]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TPC/AliTPCCalibVdrift.cxx
Updated flags for low flux case (A. Dainese)
[u/mrichter/AliRoot.git] / TPC / AliTPCCalibVdrift.cxx
CommitLineData
1209231c 1/**************************************************************************
2 * Copyright(c) 2006-07, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16
17///////////////////////////////////////////////////////////////////////////////
18// //
19// Class describing the Vdrift dependencies on E,T,P and GasComposition //
20// Authors: Stefan Rossegger, Haavard Helstrup //
21// //
22///////////////////////////////////////////////////////////////////////////////
23
24#include "TSystem.h"
25#include "TObject.h"
26#include "TMath.h"
27#include "AliTPCTempMap.h"
28#include "AliTPCSensorTempArray.h"
29
30#include "AliTPCCalibVdrift.h"
31
32ClassImp(AliTPCCalibVdrift)
33
da6c0bc9 34namespace paramDefinitions {
1209231c 35
f1ea1647 36 // Standard Conditions used as origin in the Magbolz simulations
37 // Dimesions E [kV/cm], T [K], P [TORR], Cco2 [%], Cn2 [%]
38 const Double_t kstdE = 400;
39 const Double_t kstdT = 293;
40 const Double_t kstdP = 744;
41 const Double_t kstdCco2 = 9.52;
42 const Double_t kstdCn2 = 4.76;
43 // Driftvelocity at Standardcontitions [cm/microSec]
44 const Double_t kstdVdrift = 2.57563;
1209231c 45
f1ea1647 46 // Vdrift dependencies simulated with Magbolz [%(Vdrift)/[unit]]
47 const Double_t kdvdE = 0.24;
48 const Double_t kdvdT = 0.30;
49 const Double_t kdvdP = -0.13;
50 const Double_t kdvdCco2 = -6.60;
51 const Double_t kdvdCn2 = -1.74;
52 // 2nd order effect Taylor expansion
53 const Double_t kdvdE2nd = -0.00107628;
54 const Double_t kdvdT2nd = -0.00134441;
55 const Double_t kdvdP2nd = 0.000135325;
56 const Double_t kdvdCco22nd = 0.328761;
57 const Double_t kdvdCn22nd = 0.151605;
58
59 const Double_t torrTokPascal = 0.750061683;
60
61 Double_t krho = 0.934246; // density of TPC-Gas [kg/m^3]
62 // method of calculation: weighted average
63 Double_t kg = 9.81;
1209231c 64}
65
f1ea1647 66
1209231c 67using namespace paramDefinitions;
68
da6c0bc9 69AliTPCCalibVdrift::AliTPCCalibVdrift(AliTPCSensorTempArray *SensTemp, AliDCSSensor *SensPres, TObject *SensGasComp):
1209231c 70 TNamed(),
71 fSensTemp(0),
72 fSensPres(0),
da6c0bc9 73 fTempMap(0),
1209231c 74 fSensGasComp(0)
75{
76 //
77 // Standard constructor
78 //
79
80 fSensTemp = SensTemp;
81 fSensPres = SensPres;
f1ea1647 82 if (fSensTemp) {
83 fTempMap = new AliTPCTempMap(fSensTemp);
84 } else {
85 fTempMap = 0;
86 }
1209231c 87 fSensGasComp = SensGasComp;
88}
89
f1ea1647 90//_____________________________________________________________________________
1209231c 91AliTPCCalibVdrift::AliTPCCalibVdrift(const AliTPCCalibVdrift& source) :
92 TNamed(source),
93 fSensTemp(source.fSensTemp),
94 fSensPres(source.fSensPres),
da6c0bc9 95 fTempMap(source.fTempMap),
1209231c 96 fSensGasComp(source.fSensGasComp)
97{
98 //
99 // Copy constructor
100 //
101}
102
103//_____________________________________________________________________________
1209231c 104AliTPCCalibVdrift& AliTPCCalibVdrift::operator=(const AliTPCCalibVdrift& source){
105 //
106 // assignment operator
107 //
108 if (&source == this) return *this;
109 new (this) AliTPCCalibVdrift(source);
110
111 return *this;
112}
113
114//_____________________________________________________________________________
115AliTPCCalibVdrift::~AliTPCCalibVdrift()
116{
117 //
118 // AliTPCCalibVdrift destructor
da6c0bc9 119 //
120
121}
122
f1ea1647 123//_____________________________________________________________________________
124Double_t AliTPCCalibVdrift::GetPTRelative(UInt_t absTimeSec, Int_t side){
1209231c 125 //
da6c0bc9 126 // Get Relative difference of p/T for given time stamp
f1ea1647 127 // absTimeSec - absolute time in secounds
128 // side: 0 - A side | 1 - C side
da6c0bc9 129 //
f1ea1647 130
131 TTimeStamp tstamp(absTimeSec);
132
133 if (!fSensPres||!fSensTemp) return 0;
134 Double_t pressure = fSensPres->GetValue(tstamp);
da6c0bc9 135 TLinearFitter * fitter = fTempMap->GetLinearFitter(3,side,tstamp);
136 if (!fitter) return 0;
137 TVectorD vec;
138 fitter->GetParameters(vec);
139 delete fitter;
140 if (vec[0]<10) return 0;
141 Double_t temperature = vec[0]+273.15;
142 Double_t povertMeas = pressure/temperature;
da6c0bc9 143 Double_t povertNom = kstdP/(torrTokPascal*kstdT);
f1ea1647 144
da6c0bc9 145 return povertMeas/povertNom;
f1ea1647 146
1209231c 147}
148
da6c0bc9 149
1209231c 150//_____________________________________________________________________________
151Double_t AliTPCCalibVdrift::VdriftLinearHyperplaneApprox(Double_t dE, Double_t dT, Double_t dP, Double_t dCco2, Double_t dCn2)
152{
153 //
f1ea1647 154 // Returns approximated value for the driftvelocity change (in percent)
155 // based on a Hyperplane approximation (~ Taylorapproximation of 2nd order)
1209231c 156 //
157
f1ea1647 158 Double_t termE = dE*kdvdE + TMath::Power(dE,2)*kdvdE2nd;
159 Double_t termT = dT*kdvdT + TMath::Power(dT,2)*kdvdT2nd;
160 Double_t termP = dP*kdvdP + TMath::Power(dP,2)*kdvdP2nd;
161 Double_t termCo2 = dCco2*kdvdCco2 + TMath::Power(dCco2,2)*kdvdCco22nd;
162 Double_t termN2 = dCn2*kdvdCn2 + TMath::Power(dCn2,2)*kdvdCn22nd;
163
164 Double_t vdChange = termE+termT+termP+termCo2+termN2;
165
166 return vdChange;
1209231c 167
168}
f1ea1647 169
1209231c 170//_____________________________________________________________________________
171
172Double_t AliTPCCalibVdrift::GetVdriftNominal()
173{
174 // returns nominal Driftvelocity at StandardConditions
175 return kstdVdrift;
176}
177
178//_____________________________________________________________________________
179
f1ea1647 180Double_t AliTPCCalibVdrift::GetVdriftChange(Double_t x, Double_t y, Double_t z, UInt_t absTimeSec)
1209231c 181{
182 //
183 // Calculates Vdrift change in percent of Vdrift_nominal
f1ea1647 184 // (under nominal conditions) at x,y,z at absolute time (in sec)
1209231c 185 //
186
f1ea1647 187 TTimeStamp tstamp(absTimeSec);
188
1209231c 189 // Get E-field Value --------------------------
f1ea1647 190 Double_t dE = 0.23; // StandardOffset if CE is set to 100kV
1209231c 191
192 // Get Temperature Value ----------------------
da6c0bc9 193 AliTPCTempMap *tempMap = fTempMap;
f1ea1647 194 Double_t dT = 0;
195 if (fTempMap) {
196 Double_t tempValue = tempMap->GetTemperature(x, y, z, tstamp);
197 dT = tempValue + 273.15 - kstdT;
198 }
199
1209231c 200 // Get Main Pressure Value ---------------------
f1ea1647 201 Double_t dP = 0;
202 if (fSensPres==0) {
203 // Just the pressure drop over the TPC height
204 dP = - krho*kg*y/10000*torrTokPascal;
205 } else {
206 // pressure sensors plus additional 0.4mbar overpressure within the TPC
207 Double_t pressure = fSensPres->GetValue(tstamp) + 0.4;
208 // calculate pressure drop according to height in TPC and transform to
209 // TORR (with simplified hydrostatic formula)
210 dP = (pressure - krho*kg*y/10000) * torrTokPascal - kstdP;
211 }
212
1209231c 213 // Get GasComposition
f1ea1647 214 // FIXME: include Goofy values for CO2 and N2 conzentration out of OCDB
215 // Goofy not yet reliable ...
1209231c 216 Double_t dCco2 = 0;
217 Double_t dCn2 = 0;
218
219 // Calculate change in drift velocity in terms of Vdrift_nominal
f1ea1647 220 Double_t vdChange = VdriftLinearHyperplaneApprox(dE, dT, dP, dCco2, dCn2);
1209231c 221
f1ea1647 222 return vdChange;
223
1209231c 224}
225
226//_____________________________________________________________________________
227
f1ea1647 228Double_t AliTPCCalibVdrift::GetMeanZVdriftChange(Double_t x, Double_t y, UInt_t absTimeSec)
1209231c 229{
230 //
231 // Calculates Meanvalue in z direction of Vdrift change in percent
f1ea1647 232 // of Vdrift_nominal (under standard conditions) at position x,y,absTimeSec
1209231c 233 // with help of 'nPopints' base points
234 //
235
236 Int_t nPoints = 5;
237
2aaa30ef 238 Double_t vdriftSum = 0;
1209231c 239
240 for (Int_t i = 0; i<nPoints; i++) {
241 Double_t z = (Double_t)i/(nPoints-1)*500-250;
f1ea1647 242 vdriftSum = vdriftSum + GetVdriftChange(x, y, z, absTimeSec);
1209231c 243 }
244
2aaa30ef 245 Double_t meanZVdrift = vdriftSum/nPoints;
1209231c 246
2aaa30ef 247 return meanZVdrift;
1209231c 248
249}
250
251//_____________________________________________________________________________
252
253TGraph *AliTPCCalibVdrift::MakeGraphMeanZVdriftChange(Double_t x, Double_t y, Int_t nPoints)
254{
255 //
256 // Make graph from start time to end time of Mean Drift Velocity in
257 // Z direction at given x and y position
258 //
259
2aaa30ef 260 UInt_t startTime = fSensTemp->GetStartTime();
261 UInt_t endTime = fSensTemp->GetEndTime();
1209231c 262
2aaa30ef 263 UInt_t stepTime = (endTime - startTime)/nPoints;
1209231c 264
265
266 Double_t *xvec = new Double_t[nPoints];
267 Double_t *yvec = new Double_t[nPoints];
268
269 for (Int_t ip=0; ip<nPoints; ip++) {
2aaa30ef 270 xvec[ip] = startTime+ip*stepTime;
f1ea1647 271 yvec[ip] = GetMeanZVdriftChange(x, y, fSensTemp->GetStartTime().GetSec() + ip*stepTime);
1209231c 272 }
273
274 TGraph *graph = new TGraph(nPoints,xvec,yvec);
275
276 delete [] xvec;
277 delete [] yvec;
278
279 graph->GetXaxis()->SetTimeDisplay(1);
280 graph->GetXaxis()->SetLabelOffset(0.02);
281 graph->GetXaxis()->SetTimeFormat("#splitline{%d/%m}{%H:%M}");
282
283 return graph;
284}