]> git.uio.no Git - u/mrichter/AliRoot.git/blame - RICH/AliRICHResponseV0.cxx
Corrector dipole removed from ZDC
[u/mrichter/AliRoot.git] / RICH / AliRICHResponseV0.cxx
CommitLineData
237c933d 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17 $Log$
a2f7eaf6 18 Revision 1.2 2000/10/02 21:28:12 fca
19 Removal of useless dependecies via forward declarations
20
94de3818 21 Revision 1.1 2000/06/12 15:29:37 jbarbosa
22 Cleaned up version.
23
237c933d 24*/
25
26#include "AliRICHResponseV0.h"
a2f7eaf6 27#include "AliSegmentation.h"
237c933d 28#include "AliRun.h"
94de3818 29#include "AliMC.h"
237c933d 30
31#include <TMath.h>
32#include <TRandom.h>
33#include <TParticle.h>
34//___________________________________________
35ClassImp(AliRICHResponseV0)
36
37Float_t AliRICHResponseV0::IntPH(Float_t eloss)
38{
39 // Get number of electrons and return charge
40
41 Int_t nel;
42 nel= Int_t(eloss/fEIonisation);
43
44 Float_t charge=0;
45 if (nel == 0) nel=1;
46 for (Int_t i=1;i<=nel;i++) {
47 charge -= fChargeSlope*TMath::Log(gRandom->Rndm());
48 }
49 return charge;
50}
51
52Float_t AliRICHResponseV0::IntPH()
53{
54
55// Get number of electrons and return charge, for a single photon
56
57 Float_t charge = -fChargeSlope*TMath::Log(gRandom->Rndm());
58 return charge;
59}
60
61
62
63// -------------------------------------------
a2f7eaf6 64Float_t AliRICHResponseV0::IntXY(AliSegmentation * segmentation)
237c933d 65{
66
67 const Float_t kInversePitch = 1/fPitch;
68 Float_t response;
69//
70// Integration limits defined by segmentation model
71//
72
73 Float_t xi1, xi2, yi1, yi2;
74 segmentation->IntegrationLimits(xi1,xi2,yi1,yi2);
75
76 xi1=xi1*kInversePitch;
77 xi2=xi2*kInversePitch;
78 yi1=yi1*kInversePitch;
79 yi2=yi2*kInversePitch;
80
81 //printf("Integration Limits: %f-%f, %f-%f\n",xi1,xi2,yi1,yi2);
82
83 //printf("KInversePitch:%f\n",kInversePitch);
84
85 //
86// The Mathieson function
87 Double_t ux1=fSqrtKx3*TMath::TanH(fKx2*xi1);
88 Double_t ux2=fSqrtKx3*TMath::TanH(fKx2*xi2);
89
90 Double_t uy1=fSqrtKy3*TMath::TanH(fKy2*yi1);
91 Double_t uy2=fSqrtKy3*TMath::TanH(fKy2*yi2);
92
93 //printf("Integration Data: %f-%f, %f-%f\n",ux1,ux2,uy1,uy2);
94
95 //printf("%f %f %f %f\n",fSqrtKx3,fKx2,fKy4,fKx4);
96
97 response=4.*fKx4*(TMath::ATan(ux2)-TMath::ATan(ux1))*fKy4*(TMath::ATan(uy2)-TMath::ATan(uy1));
98
99 //printf("Response:%f\n",response);
100
101 return response;
102
103}
104
105Int_t AliRICHResponseV0::FeedBackPhotons(Float_t *source, Float_t qtot)
106{
107 //
108 // Generate FeedBack photons
109 //
110 Int_t j, ipart, nt;
111
112 Int_t sNfeed=0;
113
114
115 // Local variables
116 Float_t cthf, ranf[2], phif, enfp = 0, sthf;
117 Int_t i, ifeed;
118 Float_t e1[3], e2[3], e3[3];
119 Float_t vmod, uswop;
120 Float_t fp, random;
121 Float_t dir[3], phi;
122 Int_t nfp;
123 Float_t pol[3], mom[3];
124 TLorentzVector position;
125 //
126 // Determine number of feedback photons
127
128 // Get weight of current particle
129 TParticle *current = (TParticle*)
130 (*gAlice->Particles())[gAlice->CurrentTrack()];
131
132 ifeed = Int_t(current->GetWeight()/100+0.5);
133 ipart = gMC->TrackPid();
134 fp = fAlphaFeedback * qtot;
135 nfp = gRandom->Poisson(fp);
136
137 // This call to fill the time of flight
138 gMC->TrackPosition(position);
139 //
140 // Generate photons
141 for (i = 0; i <nfp; i++) {
142
143 // Direction
144 gMC->Rndm(ranf, 2);
145 cthf = ranf[0] * 2 - 1.;
146 if (cthf < 0) continue;
147 sthf = TMath::Sqrt((1 - cthf) * (1 + cthf));
148 phif = ranf[1] * 2 * TMath::Pi();
149 //
150 gMC->Rndm(&random, 1);
151 if (random <= .57) {
152 enfp = 7.5e-9;
153 } else if (random <= .7) {
154 enfp = 6.4e-9;
155 } else {
156 enfp = 7.9e-9;
157 }
158
159 dir[0] = sthf * TMath::Sin(phif);
160 dir[1] = cthf;
161 dir[2] = sthf * TMath::Cos(phif);
162 gMC->Gdtom(dir, mom, 2);
163 mom[0]*=enfp;
164 mom[1]*=enfp;
165 mom[2]*=enfp;
166
167 // Polarisation
168 e1[0] = 0;
169 e1[1] = -dir[2];
170 e1[2] = dir[1];
171
172 e2[0] = -dir[1];
173 e2[1] = dir[0];
174 e2[2] = 0;
175
176 e3[0] = dir[1];
177 e3[1] = 0;
178 e3[2] = -dir[0];
179
180 vmod=0;
181 for(j=0;j<3;j++) vmod+=e1[j]*e1[j];
182 if (!vmod) for(j=0;j<3;j++) {
183 uswop=e1[j];
184 e1[j]=e3[j];
185 e3[j]=uswop;
186 }
187 vmod=0;
188 for(j=0;j<3;j++) vmod+=e2[j]*e2[j];
189 if (!vmod) for(j=0;j<3;j++) {
190 uswop=e2[j];
191 e2[j]=e3[j];
192 e3[j]=uswop;
193 }
194
195 vmod=0;
196 for(j=0;j<3;j++) vmod+=e1[j]*e1[j];
197 vmod=TMath::Sqrt(1/vmod);
198 for(j=0;j<3;j++) e1[j]*=vmod;
199
200 vmod=0;
201 for(j=0;j<3;j++) vmod+=e2[j]*e2[j];
202 vmod=TMath::Sqrt(1/vmod);
203 for(j=0;j<3;j++) e2[j]*=vmod;
204
205 gMC->Rndm(ranf, 1);
206 phi = ranf[0] * 2 * TMath::Pi();
207 for(j=0;j<3;j++) pol[j]=e1[j]*TMath::Sin(phi)+e2[j]*TMath::Cos(phi);
208 gMC->Gdtom(pol, pol, 2);
209
210 // Put photon on the stack and label it as feedback (51, 52)
211 ++sNfeed;
212
213 gAlice->SetTrack(Int_t(1), gAlice->CurrentTrack(), Int_t(50000051),
214 mom,source,pol,position[3],
215 "Feedback", nt, 1.);
216 }
217 return(sNfeed);
218}
219
220
221
222