]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TFluka/source.cxx
lev1 and lev2 variables initialized
[u/mrichter/AliRoot.git] / TFluka / source.cxx
CommitLineData
b9d0a01d 1// Fortran
2#include "TCallf77.h"
3
4// Fluka commons
5#include "Fdblprc.h" //(DBLPRC) fluka common
6#include "Fdimpar.h" //(DIMPAR) fluka parameters
81f1d030 7#include "Fsourcm.h" //(EPISOR) fluka common
8#include "Fflkstk.h" //(FLKSTK) fluka common
380c2ff0 9#include "Fsumcou.h" //(SUMCOU) fluka common
b9d0a01d 10#include "Fpaprop.h" //(PAPROP) fluka common
11#include "Fltclcm.h" //(LTCLCM) fluka common
cfd35035 12#include "Fopphst.h" //(OPPHST) fluka common
b9d0a01d 13
14//Virutal MC
15#include "TFluka.h"
a7bb59a2 16
b9d0a01d 17#include "TVirtualMCStack.h"
fbf08100 18//#include "TVirtualMCApplication.h"
fbf08100 19
b9d0a01d 20#include "TParticle.h"
21#include "TVector3.h"
22
23//Other
eae0fe66 24#include <Riostream.h>
b9d0a01d 25
26#ifndef WIN32
27# define source source_
28# define geocrs geocrs_
29# define georeg georeg_
30# define geohsm geohsm_
31# define soevsv soevsv_
32#else
33# define source SOURCE
34# define geocrs GEOCRS
35# define georeg GEOREG
36# define geohsm GEOHSM
37# define soevsv SOEVSV
38#endif
39
b9d0a01d 40extern "C" {
41 //
42 // Prototypes for FLUKA functions
43 //
44 void type_of_call geocrs(Double_t &, Double_t &, Double_t &);
45 void type_of_call georeg(Double_t &, Double_t &, Double_t &,
46 Int_t &, Int_t &);
47 void type_of_call geohsm(Int_t &, Int_t &, Int_t &, Int_t &);
48 void type_of_call soevsv();
49 /*
50 *----------------------------------------------------------------------*
51 * *
52 * Created on 07 january 1990 by Alfredo Ferrari & Paola Sala *
53 * Infn - Milan *
54 * *
55 * Last change on 21-jun-98 by Alfredo Ferrari *
56 * *
57 * C++ version on 27-sep-02 by Isidro Gonzalez *
58 * *
59 * This is just an example of a possible user written source routine. *
60 * note that the beam card still has some meaning - in the scoring the *
61 * maximum momentum used in deciding the binning is taken from the *
62 * beam momentum. Other beam card parameters are obsolete. *
63 * *
64 *----------------------------------------------------------------------*/
65
66 void source(Int_t& nomore) {
b496f27c 67// Get the pointer to TFluka
2bc4c610 68 TFluka* fluka = (TFluka*)gMC;
b496f27c 69
2bc4c610 70 Int_t verbosityLevel = fluka->GetVerbosityLevel();
71 Bool_t debug = (verbosityLevel>=3)?kTRUE:kFALSE;
72 if (debug) {
ce60a136 73 cout << "==> source(" << nomore << ")" << endl;
81f1d030 74 cout << "\t* SOURCM.lsouit = " << (SOURCM.lsouit?'T':'F') << endl;
2bc4c610 75 }
b9d0a01d 76
2bc4c610 77 static Bool_t lfirst = true;
78 static Bool_t particleIsPrimary = true;
79 static Bool_t lastParticleWasPrimary = true;
b9d0a01d 80
ce60a136 81 nomore = 0;
cadd9e6b 82
b496f27c 83
84// Get the stack
b9d0a01d 85 TVirtualMCStack* cppstack = fluka->GetStack();
b496f27c 86
ce60a136 87 TParticle* particle;
b9d0a01d 88 Int_t itrack = -1;
ce60a136 89 Int_t nprim = cppstack->GetNprimary();
90// Get the next particle from the stack
91 particle = cppstack->PopNextTrack(itrack);
2bc4c610 92 fluka->SetTrackIsNew(kTRUE);
a32460fe 93 if (itrack == (nprim - 1)) lfirst = true;
ce60a136 94// Is this a secondary not handled by Fluka, i.e. a particle added by user action ?
95 lastParticleWasPrimary = particleIsPrimary;
96
97 if (itrack >= nprim) {
98 particleIsPrimary = kFALSE;
99 } else {
100 particleIsPrimary = kTRUE;
101 }
102
ce60a136 103 if (lfirst) {
81f1d030 104 SOURCM.tkesum = zerzer;
ce60a136 105 lfirst = false;
81f1d030 106 SOURCM.lussrc = true;
ce60a136 107 } else {
108//
109// Post-track actions for primary track
110//
111 if (particleIsPrimary) {
112 TVirtualMCApplication::Instance()->PostTrack();
113 TVirtualMCApplication::Instance()->FinishPrimary();
b496f27c 114 if ((itrack%10)==0) printf("=== TRACKING PRIMARY %d ===\n", itrack);
ce60a136 115 }
116 }
b9d0a01d 117
b496f27c 118 // Exit if itrack is negative (-1). Set lsouit to false to mark last track for this event
ce60a136 119
b9d0a01d 120 if (itrack<0) {
121 nomore = 1;
81f1d030 122 SOURCM.lsouit = false;
2bc4c610 123 if (debug) {
81f1d030 124 cout << "\t* SOURCM.lsouit = " << (SOURCM.lsouit?'T':'F') << endl;
2bc4c610 125 cout << "\t* No more particles. Exiting..." << endl;
126 cout << "<== source(" << nomore << ")" << endl;
127 }
b9d0a01d 128 return;
129 }
ce60a136 130
b496f27c 131 //
132 // Handle user event abortion
133 if (fluka->EventIsStopped()) {
134 printf("Event has been stopped by user !");
135 fluka->SetStopEvent(kFALSE);
136 nomore = 1;
81f1d030 137 SOURCM.lsouit = false;
b496f27c 138 return;
139 }
140
b9d0a01d 141 //Get some info about the particle and print it
ce60a136 142 //
143 //pdg code
144 Int_t pdg = particle->GetPdgCode();
b9d0a01d 145 TVector3 polarisation;
146 particle->GetPolarisation(polarisation);
2bc4c610 147 if (debug) {
148 cout << "\t* Particle " << itrack << " retrieved..." << endl;
149 cout << "\t\t+ Name = " << particle->GetName() << endl;
150 cout << "\t\t+ PDG/Fluka code = " << pdg
151 << " / " << fluka->IdFromPDG(pdg) << endl;
152 cout << "\t\t+ P = ("
153 << particle->Px() << " , "
154 << particle->Py() << " , "
155 << particle->Pz() << " ) --> "
6b51799c 156 << particle->P() << " GeV "
157 << particle->Energy() << " GeV "
158 << particle->GetMass() << " GeV " << endl;
2bc4c610 159 }
81f1d030 160 /* Npflka is the stack counter: of course any time source is called it
b9d0a01d 161 * must be =0
162 */
cfd35035 163 /* Cosines (tx,ty,tz)*/
164 Double_t cosx = particle->Px()/particle->P();
165 Double_t cosy = particle->Py()/particle->P();
166 Double_t cosz = TMath::Sqrt(oneone - cosx*cosx - cosy*cosy);
167 if (particle->Pz() < 0.) cosz = -cosz;
ce60a136 168
cfd35035 169 if (pdg != 50000050 && pdg != 50000051) {
81f1d030 170 FLKSTK.npflka++;
6b51799c 171 Int_t ifl = fluka-> IdFromPDG(pdg);
81f1d030 172 FLKSTK.iloflk[FLKSTK.npflka] = ifl;
173 /* Wtflk is the weight of the particle*/
174 FLKSTK.wtflk[FLKSTK.npflka] = oneone;
175 SUMCOU.weipri += FLKSTK.wtflk[FLKSTK.npflka];
cfd35035 176
81f1d030 177 FLKSTK.loflk[FLKSTK.npflka] = 1;
cfd35035 178
179 /* User dependent flag:*/
81f1d030 180 FLKSTK.louse[FLKSTK.npflka] = 0;
ce60a136 181
cfd35035 182 /* User dependent spare variables:*/
183 Int_t ispr = 0;
184 for (ispr = 0; ispr < mkbmx1; ispr++)
81f1d030 185 FLKSTK.sparek[FLKSTK.npflka][ispr] = zerzer;
ce60a136 186
cfd35035 187 /* User dependent spare flags:*/
188 for (ispr = 0; ispr < mkbmx2; ispr++)
81f1d030 189 FLKSTK.ispark[FLKSTK.npflka][ispr] = 0;
ce60a136 190
cfd35035 191 /* Save the track number of the stack particle:*/
81f1d030 192 FLKSTK.ispark[FLKSTK.npflka][mkbmx2-1] = itrack;
193 FLKSTK.nparma++;
194 FLKSTK.numpar[FLKSTK.npflka] = FLKSTK.nparma;
195 FLKSTK.nevent[FLKSTK.npflka] = 0;
196 FLKSTK.dfnear[FLKSTK.npflka] = +zerzer;
e5e3c7b1 197
cfd35035 198 /* Particle age (s)*/
81f1d030 199 FLKSTK.agestk[FLKSTK.npflka] = +zerzer;
200 FLKSTK.cmpath[FLKSTK.npflka] = +zerzer;
201 FLKSTK.aknshr[FLKSTK.npflka] = -twotwo;
ce60a136 202
cfd35035 203 /* Group number for "low" energy neutrons, set to 0 anyway*/
81f1d030 204 FLKSTK.igroup[FLKSTK.npflka] = 0;
cfd35035 205
206 /* Kinetic energy */
6b51799c 207 Double_t p = particle->P();
208 Double_t mass = PAPROP.am[ifl + 6];
81f1d030 209 FLKSTK.tkeflk[FLKSTK.npflka] = TMath::Sqrt( p * p + mass * mass) - mass;
cfd35035 210 /* Particle momentum*/
81f1d030 211 FLKSTK.pmoflk [FLKSTK.npflka] = p;
cfd35035 212
81f1d030 213 FLKSTK.txflk [FLKSTK.npflka] = cosx;
214 FLKSTK.tyflk [FLKSTK.npflka] = cosy;
215 FLKSTK.tzflk [FLKSTK.npflka] = cosz;
b9d0a01d 216
cfd35035 217 /* Polarization cosines:*/
218 if (polarisation.Mag()) {
219 Double_t cospolx = polarisation.Px() / polarisation.Mag();
220 Double_t cospoly = polarisation.Py() / polarisation.Mag();
221 Double_t cospolz = sqrt(oneone - cospolx * cospolx - cospoly * cospoly);
81f1d030 222 FLKSTK.txpol [FLKSTK.npflka] = cospolx;
223 FLKSTK.typol [FLKSTK.npflka] = cospoly;
224 FLKSTK.tzpol [FLKSTK.npflka] = cospolz;
cfd35035 225 }
226 else {
81f1d030 227 FLKSTK.txpol [FLKSTK.npflka] = -twotwo;
228 FLKSTK.typol [FLKSTK.npflka] = +zerzer;
229 FLKSTK.tzpol [FLKSTK.npflka] = +zerzer;
cfd35035 230 }
231
232 /* Particle coordinates*/
233 // Vertext coordinates;
81f1d030 234 FLKSTK.xflk [FLKSTK.npflka] = particle->Vx();
235 FLKSTK.yflk [FLKSTK.npflka] = particle->Vy();
236 FLKSTK.zflk [FLKSTK.npflka] = particle->Vz();
b9d0a01d 237
cfd35035 238 /* Calculate the total kinetic energy of the primaries: don't change*/
81f1d030 239 Int_t st_ilo = FLKSTK.iloflk[FLKSTK.npflka];
cfd35035 240 if ( st_ilo != 0 )
81f1d030 241 SOURCM.tkesum +=
242 ((FLKSTK.tkeflk[FLKSTK.npflka] + PAPROP.amdisc[st_ilo+6])
243 * FLKSTK.wtflk[FLKSTK.npflka]);
cfd35035 244 else
81f1d030 245 SOURCM.tkesum += (FLKSTK.tkeflk[FLKSTK.npflka] * FLKSTK.wtflk[FLKSTK.npflka]);
cfd35035 246
247 /* Here we ask for the region number of the hitting point.
81f1d030 248 * NRGFLK (LFLKSTK) = ...
cfd35035 249 * The following line makes the starting region search much more
250 * robust if particles are starting very close to a boundary:
251 */
81f1d030 252 geocrs( FLKSTK.txflk[FLKSTK.npflka],
253 FLKSTK.tyflk[FLKSTK.npflka],
254 FLKSTK.tzflk[FLKSTK.npflka] );
b9d0a01d 255
cfd35035 256 Int_t idisc;
257
81f1d030 258 georeg ( FLKSTK.xflk[FLKSTK.npflka],
259 FLKSTK.yflk[FLKSTK.npflka],
260 FLKSTK.zflk[FLKSTK.npflka],
261 FLKSTK.nrgflk[FLKSTK.npflka],
cfd35035 262 idisc);//<-- dummy return variable not used
263 /* Do not change these cards:*/
264 Int_t igeohsm1 = 1;
265 Int_t igeohsm2 = -11;
81f1d030 266 geohsm ( FLKSTK.nhspnt[FLKSTK.npflka], igeohsm1, igeohsm2, LTCLCM.mlattc );
267 FLKSTK.nlattc[FLKSTK.npflka] = LTCLCM.mlattc;
cfd35035 268 soevsv();
269 } else {
b496f27c 270 //
cfd35035 271 // Next particle is optical photon
b496f27c 272 //
cfd35035 273 OPPHST.lstopp++;
274 OPPHST.donear [OPPHST.lstopp - 1] = 0.;
275
276 OPPHST.xoptph [OPPHST.lstopp - 1] = particle->Vx();
277 OPPHST.yoptph [OPPHST.lstopp - 1] = particle->Vy();
278 OPPHST.zoptph [OPPHST.lstopp - 1] = particle->Vz();
279
280 OPPHST.txopph [OPPHST.lstopp - 1] = cosx;
281 OPPHST.tyopph [OPPHST.lstopp - 1] = cosy;
282 OPPHST.tzopph [OPPHST.lstopp - 1] = cosz;
283
284
285 if (polarisation.Mag()) {
286 Double_t cospolx = polarisation.Px() / polarisation.Mag();
287 Double_t cospoly = polarisation.Py() / polarisation.Mag();
288 Double_t cospolz = sqrt(oneone - cospolx * cospolx - cospoly * cospoly);
289 OPPHST.txpopp [OPPHST.lstopp - 1] = cospolx;
290 OPPHST.typopp [OPPHST.lstopp - 1] = cospoly;
291 OPPHST.tzpopp [OPPHST.lstopp - 1] = cospolz;
292 }
293 else {
294 OPPHST.txpopp [OPPHST.lstopp - 1] = -twotwo;
295 OPPHST.typopp [OPPHST.lstopp - 1] = +zerzer;
296 OPPHST.tzpopp [OPPHST.lstopp - 1] = +zerzer;
297 }
298
299 geocrs( OPPHST.txopph[OPPHST.lstopp - 1],
300 OPPHST.tyopph[OPPHST.lstopp - 1],
301 OPPHST.tzopph[OPPHST.lstopp - 1] );
ce60a136 302
cfd35035 303 Int_t idisc;
304
305 georeg ( OPPHST.xoptph[OPPHST.lstopp - 1],
306 OPPHST.yoptph[OPPHST.lstopp - 1],
307 OPPHST.zoptph[OPPHST.lstopp - 1],
308 OPPHST.nregop[OPPHST.lstopp - 1],
309 idisc);//<-- dummy return variable not used
310
311 OPPHST.wtopph [OPPHST.lstopp - 1] = particle->GetWeight();
312 OPPHST.poptph [OPPHST.lstopp - 1] = particle->P();
313 OPPHST.agopph [OPPHST.lstopp - 1] = particle->T();
e5e3c7b1 314 OPPHST.cmpopp [OPPHST.lstopp - 1] = +zerzer;
cfd35035 315 OPPHST.loopph [OPPHST.lstopp - 1] = 0;
cfd35035 316 OPPHST.louopp [OPPHST.lstopp - 1] = itrack;
cfd35035 317 }
318
ce60a136 319//
320// Pre-track actions at for primary tracks
321//
322 if (particleIsPrimary) {
323 TVirtualMCApplication::Instance()->BeginPrimary();
324 TVirtualMCApplication::Instance()->PreTrack();
325 }
326
327//
2bc4c610 328 if (debug) cout << "<== source(" << nomore << ")" << endl;
b9d0a01d 329 }
330}