Adding new functionality to the ComaprisonComponent
[u/mrichter/AliRoot.git] / TRD / AliTRDtrackerV1.cxx
CommitLineData
bcb6fb78 1
e4f2f73d 2/**************************************************************************
3 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * *
5 * Author: The ALICE Off-line Project. *
6 * Contributors are mentioned in the code where appropriate. *
7 * *
8 * Permission to use, copy, modify and distribute this software and its *
9 * documentation strictly for non-commercial purposes is hereby granted *
10 * without fee, provided that the above copyright notice appears in all *
11 * copies and that both the copyright notice and this permission notice *
12 * appear in the supporting documentation. The authors make no claims *
13 * about the suitability of this software for any purpose. It is *
14 * provided "as is" without express or implied warranty. *
15 **************************************************************************/
16
17/* $Id$ */
18
19///////////////////////////////////////////////////////////////////////////////
20// //
21// Track finder //
22// //
23// Authors: //
24// Alex Bercuci <A.Bercuci@gsi.de> //
25// Markus Fasel <M.Fasel@gsi.de> //
26// //
27///////////////////////////////////////////////////////////////////////////////
28
bb56afff 29// #include <Riostream.h>
30// #include <stdio.h>
31// #include <string.h>
e4f2f73d 32
33#include <TBranch.h>
bb56afff 34#include <TDirectory.h>
e4f2f73d 35#include <TLinearFitter.h>
e4f2f73d 36#include <TTree.h>
37#include <TClonesArray.h>
e4f2f73d 38#include <TTreeStream.h>
39
40#include "AliLog.h"
41#include "AliESDEvent.h"
bb56afff 42#include "AliGeomManager.h"
e4f2f73d 43#include "AliRieman.h"
44#include "AliTrackPointArray.h"
45
e4f2f73d 46#include "AliTRDgeometry.h"
47#include "AliTRDpadPlane.h"
e4f2f73d 48#include "AliTRDcalibDB.h"
e4f2f73d 49#include "AliTRDReconstructor.h"
50#include "AliTRDCalibraFillHisto.h"
e4f2f73d 51#include "AliTRDrecoParam.h"
bb56afff 52
53#include "AliTRDcluster.h"
e4f2f73d 54#include "AliTRDseedV1.h"
0906e73e 55#include "AliTRDtrackV1.h"
bb56afff 56#include "AliTRDtrackerV1.h"
57#include "AliTRDtrackerDebug.h"
58#include "AliTRDtrackingChamber.h"
59#include "AliTRDchamberTimeBin.h"
60
e4f2f73d 61
e4f2f73d 62
63ClassImp(AliTRDtrackerV1)
eb38ed55 64
65
66const Float_t AliTRDtrackerV1::fgkMinClustersInTrack = 0.5; //
67const Float_t AliTRDtrackerV1::fgkLabelFraction = 0.8; //
68const Double_t AliTRDtrackerV1::fgkMaxChi2 = 12.0; //
69const Double_t AliTRDtrackerV1::fgkMaxSnp = 0.95; // Maximum local sine of the azimuthal angle
70const Double_t AliTRDtrackerV1::fgkMaxStep = 2.0; // Maximal step size in propagation
d76231c8 71Double_t AliTRDtrackerV1::fgTopologicQA[kNConfigs] = {
d739fd4e 72 0.1112, 0.1112, 0.1112, 0.0786, 0.0786,
73 0.0786, 0.0786, 0.0579, 0.0579, 0.0474,
74 0.0474, 0.0408, 0.0335, 0.0335, 0.0335
e4f2f73d 75};
2985ffcb 76Int_t AliTRDtrackerV1::fgNTimeBins = 0;
eb38ed55 77TTreeSRedirector *AliTRDtrackerV1::fgDebugStreamer = 0x0;
78AliRieman* AliTRDtrackerV1::fgRieman = 0x0;
79TLinearFitter* AliTRDtrackerV1::fgTiltedRieman = 0x0;
80TLinearFitter* AliTRDtrackerV1::fgTiltedRiemanConstrained = 0x0;
e4f2f73d 81
82//____________________________________________________________________
eb38ed55 83AliTRDtrackerV1::AliTRDtrackerV1()
84 :AliTracker()
85 ,fGeom(new AliTRDgeometry())
86 ,fClusters(0x0)
0906e73e 87 ,fTracklets(0x0)
eb38ed55 88 ,fTracks(0x0)
e4f2f73d 89 ,fSieveSeeding(0)
e4f2f73d 90{
91 //
eb38ed55 92 // Default constructor.
93 //
94 if (!AliTRDcalibDB::Instance()) {
95 AliFatal("Could not get calibration object");
96 }
2985ffcb 97 fgNTimeBins = AliTRDcalibDB::Instance()->GetNumberOfTimeBins();
e4f2f73d 98
d739fd4e 99 for (Int_t isector = 0; isector < AliTRDgeometry::kNsect; isector++) new(&fTrSec[isector]) AliTRDtrackingSector(fGeom, isector);
e4f2f73d 100
eb38ed55 101 if(AliTRDReconstructor::StreamLevel() > 1){
d739fd4e 102 TDirectory *savedir = gDirectory;
103 fgDebugStreamer = new TTreeSRedirector("TRD.TrackerDebug.root");
104 savedir->cd();
105 }
eb38ed55 106}
107
e4f2f73d 108//____________________________________________________________________
109AliTRDtrackerV1::~AliTRDtrackerV1()
110{
111 //
112 // Destructor
113 //
eb38ed55 114
d739fd4e 115 if(fgDebugStreamer) delete fgDebugStreamer;
116 if(fgRieman) delete fgRieman;
117 if(fgTiltedRieman) delete fgTiltedRieman;
118 if(fgTiltedRiemanConstrained) delete fgTiltedRiemanConstrained;
119 if(fTracks) {fTracks->Delete(); delete fTracks;}
120 if(fTracklets) {fTracklets->Delete(); delete fTracklets;}
121 if(fClusters) {fClusters->Delete(); delete fClusters;}
122 if(fGeom) delete fGeom;
e4f2f73d 123}
124
125//____________________________________________________________________
126Int_t AliTRDtrackerV1::Clusters2Tracks(AliESDEvent *esd)
127{
128 //
129 // Steering stand alone tracking for full TRD detector
130 //
131 // Parameters :
132 // esd : The ESD event. On output it contains
133 // the ESD tracks found in TRD.
134 //
135 // Output :
136 // Number of tracks found in the TRD detector.
137 //
138 // Detailed description
139 // 1. Launch individual SM trackers.
140 // See AliTRDtrackerV1::Clusters2TracksSM() for details.
141 //
142
d739fd4e 143 if(!AliTRDReconstructor::RecoParam()){
144 AliError("Reconstruction configuration not initialized. Call first AliTRDReconstructor::SetRecoParam().");
145 return 0;
146 }
e4f2f73d 147
d739fd4e 148 //AliInfo("Start Track Finder ...");
149 Int_t ntracks = 0;
150 for(int ism=0; ism<AliTRDgeometry::kNsect; ism++){
151 // for(int ism=1; ism<2; ism++){
152 //AliInfo(Form("Processing supermodule %i ...", ism));
153 ntracks += Clusters2TracksSM(ism, esd);
154 }
eb38ed55 155 AliInfo(Form("Number of found tracks : %d", ntracks));
d739fd4e 156 return ntracks;
e4f2f73d 157}
158
0906e73e 159
160//_____________________________________________________________________________
eb38ed55 161Bool_t AliTRDtrackerV1::GetTrackPoint(Int_t index, AliTrackPoint &p) const
0906e73e 162{
d739fd4e 163 //AliInfo(Form("Asking for tracklet %d", index));
0906e73e 164
d739fd4e 165 if(index<0) return kFALSE;
166 AliTRDseedV1 *tracklet = 0x0;
167 if(!(tracklet = (AliTRDseedV1*)fTracklets->UncheckedAt(index))) return kFALSE;
eb38ed55 168
d739fd4e 169 // get detector for this tracklet
170 AliTRDcluster *cl = 0x0;
171 Int_t ic = 0; do; while(!(cl = tracklet->GetClusters(ic++)));
172 Int_t idet = cl->GetDetector();
eb38ed55 173
d739fd4e 174 Double_t local[3];
175 local[0] = tracklet->GetX0();
176 local[1] = tracklet->GetYfit(0);
177 local[2] = tracklet->GetZfit(0);
178 Double_t global[3];
179 fGeom->RotateBack(idet, local, global);
180 p.SetXYZ(global[0],global[1],global[2]);
eb38ed55 181
182
d739fd4e 183 // setting volume id
184 AliGeomManager::ELayerID iLayer = AliGeomManager::kTRD1;
185 switch (fGeom->GetPlane(idet)) {
186 case 0:
187 iLayer = AliGeomManager::kTRD1;
188 break;
189 case 1:
190 iLayer = AliGeomManager::kTRD2;
191 break;
192 case 2:
193 iLayer = AliGeomManager::kTRD3;
194 break;
195 case 3:
196 iLayer = AliGeomManager::kTRD4;
197 break;
198 case 4:
199 iLayer = AliGeomManager::kTRD5;
200 break;
201 case 5:
202 iLayer = AliGeomManager::kTRD6;
203 break;
204 };
205 Int_t modId = fGeom->GetSector(idet) * fGeom->Ncham() + fGeom->GetChamber(idet);
206 UShort_t volid = AliGeomManager::LayerToVolUID(iLayer, modId);
207 p.SetVolumeID(volid);
eb38ed55 208
d739fd4e 209 return kTRUE;
0906e73e 210}
211
eb38ed55 212//____________________________________________________________________
213TLinearFitter* AliTRDtrackerV1::GetTiltedRiemanFitter()
214{
d739fd4e 215 if(!fgTiltedRieman) fgTiltedRieman = new TLinearFitter(4, "hyp4");
216 return fgTiltedRieman;
eb38ed55 217}
0906e73e 218
eb38ed55 219//____________________________________________________________________
220TLinearFitter* AliTRDtrackerV1::GetTiltedRiemanFitterConstraint()
221{
d739fd4e 222 if(!fgTiltedRiemanConstrained) fgTiltedRiemanConstrained = new TLinearFitter(2, "hyp2");
223 return fgTiltedRiemanConstrained;
eb38ed55 224}
225
226//____________________________________________________________________
227AliRieman* AliTRDtrackerV1::GetRiemanFitter()
228{
d739fd4e 229 if(!fgRieman) fgRieman = new AliRieman(AliTRDtrackingChamber::kNTimeBins * AliTRDgeometry::kNplan);
230 return fgRieman;
eb38ed55 231}
232
0906e73e 233//_____________________________________________________________________________
234Int_t AliTRDtrackerV1::PropagateBack(AliESDEvent *event)
235{
236 //
237 // Gets seeds from ESD event. The seeds are AliTPCtrack's found and
238 // backpropagated by the TPC tracker. Each seed is first propagated
239 // to the TRD, and then its prolongation is searched in the TRD.
240 // If sufficiently long continuation of the track is found in the TRD
241 // the track is updated, otherwise it's stored as originaly defined
242 // by the TPC tracker.
243 //
244
a23edf15 245 // Calibration monitor
246 AliTRDCalibraFillHisto *calibra = AliTRDCalibraFillHisto::Instance();
247 if (!calibra) AliInfo("Could not get Calibra instance\n");
248
d739fd4e 249 Int_t found = 0; // number of tracks found
250 Float_t foundMin = 20.0;
0906e73e 251
d739fd4e 252 Int_t nSeed = event->GetNumberOfTracks();
253 if(!nSeed){
254 // run stand alone tracking
255 if (AliTRDReconstructor::SeedingOn()) Clusters2Tracks(event);
256 return 0;
257 }
0906e73e 258
d739fd4e 259 Float_t *quality = new Float_t[nSeed];
260 Int_t *index = new Int_t[nSeed];
261 for (Int_t iSeed = 0; iSeed < nSeed; iSeed++) {
262 AliESDtrack *seed = event->GetTrack(iSeed);
263 Double_t covariance[15];
264 seed->GetExternalCovariance(covariance);
265 quality[iSeed] = covariance[0] + covariance[2];
266 }
267 // Sort tracks according to covariance of local Y and Z
268 TMath::Sort(nSeed,quality,index,kFALSE);
0906e73e 269
d739fd4e 270 // Backpropagate all seeds
271 Int_t expectedClr;
a23edf15 272 AliTRDtrackV1 track;
d739fd4e 273 for (Int_t iSeed = 0; iSeed < nSeed; iSeed++) {
0906e73e 274
d739fd4e 275 // Get the seeds in sorted sequence
276 AliESDtrack *seed = event->GetTrack(index[iSeed]);
0906e73e 277
d739fd4e 278 // Check the seed status
279 ULong_t status = seed->GetStatus();
280 if ((status & AliESDtrack::kTPCout) == 0) continue;
281 if ((status & AliESDtrack::kTRDout) != 0) continue;
0906e73e 282
d739fd4e 283 // Do the back prolongation
284 Int_t lbl = seed->GetLabel();
285 new(&track) AliTRDtrackV1(*seed);
286 //track->Print();
287 track.SetSeedLabel(lbl);
288 seed->UpdateTrackParams(&track, AliESDtrack::kTRDbackup); // Make backup
289 Float_t p4 = track.GetC();
290 if((expectedClr = FollowBackProlongation(track))){
291 // computes PID for track
292 track.CookPID();
293 // update calibration references using this track
294 if(calibra->GetHisto2d()) calibra->UpdateHistogramsV1(&track);
295 }
296
297 if ((TMath::Abs(track.GetC() - p4) / TMath::Abs(p4) < 0.2) ||
298 (track.Pt() > 0.8)) {
299 //
300 // Make backup for back propagation
301 //
302 Int_t foundClr = track.GetNumberOfClusters();
303 if (foundClr >= foundMin) {
304 //AliInfo(Form("Making backup track ncls [%d]...", foundClr));
305 track.CookdEdx();
306 track.CookdEdxTimBin(seed->GetID());
307 track.CookLabel(1. - fgkLabelFraction);
308 if(track.GetBackupTrack()) UseClusters(track.GetBackupTrack());
0906e73e 309
0906e73e 310
d739fd4e 311 // Sign only gold tracks
312 if (track.GetChi2() / track.GetNumberOfClusters() < 4) {
313 if ((seed->GetKinkIndex(0) == 0) &&
314 (track.Pt() < 1.5)) UseClusters(&track);
315 }
316 Bool_t isGold = kFALSE;
0906e73e 317
d739fd4e 318 // Full gold track
319 if (track.GetChi2() / track.GetNumberOfClusters() < 5) {
320 if (track.GetBackupTrack()) seed->UpdateTrackParams(track.GetBackupTrack(),AliESDtrack::kTRDbackup);
0906e73e 321
d739fd4e 322 isGold = kTRUE;
323 }
0906e73e 324
d739fd4e 325 // Almost gold track
326 if ((!isGold) && (track.GetNCross() == 0) &&
327 (track.GetChi2() / track.GetNumberOfClusters() < 7)) {
328 //seed->UpdateTrackParams(track, AliESDtrack::kTRDbackup);
329 if (track.GetBackupTrack()) seed->UpdateTrackParams(track.GetBackupTrack(),AliESDtrack::kTRDbackup);
0906e73e 330
d739fd4e 331 isGold = kTRUE;
332 }
0906e73e 333
d739fd4e 334 if ((!isGold) && (track.GetBackupTrack())) {
335 if ((track.GetBackupTrack()->GetNumberOfClusters() > foundMin) && ((track.GetBackupTrack()->GetChi2()/(track.GetBackupTrack()->GetNumberOfClusters()+1)) < 7)) {
336 seed->UpdateTrackParams(track.GetBackupTrack(),AliESDtrack::kTRDbackup);
337 isGold = kTRUE;
338 }
339 }
0906e73e 340
d739fd4e 341 //if ((track->StatusForTOF() > 0) && (track->GetNCross() == 0) && (Float_t(track->GetNumberOfClusters()) / Float_t(track->GetNExpected()) > 0.4)) {
342 //seed->UpdateTrackParams(track->GetBackupTrack(), AliESDtrack::kTRDbackup);
343 //}
344 }
345 }
346
347 // Propagation to the TOF (I.Belikov)
348 if (track.GetStop() == kFALSE) {
349 Double_t xtof = 371.0;
350 Double_t xTOF0 = 370.0;
0906e73e 351
d739fd4e 352 Double_t c2 = track.GetSnp() + track.GetC() * (xtof - track.GetX());
353 if (TMath::Abs(c2) >= 0.99) continue;
0906e73e 354
d739fd4e 355 PropagateToX(track, xTOF0, fgkMaxStep);
0906e73e 356
d739fd4e 357 // Energy losses taken to the account - check one more time
358 c2 = track.GetSnp() + track.GetC() * (xtof - track.GetX());
359 if (TMath::Abs(c2) >= 0.99) continue;
0906e73e 360
d739fd4e 361 //if (!PropagateToX(*track,xTOF0,fgkMaxStep)) {
362 // fHBackfit->Fill(7);
363 //delete track;
364 // continue;
365 //}
0906e73e 366
d739fd4e 367 Double_t ymax = xtof * TMath::Tan(0.5 * AliTRDgeometry::GetAlpha());
368 Double_t y;
369 track.GetYAt(xtof,GetBz(),y);
370 if (y > ymax) {
371 if (!track.Rotate( AliTRDgeometry::GetAlpha())) continue;
372 }else if (y < -ymax) {
373 if (!track.Rotate(-AliTRDgeometry::GetAlpha())) continue;
374 }
0906e73e 375
d739fd4e 376 if (track.PropagateTo(xtof)) {
377 seed->UpdateTrackParams(&track, AliESDtrack::kTRDout);
378 track.UpdateESDtrack(seed);
a23edf15 379
d739fd4e 380 // Add TRD track to ESDfriendTrack
381 if (AliTRDReconstructor::StreamLevel() > 0 /*&& quality TODO*/){
382 AliTRDtrackV1 *calibTrack = new AliTRDtrackV1(track);
383 calibTrack->SetOwner();
384 seed->AddCalibObject(calibTrack);
385 }
386 found++;
387 }
388 } else {
389 if ((track.GetNumberOfClusters() > 15) &&
390 (track.GetNumberOfClusters() > 0.5*expectedClr)) {
391 seed->UpdateTrackParams(&track, AliESDtrack::kTRDout);
0906e73e 392
d739fd4e 393 track.UpdateESDtrack(seed);
a23edf15 394
d739fd4e 395 // Add TRD track to ESDfriendTrack
396 if (AliTRDReconstructor::StreamLevel() > 0 /*&& quality TODO*/){
397 AliTRDtrackV1 *calibTrack = new AliTRDtrackV1(track);
398 calibTrack->SetOwner();
399 seed->AddCalibObject(calibTrack);
0906e73e 400 }
d739fd4e 401 found++;
402 }
403 }
404
405 seed->SetTRDQuality(track.StatusForTOF());
406 seed->SetTRDBudget(track.GetBudget(0));
407 }
0906e73e 408
409
d739fd4e 410 AliInfo(Form("Number of seeds: %d", nSeed));
411 AliInfo(Form("Number of back propagated TRD tracks: %d", found));
eb38ed55 412
d739fd4e 413 delete [] index;
414 delete [] quality;
0906e73e 415
416 return 0;
417}
418
419
420//____________________________________________________________________
421Int_t AliTRDtrackerV1::RefitInward(AliESDEvent *event)
422{
423 //
424 // Refits tracks within the TRD. The ESD event is expected to contain seeds
425 // at the outer part of the TRD.
426 // The tracks are propagated to the innermost time bin
427 // of the TRD and the ESD event is updated
428 // Origin: Thomas KUHR (Thomas.Kuhr@cern.ch)
429 //
430
431 Int_t nseed = 0; // contor for loaded seeds
432 Int_t found = 0; // contor for updated TRD tracks
bcb6fb78 433
bcb6fb78 434
0906e73e 435 AliTRDtrackV1 track;
436 for (Int_t itrack = 0; itrack < event->GetNumberOfTracks(); itrack++) {
437 AliESDtrack *seed = event->GetTrack(itrack);
d739fd4e 438 new(&track) AliTRDtrackV1(*seed);
0906e73e 439
440 if (track.GetX() < 270.0) {
441 seed->UpdateTrackParams(&track, AliESDtrack::kTRDbackup);
d739fd4e 442 continue;
0906e73e 443 }
444
445 ULong_t status = seed->GetStatus();
446 if((status & AliESDtrack::kTRDout) == 0) continue;
447 if((status & AliESDtrack::kTRDin) != 0) continue;
448 nseed++;
449
450 track.ResetCovariance(50.0);
451
d739fd4e 452 // do the propagation and processing
bcb6fb78 453 Bool_t kUPDATE = kFALSE;
d739fd4e 454 Double_t xTPC = 250.0;
a23edf15 455 if(FollowProlongation(track)){
d739fd4e 456 // Prolongate to TPC
457 if (PropagateToX(track, xTPC, fgkMaxStep)) { // -with update
458 seed->UpdateTrackParams(&track, AliESDtrack::kTRDrefit);
459 found++;
460 kUPDATE = kTRUE;
461 }
462 }
bcb6fb78 463
d739fd4e 464 // Prolongate to TPC without update
465 if(!kUPDATE) {
0906e73e 466 AliTRDtrackV1 tt(*seed);
467 if (PropagateToX(tt, xTPC, fgkMaxStep)) seed->UpdateTrackParams(&tt, AliESDtrack::kTRDrefit);
468 }
469 }
470 AliInfo(Form("Number of loaded seeds: %d",nseed));
471 AliInfo(Form("Number of found tracks from loaded seeds: %d",found));
472
d739fd4e 473 return 0;
0906e73e 474}
475
476
477//____________________________________________________________________
478Int_t AliTRDtrackerV1::FollowProlongation(AliTRDtrackV1 &t)
479{
d739fd4e 480 // Extrapolates the TRD track in the TPC direction.
481 //
482 // Parameters
483 // t : the TRD track which has to be extrapolated
484 //
485 // Output
486 // number of clusters attached to the track
487 //
488 // Detailed description
489 //
490 // Starting from current radial position of track <t> this function
491 // extrapolates the track through the 6 TRD layers. The following steps
492 // are being performed for each plane:
493 // 1. prepare track:
494 // a. get plane limits in the local x direction
495 // b. check crossing sectors
496 // c. check track inclination
497 // 2. search tracklet in the tracker list (see GetTracklet() for details)
498 // 3. evaluate material budget using the geo manager
499 // 4. propagate and update track using the tracklet information.
500 //
501 // Debug level 2
502 //
0906e73e 503
d739fd4e 504 Int_t nClustersExpected = 0;
505 Int_t lastplane = 5; //GetLastPlane(&t);
506 for (Int_t iplane = lastplane; iplane >= 0; iplane--) {
eb38ed55 507 Int_t index = 0;
508 AliTRDseedV1 *tracklet = GetTracklet(&t, iplane, index);
d739fd4e 509 if(!tracklet) continue;
510 if(!tracklet->IsOK()) AliWarning("tracklet not OK");
eb38ed55 511
d739fd4e 512 Double_t x = tracklet->GetX0();
513 // reject tracklets which are not considered for inward refit
514 if(x > t.GetX()+fgkMaxStep) continue;
a23edf15 515
d739fd4e 516 // append tracklet to track
517 t.SetTracklet(tracklet, iplane, index);
eb38ed55 518
eb38ed55 519 if (x < (t.GetX()-fgkMaxStep) && !PropagateToX(t, x+fgkMaxStep, fgkMaxStep)) break;
0906e73e 520 if (!AdjustSector(&t)) break;
521
0906e73e 522 // Start global position
523 Double_t xyz0[3];
524 t.GetXYZ(xyz0);
525
d739fd4e 526 // End global position
eb38ed55 527 Double_t alpha = t.GetAlpha(), y, z;
0906e73e 528 if (!t.GetProlongation(x,y,z)) break;
529 Double_t xyz1[3];
eb38ed55 530 xyz1[0] = x * TMath::Cos(alpha) - y * TMath::Sin(alpha);
531 xyz1[1] = x * TMath::Sin(alpha) + y * TMath::Cos(alpha);
0906e73e 532 xyz1[2] = z;
eb38ed55 533
0906e73e 534 // Get material budget
535 Double_t param[7];
eb38ed55 536 AliTracker::MeanMaterialBudget(xyz0, xyz1, param);
0906e73e 537 Double_t xrho= param[0]*param[4];
538 Double_t xx0 = param[1]; // Get mean propagation parameters
539
eb38ed55 540 // Propagate and update
d739fd4e 541 t.PropagateTo(x, xx0, xrho);
542 if (!AdjustSector(&t)) break;
0906e73e 543
544 Double_t maxChi2 = t.GetPredictedChi2(tracklet);
d739fd4e 545 if (maxChi2 < 1e+10 && t.Update(tracklet, maxChi2)){
546 nClustersExpected += tracklet->GetN();
547 }
0906e73e 548 }
549
d739fd4e 550 if(AliTRDReconstructor::StreamLevel() > 1){
551 Int_t index;
552 for(int iplane=0; iplane<6; iplane++){
553 AliTRDseedV1 *tracklet = GetTracklet(&t, iplane, index);
554 if(!tracklet) continue;
555 t.SetTracklet(tracklet, iplane, index);
556 }
557
558 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
559 TTreeSRedirector &cstreamer = *fgDebugStreamer;
560 cstreamer << "FollowProlongation"
561 << "EventNumber=" << eventNumber
562 << "ncl=" << nClustersExpected
563 << "track.=" << &t
564 << "\n";
565 }
0906e73e 566
567 return nClustersExpected;
568
569}
570
571//_____________________________________________________________________________
572Int_t AliTRDtrackerV1::FollowBackProlongation(AliTRDtrackV1 &t)
573{
d739fd4e 574 // Extrapolates the TRD track in the TOF direction.
575 //
576 // Parameters
577 // t : the TRD track which has to be extrapolated
578 //
579 // Output
580 // number of clusters attached to the track
581 //
582 // Detailed description
583 //
584 // Starting from current radial position of track <t> this function
585 // extrapolates the track through the 6 TRD layers. The following steps
586 // are being performed for each plane:
587 // 1. prepare track:
588 // a. get plane limits in the local x direction
589 // b. check crossing sectors
590 // c. check track inclination
591 // 2. build tracklet (see AliTRDseed::AttachClusters() for details)
592 // 3. evaluate material budget using the geo manager
593 // 4. propagate and update track using the tracklet information.
594 //
595 // Debug level 2
596 //
597
598 Int_t nClustersExpected = 0;
eb38ed55 599 Double_t clength = AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick();
600 AliTRDtrackingChamber *chamber = 0x0;
601
0906e73e 602 // Loop through the TRD planes
603 for (Int_t iplane = 0; iplane < AliTRDgeometry::Nplan(); iplane++) {
d739fd4e 604 // BUILD TRACKLET IF NOT ALREADY BUILT
605 Double_t x = 0., y, z, alpha;
eb38ed55 606 AliTRDseedV1 tracklet(*t.GetTracklet(iplane));
d739fd4e 607 if(!tracklet.IsOK()){
608 alpha = t.GetAlpha();
609 Int_t sector = Int_t(alpha/AliTRDgeometry::GetAlpha() + (alpha>0. ? 0 : AliTRDgeometry::kNsect));
0906e73e 610
d739fd4e 611 if(!fTrSec[sector].GetNChambers()) continue;
eb38ed55 612
d739fd4e 613 if((x = fTrSec[sector].GetX(iplane)) < 1.) continue;
eb38ed55 614
d739fd4e 615 if (!t.GetProlongation(x, y, z)) break;
616 Int_t stack = fGeom->GetChamber(z, iplane);
617 Int_t nCandidates = stack >= 0 ? 1 : 2;
618 z -= stack >= 0 ? 0. : 4.;
eb38ed55 619
d739fd4e 620 for(int icham=0; icham<nCandidates; icham++, z+=8){
51863bc0 621 if((stack = fGeom->GetChamber(z, iplane)) < 0) continue;
622
623 if(!(chamber = fTrSec[sector].GetChamber(stack, iplane))) continue;
624
625 if(chamber->GetNClusters() < fgNTimeBins*AliTRDReconstructor::RecoParam()->GetFindableClusters()) continue;
626
627 x = chamber->GetX();
628
629 AliTRDpadPlane *pp = fGeom->GetPadPlane(iplane, stack);
630 tracklet.SetTilt(TMath::Tan(-TMath::DegToRad()*pp->GetTiltingAngle()));
631 tracklet.SetPadLength(pp->GetLengthIPad());
632 tracklet.SetPlane(iplane);
633 tracklet.SetX0(x);
634 if(!tracklet.Init(&t)) continue;
635 if(!tracklet.AttachClustersIter(chamber, 1000.)) continue;
636 tracklet.Init(&t);
637
638 if(tracklet.GetN() < fgNTimeBins * AliTRDReconstructor::RecoParam()->GetFindableClusters()) continue;
639
640 break;
641 }
d739fd4e 642 }
eb38ed55 643 if(!tracklet.IsOK()){
d739fd4e 644 if(x < 1.) continue; //temporary
645 if(!PropagateToX(t, x-fgkMaxStep, fgkMaxStep)) break;
646 if(!AdjustSector(&t)) break;
647 if(TMath::Abs(t.GetSnp()) > fgkMaxSnp) break;
648 continue;
eb38ed55 649 }
0906e73e 650
d739fd4e 651 // Propagate closer to the current chamber if neccessary
eb38ed55 652 x -= clength;
653 if (x > (fgkMaxStep + t.GetX()) && !PropagateToX(t, x-fgkMaxStep, fgkMaxStep)) break;
0906e73e 654 if (!AdjustSector(&t)) break;
0906e73e 655 if (TMath::Abs(t.GetSnp()) > fgkMaxSnp) break;
0906e73e 656
d739fd4e 657 // load tracklet to the tracker and the track
658 Int_t index = SetTracklet(&tracklet);
659 t.SetTracklet(&tracklet, iplane, index);
eb38ed55 660
661
d739fd4e 662 // Calculate the mean material budget along the path inside the chamber
eb38ed55 663 //Calculate global entry and exit positions of the track in chamber (only track prolongation)
664 Double_t xyz0[3]; // entry point
d739fd4e 665 t.GetXYZ(xyz0);
666 alpha = t.GetAlpha();
667 x = tracklet.GetX0();
668 if (!t.GetProlongation(x, y, z)) break;
669 Double_t xyz1[3]; // exit point
670 xyz1[0] = x * TMath::Cos(alpha) - y * TMath::Sin(alpha);
eb38ed55 671 xyz1[1] = +x * TMath::Sin(alpha) + y * TMath::Cos(alpha);
672 xyz1[2] = z;
0906e73e 673 Double_t param[7];
d739fd4e 674 AliTracker::MeanMaterialBudget(xyz0, xyz1, param);
0906e73e 675 // The mean propagation parameters
676 Double_t xrho = param[0]*param[4]; // density*length
677 Double_t xx0 = param[1]; // radiation length
678
d739fd4e 679 // Propagate and update track
680 t.PropagateTo(x, xx0, xrho);
681 if (!AdjustSector(&t)) break;
682 Double_t maxChi2 = t.GetPredictedChi2(&tracklet);
683 if (maxChi2<1e+10 && t.Update(&tracklet, maxChi2)){
684 nClustersExpected += tracklet.GetN();
685 }
686 // Reset material budget if 2 consecutive gold
687 if(iplane>0 && tracklet.GetN() + t.GetTracklet(iplane-1)->GetN() > 20) t.SetBudget(2, 0.);
688
689 // Make backup of the track until is gold
690 // TO DO update quality check of the track.
691 // consider comparison with fTimeBinsRange
692 Float_t ratio0 = tracklet.GetN() / Float_t(fgNTimeBins);
693 //Float_t ratio1 = Float_t(t.GetNumberOfClusters()+1) / Float_t(t.GetNExpected()+1);
0906e73e 694 //printf("tracklet.GetChi2() %f [< 18.0]\n", tracklet.GetChi2());
d739fd4e 695 //printf("ratio0 %f [> 0.8]\n", ratio0);
696 //printf("ratio1 %f [> 0.6]\n", ratio1);
697 //printf("ratio0+ratio1 %f [> 1.5]\n", ratio0+ratio1);
698 //printf("t.GetNCross() %d [== 0]\n", t.GetNCross());
699 //printf("TMath::Abs(t.GetSnp()) %f [< 0.85]\n", TMath::Abs(t.GetSnp()));
700 //printf("t.GetNumberOfClusters() %d [> 20]\n", t.GetNumberOfClusters());
0906e73e 701
d739fd4e 702 if (//(tracklet.GetChi2() < 18.0) && TO DO check with FindClusters and move it to AliTRDseed::Update
0906e73e 703 (ratio0 > 0.8) &&
704 //(ratio1 > 0.6) &&
705 //(ratio0+ratio1 > 1.5) &&
706 (t.GetNCross() == 0) &&
707 (TMath::Abs(t.GetSnp()) < 0.85) &&
708 (t.GetNumberOfClusters() > 20)) t.MakeBackupTrack();
709
d739fd4e 710 } // end planes loop
0906e73e 711
d739fd4e 712 if(AliTRDReconstructor::StreamLevel() > 1){
713 TTreeSRedirector &cstreamer = *fgDebugStreamer;
714 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
715 cstreamer << "FollowBackProlongation"
716 << "EventNumber=" << eventNumber
717 << "ncl=" << nClustersExpected
718 << "track.=" << &t
719 << "\n";
720 }
0906e73e 721
d739fd4e 722 return nClustersExpected;
0906e73e 723}
724
eb38ed55 725//_________________________________________________________________________
726Float_t AliTRDtrackerV1::FitRieman(AliTRDseedV1 *tracklets, Double_t *chi2, Int_t *planes){
d739fd4e 727 //
728 // Fits a Riemann-circle to the given points without tilting pad correction.
729 // The fit is performed using an instance of the class AliRieman (equations
730 // and transformations see documentation of this class)
731 // Afterwards all the tracklets are Updated
732 //
733 // Parameters: - Array of tracklets (AliTRDseedV1)
734 // - Storage for the chi2 values (beginning with direction z)
735 // - Seeding configuration
736 // Output: - The curvature
737 //
eb38ed55 738 AliRieman *fitter = AliTRDtrackerV1::GetRiemanFitter();
d739fd4e 739 fitter->Reset();
eb38ed55 740 Int_t allplanes[] = {0, 1, 2, 3, 4, 5};
741 Int_t *ppl = &allplanes[0];
d739fd4e 742 Int_t maxLayers = 6;
eb38ed55 743 if(planes){
744 maxLayers = 4;
745 ppl = planes;
746 }
747 for(Int_t il = 0; il < maxLayers; il++){
d739fd4e 748 if(!tracklets[ppl[il]].IsOK()) continue;
eb38ed55 749 fitter->AddPoint(tracklets[ppl[il]].GetX0(), tracklets[ppl[il]].GetYfitR(0), tracklets[ppl[il]].GetZProb(),1,10);
750 }
751 fitter->Update();
752 // Set the reference position of the fit and calculate the chi2 values
753 memset(chi2, 0, sizeof(Double_t) * 2);
d739fd4e 754 for(Int_t il = 0; il < maxLayers; il++){
755 // Reference positions
756 tracklets[ppl[il]].Init(fitter);
eb38ed55 757
d739fd4e 758 // chi2
759 if((!tracklets[ppl[il]].IsOK()) && (!planes)) continue;
760 chi2[0] += tracklets[ppl[il]].GetChi2Y();
761 chi2[1] += tracklets[ppl[il]].GetChi2Z();
762 }
763 return fitter->GetC();
eb38ed55 764}
765
766//_________________________________________________________________________
767void AliTRDtrackerV1::FitRieman(AliTRDcluster **seedcl, Double_t chi2[2])
768{
d739fd4e 769 //
770 // Performs a Riemann helix fit using the seedclusters as spacepoints
771 // Afterwards the chi2 values are calculated and the seeds are updated
772 //
773 // Parameters: - The four seedclusters
774 // - The tracklet array (AliTRDseedV1)
775 // - The seeding configuration
776 // - Chi2 array
777 //
778 // debug level 2
779 //
780 AliRieman *fitter = AliTRDtrackerV1::GetRiemanFitter();
781 fitter->Reset();
782 for(Int_t i = 0; i < 4; i++)
783 fitter->AddPoint(seedcl[i]->GetX(), seedcl[i]->GetY(), seedcl[i]->GetZ(), 1, 10);
784 fitter->Update();
eb38ed55 785
786
d739fd4e 787 // Update the seed and calculated the chi2 value
788 chi2[0] = 0; chi2[1] = 0;
789 for(Int_t ipl = 0; ipl < kNSeedPlanes; ipl++){
790 // chi2
791 chi2[0] += (seedcl[ipl]->GetZ() - fitter->GetZat(seedcl[ipl]->GetX())) * (seedcl[ipl]->GetZ() - fitter->GetZat(seedcl[ipl]->GetX()));
792 chi2[1] += (seedcl[ipl]->GetY() - fitter->GetYat(seedcl[ipl]->GetX())) * (seedcl[ipl]->GetY() - fitter->GetYat(seedcl[ipl]->GetX()));
793 }
eb38ed55 794}
795
796
797//_________________________________________________________________________
798Float_t AliTRDtrackerV1::FitTiltedRiemanConstraint(AliTRDseedV1 *tracklets, Double_t zVertex)
799{
d739fd4e 800 //
801 // Fits a helix to the clusters. Pad tilting is considered. As constraint it is
802 // assumed that the vertex position is set to 0.
803 // This method is very usefull for high-pt particles
804 // Basis for the fit: (x - x0)^2 + (y - y0)^2 - R^2 = 0
805 // x0, y0: Center of the circle
806 // Measured y-position: ymeas = y - tan(phiT)(zc - zt)
807 // zc: center of the pad row
808 // Equation which has to be fitted (after transformation):
809 // a + b * u + e * v + 2*(ymeas + tan(phiT)(z - zVertex))*t = 0
810 // Transformation:
811 // t = 1/(x^2 + y^2)
812 // u = 2 * x * t
813 // v = 2 * x * tan(phiT) * t
814 // Parameters in the equation:
815 // a = -1/y0, b = x0/y0, e = dz/dx
816 //
817 // The Curvature is calculated by the following equation:
818 // - curv = a/Sqrt(b^2 + 1) = 1/R
819 // Parameters: - the 6 tracklets
820 // - the Vertex constraint
821 // Output: - the Chi2 value of the track
822 //
823 // debug level 5
824 //
825
826 TLinearFitter *fitter = GetTiltedRiemanFitterConstraint();
827 fitter->StoreData(kTRUE);
828 fitter->ClearPoints();
829 AliTRDcluster *cl = 0x0;
a23edf15 830
d739fd4e 831 Float_t x, y, z, w, t, error, tilt;
832 Double_t uvt[2];
833 Int_t nPoints = 0;
834 for(Int_t ipl = 0; ipl < AliTRDgeometry::kNplan; ipl++){
835 if(!tracklets[ipl].IsOK()) continue;
836 for(Int_t itb = 0; itb < fgNTimeBins; itb++){
837 if(!tracklets[ipl].IsUsable(itb)) continue;
838 cl = tracklets[ipl].GetClusters(itb);
839 x = cl->GetX();
840 y = cl->GetY();
841 z = cl->GetZ();
842 tilt = tracklets[ipl].GetTilt();
843 // Transformation
844 t = 1./(x * x + y * y);
845 uvt[0] = 2. * x * t;
846 uvt[1] = 2. * x * t * tilt ;
847 w = 2. * (y + tilt * (z - zVertex)) * t;
848 error = 2. * 0.2 * t;
849 fitter->AddPoint(uvt, w, error);
850 nPoints++;
851 }
852 }
853 fitter->Eval();
854
855 // Calculate curvature
856 Double_t a = fitter->GetParameter(0);
857 Double_t b = fitter->GetParameter(1);
858 Double_t curvature = a/TMath::Sqrt(b*b + 1);
859
860 Float_t chi2track = fitter->GetChisquare()/Double_t(nPoints);
861 for(Int_t ip = 0; ip < AliTRDtrackerV1::kNPlanes; ip++)
862 tracklets[ip].SetCC(curvature);
863
864 if(AliTRDReconstructor::StreamLevel() >= 5){
865 //Linear Model on z-direction
866 Double_t xref = CalculateReferenceX(tracklets); // Relative to the middle of the stack
867 Double_t slope = fitter->GetParameter(2);
868 Double_t zref = slope * xref;
869 Float_t chi2Z = CalculateChi2Z(tracklets, zref, slope, xref);
870 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
871 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
872 TTreeSRedirector &treeStreamer = *fgDebugStreamer;
873 treeStreamer << "FitTiltedRiemanConstraint"
874 << "EventNumber=" << eventNumber
875 << "CandidateNumber=" << candidateNumber
876 << "Curvature=" << curvature
877 << "Chi2Track=" << chi2track
878 << "Chi2Z=" << chi2Z
879 << "zref=" << zref
880 << "\n";
881 }
882 return chi2track;
eb38ed55 883}
884
885//_________________________________________________________________________
886Float_t AliTRDtrackerV1::FitTiltedRieman(AliTRDseedV1 *tracklets, Bool_t sigError)
887{
d739fd4e 888 //
889 // Performs a Riemann fit taking tilting pad correction into account
890 // The equation of a Riemann circle, where the y position is substituted by the
891 // measured y-position taking pad tilting into account, has to be transformed
892 // into a 4-dimensional hyperplane equation
893 // Riemann circle: (x-x0)^2 + (y-y0)^2 -R^2 = 0
894 // Measured y-Position: ymeas = y - tan(phiT)(zc - zt)
895 // zc: center of the pad row
896 // zt: z-position of the track
897 // The z-position of the track is assumed to be linear dependent on the x-position
898 // Transformed equation: a + b * u + c * t + d * v + e * w - 2 * (ymeas + tan(phiT) * zc) * t = 0
899 // Transformation: u = 2 * x * t
900 // v = 2 * tan(phiT) * t
901 // w = 2 * tan(phiT) * (x - xref) * t
902 // t = 1 / (x^2 + ymeas^2)
903 // Parameters: a = -1/y0
904 // b = x0/y0
905 // c = (R^2 -x0^2 - y0^2)/y0
906 // d = offset
907 // e = dz/dx
908 // If the offset respectively the slope in z-position is impossible, the parameters are fixed using
909 // results from the simple riemann fit. Afterwards the fit is redone.
910 // The curvature is calculated according to the formula:
911 // curv = a/(1 + b^2 + c*a) = 1/R
912 //
913 // Paramters: - Array of tracklets (connected to the track candidate)
914 // - Flag selecting the error definition
915 // Output: - Chi2 values of the track (in Parameter list)
916 //
917 TLinearFitter *fitter = GetTiltedRiemanFitter();
918 fitter->StoreData(kTRUE);
919 fitter->ClearPoints();
920 AliTRDLeastSquare zfitter;
921 AliTRDcluster *cl = 0x0;
922
923 Double_t xref = CalculateReferenceX(tracklets);
924 Double_t x, y, z, t, tilt, dx, w, we;
925 Double_t uvt[4];
926 Int_t nPoints = 0;
927 // Containers for Least-square fitter
928 for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
929 if(!tracklets[ipl].IsOK()) continue;
930 for(Int_t itb = 0; itb < fgNTimeBins; itb++){
931 if(!(cl = tracklets[ipl].GetClusters(itb))) continue;
932 if (!tracklets[ipl].IsUsable(itb)) continue;
933 x = cl->GetX();
934 y = cl->GetY();
935 z = cl->GetZ();
936 tilt = tracklets[ipl].GetTilt();
937 dx = x - xref;
938 // Transformation
939 t = 1./(x*x + y*y);
940 uvt[0] = 2. * x * t;
941 uvt[1] = t;
942 uvt[2] = 2. * tilt * t;
943 uvt[3] = 2. * tilt * dx * t;
944 w = 2. * (y + tilt*z) * t;
945 // error definition changes for the different calls
946 we = 2. * t;
947 we *= sigError ? tracklets[ipl].GetSigmaY() : 0.2;
948 fitter->AddPoint(uvt, w, we);
949 zfitter.AddPoint(&x, z, static_cast<Double_t>(TMath::Sqrt(cl->GetSigmaZ2())));
950 nPoints++;
951 }
952 }
953 fitter->Eval();
954 zfitter.Eval();
955
956 Double_t offset = fitter->GetParameter(3);
957 Double_t slope = fitter->GetParameter(4);
958
959 // Linear fitter - not possible to make boundaries
960 // Do not accept non possible z and dzdx combinations
961 Bool_t acceptablez = kTRUE;
962 Double_t zref = 0.0;
963 for (Int_t iLayer = 0; iLayer < kNPlanes; iLayer++) {
964 if(!tracklets[iLayer].IsOK()) continue;
965 zref = offset + slope * (tracklets[iLayer].GetX0() - xref);
966 if (TMath::Abs(tracklets[iLayer].GetZProb() - zref) > tracklets[iLayer].GetPadLength() * 0.5 + 1.0)
967 acceptablez = kFALSE;
968 }
969 if (!acceptablez) {
970 Double_t dzmf = zfitter.GetFunctionParameter(1);
971 Double_t zmf = zfitter.GetFunctionValue(&xref);
972 fgTiltedRieman->FixParameter(3, zmf);
973 fgTiltedRieman->FixParameter(4, dzmf);
974 fitter->Eval();
975 fitter->ReleaseParameter(3);
976 fitter->ReleaseParameter(4);
977 offset = fitter->GetParameter(3);
978 slope = fitter->GetParameter(4);
979 }
eb38ed55 980
d739fd4e 981 // Calculate Curvarture
982 Double_t a = fitter->GetParameter(0);
983 Double_t b = fitter->GetParameter(1);
984 Double_t c = fitter->GetParameter(2);
985 Double_t curvature = 1.0 + b*b - c*a;
986 if (curvature > 0.0)
987 curvature = a / TMath::Sqrt(curvature);
988
989 Double_t chi2track = fitter->GetChisquare()/Double_t(nPoints);
990
991 // Update the tracklets
992 Double_t dy, dz;
993 for(Int_t iLayer = 0; iLayer < AliTRDtrackerV1::kNPlanes; iLayer++) {
994
995 x = tracklets[iLayer].GetX0();
996 y = 0;
997 z = 0;
998 dy = 0;
999 dz = 0;
1000
1001 // y: R^2 = (x - x0)^2 + (y - y0)^2
1002 // => y = y0 +/- Sqrt(R^2 - (x - x0)^2)
1003 // R = Sqrt() = 1/Curvature
1004 // => y = y0 +/- Sqrt(1/Curvature^2 - (x - x0)^2)
1005 Double_t res = (x * a + b); // = (x - x0)/y0
1006 res *= res;
1007 res = 1.0 - c * a + b * b - res; // = (R^2 - (x - x0)^2)/y0^2
1008 if (res >= 0) {
1009 res = TMath::Sqrt(res);
1010 y = (1.0 - res) / a;
1011 }
1012
1013 // dy: R^2 = (x - x0)^2 + (y - y0)^2
1014 // => y = +/- Sqrt(R^2 - (x - x0)^2) + y0
1015 // => dy/dx = (x - x0)/Sqrt(R^2 - (x - x0)^2)
1016 // Curvature: cr = 1/R = a/Sqrt(1 + b^2 - c*a)
1017 // => dy/dx = (x - x0)/(1/(cr^2) - (x - x0)^2)
1018 Double_t x0 = -b / a;
1019 if (-c * a + b * b + 1 > 0) {
1020 if (1.0/(curvature * curvature) - (x - x0) * (x - x0) > 0.0) {
1021 Double_t yderiv = (x - x0) / TMath::Sqrt(1.0/(curvature * curvature) - (x - x0) * (x - x0));
1022 if (a < 0) yderiv *= -1.0;
1023 dy = yderiv;
1024 }
1025 }
1026 z = offset + slope * (x - xref);
1027 dz = slope;
1028 tracklets[iLayer].SetYref(0, y);
1029 tracklets[iLayer].SetYref(1, dy);
1030 tracklets[iLayer].SetZref(0, z);
1031 tracklets[iLayer].SetZref(1, dz);
1032 tracklets[iLayer].SetC(curvature);
1033 tracklets[iLayer].SetChi2(chi2track);
eb38ed55 1034 }
bb56afff 1035
d739fd4e 1036 if(AliTRDReconstructor::StreamLevel() >=5){
1037 TTreeSRedirector &cstreamer = *fgDebugStreamer;
1038 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
1039 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
1040 Double_t chi2z = CalculateChi2Z(tracklets, offset, slope, xref);
1041 cstreamer << "FitTiltedRieman0"
1042 << "EventNumber=" << eventNumber
1043 << "CandidateNumber=" << candidateNumber
1044 << "xref=" << xref
1045 << "Chi2Z=" << chi2z
1046 << "\n";
1047 }
1048 return chi2track;
eb38ed55 1049}
1050
1051//_________________________________________________________________________
bb56afff 1052Float_t AliTRDtrackerV1::CalculateChi2Z(AliTRDseedV1 *tracklets, Double_t offset, Double_t slope, Double_t xref)
eb38ed55 1053{
d739fd4e 1054 //
1055 // Calculates the chi2-value of the track in z-Direction including tilting pad correction.
1056 // A linear dependence on the x-value serves as a model.
1057 // The parameters are related to the tilted Riemann fit.
1058 // Parameters: - Array of tracklets (AliTRDseedV1) related to the track candidate
1059 // - the offset for the reference x
1060 // - the slope
1061 // - the reference x position
1062 // Output: - The Chi2 value of the track in z-Direction
1063 //
1064 Float_t chi2Z = 0, nLayers = 0;
1065 for (Int_t iLayer = 0; iLayer < AliTRDgeometry::kNplan; iLayer++) {
1066 if(!tracklets[iLayer].IsOK()) continue;
1067 Double_t z = offset + slope * (tracklets[iLayer].GetX0() - xref);
1068 chi2Z += TMath::Abs(tracklets[iLayer].GetMeanz() - z);
1069 nLayers++;
1070 }
1071 chi2Z /= TMath::Max((nLayers - 3.0),1.0);
1072 return chi2Z;
eb38ed55 1073}
1074
bccda319 1075//_____________________________________________________________________________
1076Int_t AliTRDtrackerV1::PropagateToX(AliTRDtrackV1 &t, Double_t xToGo, Double_t maxStep)
1077{
1078 //
1079 // Starting from current X-position of track <t> this function
1080 // extrapolates the track up to radial position <xToGo>.
1081 // Returns 1 if track reaches the plane, and 0 otherwise
1082 //
1083
1084 const Double_t kEpsilon = 0.00001;
1085
1086 // Current track X-position
1087 Double_t xpos = t.GetX();
1088
1089 // Direction: inward or outward
1090 Double_t dir = (xpos < xToGo) ? 1.0 : -1.0;
1091
1092 while (((xToGo - xpos) * dir) > kEpsilon) {
1093
1094 Double_t xyz0[3];
1095 Double_t xyz1[3];
1096 Double_t param[7];
1097 Double_t x;
1098 Double_t y;
1099 Double_t z;
1100
1101 // The next step size
1102 Double_t step = dir * TMath::Min(TMath::Abs(xToGo-xpos),maxStep);
1103
1104 // Get the global position of the starting point
1105 t.GetXYZ(xyz0);
1106
1107 // X-position after next step
1108 x = xpos + step;
1109
1110 // Get local Y and Z at the X-position of the next step
1111 if (!t.GetProlongation(x,y,z)) {
1112 return 0; // No prolongation possible
1113 }
1114
1115 // The global position of the end point of this prolongation step
1116 xyz1[0] = x * TMath::Cos(t.GetAlpha()) - y * TMath::Sin(t.GetAlpha());
1117 xyz1[1] = +x * TMath::Sin(t.GetAlpha()) + y * TMath::Cos(t.GetAlpha());
1118 xyz1[2] = z;
1119
1120 // Calculate the mean material budget between start and
1121 // end point of this prolongation step
eb38ed55 1122 AliTracker::MeanMaterialBudget(xyz0, xyz1, param);
bccda319 1123
1124 // Propagate the track to the X-position after the next step
1125 if (!t.PropagateTo(x,param[1],param[0]*param[4])) {
1126 return 0;
1127 }
1128
1129 // Rotate the track if necessary
1130 AdjustSector(&t);
1131
1132 // New track X-position
1133 xpos = t.GetX();
1134
1135 }
1136
1137 return 1;
1138
1139}
1140
eb38ed55 1141
1142//_____________________________________________________________________________
1143Int_t AliTRDtrackerV1::ReadClusters(TClonesArray* &array, TTree *clusterTree) const
1144{
1145 //
1146 // Reads AliTRDclusters from the file.
1147 // The names of the cluster tree and branches
1148 // should match the ones used in AliTRDclusterizer::WriteClusters()
1149 //
1150
1151 Int_t nsize = Int_t(clusterTree->GetTotBytes() / (sizeof(AliTRDcluster)));
1152 TObjArray *clusterArray = new TObjArray(nsize+1000);
1153
1154 TBranch *branch = clusterTree->GetBranch("TRDcluster");
1155 if (!branch) {
1156 AliError("Can't get the branch !");
1157 return 1;
1158 }
1159 branch->SetAddress(&clusterArray);
1160
1161 if(!fClusters){
d739fd4e 1162 array = new TClonesArray("AliTRDcluster", nsize);
1163 array->SetOwner(kTRUE);
eb38ed55 1164 }
1165
1166 // Loop through all entries in the tree
1167 Int_t nEntries = (Int_t) clusterTree->GetEntries();
1168 Int_t nbytes = 0;
1169 Int_t ncl = 0;
1170 AliTRDcluster *c = 0x0;
1171 for (Int_t iEntry = 0; iEntry < nEntries; iEntry++) {
1172 // Import the tree
1173 nbytes += clusterTree->GetEvent(iEntry);
1174
1175 // Get the number of points in the detector
1176 Int_t nCluster = clusterArray->GetEntriesFast();
1177 for (Int_t iCluster = 0; iCluster < nCluster; iCluster++) {
1178 if(!(c = (AliTRDcluster *) clusterArray->UncheckedAt(iCluster))) continue;
d739fd4e 1179 c->SetInChamber();
eb38ed55 1180 new((*fClusters)[ncl++]) AliTRDcluster(*c);
1181 clusterArray->RemoveAt(iCluster);
1182 }
1183
1184 }
1185 delete clusterArray;
1186
1187 return 0;
1188}
1189
1190//_____________________________________________________________________________
1191Int_t AliTRDtrackerV1::LoadClusters(TTree *cTree)
1192{
1193 //
1194 // Fills clusters into TRD tracking_sectors
1195 // Note that the numbering scheme for the TRD tracking_sectors
1196 // differs from that of TRD sectors
1197 //
1198
1199
1200 if (ReadClusters(fClusters, cTree)) {
1201 AliError("Problem with reading the clusters !");
1202 return 1;
1203 }
1204 Int_t ncl = fClusters->GetEntriesFast(), nin = 0;
d739fd4e 1205 if(!ncl){
1206 AliInfo("Clusters 0");
1207 return 1;
1208 }
75b9b3c1 1209
eb38ed55 1210 Int_t icl = ncl;
1211 while (icl--) {
1212 AliTRDcluster *c = (AliTRDcluster *) fClusters->UncheckedAt(icl);
d739fd4e 1213 if(c->IsInChamber()) nin++;
eb38ed55 1214 Int_t detector = c->GetDetector();
1215 Int_t sector = fGeom->GetSector(detector);
1216 Int_t stack = fGeom->GetChamber(detector);
1217 Int_t plane = fGeom->GetPlane(detector);
1218
d739fd4e 1219 fTrSec[sector].GetChamber(stack, plane, kTRUE)->InsertCluster(c, icl);
eb38ed55 1220 }
1221 AliInfo(Form("Clusters %d in %6.2f %%", ncl, 100.*float(nin)/ncl));
1222
d739fd4e 1223 for(int isector =0; isector<AliTRDgeometry::kNsect; isector++){
1224 if(!fTrSec[isector].GetNChambers()) continue;
1225 fTrSec[isector].Init();
eb38ed55 1226 }
1227
1228 return 0;
1229}
1230
1231
0906e73e 1232//____________________________________________________________________
1233void AliTRDtrackerV1::UnloadClusters()
1234{
1235 //
1236 // Clears the arrays of clusters and tracks. Resets sectors and timebins
1237 //
1238
d739fd4e 1239 if(fTracks) fTracks->Delete();
eb38ed55 1240 if(fTracklets) fTracklets->Delete();
1241 if(fClusters) fClusters->Delete();
0906e73e 1242
eb38ed55 1243 for (int i = 0; i < AliTRDgeometry::kNsect; i++) fTrSec[i].Clear();
0906e73e 1244
d739fd4e 1245 // Increment the Event Number
1246 AliTRDtrackerDebug::SetEventNumber(AliTRDtrackerDebug::GetEventNumber() + 1);
eb38ed55 1247}
0906e73e 1248
eb38ed55 1249//_____________________________________________________________________________
1250Bool_t AliTRDtrackerV1::AdjustSector(AliTRDtrackV1 *track)
1251{
1252 //
1253 // Rotates the track when necessary
1254 //
1255
1256 Double_t alpha = AliTRDgeometry::GetAlpha();
1257 Double_t y = track->GetY();
1258 Double_t ymax = track->GetX()*TMath::Tan(0.5*alpha);
0906e73e 1259
eb38ed55 1260 if (y > ymax) {
1261 if (!track->Rotate( alpha)) {
1262 return kFALSE;
0906e73e 1263 }
eb38ed55 1264 }
1265 else if (y < -ymax) {
1266 if (!track->Rotate(-alpha)) {
1267 return kFALSE;
1268 }
1269 }
1270
1271 return kTRUE;
0906e73e 1272
1273}
1274
eb38ed55 1275
0906e73e 1276//____________________________________________________________________
1277AliTRDseedV1* AliTRDtrackerV1::GetTracklet(AliTRDtrackV1 *track, Int_t p, Int_t &idx)
1278{
d739fd4e 1279 // Find tracklet for TRD track <track>
1280 // Parameters
1281 // - track
1282 // - sector
1283 // - plane
1284 // - index
1285 // Output
1286 // tracklet
1287 // index
1288 // Detailed description
1289 //
1290 idx = track->GetTrackletIndex(p);
1291 AliTRDseedV1 *tracklet = idx<0 ? 0x0 : (AliTRDseedV1*)fTracklets->UncheckedAt(idx);
1292
1293 return tracklet;
0906e73e 1294}
1295
1296//____________________________________________________________________
bc11c056 1297Int_t AliTRDtrackerV1::SetTracklet(AliTRDseedV1 *tracklet)
0906e73e 1298{
d739fd4e 1299 // Add this tracklet to the list of tracklets stored in the tracker
1300 //
1301 // Parameters
1302 // - tracklet : pointer to the tracklet to be added to the list
1303 //
1304 // Output
1305 // - the index of the new tracklet in the tracker tracklets list
1306 //
1307 // Detailed description
1308 // Build the tracklets list if it is not yet created (late initialization)
1309 // and adds the new tracklet to the list.
1310 //
1311 if(!fTracklets){
1312 fTracklets = new TClonesArray("AliTRDseedV1", AliTRDgeometry::Nsect()*kMaxTracksStack);
1313 fTracklets->SetOwner(kTRUE);
1314 }
1315 Int_t nentries = fTracklets->GetEntriesFast();
1316 new ((*fTracklets)[nentries]) AliTRDseedV1(*tracklet);
1317 return nentries;
0906e73e 1318}
1319
e4f2f73d 1320//____________________________________________________________________
eb38ed55 1321Int_t AliTRDtrackerV1::Clusters2TracksSM(Int_t sector, AliESDEvent *esd)
e4f2f73d 1322{
1323 //
1324 // Steer tracking for one SM.
1325 //
1326 // Parameters :
1327 // sector : Array of (SM) propagation layers containing clusters
1328 // esd : The current ESD event. On output it contains the also
1329 // the ESD (TRD) tracks found in this SM.
1330 //
1331 // Output :
1332 // Number of tracks found in this TRD supermodule.
1333 //
1334 // Detailed description
1335 //
1336 // 1. Unpack AliTRDpropagationLayers objects for each stack.
1337 // 2. Launch stack tracking.
1338 // See AliTRDtrackerV1::Clusters2TracksStack() for details.
1339 // 3. Pack results in the ESD event.
1340 //
1341
d739fd4e 1342 // allocate space for esd tracks in this SM
1343 TClonesArray esdTrackList("AliESDtrack", 2*kMaxTracksStack);
1344 esdTrackList.SetOwner();
e4f2f73d 1345
d739fd4e 1346 Int_t nTracks = 0;
1347 Int_t nChambers = 0;
1348 AliTRDtrackingChamber **stack = 0x0, *chamber = 0x0;
1349 for(int istack = 0; istack<AliTRDgeometry::kNcham; istack++){
1350 if(!(stack = fTrSec[sector].GetStack(istack))) continue;
1351 nChambers = 0;
1352 for(int iplane=0; iplane<AliTRDgeometry::kNplan; iplane++){
1353 if(!(chamber = stack[iplane])) continue;
1354 if(chamber->GetNClusters() < fgNTimeBins * AliTRDReconstructor::RecoParam()->GetFindableClusters()) continue;
1355 nChambers++;
1356 //AliInfo(Form("sector %d stack %d plane %d clusters %d", sector, istack, iplane, chamber->GetNClusters()));
1357 }
1358 if(nChambers < 4) continue;
1359 //AliInfo(Form("Doing stack %d", istack));
1360 nTracks += Clusters2TracksStack(stack, &esdTrackList);
1361 }
1362 //AliInfo(Form("Found %d tracks in SM %d [%d]\n", nTracks, sector, esd->GetNumberOfTracks()));
e4f2f73d 1363
d739fd4e 1364 for(int itrack=0; itrack<nTracks; itrack++)
1365 esd->AddTrack((AliESDtrack*)esdTrackList[itrack]);
e4f2f73d 1366
d739fd4e 1367 // Reset Track and Candidate Number
1368 AliTRDtrackerDebug::SetCandidateNumber(0);
1369 AliTRDtrackerDebug::SetTrackNumber(0);
1370 return nTracks;
e4f2f73d 1371}
1372
1373//____________________________________________________________________
eb38ed55 1374Int_t AliTRDtrackerV1::Clusters2TracksStack(AliTRDtrackingChamber **stack, TClonesArray *esdTrackList)
e4f2f73d 1375{
1376 //
1377 // Make tracks in one TRD stack.
1378 //
1379 // Parameters :
1380 // layer : Array of stack propagation layers containing clusters
1381 // esdTrackList : Array of ESD tracks found by the stand alone tracker.
1382 // On exit the tracks found in this stack are appended.
1383 //
1384 // Output :
1385 // Number of tracks found in this stack.
1386 //
1387 // Detailed description
1388 //
1389 // 1. Find the 3 most useful seeding chambers. See BuildSeedingConfigs() for details.
1390 // 2. Steer AliTRDtrackerV1::MakeSeeds() for 3 seeding layer configurations.
1391 // See AliTRDtrackerV1::MakeSeeds() for more details.
1392 // 3. Arrange track candidates in decreasing order of their quality
1393 // 4. Classify tracks in 5 categories according to:
1394 // a) number of layers crossed
1395 // b) track quality
1396 // 5. Sign clusters by tracks in decreasing order of track quality
1397 // 6. Build AliTRDtrack out of seeding tracklets
1398 // 7. Cook MC label
1399 // 8. Build ESD track and register it to the output list
1400 //
1401
d739fd4e 1402 AliTRDCalibraFillHisto *calibra = AliTRDCalibraFillHisto::Instance();
1403 if (!calibra) AliInfo("Could not get Calibra instance\n");
1404
1405 AliTRDtrackingChamber *chamber = 0x0;
1406 AliTRDseedV1 sseed[kMaxTracksStack*6]; // to be initialized
1407 Int_t pars[4]; // MakeSeeds parameters
e4f2f73d 1408
d739fd4e 1409 //Double_t alpha = AliTRDgeometry::GetAlpha();
1410 //Double_t shift = .5 * alpha;
1411 Int_t configs[kNConfigs];
e4f2f73d 1412
d739fd4e 1413 // Build initial seeding configurations
1414 Double_t quality = BuildSeedingConfigs(stack, configs);
1415 if(AliTRDReconstructor::StreamLevel() > 1){
1416 AliInfo(Form("Plane config %d %d %d Quality %f"
1417 , configs[0], configs[1], configs[2], quality));
1418 }
eb38ed55 1419
d739fd4e 1420 // Initialize contors
1421 Int_t ntracks, // number of TRD track candidates
1422 ntracks1, // number of registered TRD tracks/iter
1423 ntracks2 = 0; // number of all registered TRD tracks in stack
1424 fSieveSeeding = 0;
1425 do{
1426 // Loop over seeding configurations
1427 ntracks = 0; ntracks1 = 0;
1428 for (Int_t iconf = 0; iconf<3; iconf++) {
1429 pars[0] = configs[iconf];
1430 pars[1] = ntracks;
1431 ntracks = MakeSeeds(stack, &sseed[6*ntracks], pars);
1432 if(ntracks == kMaxTracksStack) break;
1433 }
1434 if(AliTRDReconstructor::StreamLevel() > 1) AliInfo(Form("Candidate TRD tracks %d in iteration %d.", ntracks, fSieveSeeding));
eb38ed55 1435
d739fd4e 1436 if(!ntracks) break;
e4f2f73d 1437
d739fd4e 1438 // Sort the seeds according to their quality
1439 Int_t sort[kMaxTracksStack];
1440 TMath::Sort(ntracks, fTrackQuality, sort, kTRUE);
e4f2f73d 1441
d739fd4e 1442 // Initialize number of tracks so far and logic switches
1443 Int_t ntracks0 = esdTrackList->GetEntriesFast();
1444 Bool_t signedTrack[kMaxTracksStack];
1445 Bool_t fakeTrack[kMaxTracksStack];
1446 for (Int_t i=0; i<ntracks; i++){
1447 signedTrack[i] = kFALSE;
1448 fakeTrack[i] = kFALSE;
1449 }
1450 //AliInfo("Selecting track candidates ...");
e4f2f73d 1451
d739fd4e 1452 // Sieve clusters in decreasing order of track quality
1453 Double_t trackParams[7];
1454 // AliTRDseedV1 *lseed = 0x0;
1455 Int_t jSieve = 0, candidates;
1456 do{
1457 //AliInfo(Form("\t\tITER = %i ", jSieve));
1458
1459 // Check track candidates
1460 candidates = 0;
1461 for (Int_t itrack = 0; itrack < ntracks; itrack++) {
1462 Int_t trackIndex = sort[itrack];
1463 if (signedTrack[trackIndex] || fakeTrack[trackIndex]) continue;
e4f2f73d 1464
1465
d739fd4e 1466 // Calculate track parameters from tracklets seeds
1467 Int_t labelsall[1000];
1468 Int_t nlabelsall = 0;
1469 Int_t naccepted = 0;
1470 Int_t ncl = 0;
1471 Int_t nused = 0;
1472 Int_t nlayers = 0;
1473 Int_t findable = 0;
1474 for (Int_t jLayer = 0; jLayer < kNPlanes; jLayer++) {
1475 Int_t jseed = kNPlanes*trackIndex+jLayer;
1476 if(!sseed[jseed].IsOK()) continue;
1477 if (TMath::Abs(sseed[jseed].GetYref(0) / sseed[jseed].GetX0()) < 0.15) findable++;
eb38ed55 1478
d739fd4e 1479 sseed[jseed].UpdateUsed();
1480 ncl += sseed[jseed].GetN2();
1481 nused += sseed[jseed].GetNUsed();
1482 nlayers++;
e4f2f73d 1483
d739fd4e 1484 // Cooking label
1485 for (Int_t itime = 0; itime < fgNTimeBins; itime++) {
1486 if(!sseed[jseed].IsUsable(itime)) continue;
1487 naccepted++;
1488 Int_t tindex = 0, ilab = 0;
1489 while(ilab<3 && (tindex = sseed[jseed].GetClusters(itime)->GetLabel(ilab)) >= 0){
1490 labelsall[nlabelsall++] = tindex;
1491 ilab++;
1492 }
1493 }
1494 }
1495 // Filter duplicated tracks
1496 if (nused > 30){
1497 //printf("Skip %d nused %d\n", trackIndex, nused);
1498 fakeTrack[trackIndex] = kTRUE;
1499 continue;
1500 }
1501 if (Float_t(nused)/ncl >= .25){
1502 //printf("Skip %d nused/ncl >= .25\n", trackIndex);
1503 fakeTrack[trackIndex] = kTRUE;
1504 continue;
1505 }
e4f2f73d 1506
d739fd4e 1507 // Classify tracks
1508 Bool_t skip = kFALSE;
1509 switch(jSieve){
1510 case 0:
1511 if(nlayers < 6) {skip = kTRUE; break;}
1512 if(TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -5.){skip = kTRUE; break;}
1513 break;
e4f2f73d 1514
d739fd4e 1515 case 1:
1516 if(nlayers < findable){skip = kTRUE; break;}
1517 if(TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -4.){skip = kTRUE; break;}
1518 break;
e4f2f73d 1519
d739fd4e 1520 case 2:
1521 if ((nlayers == findable) || (nlayers == 6)) { skip = kTRUE; break;}
1522 if (TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -6.0){skip = kTRUE; break;}
1523 break;
e4f2f73d 1524
d739fd4e 1525 case 3:
1526 if (TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -5.){skip = kTRUE; break;}
1527 break;
e4f2f73d 1528
d739fd4e 1529 case 4:
1530 if (nlayers == 3){skip = kTRUE; break;}
1531 //if (TMath::Log(1.E-9+fTrackQuality[trackIndex]) - nused/(nlayers-3.0) < -15.0){skip = kTRUE; break;}
1532 break;
1533 }
1534 if(skip){
1535 candidates++;
1536 //printf("REJECTED : %d [%d] nlayers %d trackQuality = %e nused %d\n", itrack, trackIndex, nlayers, fTrackQuality[trackIndex], nused);
1537 continue;
1538 }
1539 signedTrack[trackIndex] = kTRUE;
e4f2f73d 1540
1541
d739fd4e 1542 // Build track label - what happens if measured data ???
1543 Int_t labels[1000];
1544 Int_t outlab[1000];
1545 Int_t nlab = 0;
1546 for (Int_t iLayer = 0; iLayer < 6; iLayer++) {
1547 Int_t jseed = kNPlanes*trackIndex+iLayer;
1548 if(!sseed[jseed].IsOK()) continue;
1549 for(int ilab=0; ilab<2; ilab++){
1550 if(sseed[jseed].GetLabels(ilab) < 0) continue;
1551 labels[nlab] = sseed[jseed].GetLabels(ilab);
1552 nlab++;
1553 }
1554 }
1555 Freq(nlab,labels,outlab,kFALSE);
1556 Int_t label = outlab[0];
1557 Int_t frequency = outlab[1];
1558 Freq(nlabelsall,labelsall,outlab,kFALSE);
1559 Int_t label1 = outlab[0];
1560 Int_t label2 = outlab[2];
1561 Float_t fakeratio = (naccepted - outlab[1]) / Float_t(naccepted);
e4f2f73d 1562
1563
d739fd4e 1564 // Sign clusters
1565 AliTRDcluster *cl = 0x0; Int_t clusterIndex = -1;
1566 for (Int_t jLayer = 0; jLayer < 6; jLayer++) {
1567 Int_t jseed = kNPlanes*trackIndex+jLayer;
1568 if(!sseed[jseed].IsOK()) continue;
1569 if(TMath::Abs(sseed[jseed].GetYfit(1) - sseed[jseed].GetYfit(1)) >= .2) continue; // check this condition with Marian
1570 sseed[jseed].UseClusters();
1571 if(!cl){
1572 Int_t ic = 0;
1573 while(!(cl = sseed[jseed].GetClusters(ic))) ic++;
1574 clusterIndex = sseed[jseed].GetIndexes(ic);
1575 }
1576 }
1577 if(!cl) continue;
e4f2f73d 1578
1579
d739fd4e 1580 // Build track parameters
1581 AliTRDseedV1 *lseed =&sseed[trackIndex*6];
1582 Int_t idx = 0;
1583 while(idx<3 && !lseed->IsOK()) {
1584 idx++;
1585 lseed++;
1586 }
1587 Double_t cR = lseed->GetC();
1588 trackParams[1] = lseed->GetYref(0);
1589 trackParams[2] = lseed->GetZref(0);
1590 trackParams[3] = lseed->GetX0() * cR - TMath::Sin(TMath::ATan(lseed->GetYref(1)));
1591 trackParams[4] = lseed->GetZref(1) / TMath::Sqrt(1. + lseed->GetYref(1) * lseed->GetYref(1));
1592 trackParams[5] = cR;
1593 trackParams[0] = lseed->GetX0();
1594 Int_t ich = 0; while(!(chamber = stack[ich])) ich++;
1595 trackParams[6] = fGeom->GetSector(chamber->GetDetector());/* *alpha+shift; // Supermodule*/
1596
1597 if(AliTRDReconstructor::StreamLevel() > 1){
1598 AliInfo(Form("Track %d [%d] nlayers %d trackQuality = %e nused %d, yref = %3.3f", itrack, trackIndex, nlayers, fTrackQuality[trackIndex], nused, trackParams[1]));
eb38ed55 1599
d739fd4e 1600 Int_t nclusters = 0;
1601 AliTRDseedV1 *dseed[6];
1602 for(int is=0; is<6; is++){
1603 dseed[is] = new AliTRDseedV1(sseed[trackIndex*6+is]);
1604 dseed[is]->SetOwner();
1605 nclusters += sseed[is].GetN2();
1606 }
1607 //Int_t eventNrInFile = esd->GetEventNumberInFile();
1608 //AliInfo(Form("Number of clusters %d.", nclusters));
1609 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
1610 Int_t trackNumber = AliTRDtrackerDebug::GetTrackNumber();
1611 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
1612 TTreeSRedirector &cstreamer = *fgDebugStreamer;
1613 cstreamer << "Clusters2TracksStack"
1614 << "EventNumber=" << eventNumber
1615 << "TrackNumber=" << trackNumber
1616 << "CandidateNumber=" << candidateNumber
1617 << "Iter=" << fSieveSeeding
1618 << "Like=" << fTrackQuality[trackIndex]
1619 << "S0.=" << dseed[0]
1620 << "S1.=" << dseed[1]
1621 << "S2.=" << dseed[2]
1622 << "S3.=" << dseed[3]
1623 << "S4.=" << dseed[4]
1624 << "S5.=" << dseed[5]
1625 << "p0=" << trackParams[0]
1626 << "p1=" << trackParams[1]
1627 << "p2=" << trackParams[2]
1628 << "p3=" << trackParams[3]
1629 << "p4=" << trackParams[4]
1630 << "p5=" << trackParams[5]
1631 << "p6=" << trackParams[6]
1632 << "Label=" << label
1633 << "Label1=" << label1
1634 << "Label2=" << label2
1635 << "FakeRatio=" << fakeratio
1636 << "Freq=" << frequency
1637 << "Ncl=" << ncl
1638 << "NLayers=" << nlayers
1639 << "Findable=" << findable
1640
1641 << "NUsed=" << nused
1642 << "\n";
1643 }
e4f2f73d 1644
d739fd4e 1645 AliTRDtrackV1 *track = MakeTrack(&sseed[trackIndex*kNPlanes], trackParams);
d739fd4e 1646 if(!track){
1647 //AliWarning("Fail to build a TRD Track.");
1648 continue;
1649 }
1650 //AliInfo("End of MakeTrack()");
749f58fa 1651 // computes PID for track
1652 track->CookPID();
1653 // update calibration references using this track
1654 if(calibra->GetHisto2d()) calibra->UpdateHistogramsV1(track);
d739fd4e 1655 AliESDtrack esdTrack;
1656 esdTrack.UpdateTrackParams(track, AliESDtrack::kTRDout);
1657 esdTrack.SetLabel(track->GetLabel());
749f58fa 1658 track->UpdateESDtrack(&esdTrack);
d739fd4e 1659 // write ESD-friends if neccessary
1660 if (AliTRDReconstructor::StreamLevel() > 0){
1661 //printf("Creating Calibrations Object\n");
1662 AliTRDtrackV1 *calibTrack = new AliTRDtrackV1(*track);
1663 calibTrack->SetOwner();
1664 esdTrack.AddCalibObject(calibTrack);
1665 }
1666 new ((*esdTrackList)[ntracks0++]) AliESDtrack(esdTrack);
1667 ntracks1++;
1668 AliTRDtrackerDebug::SetTrackNumber(AliTRDtrackerDebug::GetTrackNumber() + 1);
1669 }
1670
1671 jSieve++;
1672 } while(jSieve<5 && candidates); // end track candidates sieve
1673 if(!ntracks1) break;
1674
1675 // increment counters
1676 ntracks2 += ntracks1;
1677 fSieveSeeding++;
1678
1679 // Rebuild plane configurations and indices taking only unused clusters into account
1680 quality = BuildSeedingConfigs(stack, configs);
1681 if(quality < 1.E-7) break; //AliTRDReconstructor::RecoParam()->GetPlaneQualityThreshold()) break;
e4f2f73d 1682
d739fd4e 1683 for(Int_t ip = 0; ip < kNPlanes; ip++){
1684 if(!(chamber = stack[ip])) continue;
1685 chamber->Build(fGeom);//Indices(fSieveSeeding);
1686 }
1687
1688 if(AliTRDReconstructor::StreamLevel() > 1){
1689 AliInfo(Form("Sieve level %d Plane config %d %d %d Quality %f", fSieveSeeding, configs[0], configs[1], configs[2], quality));
1690 }
1691 } while(fSieveSeeding<10); // end stack clusters sieve
e4f2f73d 1692
1693
1694
d739fd4e 1695 //AliInfo(Form("Registered TRD tracks %d in stack %d.", ntracks2, pars[1]));
e4f2f73d 1696
d739fd4e 1697 return ntracks2;
e4f2f73d 1698}
1699
1700//___________________________________________________________________
eb38ed55 1701Double_t AliTRDtrackerV1::BuildSeedingConfigs(AliTRDtrackingChamber **stack, Int_t *configs)
e4f2f73d 1702{
1703 //
1704 // Assign probabilities to chambers according to their
1705 // capability of producing seeds.
1706 //
1707 // Parameters :
1708 //
1709 // layers : Array of stack propagation layers for all 6 chambers in one stack
1710 // configs : On exit array of configuration indexes (see GetSeedingConfig()
1711 // for details) in the decreasing order of their seeding probabilities.
1712 //
1713 // Output :
1714 //
1715 // Return top configuration quality
1716 //
1717 // Detailed description:
1718 //
1719 // To each chamber seeding configuration (see GetSeedingConfig() for
1720 // the list of all configurations) one defines 2 quality factors:
1721 // - an apriori topological quality (see GetSeedingConfig() for details) and
1722 // - a data quality based on the uniformity of the distribution of
1723 // clusters over the x range (time bins population). See CookChamberQA() for details.
1724 // The overall chamber quality is given by the product of this 2 contributions.
1725 //
1726
d739fd4e 1727 Double_t chamberQ[kNPlanes];
1728 AliTRDtrackingChamber *chamber = 0x0;
1729 for(int iplane=0; iplane<kNPlanes; iplane++){
1730 if(!(chamber = stack[iplane])) continue;
1731 chamberQ[iplane] = (chamber = stack[iplane]) ? chamber->GetQuality() : 0.;
1732 }
e4f2f73d 1733
d739fd4e 1734 Double_t tconfig[kNConfigs];
1735 Int_t planes[4];
1736 for(int iconf=0; iconf<kNConfigs; iconf++){
1737 GetSeedingConfig(iconf, planes);
1738 tconfig[iconf] = fgTopologicQA[iconf];
1739 for(int iplane=0; iplane<4; iplane++) tconfig[iconf] *= chamberQ[planes[iplane]];
1740 }
e4f2f73d 1741
d739fd4e 1742 TMath::Sort((Int_t)kNConfigs, tconfig, configs, kTRUE);
1743 // AliInfo(Form("q[%d] = %f", configs[0], tconfig[configs[0]]));
1744 // AliInfo(Form("q[%d] = %f", configs[1], tconfig[configs[1]]));
1745 // AliInfo(Form("q[%d] = %f", configs[2], tconfig[configs[2]]));
eb38ed55 1746
d739fd4e 1747 return tconfig[configs[0]];
e4f2f73d 1748}
1749
1750//____________________________________________________________________
eb38ed55 1751Int_t AliTRDtrackerV1::MakeSeeds(AliTRDtrackingChamber **stack, AliTRDseedV1 *sseed, Int_t *ipar)
e4f2f73d 1752{
1753 //
1754 // Make tracklet seeds in the TRD stack.
1755 //
1756 // Parameters :
1757 // layers : Array of stack propagation layers containing clusters
1758 // sseed : Array of empty tracklet seeds. On exit they are filled.
1759 // ipar : Control parameters:
1760 // ipar[0] -> seeding chambers configuration
1761 // ipar[1] -> stack index
1762 // ipar[2] -> number of track candidates found so far
1763 //
1764 // Output :
1765 // Number of tracks candidates found.
1766 //
1767 // Detailed description
1768 //
1769 // The following steps are performed:
1770 // 1. Select seeding layers from seeding chambers
1771 // 2. Select seeding clusters from the seeding AliTRDpropagationLayerStack.
1772 // The clusters are taken from layer 3, layer 0, layer 1 and layer 2, in
1773 // this order. The parameters controling the range of accepted clusters in
eb38ed55 1774 // layer 0, 1, and 2 are defined in AliTRDchamberTimeBin::BuildCond().
e4f2f73d 1775 // 3. Helix fit of the cluster set. (see AliTRDtrackerFitter::FitRieman(AliTRDcluster**))
1776 // 4. Initialize seeding tracklets in the seeding chambers.
1777 // 5. Filter 0.
1778 // Chi2 in the Y direction less than threshold ... (1./(3. - sLayer))
1779 // Chi2 in the Z direction less than threshold ... (1./(3. - sLayer))
1780 // 6. Attach clusters to seeding tracklets and find linear approximation of
1781 // the tracklet (see AliTRDseedV1::AttachClustersIter()). The number of used
1782 // clusters used by current seeds should not exceed ... (25).
1783 // 7. Filter 1.
1784 // All 4 seeding tracklets should be correctly constructed (see
1785 // AliTRDseedV1::AttachClustersIter())
1786 // 8. Helix fit of the seeding tracklets
1787 // 9. Filter 2.
1788 // Likelihood calculation of the fit. (See AliTRDtrackerV1::CookLikelihood() for details)
1789 // 10. Extrapolation of the helix fit to the other 2 chambers:
1790 // a) Initialization of extrapolation tracklet with fit parameters
1791 // b) Helix fit of tracklets
1792 // c) Attach clusters and linear interpolation to extrapolated tracklets
1793 // d) Helix fit of tracklets
1794 // 11. Improve seeding tracklets quality by reassigning clusters.
1795 // See AliTRDtrackerV1::ImproveSeedQuality() for details.
1796 // 12. Helix fit of all 6 seeding tracklets and chi2 calculation
1797 // 13. Hyperplane fit and track quality calculation. See AliTRDtrackerFitter::FitHyperplane() for details.
1798 // 14. Cooking labels for tracklets. Should be done only for MC
1799 // 15. Register seeds.
1800 //
1801
d739fd4e 1802 AliTRDtrackingChamber *chamber = 0x0;
1803 AliTRDcluster *c[4] = {0x0, 0x0, 0x0, 0x0}; // initilize seeding clusters
1804 AliTRDseedV1 *cseed = &sseed[0]; // initialize tracklets for first track
1805 Int_t ncl, mcl; // working variable for looping over clusters
1806 Int_t index[AliTRDchamberTimeBin::kMaxClustersLayer], jndex[AliTRDchamberTimeBin::kMaxClustersLayer];
1807 // chi2 storage
1808 // chi2[0] = tracklet chi2 on the Z direction
1809 // chi2[1] = tracklet chi2 on the R direction
1810 Double_t chi2[4];
1811
1812
1813 // this should be data member of AliTRDtrack
1814 Double_t seedQuality[kMaxTracksStack];
e4f2f73d 1815
d739fd4e 1816 // unpack control parameters
1817 Int_t config = ipar[0];
1818 Int_t ntracks = ipar[1];
1819 Int_t planes[kNSeedPlanes]; GetSeedingConfig(config, planes);
e4f2f73d 1820
d739fd4e 1821 // Init chambers geometry
1822 Int_t ic = 0; while(!(chamber = stack[ic])) ic++;
1823 Int_t istack = fGeom->GetChamber(chamber->GetDetector());
1824 Double_t hL[kNPlanes]; // Tilting angle
1825 Float_t padlength[kNPlanes]; // pad lenghts
1826 AliTRDpadPlane *pp = 0x0;
1827 for(int iplane=0; iplane<kNPlanes; iplane++){
1828 pp = fGeom->GetPadPlane(iplane, istack);
1829 hL[iplane] = TMath::Tan(-TMath::DegToRad()*pp->GetTiltingAngle());
1830 padlength[iplane] = pp->GetLengthIPad();
1831 }
eb38ed55 1832
d739fd4e 1833 if(AliTRDReconstructor::StreamLevel() > 1){
1834 AliInfo(Form("Making seeds Stack[%d] Config[%d] Tracks[%d]...", istack, config, ntracks));
1835 }
e4f2f73d 1836
d739fd4e 1837 Int_t nlayers = 0;
1838 AliTRDchamberTimeBin *layer[] = {0x0, 0x0, 0x0, 0x0};
1839 for(int isl=0; isl<kNSeedPlanes; isl++){
1840 if(!(chamber = stack[planes[isl]])) continue;
1841 if(!(layer[isl] = chamber->GetSeedingLayer(fGeom))) continue;
1842 nlayers++;
1843 //AliInfo(Form("seeding plane %d clusters %d", planes[isl], Int_t(*layer[isl])));
1844 }
1845 if(nlayers < 4) return 0;
eb38ed55 1846
1847
d739fd4e 1848 // Start finding seeds
1849 Double_t cond0[4], cond1[4], cond2[4];
1850 Int_t icl = 0;
1851 while((c[3] = (*layer[3])[icl++])){
1852 if(!c[3]) continue;
1853 layer[0]->BuildCond(c[3], cond0, 0);
1854 layer[0]->GetClusters(cond0, index, ncl);
1855 //printf("Found c[3] candidates 0 %d\n", ncl);
1856 Int_t jcl = 0;
1857 while(jcl<ncl) {
1858 c[0] = (*layer[0])[index[jcl++]];
1859 if(!c[0]) continue;
1860 Double_t dx = c[3]->GetX() - c[0]->GetX();
1861 Double_t theta = (c[3]->GetZ() - c[0]->GetZ())/dx;
1862 Double_t phi = (c[3]->GetY() - c[0]->GetY())/dx;
1863 layer[1]->BuildCond(c[0], cond1, 1, theta, phi);
1864 layer[1]->GetClusters(cond1, jndex, mcl);
1865 //printf("Found c[0] candidates 1 %d\n", mcl);
1866
1867 Int_t kcl = 0;
1868 while(kcl<mcl) {
1869 c[1] = (*layer[1])[jndex[kcl++]];
1870 if(!c[1]) continue;
1871 layer[2]->BuildCond(c[1], cond2, 2, theta, phi);
1872 c[2] = layer[2]->GetNearestCluster(cond2);
1873 //printf("Found c[1] candidate 2 %p\n", c[2]);
1874 if(!c[2]) continue;
e4f2f73d 1875
d739fd4e 1876 // AliInfo("Seeding clusters found. Building seeds ...");
1877 // for(Int_t i = 0; i < kNSeedPlanes; i++) printf("%i. coordinates: x = %6.3f, y = %6.3f, z = %6.3f\n", i, c[i]->GetX(), c[i]->GetY(), c[i]->GetZ());
eb38ed55 1878
d739fd4e 1879 for (Int_t il = 0; il < 6; il++) cseed[il].Reset();
1880
1881 FitRieman(c, chi2);
1882
1883 AliTRDseedV1 *tseed = 0x0;
1884 for(int iLayer=0; iLayer<kNSeedPlanes; iLayer++){
1885 Int_t jLayer = planes[iLayer];
1886 tseed = &cseed[jLayer];
1887 tseed->SetPlane(jLayer);
1888 tseed->SetTilt(hL[jLayer]);
1889 tseed->SetPadLength(padlength[jLayer]);
1890 tseed->SetX0(stack[jLayer]->GetX());
1891 tseed->Init(GetRiemanFitter());
1892 }
1893
1894 Bool_t isFake = kFALSE;
1895 if(AliTRDReconstructor::StreamLevel() >= 2){
1896 if (c[0]->GetLabel(0) != c[3]->GetLabel(0)) isFake = kTRUE;
1897 if (c[1]->GetLabel(0) != c[3]->GetLabel(0)) isFake = kTRUE;
1898 if (c[2]->GetLabel(0) != c[3]->GetLabel(0)) isFake = kTRUE;
1899
1900 Double_t xpos[4];
1901 for(Int_t l = 0; l < kNSeedPlanes; l++) xpos[l] = layer[l]->GetX();
1902 Float_t yref[4];
1903 for(int il=0; il<4; il++) yref[il] = cseed[planes[il]].GetYref(0);
1904 Int_t ll = c[3]->GetLabel(0);
1905 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
1906 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
1907 AliRieman *rim = GetRiemanFitter();
1908 TTreeSRedirector &cs0 = *fgDebugStreamer;
1909 cs0 << "MakeSeeds0"
1910 <<"EventNumber=" << eventNumber
1911 <<"CandidateNumber=" << candidateNumber
1912 <<"isFake=" << isFake
1913 <<"config=" << config
1914 <<"label=" << ll
1915 <<"chi2z=" << chi2[0]
1916 <<"chi2y=" << chi2[1]
1917 <<"Y2exp=" << cond2[0]
1918 <<"Z2exp=" << cond2[1]
1919 <<"X0=" << xpos[0] //layer[sLayer]->GetX()
1920 <<"X1=" << xpos[1] //layer[sLayer + 1]->GetX()
1921 <<"X2=" << xpos[2] //layer[sLayer + 2]->GetX()
1922 <<"X3=" << xpos[3] //layer[sLayer + 3]->GetX()
1923 <<"yref0=" << yref[0]
1924 <<"yref1=" << yref[1]
1925 <<"yref2=" << yref[2]
1926 <<"yref3=" << yref[3]
1927 <<"c0.=" << c[0]
1928 <<"c1.=" << c[1]
1929 <<"c2.=" << c[2]
1930 <<"c3.=" << c[3]
1931 <<"Seed0.=" << &cseed[planes[0]]
1932 <<"Seed1.=" << &cseed[planes[1]]
1933 <<"Seed2.=" << &cseed[planes[2]]
1934 <<"Seed3.=" << &cseed[planes[3]]
1935 <<"RiemanFitter.=" << rim
1936 <<"\n";
1937 }
1938
1939 if(chi2[0] > AliTRDReconstructor::RecoParam()->GetChi2Z()/*7./(3. - sLayer)*//*iter*/){
1940 //AliInfo(Form("Failed chi2 filter on chi2Z [%f].", chi2[0]));
1941 AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
1942 continue;
1943 }
1944 if(chi2[1] > AliTRDReconstructor::RecoParam()->GetChi2Y()/*1./(3. - sLayer)*//*iter*/){
1945 //AliInfo(Form("Failed chi2 filter on chi2Y [%f].", chi2[1]));
1946 AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
1947 continue;
1948 }
1949 //AliInfo("Passed chi2 filter.");
1950
1951 // try attaching clusters to tracklets
1952 Int_t nUsedCl = 0;
1953 Int_t nlayers = 0;
1954 for(int iLayer=0; iLayer<kNSeedPlanes; iLayer++){
1955 Int_t jLayer = planes[iLayer];
1956 if(!cseed[jLayer].AttachClustersIter(stack[jLayer], 5., kFALSE, c[iLayer])) continue;
1957 nUsedCl += cseed[jLayer].GetNUsed();
1958 if(nUsedCl > 25) break;
1959 nlayers++;
1960 }
1961 if(nlayers < kNSeedPlanes){
1962 //AliInfo(Form("Failed updating all seeds %d [%d].", nlayers, kNSeedPlanes));
1963 AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
1964 continue;
1965 }
1966 // fit tracklets and cook likelihood
1967 FitTiltedRieman(&cseed[0], kTRUE);// Update Seeds and calculate Likelihood
1968 chi2[0] = GetChi2Y(&cseed[0]);
1969 chi2[1] = GetChi2Z(&cseed[0]);
1970 //Chi2 definitions in testing stage
1971 //chi2[0] = GetChi2YTest(&cseed[0]);
1972 //chi2[1] = GetChi2ZTest(&cseed[0]);
1973 Double_t like = CookLikelihood(&cseed[0], planes, chi2); // to be checked
1974
1975 if (TMath::Log(1.E-9 + like) < AliTRDReconstructor::RecoParam()->GetTrackLikelihood()){
1976 //AliInfo(Form("Failed likelihood %f[%e].", TMath::Log(1.E-9 + like), like));
1977 AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
1978 continue;
1979 }
1980 //AliInfo(Form("Passed likelihood %f[%e].", TMath::Log(1.E-9 + like), like));
1981
1982 // book preliminary results
1983 seedQuality[ntracks] = like;
1984 fSeedLayer[ntracks] = config;/*sLayer;*/
1985
1986 // attach clusters to the extrapolation seeds
1987 Int_t lextrap[2];
1988 GetExtrapolationConfig(config, lextrap);
1989 Int_t nusedf = 0; // debug value
1990 for(int iLayer=0; iLayer<2; iLayer++){
1991 Int_t jLayer = lextrap[iLayer];
1992 if(!(chamber = stack[jLayer])) continue;
eb38ed55 1993
d739fd4e 1994 // prepare extrapolated seed
1995 cseed[jLayer].Reset();
1996 cseed[jLayer].SetPlane(jLayer);
1997 cseed[jLayer].SetTilt(hL[jLayer]);
1998 cseed[jLayer].SetX0(chamber->GetX());
1999 cseed[jLayer].SetPadLength(padlength[jLayer]);
2000
2001 // fit extrapolated seed
2002 if ((jLayer == 0) && !(cseed[1].IsOK())) continue;
2003 if ((jLayer == 5) && !(cseed[4].IsOK())) continue;
2004 AliTRDseedV1 tseed = cseed[jLayer];
2005 if(!tseed.AttachClustersIter(chamber, 1000.)) continue;
2006 cseed[jLayer] = tseed;
2007 nusedf += cseed[jLayer].GetNUsed(); // debug value
2008 FitTiltedRieman(cseed, kTRUE);
2009 }
2010
2011 // AliInfo("Extrapolation done.");
2012 // Debug Stream containing all the 6 tracklets
2013 if(AliTRDReconstructor::StreamLevel() >= 2){
2014 TTreeSRedirector &cstreamer = *fgDebugStreamer;
2015 TLinearFitter *tiltedRieman = GetTiltedRiemanFitter();
2016 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
2017 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
2018 cstreamer << "MakeSeeds1"
2019 << "EventNumber=" << eventNumber
2020 << "CandidateNumber=" << candidateNumber
2021 << "S0.=" << &cseed[0]
2022 << "S1.=" << &cseed[1]
2023 << "S2.=" << &cseed[2]
2024 << "S3.=" << &cseed[3]
2025 << "S4.=" << &cseed[4]
2026 << "S5.=" << &cseed[5]
2027 << "FitterT.=" << tiltedRieman
2028 << "\n";
2029 }
bb56afff 2030
d739fd4e 2031 if(ImproveSeedQuality(stack, cseed) < 4){
2032 AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
2033 continue;
2034 }
2035 //AliInfo("Improve seed quality done.");
2036
2037 // fit full track and cook likelihoods
2038 // Double_t curv = FitRieman(&cseed[0], chi2);
2039 // Double_t chi2ZF = chi2[0] / TMath::Max((nlayers - 3.), 1.);
2040 // Double_t chi2RF = chi2[1] / TMath::Max((nlayers - 3.), 1.);
2041
2042 // do the final track fitting (Once with vertex constraint and once without vertex constraint)
2043 Double_t chi2Vals[3];
2044 chi2Vals[0] = FitTiltedRieman(&cseed[0], kFALSE);
2045 chi2Vals[1] = FitTiltedRiemanConstraint(&cseed[0], GetZ());
2046 chi2Vals[2] = GetChi2Z(&cseed[0]) / TMath::Max((nlayers - 3.), 1.);
2047 // Chi2 definitions in testing stage
2048 //chi2Vals[2] = GetChi2ZTest(&cseed[0]);
2049 fTrackQuality[ntracks] = CalculateTrackLikelihood(&cseed[0], &chi2Vals[0]);
2050 //AliInfo("Hyperplane fit done\n");
2051
2052 // finalize tracklets
2053 Int_t labels[12];
2054 Int_t outlab[24];
2055 Int_t nlab = 0;
2056 for (Int_t iLayer = 0; iLayer < 6; iLayer++) {
2057 if (!cseed[iLayer].IsOK()) continue;
2058
2059 if (cseed[iLayer].GetLabels(0) >= 0) {
2060 labels[nlab] = cseed[iLayer].GetLabels(0);
2061 nlab++;
2062 }
2063
2064 if (cseed[iLayer].GetLabels(1) >= 0) {
2065 labels[nlab] = cseed[iLayer].GetLabels(1);
2066 nlab++;
2067 }
2068 }
2069 Freq(nlab,labels,outlab,kFALSE);
2070 Int_t label = outlab[0];
2071 Int_t frequency = outlab[1];
2072 for (Int_t iLayer = 0; iLayer < 6; iLayer++) {
2073 cseed[iLayer].SetFreq(frequency);
2074 cseed[iLayer].SetChi2Z(chi2[1]);
2075 }
e4f2f73d 2076
d739fd4e 2077 if(AliTRDReconstructor::StreamLevel() >= 2){
2078 TTreeSRedirector &cstreamer = *fgDebugStreamer;
2079 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
2080 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
2081 TLinearFitter *fitterTC = GetTiltedRiemanFitterConstraint();
2082 TLinearFitter *fitterT = GetTiltedRiemanFitter();
2083 cstreamer << "MakeSeeds2"
2084 << "EventNumber=" << eventNumber
2085 << "CandidateNumber=" << candidateNumber
2086 << "Chi2TR=" << chi2Vals[0]
2087 << "Chi2TC=" << chi2Vals[1]
2088 << "Nlayers=" << nlayers
2089 << "NUsedS=" << nUsedCl
2090 << "NUsed=" << nusedf
2091 << "Like=" << like
2092 << "S0.=" << &cseed[0]
2093 << "S1.=" << &cseed[1]
2094 << "S2.=" << &cseed[2]
2095 << "S3.=" << &cseed[3]
2096 << "S4.=" << &cseed[4]
2097 << "S5.=" << &cseed[5]
2098 << "Label=" << label
2099 << "Freq=" << frequency
2100 << "FitterT.=" << fitterT
2101 << "FitterTC.=" << fitterTC
2102 << "\n";
2103 }
e4f2f73d 2104
d739fd4e 2105 ntracks++;
2106 AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
2107 if(ntracks == kMaxTracksStack){
2108 AliWarning(Form("Number of seeds reached maximum allowed (%d) in stack.", kMaxTracksStack));
2109 for(int isl=0; isl<4; isl++) delete layer[isl];
2110 return ntracks;
e4f2f73d 2111 }
d739fd4e 2112 cseed += 6;
2113 }
2114 }
2115 }
2116 for(int isl=0; isl<4; isl++) delete layer[isl];
e4f2f73d 2117
d739fd4e 2118 return ntracks;
e4f2f73d 2119}
2120
2121//_____________________________________________________________________________
0906e73e 2122AliTRDtrackV1* AliTRDtrackerV1::MakeTrack(AliTRDseedV1 *seeds, Double_t *params)
e4f2f73d 2123{
2124 //
2125 // Build a TRD track out of tracklet candidates
2126 //
2127 // Parameters :
2128 // seeds : array of tracklets
2129 // params : track parameters (see MakeSeeds() function body for a detailed description)
2130 //
2131 // Output :
2132 // The TRD track.
2133 //
2134 // Detailed description
2135 //
2136 // To be discussed with Marian !!
2137 //
2138
e4f2f73d 2139 Double_t alpha = AliTRDgeometry::GetAlpha();
2140 Double_t shift = AliTRDgeometry::GetAlpha()/2.0;
2141 Double_t c[15];
2142
2143 c[ 0] = 0.2;
2144 c[ 1] = 0.0; c[ 2] = 2.0;
2145 c[ 3] = 0.0; c[ 4] = 0.0; c[ 5] = 0.02;
2146 c[ 6] = 0.0; c[ 7] = 0.0; c[ 8] = 0.0; c[ 9] = 0.1;
2147 c[10] = 0.0; c[11] = 0.0; c[12] = 0.0; c[13] = 0.0; c[14] = params[5]*params[5]*0.01;
2148
0906e73e 2149 AliTRDtrackV1 *track = new AliTRDtrackV1(seeds, &params[1], c, params[0], params[6]*alpha+shift);
d739fd4e 2150 track->PropagateTo(params[0]-5.0);
e4f2f73d 2151 track->ResetCovariance(1);
0906e73e 2152 Int_t nc = FollowBackProlongation(*track);
d739fd4e 2153 //AliInfo(Form("N clusters for track %d", nc));
2154 if (nc < 30) {
e4f2f73d 2155 delete track;
0906e73e 2156 track = 0x0;
2157 } else {
d739fd4e 2158 track->CookdEdx();
2159 track->CookdEdxTimBin(-1);
2160 track->CookLabel(.9);
e4f2f73d 2161 }
2162
2163 return track;
2164}
2165
0906e73e 2166
2167//____________________________________________________________________
eb38ed55 2168Int_t AliTRDtrackerV1::ImproveSeedQuality(AliTRDtrackingChamber **stack, AliTRDseedV1 *cseed)
e4f2f73d 2169{
2170 //
2171 // Sort tracklets according to "quality" and try to "improve" the first 4 worst
2172 //
2173 // Parameters :
2174 // layers : Array of propagation layers for a stack/supermodule
2175 // cseed : Array of 6 seeding tracklets which has to be improved
2176 //
2177 // Output :
2178 // cssed : Improved seeds
2179 //
2180 // Detailed description
2181 //
2182 // Iterative procedure in which new clusters are searched for each
2183 // tracklet seed such that the seed quality (see AliTRDseed::GetQuality())
2184 // can be maximized. If some optimization is found the old seeds are replaced.
2185 //
d739fd4e 2186 // debug level: 7
2187 //
e4f2f73d 2188
d739fd4e 2189 // make a local working copy
2190 AliTRDtrackingChamber *chamber = 0x0;
2191 AliTRDseedV1 bseed[6];
2192 Int_t nLayers = 0;
2193 for (Int_t jLayer = 0; jLayer < 6; jLayer++) bseed[jLayer] = cseed[jLayer];
eb38ed55 2194
d739fd4e 2195 Float_t lastquality = 10000.0;
2196 Float_t lastchi2 = 10000.0;
2197 Float_t chi2 = 1000.0;
2198
2199 for (Int_t iter = 0; iter < 4; iter++) {
2200 Float_t sumquality = 0.0;
2201 Float_t squality[6];
2202 Int_t sortindexes[6];
2203
2204 for (Int_t jLayer = 0; jLayer < 6; jLayer++) {
2205 squality[jLayer] = bseed[jLayer].IsOK() ? bseed[jLayer].GetQuality(kTRUE) : -1.;
2206 sumquality += squality[jLayer];
2207 }
2208 if ((sumquality >= lastquality) || (chi2 > lastchi2)) break;
2209
2210 nLayers = 0;
2211 lastquality = sumquality;
2212 lastchi2 = chi2;
2213 if (iter > 0) for (Int_t jLayer = 0; jLayer < 6; jLayer++) cseed[jLayer] = bseed[jLayer];
2214
2215 TMath::Sort(6, squality, sortindexes, kFALSE);
2216 for (Int_t jLayer = 5; jLayer > 1; jLayer--) {
2217 Int_t bLayer = sortindexes[jLayer];
2218 if(!(chamber = stack[bLayer])) continue;
2219 bseed[bLayer].AttachClustersIter(chamber, squality[bLayer], kTRUE);
2220 if(bseed[bLayer].IsOK()) nLayers++;
2221 }
2222
2223 chi2 = FitTiltedRieman(bseed, kTRUE);
2224 if(AliTRDReconstructor::StreamLevel() >= 7){
2225 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
2226 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
2227 TLinearFitter *tiltedRieman = GetTiltedRiemanFitter();
2228 TTreeSRedirector &cstreamer = *fgDebugStreamer;
2229 cstreamer << "ImproveSeedQuality"
2230 << "EventNumber=" << eventNumber
2231 << "CandidateNumber=" << candidateNumber
2232 << "Iteration=" << iter
2233 << "S0.=" << &bseed[0]
2234 << "S1.=" << &bseed[1]
2235 << "S2.=" << &bseed[2]
2236 << "S3.=" << &bseed[3]
2237 << "S4.=" << &bseed[4]
2238 << "S5.=" << &bseed[5]
2239 << "FitterT.=" << tiltedRieman
2240 << "\n";
2241 }
2242 } // Loop: iter
eb38ed55 2243
d739fd4e 2244 // we are sure that at least 2 tracklets are OK !
2245 return nLayers+2;
e4f2f73d 2246}
2247
eb38ed55 2248//_________________________________________________________________________
2249Double_t AliTRDtrackerV1::CalculateTrackLikelihood(AliTRDseedV1 *tracklets, Double_t *chi2){
d739fd4e 2250 //
2251 // Calculates the Track Likelihood value. This parameter serves as main quality criterion for
2252 // the track selection
2253 // The likelihood value containes:
2254 // - The chi2 values from the both fitters and the chi2 values in z-direction from a linear fit
2255 // - The Sum of the Parameter |slope_ref - slope_fit|/Sigma of the tracklets
2256 // For all Parameters an exponential dependency is used
2257 //
2258 // Parameters: - Array of tracklets (AliTRDseedV1) related to the track candidate
2259 // - Array of chi2 values:
2260 // * Non-Constrained Tilted Riemann fit
2261 // * Vertex-Constrained Tilted Riemann fit
2262 // * z-Direction from Linear fit
2263 // Output: - The calculated track likelihood
2264 //
2265 // debug level 2
2266 //
eb38ed55 2267
d739fd4e 2268 Double_t sumdaf = 0, nLayers = 0;
2269 for (Int_t iLayer = 0; iLayer < kNPlanes; iLayer++) {
2270 if(!tracklets[iLayer].IsOK()) continue;
2271 sumdaf += TMath::Abs((tracklets[iLayer].GetYfit(1) - tracklets[iLayer].GetYref(1))/ tracklets[iLayer].GetSigmaY2());
2272 nLayers++;
2273 }
2274 sumdaf /= Float_t (nLayers - 2.0);
2275
2276 Double_t likeChi2Z = TMath::Exp(-chi2[2] * 0.14); // Chi2Z
2277 Double_t likeChi2TC = TMath::Exp(-chi2[1] * 0.677); // Constrained Tilted Riemann
2278 Double_t likeChi2TR = TMath::Exp(-chi2[0] * 0.78); // Non-constrained Tilted Riemann
2279 Double_t likeAF = TMath::Exp(-sumdaf * 3.23);
2280 Double_t trackLikelihood = likeChi2Z * likeChi2TR * likeAF;
2281
2282 if(AliTRDReconstructor::StreamLevel() >= 2){
2283 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
2284 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
2285 TTreeSRedirector &cstreamer = *fgDebugStreamer;
2286 cstreamer << "CalculateTrackLikelihood0"
2287 << "EventNumber=" << eventNumber
2288 << "CandidateNumber=" << candidateNumber
2289 << "LikeChi2Z=" << likeChi2Z
2290 << "LikeChi2TR=" << likeChi2TR
2291 << "LikeChi2TC=" << likeChi2TC
2292 << "LikeAF=" << likeAF
2293 << "TrackLikelihood=" << trackLikelihood
2294 << "\n";
2295 }
eb38ed55 2296
d739fd4e 2297 return trackLikelihood;
e4f2f73d 2298}
2299
2300//____________________________________________________________________
eb38ed55 2301Double_t AliTRDtrackerV1::CookLikelihood(AliTRDseedV1 *cseed, Int_t planes[4]
d739fd4e 2302 , Double_t *chi2)
e4f2f73d 2303{
2304 //
2305 // Calculate the probability of this track candidate.
2306 //
2307 // Parameters :
2308 // cseeds : array of candidate tracklets
2309 // planes : array of seeding planes (see seeding configuration)
2310 // chi2 : chi2 values (on the Z and Y direction) from the rieman fit of the track.
2311 //
2312 // Output :
2313 // likelihood value
2314 //
2315 // Detailed description
2316 //
2317 // The track quality is estimated based on the following 4 criteria:
2318 // 1. precision of the rieman fit on the Y direction (likea)
2319 // 2. chi2 on the Y direction (likechi2y)
2320 // 3. chi2 on the Z direction (likechi2z)
2321 // 4. number of attached clusters compared to a reference value
2322 // (see AliTRDrecoParam::fkFindable) (likeN)
2323 //
2324 // The distributions for each type of probabilities are given below as of
2325 // (date). They have to be checked to assure consistency of estimation.
2326 //
2327
d739fd4e 2328 // ratio of the total number of clusters/track which are expected to be found by the tracker.
2329 Float_t fgFindable = AliTRDReconstructor::RecoParam()->GetFindableClusters();
e4f2f73d 2330
2331
d739fd4e 2332 Int_t nclusters = 0;
2333 Double_t sumda = 0.;
2334 for(UChar_t ilayer = 0; ilayer < 4; ilayer++){
2335 Int_t jlayer = planes[ilayer];
2336 nclusters += cseed[jlayer].GetN2();
2337 sumda += TMath::Abs(cseed[jlayer].GetYfitR(1) - cseed[jlayer].GetYref(1));
2338 }
2339 Double_t likea = TMath::Exp(-sumda*10.6);
2340 Double_t likechi2y = 0.0000000001;
2341 if (chi2[0] < 0.5) likechi2y += TMath::Exp(-TMath::Sqrt(chi2[0]) * 7.73);
2342 Double_t likechi2z = TMath::Exp(-chi2[1] * 0.088) / TMath::Exp(-chi2[1] * 0.019);
2343 Int_t enc = Int_t(fgFindable*4.*fgNTimeBins); // Expected Number Of Clusters, normally 72
2344 Double_t likeN = TMath::Exp(-(enc - nclusters) * 0.19);
e4f2f73d 2345
d739fd4e 2346 Double_t like = likea * likechi2y * likechi2z * likeN;
2347
2348 // AliInfo(Form("sumda(%f) chi2[0](%f) chi2[1](%f) likea(%f) likechi2y(%f) likechi2z(%f) nclusters(%d) likeN(%f)", sumda, chi2[0], chi2[1], likea, likechi2y, likechi2z, nclusters, likeN));
2349 if(AliTRDReconstructor::StreamLevel() >= 2){
2350 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
2351 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
2352 // The Debug Stream contains the seed
2353 TTreeSRedirector &cstreamer = *fgDebugStreamer;
2354 cstreamer << "CookLikelihood"
2355 << "EventNumber=" << eventNumber
2356 << "CandidateNumber=" << candidateNumber
2357 << "tracklet0.=" << &cseed[0]
2358 << "tracklet1.=" << &cseed[1]
2359 << "tracklet2.=" << &cseed[2]
2360 << "tracklet3.=" << &cseed[3]
2361 << "tracklet4.=" << &cseed[4]
2362 << "tracklet5.=" << &cseed[5]
2363 << "sumda=" << sumda
2364 << "chi0=" << chi2[0]
2365 << "chi1=" << chi2[1]
2366 << "likea=" << likea
2367 << "likechi2y=" << likechi2y
2368 << "likechi2z=" << likechi2z
2369 << "nclusters=" << nclusters
2370 << "likeN=" << likeN
2371 << "like=" << like
2372 << "\n";
2373 }
e4f2f73d 2374
d739fd4e 2375 return like;
e4f2f73d 2376}
2377
eb38ed55 2378
e4f2f73d 2379
2380//____________________________________________________________________
0906e73e 2381void AliTRDtrackerV1::GetSeedingConfig(Int_t iconfig, Int_t planes[4])
e4f2f73d 2382{
2383 //
2384 // Map seeding configurations to detector planes.
2385 //
2386 // Parameters :
2387 // iconfig : configuration index
2388 // planes : member planes of this configuration. On input empty.
2389 //
2390 // Output :
2391 // planes : contains the planes which are defining the configuration
2392 //
2393 // Detailed description
2394 //
2395 // Here is the list of seeding planes configurations together with
2396 // their topological classification:
2397 //
2398 // 0 - 5432 TQ 0
2399 // 1 - 4321 TQ 0
2400 // 2 - 3210 TQ 0
2401 // 3 - 5321 TQ 1
2402 // 4 - 4210 TQ 1
2403 // 5 - 5431 TQ 1
2404 // 6 - 4320 TQ 1
2405 // 7 - 5430 TQ 2
2406 // 8 - 5210 TQ 2
2407 // 9 - 5421 TQ 3
2408 // 10 - 4310 TQ 3
2409 // 11 - 5410 TQ 4
2410 // 12 - 5420 TQ 5
2411 // 13 - 5320 TQ 5
2412 // 14 - 5310 TQ 5
2413 //
2414 // The topologic quality is modeled as follows:
2415 // 1. The general model is define by the equation:
2416 // p(conf) = exp(-conf/2)
2417 // 2. According to the topologic classification, configurations from the same
2418 // class are assigned the agerage value over the model values.
2419 // 3. Quality values are normalized.
2420 //
2421 // The topologic quality distribution as function of configuration is given below:
2422 //Begin_Html
2423 // <img src="gif/topologicQA.gif">
2424 //End_Html
2425 //
2426
d739fd4e 2427 switch(iconfig){
2428 case 0: // 5432 TQ 0
2429 planes[0] = 2;
2430 planes[1] = 3;
2431 planes[2] = 4;
2432 planes[3] = 5;
2433 break;
2434 case 1: // 4321 TQ 0
2435 planes[0] = 1;
2436 planes[1] = 2;
2437 planes[2] = 3;
2438 planes[3] = 4;
2439 break;
2440 case 2: // 3210 TQ 0
2441 planes[0] = 0;
2442 planes[1] = 1;
2443 planes[2] = 2;
2444 planes[3] = 3;
2445 break;
2446 case 3: // 5321 TQ 1
2447 planes[0] = 1;
2448 planes[1] = 2;
2449 planes[2] = 3;
2450 planes[3] = 5;
2451 break;
2452 case 4: // 4210 TQ 1
2453 planes[0] = 0;
2454 planes[1] = 1;
2455 planes[2] = 2;
2456 planes[3] = 4;
2457 break;
2458 case 5: // 5431 TQ 1
2459 planes[0] = 1;
2460 planes[1] = 3;
2461 planes[2] = 4;
2462 planes[3] = 5;
2463 break;
2464 case 6: // 4320 TQ 1
2465 planes[0] = 0;
2466 planes[1] = 2;
2467 planes[2] = 3;
2468 planes[3] = 4;
2469 break;
2470 case 7: // 5430 TQ 2
2471 planes[0] = 0;
2472 planes[1] = 3;
2473 planes[2] = 4;
2474 planes[3] = 5;
2475 break;
2476 case 8: // 5210 TQ 2
2477 planes[0] = 0;
2478 planes[1] = 1;
2479 planes[2] = 2;
2480 planes[3] = 5;
2481 break;
2482 case 9: // 5421 TQ 3
2483 planes[0] = 1;
2484 planes[1] = 2;
2485 planes[2] = 4;
2486 planes[3] = 5;
2487 break;
2488 case 10: // 4310 TQ 3
2489 planes[0] = 0;
2490 planes[1] = 1;
2491 planes[2] = 3;
2492 planes[3] = 4;
2493 break;
2494 case 11: // 5410 TQ 4
2495 planes[0] = 0;
2496 planes[1] = 1;
2497 planes[2] = 4;
2498 planes[3] = 5;
2499 break;
2500 case 12: // 5420 TQ 5
2501 planes[0] = 0;
2502 planes[1] = 2;
2503 planes[2] = 4;
2504 planes[3] = 5;
2505 break;
2506 case 13: // 5320 TQ 5
2507 planes[0] = 0;
2508 planes[1] = 2;
2509 planes[2] = 3;
2510 planes[3] = 5;
2511 break;
2512 case 14: // 5310 TQ 5
2513 planes[0] = 0;
2514 planes[1] = 1;
2515 planes[2] = 3;
2516 planes[3] = 5;
2517 break;
2518 }
e4f2f73d 2519}
2520
2521//____________________________________________________________________
0906e73e 2522void AliTRDtrackerV1::GetExtrapolationConfig(Int_t iconfig, Int_t planes[2])
e4f2f73d 2523{
2524 //
2525 // Returns the extrapolation planes for a seeding configuration.
2526 //
2527 // Parameters :
2528 // iconfig : configuration index
2529 // planes : planes which are not in this configuration. On input empty.
2530 //
2531 // Output :
2532 // planes : contains the planes which are not in the configuration
2533 //
2534 // Detailed description
2535 //
2536
d739fd4e 2537 switch(iconfig){
2538 case 0: // 5432 TQ 0
2539 planes[0] = 1;
2540 planes[1] = 0;
2541 break;
2542 case 1: // 4321 TQ 0
2543 planes[0] = 5;
2544 planes[1] = 0;
2545 break;
2546 case 2: // 3210 TQ 0
2547 planes[0] = 4;
2548 planes[1] = 5;
2549 break;
2550 case 3: // 5321 TQ 1
2551 planes[0] = 4;
2552 planes[1] = 0;
2553 break;
2554 case 4: // 4210 TQ 1
2555 planes[0] = 5;
2556 planes[1] = 3;
2557 break;
2558 case 5: // 5431 TQ 1
2559 planes[0] = 2;
2560 planes[1] = 0;
2561 break;
2562 case 6: // 4320 TQ 1
2563 planes[0] = 5;
2564 planes[1] = 1;
2565 break;
2566 case 7: // 5430 TQ 2
2567 planes[0] = 2;
2568 planes[1] = 1;
2569 break;
2570 case 8: // 5210 TQ 2
2571 planes[0] = 4;
2572 planes[1] = 3;
2573 break;
2574 case 9: // 5421 TQ 3
2575 planes[0] = 3;
2576 planes[1] = 0;
2577 break;
2578 case 10: // 4310 TQ 3
2579 planes[0] = 5;
2580 planes[1] = 2;
2581 break;
2582 case 11: // 5410 TQ 4
2583 planes[0] = 3;
2584 planes[1] = 2;
2585 break;
2586 case 12: // 5420 TQ 5
2587 planes[0] = 3;
2588 planes[1] = 1;
2589 break;
2590 case 13: // 5320 TQ 5
2591 planes[0] = 4;
2592 planes[1] = 1;
2593 break;
2594 case 14: // 5310 TQ 5
2595 planes[0] = 4;
2596 planes[1] = 2;
2597 break;
2598 }
e4f2f73d 2599}
eb38ed55 2600
2601//____________________________________________________________________
2602AliCluster* AliTRDtrackerV1::GetCluster(Int_t idx) const
2603{
d739fd4e 2604 Int_t ncls = fClusters->GetEntriesFast();
2605 return idx >= 0 || idx < ncls ? (AliCluster*)fClusters->UncheckedAt(idx) : 0x0;
eb38ed55 2606}
2607
bb56afff 2608//____________________________________________________________________
2609Float_t AliTRDtrackerV1::CalculateReferenceX(AliTRDseedV1 *tracklets){
d739fd4e 2610 //
2611 // Calculates the reference x-position for the tilted Rieman fit defined as middle
2612 // of the stack (middle between layers 2 and 3). For the calculation all the tracklets
2613 // are taken into account
2614 //
2615 // Parameters: - Array of tracklets(AliTRDseedV1)
2616 //
2617 // Output: - The reference x-position(Float_t)
2618 //
2619 Int_t nDistances = 0;
2620 Float_t meanDistance = 0.;
2621 Int_t startIndex = 5;
2622 for(Int_t il =5; il > 0; il--){
2623 if(tracklets[il].IsOK() && tracklets[il -1].IsOK()){
2624 Float_t xdiff = tracklets[il].GetX0() - tracklets[il -1].GetX0();
2625 meanDistance += xdiff;
2626 nDistances++;
2627 }
2628 if(tracklets[il].IsOK()) startIndex = il;
2629 }
2630 if(tracklets[0].IsOK()) startIndex = 0;
2631 if(!nDistances){
2632 // We should normally never get here
2633 Float_t xpos[2]; memset(xpos, 0, sizeof(Float_t) * 2);
2634 Int_t iok = 0, idiff = 0;
2635 // This attempt is worse and should be avoided:
2636 // check for two chambers which are OK and repeat this without taking the mean value
2637 // Strategy avoids a division by 0;
2638 for(Int_t il = 5; il >= 0; il--){
2639 if(tracklets[il].IsOK()){
2640 xpos[iok] = tracklets[il].GetX0();
2641 iok++;
2642 startIndex = il;
2643 }
2644 if(iok) idiff++; // to get the right difference;
2645 if(iok > 1) break;
2646 }
2647 if(iok > 1){
2648 meanDistance = (xpos[0] - xpos[1])/idiff;
2649 }
2650 else{
2651 // we have do not even have 2 layers which are OK? The we do not need to fit at all
2652 return 331.;
2653 }
2654 }
2655 else{
2656 meanDistance /= nDistances;
2657 }
2658 return tracklets[startIndex].GetX0() + (2.5 - startIndex) * meanDistance - 0.5 * (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick());
bb56afff 2659}
eb38ed55 2660
2661//_____________________________________________________________________________
2662Int_t AliTRDtrackerV1::Freq(Int_t n, const Int_t *inlist
d739fd4e 2663 , Int_t *outlist, Bool_t down)
eb38ed55 2664{
2665 //
2666 // Sort eleements according occurancy
2667 // The size of output array has is 2*n
2668 //
2669
2670 if (n <= 0) {
2671 return 0;
2672 }
2673
2674 Int_t *sindexS = new Int_t[n]; // Temporary array for sorting
2675 Int_t *sindexF = new Int_t[2*n];
2676 for (Int_t i = 0; i < n; i++) {
2677 sindexF[i] = 0;
2678 }
2679
2680 TMath::Sort(n,inlist,sindexS,down);
2681
2682 Int_t last = inlist[sindexS[0]];
2683 Int_t val = last;
2684 sindexF[0] = 1;
2685 sindexF[0+n] = last;
2686 Int_t countPos = 0;
2687
2688 // Find frequency
2689 for (Int_t i = 1; i < n; i++) {
2690 val = inlist[sindexS[i]];
2691 if (last == val) {
2692 sindexF[countPos]++;
2693 }
2694 else {
2695 countPos++;
2696 sindexF[countPos+n] = val;
2697 sindexF[countPos]++;
2698 last = val;
2699 }
2700 }
2701 if (last == val) {
2702 countPos++;
2703 }
2704
2705 // Sort according frequency
2706 TMath::Sort(countPos,sindexF,sindexS,kTRUE);
2707
2708 for (Int_t i = 0; i < countPos; i++) {
2709 outlist[2*i ] = sindexF[sindexS[i]+n];
2710 outlist[2*i+1] = sindexF[sindexS[i]];
2711 }
2712
2713 delete [] sindexS;
2714 delete [] sindexF;
2715
2716 return countPos;
2717
2718}
bb56afff 2719
2720//_____________________________________________________________________________
2721Float_t AliTRDtrackerV1::GetChi2Y(AliTRDseedV1 *tracklets) const
2722{
d739fd4e 2723 // Chi2 definition on y-direction
bb56afff 2724
d739fd4e 2725 Float_t chi2 = 0;
2726 for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
2727 if(!tracklets[ipl].IsOK()) continue;
2728 Double_t distLayer = tracklets[ipl].GetYfit(0) - tracklets[ipl].GetYref(0);
2729 chi2 += distLayer * distLayer;
2730 }
2731 return chi2;
bb56afff 2732}
2733
2734//_____________________________________________________________________________
2735Float_t AliTRDtrackerV1::GetChi2Z(AliTRDseedV1 *tracklets) const
2736{
d739fd4e 2737 // Chi2 definition on z-direction
bb56afff 2738
d739fd4e 2739 Float_t chi2 = 0;
2740 for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
2741 if(!tracklets[ipl].IsOK()) continue;
2742 Double_t distLayer = tracklets[ipl].GetMeanz() - tracklets[ipl].GetZref(0);
2743 chi2 += distLayer * distLayer;
2744 }
2745 return chi2;
bb56afff 2746}
8acca6a3 2747
2748///////////////////////////////////////////////////////
2749// //
2750// Resources of class AliTRDLeastSquare //
2751// //
2752///////////////////////////////////////////////////////
2753
2754//_____________________________________________________________________________
2755AliTRDtrackerV1::AliTRDLeastSquare::AliTRDLeastSquare(){
d739fd4e 2756 //
2757 // Constructor of the nested class AliTRDtrackFitterLeastSquare
2758 //
2759 memset(fParams, 0, sizeof(Double_t) * 2);
2760 memset(fSums, 0, sizeof(Double_t) * 5);
2761 memset(fCovarianceMatrix, 0, sizeof(Double_t) * 3);
8acca6a3 2762
2763}
2764
2765//_____________________________________________________________________________
2766void AliTRDtrackerV1::AliTRDLeastSquare::AddPoint(Double_t *x, Double_t y, Double_t sigmaY){
d739fd4e 2767 //
2768 // Adding Point to the fitter
2769 //
2770 Double_t weight = 1/(sigmaY * sigmaY);
2771 Double_t &xpt = *x;
2772 // printf("Adding point x = %f, y = %f, sigma = %f\n", xpt, y, sigmaY);
2773 fSums[0] += weight;
2774 fSums[1] += weight * xpt;
2775 fSums[2] += weight * y;
2776 fSums[3] += weight * xpt * y;
2777 fSums[4] += weight * xpt * xpt;
2778 fSums[5] += weight * y * y;
8acca6a3 2779}
2780
2781//_____________________________________________________________________________
2782void AliTRDtrackerV1::AliTRDLeastSquare::RemovePoint(Double_t *x, Double_t y, Double_t sigmaY){
d739fd4e 2783 //
2784 // Remove Point from the sample
2785 //
2786 Double_t weight = 1/(sigmaY * sigmaY);
2787 Double_t &xpt = *x;
2788 fSums[0] -= weight;
2789 fSums[1] -= weight * xpt;
2790 fSums[2] -= weight * y;
2791 fSums[3] -= weight * xpt * y;
2792 fSums[4] -= weight * xpt * xpt;
2793 fSums[5] -= weight * y * y;
8acca6a3 2794}
2795
2796//_____________________________________________________________________________
2797void AliTRDtrackerV1::AliTRDLeastSquare::Eval(){
d739fd4e 2798 //
2799 // Evaluation of the fit:
2800 // Calculation of the parameters
2801 // Calculation of the covariance matrix
2802 //
8acca6a3 2803
d739fd4e 2804 Double_t denominator = fSums[0] * fSums[4] - fSums[1] *fSums[1];
2805 // for(Int_t isum = 0; isum < 5; isum++)
2806 // printf("fSums[%d] = %f\n", isum, fSums[isum]);
2807 // printf("denominator = %f\n", denominator);
2808 fParams[0] = (fSums[2] * fSums[4] - fSums[1] * fSums[3])/ denominator;
2809 fParams[1] = (fSums[0] * fSums[3] - fSums[1] * fSums[2]) / denominator;
2810 // printf("fParams[0] = %f, fParams[1] = %f\n", fParams[0], fParams[1]);
8acca6a3 2811
d739fd4e 2812 // Covariance matrix
2813 fCovarianceMatrix[0] = fSums[4] - fSums[1] * fSums[1] / fSums[0];
2814 fCovarianceMatrix[1] = fSums[5] - fSums[2] * fSums[2] / fSums[0];
2815 fCovarianceMatrix[2] = fSums[3] - fSums[1] * fSums[2] / fSums[0];
8acca6a3 2816}
2817
46b6abd7 2818//_____________________________________________________________________________
2819Double_t AliTRDtrackerV1::AliTRDLeastSquare::GetFunctionValue(Double_t *xpos) const {
d739fd4e 2820 //
2821 // Returns the Function value of the fitted function at a given x-position
2822 //
2823 return fParams[0] + fParams[1] * (*xpos);
46b6abd7 2824}
2825
2826//_____________________________________________________________________________
2827void AliTRDtrackerV1::AliTRDLeastSquare::GetCovarianceMatrix(Double_t *storage) const {
d739fd4e 2828 //
2829 // Copies the values of the covariance matrix into the storage
2830 //
2831 memcpy(storage, fCovarianceMatrix, sizeof(Double_t) * 3);
46b6abd7 2832}
2833