Additional protection in case of zero magnetic field (Yu.Belikov)
[u/mrichter/AliRoot.git] / STEER / AliESDtrack.h
CommitLineData
ae982df3 1#ifndef ALIESDTRACK_H
2#define ALIESDTRACK_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
ac3faee4 6/* $Id$ */
7
ae982df3 8//-------------------------------------------------------------------------
9// Class AliESDtrack
10// This is the class to deal with during the physical analysis of data
11//
12// Origin: Iouri Belikov, CERN, Jouri.Belikov@cern.ch
13//-------------------------------------------------------------------------
ac3faee4 14
a866ac60 15#include <TBits.h>
ac3faee4 16#include <TObject.h>
ae982df3 17class AliKalmanTrack;
18
19class AliESDtrack : public TObject {
20public:
21 AliESDtrack();
c4d11b15 22 AliESDtrack(const AliESDtrack& track);
23 virtual ~AliESDtrack();
ae982df3 24 void SetStatus(ULong_t flags) {fFlags|=flags;}
25 void ResetStatus(ULong_t flags) {fFlags&=~flags;}
ad2f1f2b 26 Bool_t UpdateTrackParams(AliKalmanTrack *t, ULong_t flags);
ae982df3 27 void SetIntegratedLength(Double_t l) {fTrackLength=l;}
28 void SetIntegratedTimes(const Double_t *times);
8c6a71ab 29 void SetESDpid(const Double_t *p);
30 void GetESDpid(Double_t *p) const;
ae982df3 31
32 ULong_t GetStatus() const {return fFlags;}
33 Int_t GetLabel() const {return fLabel;}
34 Double_t GetAlpha() const {return fRalpha;}
35 void GetExternalParameters(Double_t &x, Double_t p[5]) const;
36 void GetExternalCovariance(Double_t cov[15]) const;
37 Double_t GetIntegratedLength() const {return fTrackLength;}
38 void GetIntegratedTimes(Double_t *times) const;
4a78b8c5 39 Double_t GetMass() const;
ae982df3 40 Double_t GetP() const;
41 void GetPxPyPz(Double_t *p) const;
42 void GetXYZ(Double_t *r) const;
b322ab2f 43 void GetCovariance(Double_t cov[21]) const;
9f64824b 44 Int_t GetSign() const {return (fRp[4]>0) ? 1 : -1;}
ae982df3 45
67c3dcbe 46 void SetConstrainedTrackParams(AliKalmanTrack *t, Double_t chi2);
47
48 Double_t GetConstrainedAlpha() const {return fCalpha;}
49 Double_t GetConstrainedChi2() const {return fCchi2;}
50 void GetConstrainedExternalParameters(Double_t &x, Double_t p[5]) const;
51 void GetConstrainedExternalCovariance(Double_t cov[15]) const;
52
53 void GetConstrainedPxPyPz(Double_t *p) const;
54 void GetConstrainedXYZ(Double_t *r) const;
55
9b859005 56 void GetInnerPxPyPz(Double_t *p) const;
57 void GetInnerXYZ(Double_t *r) const;
a866ac60 58 void GetInnerExternalParameters(Double_t &x, Double_t p[5]) const;//skowron
59 void GetInnerExternalCovariance(Double_t cov[15]) const;//skowron
60 Double_t GetInnerAlpha() const {return fIalpha;}
61
62
3fd96ae3 63 void GetOuterPxPyPzPHOS(Double_t *p) const;
64 void GetOuterPxPyPzEMCAL(Double_t *p) const;
65 void GetOuterXYZPHOS(Double_t *r) const;
66 void GetOuterXYZEMCAL(Double_t *r) const;
672b5f43 67
c630aafd 68 void SetITSpid(const Double_t *p);
babd135a 69 void SetITSChi2MIP(const Float_t *chi2mip);
c4d11b15 70 void SetITStrack(AliKalmanTrack * track){fITStrack=track;}
c630aafd 71 void GetITSpid(Double_t *p) const;
ae982df3 72 Float_t GetITSsignal() const {return fITSsignal;}
13da10da 73 Float_t GetITSchi2() const {return fITSchi2;}
ae982df3 74 Int_t GetITSclusters(UInt_t *idx) const;
6e5b1b04 75 Int_t GetITSLabel() const {return fITSLabel;}
babd135a 76 Float_t GetITSFakeRatio() const {return fITSFakeRatio;}
c4d11b15 77 AliKalmanTrack * GetITStrack(){return fITStrack;}
ae982df3 78
13da10da 79 void SetTPCpid(const Double_t *p);
80 void GetTPCpid(Double_t *p) const;
81 Float_t GetTPCsignal() const {return fTPCsignal;}
82 Float_t GetTPCchi2() const {return fTPCchi2;}
83 Int_t GetTPCclusters(Int_t *idx) const;
6e5b1b04 84 Int_t GetTPCLabel() const {return fTPCLabel;}
3a83c716 85 const TBits& GetTPCClusterMap() const {return fTPCClusterMap;}
a866ac60 86
c630aafd 87 void SetTRDpid(const Double_t *p);
c4d11b15 88 void SetTRDtrack(AliKalmanTrack * track){fTRDtrack=track;}
c630aafd 89 void GetTRDpid(Double_t *p) const;
79e94bf8 90 Float_t GetTRDsignal() const {return fTRDsignal;}
13da10da 91 Float_t GetTRDchi2() const {return fTRDchi2;}
bb2ceb1f 92 Int_t GetTRDclusters(UInt_t *idx) const;
79e94bf8 93 void SetTRDpid(Int_t iSpecies, Float_t p);
94 Float_t GetTRDpid(Int_t iSpecies) const;
6e5b1b04 95 Int_t GetTRDLabel() const {return fTRDLabel;}
c4d11b15 96 void GetTRDExternalParameters(Double_t &x, Double_t p[5], Double_t cov[15]) const;//MI
97 AliKalmanTrack * GetTRDtrack(){return fTRDtrack;}
79e94bf8 98
c630aafd 99 void SetTOFsignal(Double_t tof) {fTOFsignal=tof;}
100 Float_t GetTOFsignal() const {return fTOFsignal;}
13da10da 101 Float_t GetTOFchi2() const {return fTOFchi2;}
c630aafd 102 void SetTOFpid(const Double_t *p);
103 void GetTOFpid(Double_t *p) const;
104 UInt_t GetTOFcluster() const {return fTOFindex;}
105 void SetTOFcluster(UInt_t index) {fTOFindex=index;}
4a78b8c5 106
107 void SetRICHsignal(Double_t beta) {fRICHsignal=beta;}
108 Float_t GetRICHsignal() const {return fRICHsignal;}
109 void SetRICHpid(const Double_t *p);
110 void GetRICHpid(Double_t *p) const;
111
112 void SetPHOSposition(const Double_t *pos) {
113 fPHOSpos[0] = pos[0]; fPHOSpos[1]=pos[1]; fPHOSpos[2]=pos[2];
114 }
115 void SetPHOSsignal(Double_t ene) {fPHOSsignal = ene; }
116 void SetPHOSpid(const Double_t *p);
117 void GetPHOSposition(Double_t *pos) const {
118 pos[0]=fPHOSpos[0]; pos[1]=fPHOSpos[1]; pos[2]=fPHOSpos[2];
119 }
120 Float_t GetPHOSsignal() const {return fPHOSsignal;}
121 void GetPHOSpid(Double_t *p) const;
122
704be597 123 void SetEMCALposition(const Double_t *pos) {
124 fEMCALpos[0] = pos[0]; fEMCALpos[1]=pos[1]; fEMCALpos[2]=pos[2];
125 }
126 void SetEMCALsignal(Double_t ene) {fEMCALsignal = ene; }
127 void SetEMCALpid(const Double_t *p);
128 void GetEMCALposition(Double_t *pos) const {
129 pos[0]=fEMCALpos[0]; pos[1]=fEMCALpos[1]; pos[2]=fEMCALpos[2];
130 }
131 Float_t GetEMCALsignal() const {return fEMCALsignal;}
132 void GetEMCALpid(Double_t *p) const;
133
3a83c716 134 Bool_t IsOn(Int_t mask) const {return (fFlags&mask)>0;}
704be597 135 Bool_t IsRICH() const {return fFlags&kRICHpid;}
136 Bool_t IsPHOS() const {return fFlags&kPHOSpid;}
137 Bool_t IsEMCAL() const {return fFlags&kEMCALpid;}
ac2f7574 138
139 virtual void Print(Option_t * opt) const ;
140
ae982df3 141 enum {
8c6a71ab 142 kITSin=0x0001,kITSout=0x0002,kITSrefit=0x0004,kITSpid=0x0008,
143 kTPCin=0x0010,kTPCout=0x0020,kTPCrefit=0x0040,kTPCpid=0x0080,
144 kTRDin=0x0100,kTRDout=0x0200,kTRDrefit=0x0400,kTRDpid=0x0800,
145 kTOFin=0x1000,kTOFout=0x2000,kTOFrefit=0x4000,kTOFpid=0x8000,
c4d11b15 146 kPHOSpid=0x10000, kRICHpid=0x20000, kEMCALpid=0x40000,
147 kTRDbackup=0x80000,
4a78b8c5 148 kTRDStop=0x20000000,
8c6a71ab 149 kESDpid=0x40000000,
ae982df3 150 kTIME=0x80000000
151 };
f82d8b8c 152 enum {
153 kSPECIES=5, // Number of particle species recognized by the PID
704be597 154 kSPECIESN=10, // Number of charged+neutral particle species recognized by the PHOS/EMCAL PID
f82d8b8c 155 kElectron=0, kMuon=1, kPion=2, kKaon=3, kProton=4, kPhoton=5,
704be597 156 kPi0=6, kNeutron=7, kKaon0=8, kEleCon=9 // PHOS/EMCAL definition
f82d8b8c 157 };
ae982df3 158protected:
159 ULong_t fFlags; // Reconstruction status flags
160 Int_t fLabel; // Track label
161
162 Float_t fTrackLength; // Track length
163 Float_t fTrackTime[kSPECIES]; // TOFs estimated by the tracking
164 Float_t fR[kSPECIES]; // combined "detector response probability"
165
166 Int_t fStopVertex; // Index of stop vertex
167
168//Running track parameters
169 Double_t fRalpha; // track rotation angle
170 Double_t fRx; // X-coordinate of the track reference plane
171 Double_t fRp[5]; // external track parameters
172 Double_t fRc[15]; // external cov. matrix of the track parameters
173
67c3dcbe 174//Track parameters constrained to the primary vertex
3a83c716 175 Double_t fCalpha; // Track rotation angle
176 Double_t fCx; // x-coordinate of the track reference plane
177 Double_t fCp[5]; // external track parameters
178 Double_t fCc[15]; // external cov. matrix of the track parameters
67c3dcbe 179 Double_t fCchi2; //chi2 at the primary vertex
180
672b5f43 181//Track parameters at the inner wall of the TPC
3a83c716 182 Double_t fIalpha; // Track rotation angle
183 Double_t fIx; // x-coordinate of the track reference plane
184 Double_t fIp[5]; // external track parameters
185 Double_t fIc[15]; // external cov. matrix of the track parameters
c4d11b15 186//Track parameters at the inner wall of the TRD
187 Double_t fTalpha; // Track rotation angle
188 Double_t fTx; // x-coordinate of the track reference plane
189 Double_t fTp[5]; // external track parameters
190 Double_t fTc[15]; // external cov. matrix of the track parameters
ae982df3 191
672b5f43 192//Track parameters at the radius of the PHOS
3a83c716 193 Double_t fOalpha; // Track rotation angle
194 Double_t fOx; // x-coordinate of the track reference plane
195 Double_t fOp[5]; // external track parameters
196 Double_t fOc[15]; // external cov. matrix of the track parameters
ae982df3 197
704be597 198//Track parameters at the radius of the EMCAL
199 Double_t fXalpha; // Track rotation angle
200 Double_t fXx; // x-coordinate of the track reference plane
201 Double_t fXp[5]; // external track parameters
202 Double_t fXc[15]; // external cov. matrix of the track parameters
203
ae982df3 204 // ITS related track information
205 Float_t fITSchi2; // chi2 in the ITS
c4d11b15 206 Float_t fITSchi2MIP[12]; // chi2s in the ITS
ae982df3 207 Int_t fITSncls; // number of clusters assigned in the ITS
208 UInt_t fITSindex[6]; //! indices of the assigned ITS clusters
209 Float_t fITSsignal; // detector's PID signal
431be10d 210 Float_t fITSr[kSPECIES]; // "detector response probabilities" (for the PID)
6e5b1b04 211 Int_t fITSLabel; // label according TPC
babd135a 212 Float_t fITSFakeRatio; // ration of fake tracks
3fd96ae3 213 AliKalmanTrack * fITStrack; //! OWNER: pointer to the ITS track -- currently for debug purpose
c4d11b15 214
ae982df3 215 // TPC related track information
216 Float_t fTPCchi2; // chi2 in the TPC
217 Int_t fTPCncls; // number of clusters assigned in the TPC
218 UInt_t fTPCindex[180]; //! indices of the assigned TPC clusters
a866ac60 219 TBits fTPCClusterMap; // Map of clusters, one bit per padrow; 1 if has a cluster on given padrow
ae982df3 220 Float_t fTPCsignal; // detector's PID signal
8c6a71ab 221 Float_t fTPCr[kSPECIES]; // "detector response probabilities" (for the PID)
6e5b1b04 222 Int_t fTPCLabel; // label according TPC
ae982df3 223 // TRD related track information
79e94bf8 224 Float_t fTRDchi2; // chi2 in the TRD
225 Int_t fTRDncls; // number of clusters assigned in the TRD
c4d11b15 226 Int_t fTRDncls0; // number of clusters assigned in the TRD before first material cross
227 UInt_t fTRDindex[130]; //! indices of the assigned TRD clusters
79e94bf8 228 Float_t fTRDsignal; // detector's PID signal
431be10d 229 Float_t fTRDr[kSPECIES]; // "detector response probabilities" (for the PID)
6e5b1b04 230 Int_t fTRDLabel; // label according TRD
3fd96ae3 231 AliKalmanTrack * fTRDtrack; //! OWNER: pointer to the TRD track -- currently for debug purpose
ae982df3 232 // TOF related track information
c630aafd 233 Float_t fTOFchi2; // chi2 in the TOF
bb2ceb1f 234 UInt_t fTOFindex; // index of the assigned TOF cluster
c630aafd 235 Float_t fTOFsignal; // detector's PID signal
236 Float_t fTOFr[kSPECIES]; // "detector response probabilities" (for the PID)
237
4a78b8c5 238 // PHOS related track information
239 Float_t fPHOSpos[3]; //position localised by PHOS in global coordinate system
240 Float_t fPHOSsignal; // energy measured by PHOS
704be597 241 Float_t fPHOSr[kSPECIESN]; // PID information from PHOS
242
243 // EMCAL related track information
244 Float_t fEMCALpos[3]; //position localised by EMCAL in global coordinate system
245 Float_t fEMCALsignal; // energy measured by EMCAL
246 Float_t fEMCALr[kSPECIESN]; // PID information from EMCAL
ae982df3 247
4a78b8c5 248 // HMPID related track information
249 Float_t fRICHsignal; // detector's PID signal (beta for RICH)
250 Float_t fRICHr[kSPECIES];// "detector response probabilities" (for the PID)
251
3fd96ae3 252 ClassDef(AliESDtrack,7) //ESDtrack
ae982df3 253};
254
255#endif
256