " << x << endl;
480 return 0;
481 }
482
483 Double_t y=0,result=0;
484
485 if (x <= 2)
486 {
487 y=x*x/4.;
488 result=(log(x/2.)*BesselI1(x))+(1./x)*(p1+y*(p2+y*(p3+y*(p4+y*(p5+y*(p6+y*p7))))));
489 }
490 else
491 {
492 y=2./x;
493 result=(exp(-x)/sqrt(x))*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*(q6+y*q7))))));
494 }
495
496 return result;
497}
498///////////////////////////////////////////////////////////////////////////
499Double_t AliMath::BesselK(Int_t n,Double_t x)
500{
501// Computation of the Integer Order Modified Bessel function K_n(x)
502// for n=0,1,2,... and positive real x.
503//
504// The algorithm uses the recurrence relation
505//
506// K_n+1(x) = (2n/x)*K_n(x) + K_n-1(x)
507//
508// as denoted in Numerical Recipes 2nd ed. on p. 232 (W.H.Press et al.).
509//
510//--- NvE 12-mar-2000 UU-SAP Utrecht
511
512 if (x <= 0 || n < 0)
513 {
514 cout << " *BesselK* Invalid argument(s) (n,x) = (" << n << " , " << x << ")" << endl;
515 return 0;
516 }
517
518 if (n==0) return BesselK0(x);
519
520 if (n==1) return BesselK1(x);
521
522 // Perform upward recurrence for all x
523 Double_t tox=2./x;
524 Double_t bkm=BesselK0(x);
525 Double_t bk=BesselK1(x);
526 Double_t bkp=0;
527 for (Int_t j=1; j<n; j++)
528 {
529 bkp=bkm+double(j)*tox*bk;
530 bkm=bk;
531 bk=bkp;
532 }
533
534 return bk;
535}
536///////////////////////////////////////////////////////////////////////////
537Double_t AliMath::BesselI(Int_t n,Double_t x)
538{
539// Computation of the Integer Order Modified Bessel function I_n(x)
540// for n=0,1,2,... and any real x.
541//
542// The algorithm uses the recurrence relation
543//
544// I_n+1(x) = (-2n/x)*I_n(x) + I_n-1(x)
545//
546// as denoted in Numerical Recipes 2nd ed. on p. 232 (W.H.Press et al.).
547//
548//--- NvE 12-mar-2000 UU-SAP Utrecht
549
550 Int_t iacc=40; // Increase to enhance accuracy
551 Double_t bigno=1.e10, bigni=1.e-10;
552
553 if (n < 0)
554 {
555 cout << " *BesselI* Invalid argument (n,x) = (" << n << " , " << x << ")" << endl;
556 return 0;
557 }
558
559 if (n==0) return BesselI0(x);
560
561 if (n==1) return BesselI1(x);
562
563 if (fabs(x) < 1.e-10) return 0;
564
565 Double_t tox=2./fabs(x);
566 Double_t bip=0,bim=0;
567 Double_t bi=1;
568 Double_t result=0;
569 Int_t m=2*((n+int(sqrt(float(iacc*n))))); // Downward recurrence from even m
570 for (Int_t j=m; j<=1; j--)
571 {
572 bim=bip+double(j)*tox*bi;
573 bip=bi;
574 bi=bim;
575 if (fabs(bi) > bigno) // Renormalise to prevent overflows
576 {
577 result*=bigni;
578 bi*=bigni;
579 bip*=bigni;
580 }
581 if (j==n) result=bip;
582 }
583
584 result*=BesselI0(x)/bi; // Normalise with I0(x)
585 if ((x < 0) && (n%2 == 1)) result=-result;
586
587 return result;
588}
589///////////////////////////////////////////////////////////////////////////