]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ZDC/AliZDCv2.cxx
Update rawdata format for trigger (Christian)
[u/mrichter/AliRoot.git] / ZDC / AliZDCv2.cxx
CommitLineData
4663d63d 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
4663d63d 16
8cc32cbc 17///////////////////////////////////////////////////////////////////////
18// //
03ab2c93 19// AliZDCv2 --- new ZDC geometry //
8cc32cbc 20// with the EM ZDC at about 10 m from IP //
21// Just one set of ZDC is inserted //
22// (on the same side of the dimuon arm realtive to IP) //
03ab2c93 23// Compensator in ZDC geometry (Nov. 2004) //
8cc32cbc 24// //
25///////////////////////////////////////////////////////////////////////
4663d63d 26
27// --- Standard libraries
28#include "stdio.h"
29
30// --- ROOT system
31#include <TBRIK.h>
88cb7938 32#include <TLorentzVector.h>
4663d63d 33#include <TMath.h>
88cb7938 34#include <TNode.h>
4663d63d 35#include <TRandom.h>
36#include <TSystem.h>
37#include <TTree.h>
88cb7938 38#include <TVirtualMC.h>
4663d63d 39
40// --- AliRoot classes
88cb7938 41#include "AliConst.h"
4663d63d 42#include "AliMagF.h"
88cb7938 43#include "AliRun.h"
88cb7938 44#include "AliZDCv2.h"
5d12ce38 45#include "AliMC.h"
4663d63d 46
8a2624cc 47class AliZDCHit;
48class AliPDG;
49class AliDetector;
4663d63d 50
51ClassImp(AliZDCv2)
4663d63d 52
53//_____________________________________________________________________________
54AliZDCv2::AliZDCv2() : AliZDC()
55{
56 //
57 // Default constructor for Zero Degree Calorimeter
58 //
59
60 fMedSensF1 = 0;
61 fMedSensF2 = 0;
62 fMedSensZN = 0;
63 fMedSensZP = 0;
64 fMedSensZEM = 0;
65 fMedSensGR = 0;
bc7e1cd6 66
4663d63d 67}
68
69//_____________________________________________________________________________
70AliZDCv2::AliZDCv2(const char *name, const char *title)
71 : AliZDC(name,title)
72{
73 //
74 // Standard constructor for Zero Degree Calorimeter
75 //
76 //
77 // Check that DIPO, ABSO, DIPO and SHIL is there (otherwise tracking is wrong!!!)
78
c6937a87 79 AliModule* pipe=gAlice->GetModule("PIPE");
80 AliModule* abso=gAlice->GetModule("ABSO");
81 AliModule* dipo=gAlice->GetModule("DIPO");
82 AliModule* shil=gAlice->GetModule("SHIL");
83 if((!pipe) || (!abso) || (!dipo) || (!shil)) {
4663d63d 84 Error("Constructor","ZDC needs PIPE, ABSO, DIPO and SHIL!!!\n");
85 exit(1);
86 }
87
88 fMedSensF1 = 0;
89 fMedSensF2 = 0;
90 fMedSensZN = 0;
91 fMedSensZP = 0;
92 fMedSensZEM = 0;
93 fMedSensGR = 0;
4700b983 94 fMedSensPI = 0;
95 fMedSensTDI = 0;
4663d63d 96
97
98 // Parameters for light tables
99 fNalfan = 90; // Number of Alfa (neutrons)
100 fNalfap = 90; // Number of Alfa (protons)
101 fNben = 18; // Number of beta (neutrons)
102 fNbep = 28; // Number of beta (protons)
103 Int_t ip,jp,kp;
104 for(ip=0; ip<4; ip++){
105 for(kp=0; kp<fNalfap; kp++){
106 for(jp=0; jp<fNbep; jp++){
107 fTablep[ip][kp][jp] = 0;
108 }
109 }
110 }
111 Int_t in,jn,kn;
112 for(in=0; in<4; in++){
113 for(kn=0; kn<fNalfan; kn++){
114 for(jn=0; jn<fNben; jn++){
115 fTablen[in][kn][jn] = 0;
116 }
117 }
118 }
119
120 // Parameters for hadronic calorimeters geometry
410749b4 121 fDimZN[0] = 3.52;
122 fDimZN[1] = 3.52;
123 fDimZN[2] = 50.;
4663d63d 124 fDimZP[0] = 11.2;
125 fDimZP[1] = 6.;
126 fDimZP[2] = 75.;
127 fPosZN[0] = 0.;
8cc32cbc 128 fPosZN[1] = 1.2;
bc7e1cd6 129 fPosZN[2] = -11650.;
130 fPosZP[0] = 23.9;
4663d63d 131 fPosZP[1] = 0.;
bc7e1cd6 132 fPosZP[2] = -11600.;
4663d63d 133 fFibZN[0] = 0.;
134 fFibZN[1] = 0.01825;
135 fFibZN[2] = 50.;
136 fFibZP[0] = 0.;
137 fFibZP[1] = 0.0275;
138 fFibZP[2] = 75.;
139
140 // Parameters for EM calorimeter geometry
141 fPosZEM[0] = 8.5;
142 fPosZEM[1] = 0.;
59ec6db4 143 fPosZEM[2] = 735.;
9eeb903e 144
145 Float_t kDimZEMPb = 0.15*(TMath::Sqrt(2.)); // z-dimension of the Pb slice
146 Float_t kDimZEMAir = 0.001; // scotch
147 Float_t kFibRadZEM = 0.0315; // External fiber radius (including cladding)
148 Int_t kDivZEM[3] = {92, 0, 20}; // Divisions for EM detector
149 Float_t kDimZEM0 = 2*kDivZEM[2]*(kDimZEMPb+kDimZEMAir+kFibRadZEM*(TMath::Sqrt(2.)));
150 fZEMLength = kDimZEM0;
4663d63d 151
4663d63d 152}
153
154//_____________________________________________________________________________
155void AliZDCv2::CreateGeometry()
156{
157 //
b2a1dc96 158 // Create the geometry for the Zero Degree Calorimeter version 2
4663d63d 159 //* Initialize COMMON block ZDC_CGEOM
160 //*
161
162 CreateBeamLine();
163 CreateZDC();
164}
165
166//_____________________________________________________________________________
167void AliZDCv2::CreateBeamLine()
168{
c6937a87 169 //
170 // Create the beam line elements
171 //
4663d63d 172
03ab2c93 173 Float_t zc, zq, zd1, zd2;
4663d63d 174 Float_t conpar[9], tubpar[3], tubspar[5], boxpar[3];
175 Int_t im1, im2;
176
177 Int_t *idtmed = fIdtmed->GetArray();
178
179 // -- Mother of the ZDCs (Vacuum PCON)
03ab2c93 180 // zd1 = 2092.; // (Without compensator in ZDC geometry)
181 zd1 = 1921.6;
b2a1dc96 182
4663d63d 183 conpar[0] = 0.;
184 conpar[1] = 360.;
185 conpar[2] = 2.;
bc7e1cd6 186 conpar[3] = -13500.;
4663d63d 187 conpar[4] = 0.;
c63eb7ab 188 conpar[5] = 55.;
bc7e1cd6 189 conpar[6] = -zd1;
4663d63d 190 conpar[7] = 0.;
c63eb7ab 191 conpar[8] = 55.;
4663d63d 192 gMC->Gsvolu("ZDC ", "PCON", idtmed[11], conpar, 9);
bc7e1cd6 193 gMC->Gspos("ZDC ", 1, "ALIC", 0., 0., 0., 0, "ONLY");
4663d63d 194
195 // -- FIRST SECTION OF THE BEAM PIPE (from compensator dipole to
196 // the beginning of D1)
4663d63d 197 tubpar[0] = 6.3/2.;
198 tubpar[1] = 6.7/2.;
4700b983 199 // From beginning of ZDC volumes to beginning of D1
200 tubpar[2] = (5838.3-zd1)/2.;
4663d63d 201 gMC->Gsvolu("QT01", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 202 gMC->Gspos("QT01", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
203 // Ch.debug
204 //printf("\n QT01 TUBE pipe from z = %f to z= %f (D1 beg.)\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 205
206 //-- SECOND SECTION OF THE BEAM PIPE (from the end of D1 to the
207 // beginning of D2)
208
209 //-- FROM MAGNETIC BEGINNING OF D1 TO MAGNETIC END OF D1 + 13.5 cm
210 //-- Cylindrical pipe (r = 3.47) + conical flare
211
212 // -> Beginning of D1
213 zd1 += 2.*tubpar[2];
214
215 tubpar[0] = 3.47;
216 tubpar[1] = 3.47+0.2;
217 tubpar[2] = 958.5/2.;
218 gMC->Gsvolu("QT02", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 219 gMC->Gspos("QT02", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
220 // Ch.debug
221 //printf("\n QT02 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 222
223 zd1 += 2.*tubpar[2];
224
225 conpar[0] = 25./2.;
bc7e1cd6 226 conpar[1] = 10./2.;
227 conpar[2] = 10.4/2.;
228 conpar[3] = 6.44/2.;
229 conpar[4] = 6.84/2.;
4663d63d 230 gMC->Gsvolu("QC01", "CONE", idtmed[7], conpar, 5);
bc7e1cd6 231 gMC->Gspos("QC01", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY");
232 // Ch.debug
233 //printf("\n QC01 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1);
4663d63d 234
235 zd1 += 2.*conpar[0];
236
237 tubpar[0] = 10./2.;
238 tubpar[1] = 10.4/2.;
239 tubpar[2] = 50./2.;
240 gMC->Gsvolu("QT03", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 241 gMC->Gspos("QT03", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
242 // Ch.debug
243 //printf("\n QT03 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 244
245 zd1 += tubpar[2]*2.;
246
247 tubpar[0] = 10./2.;
248 tubpar[1] = 10.4/2.;
249 tubpar[2] = 10./2.;
250 gMC->Gsvolu("QT04", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 251 gMC->Gspos("QT04", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
252 // Ch.debug
253 //printf("\n QT04 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 254
255 zd1 += tubpar[2] * 2.;
256
257 tubpar[0] = 10./2.;
258 tubpar[1] = 10.4/2.;
259 tubpar[2] = 3.16/2.;
260 gMC->Gsvolu("QT05", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 261 gMC->Gspos("QT05", 1, "ZDC ", 0., 0., -tubpar[0]-zd1, 0, "ONLY");
262 // Ch.debug
263 //printf("\n QT05 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 264
265 zd1 += tubpar[2] * 2.;
266
267 tubpar[0] = 10.0/2.;
268 tubpar[1] = 10.4/2;
269 tubpar[2] = 190./2.;
270 gMC->Gsvolu("QT06", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 271 gMC->Gspos("QT06", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
272 // Ch.debug
273 //printf("\n QT06 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 274
275 zd1 += tubpar[2] * 2.;
276
277 conpar[0] = 30./2.;
bc7e1cd6 278 conpar[1] = 20.6/2.;
279 conpar[2] = 21./2.;
280 conpar[3] = 10./2.;
281 conpar[4] = 10.4/2.;
4663d63d 282 gMC->Gsvolu("QC02", "CONE", idtmed[7], conpar, 5);
bc7e1cd6 283 gMC->Gspos("QC02", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY");
284 // Ch.debug
285 //printf("\n QC02 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1);
4663d63d 286
287 zd1 += conpar[0] * 2.;
288
289 tubpar[0] = 20.6/2.;
290 tubpar[1] = 21./2.;
291 tubpar[2] = 450./2.;
292 gMC->Gsvolu("QT07", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 293 gMC->Gspos("QT07", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
294 // Ch.debug
295 //printf("\n QT07 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 296
297 zd1 += tubpar[2] * 2.;
298
299 conpar[0] = 13.6/2.;
bc7e1cd6 300 conpar[1] = 25.4/2.;
301 conpar[2] = 25.8/2.;
302 conpar[3] = 20.6/2.;
303 conpar[4] = 21./2.;
4663d63d 304 gMC->Gsvolu("QC03", "CONE", idtmed[7], conpar, 5);
bc7e1cd6 305 gMC->Gspos("QC03", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY");
306 // Ch.debug
307 //printf("\n QC03 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1);
4663d63d 308
309 zd1 += conpar[0] * 2.;
310
311 tubpar[0] = 25.4/2.;
312 tubpar[1] = 25.8/2.;
313 tubpar[2] = 205.8/2.;
314 gMC->Gsvolu("QT08", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 315 gMC->Gspos("QT08", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
316 // Ch.debug
317 //printf("\n QT08 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 318
319 zd1 += tubpar[2] * 2.;
320
321 tubpar[0] = 50./2.;
322 tubpar[1] = 50.4/2.;
323 // QT09 is 10 cm longer to accomodate TDI
324 tubpar[2] = 515.4/2.;
325 gMC->Gsvolu("QT09", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 326 gMC->Gspos("QT09", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
327 // Ch.debug
328 //printf("\n QT09 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 329
330 // --- Insert TDI (inside ZDC volume)
4663d63d 331 boxpar[0] = 5.6;
332 boxpar[1] = 5.6;
333 boxpar[2] = 400./2.;
334 gMC->Gsvolu("QTD1", "BOX ", idtmed[7], boxpar, 3);
bc7e1cd6 335 gMC->Gspos("QTD1", 1, "ZDC ", -3., 10.6, -tubpar[2]-zd1-56.3, 0, "ONLY");
336 gMC->Gspos("QTD1", 2, "ZDC ", -3., -10.6, -tubpar[2]-zd1-56.3, 0, "ONLY");
4663d63d 337
338 boxpar[0] = 0.2/2.;
339 boxpar[1] = 5.6;
340 boxpar[2] = 400./2.;
341 gMC->Gsvolu("QTD2", "BOX ", idtmed[6], boxpar, 3);
bc7e1cd6 342 gMC->Gspos("QTD2", 1, "ZDC ", -8.6-boxpar[0], 0., -tubpar[2]-zd1-56.3, 0, "ONLY");
4663d63d 343
6d5d9c06 344 tubspar[0] = 10.5; // R = 10.5 cm------------------------------------------
345 tubspar[1] = 10.7;
4663d63d 346 tubspar[2] = 400./2.;
bc7e1cd6 347 tubspar[3] = 360.-75.5;
348 tubspar[4] = 75.5;
4663d63d 349 gMC->Gsvolu("QTD3", "TUBS", idtmed[6], tubspar, 5);
bc7e1cd6 350 gMC->Gspos("QTD3", 1, "ZDC ", 0., 0., -tubpar[2]-zd1-56.3, 0, "ONLY");
351 // Ch.debug
352 //printf("\n TDI volume from z = %f to z= %f\n",-tubpar[2]-zd1-56.3,-tubpar[2]-zd1-56.3-400.);
4663d63d 353
354 zd1 += tubpar[2] * 2.;
355
356 tubpar[0] = 50./2.;
357 tubpar[1] = 50.4/2.;
358 // QT10 is 10 cm shorter
359 tubpar[2] = 690./2.;
360 gMC->Gsvolu("QT10", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 361 gMC->Gspos("QT10", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
362 // Ch.debug
363 //printf("\n QT10 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 364
365 zd1 += tubpar[2] * 2.;
366
367 tubpar[0] = 50./2.;
368 tubpar[1] = 50.4/2.;
369 tubpar[2] = 778.5/2.;
370 gMC->Gsvolu("QT11", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 371 gMC->Gspos("QT11", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
372 // Ch.debug
373 //printf("\n QT11 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 374
375 zd1 += tubpar[2] * 2.;
376
377 conpar[0] = 14.18/2.;
bc7e1cd6 378 conpar[1] = 55./2.;
379 conpar[2] = 55.4/2.;
380 conpar[3] = 50./2.;
381 conpar[4] = 50.4/2.;
4663d63d 382 gMC->Gsvolu("QC04", "CONE", idtmed[7], conpar, 5);
bc7e1cd6 383 gMC->Gspos("QC04", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY");
384 // Ch.debug
385 //printf("\n QC04 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1);
4663d63d 386
387 zd1 += conpar[0] * 2.;
388
389 tubpar[0] = 55./2.;
390 tubpar[1] = 55.4/2.;
391 tubpar[2] = 730./2.;
392 gMC->Gsvolu("QT12", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 393 gMC->Gspos("QT12", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
394 // Ch.debug
395 //printf("\n QT12 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 396
397 zd1 += tubpar[2] * 2.;
398
399 conpar[0] = 36.86/2.;
bc7e1cd6 400 conpar[1] = 68./2.;
401 conpar[2] = 68.4/2.;
402 conpar[3] = 55./2.;
403 conpar[4] = 55.4/2.;
4663d63d 404 gMC->Gsvolu("QC05", "CONE", idtmed[7], conpar, 5);
bc7e1cd6 405 gMC->Gspos("QC05", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY");
406 // Ch.debug
407 //printf("\n QC05 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1);
4663d63d 408
409 zd1 += conpar[0] * 2.;
410
411 tubpar[0] = 68./2.;
412 tubpar[1] = 68.4/2.;
413 tubpar[2] = 927.3/2.;
414 gMC->Gsvolu("QT13", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 415 gMC->Gspos("QT13", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
416 // Ch.debug
417 //printf("\n QT13 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 418
419 zd1 += tubpar[2] * 2.;
420
421 tubpar[0] = 0./2.;
422 tubpar[1] = 68.4/2.;
423 tubpar[2] = 0.2/2.;
424 gMC->Gsvolu("QT14", "TUBE", idtmed[8], tubpar, 3);
bc7e1cd6 425 gMC->Gspos("QT14", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
426 // Ch.debug
427 //printf("\n QT14 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 428
429 zd1 += tubpar[2] * 2.;
430
431 tubpar[0] = 0./2.;
432 tubpar[1] = 6.4/2.;
433 tubpar[2] = 0.2/2.;
434 gMC->Gsvolu("QT15", "TUBE", idtmed[11], tubpar, 3);
4663d63d 435 //-- Position QT15 inside QT14
436 gMC->Gspos("QT15", 1, "QT14", -7.7, 0., 0., 0, "ONLY");
bc7e1cd6 437
438 gMC->Gsvolu("QT16", "TUBE", idtmed[11], tubpar, 3);
4663d63d 439 //-- Position QT16 inside QT14
440 gMC->Gspos("QT16", 1, "QT14", 7.7, 0., 0., 0, "ONLY");
441
442
b2a1dc96 443 //-- BEAM PIPE BETWEEN END OF CONICAL PIPE AND BEGINNING OF D2
4663d63d 444
445 tubpar[0] = 6.4/2.;
446 tubpar[1] = 6.8/2.;
447 tubpar[2] = 680.8/2.;
448 gMC->Gsvolu("QT17", "TUBE", idtmed[7], tubpar, 3);
449
450 tubpar[0] = 6.4/2.;
451 tubpar[1] = 6.8/2.;
452 tubpar[2] = 680.8/2.;
453 gMC->Gsvolu("QT18", "TUBE", idtmed[7], tubpar, 3);
454
455 // -- ROTATE PIPES
bc7e1cd6 456 Float_t angle = 0.143*kDegrad; // Rotation angle
4663d63d 457
6d838c2f 458 //AliMatrix(im1, 90.+0.143, 0., 90., 90., 0.143, 0.); // x<0
459 gMC->Matrix(im1, 90.+0.143, 0., 90., 90., 0.143, 0.); // x<0
4663d63d 460 gMC->Gspos("QT17", 1, "ZDC ", TMath::Sin(angle) * 680.8/ 2. - 9.4,
bc7e1cd6 461 0., -tubpar[2]-zd1, im1, "ONLY");
4663d63d 462
6d838c2f 463 //AliMatrix(im2, 90.-0.143, 0., 90., 90., 0.143, 180.); // x>0 (ZP)
464 gMC->Matrix(im2, 90.-0.143, 0., 90., 90., 0.143, 180.); // x>0 (ZP)
4663d63d 465 gMC->Gspos("QT18", 1, "ZDC ", 9.7 - TMath::Sin(angle) * 680.8 / 2.,
bc7e1cd6 466 0., -tubpar[2]-zd1, im2, "ONLY");
c0f15647 467
4663d63d 468 // -- END OF BEAM PIPE VOLUME DEFINITION.
469 // ----------------------------------------------------------------
470
4663d63d 471 // ----------------------------------------------------------------
bc7e1cd6 472 // -- MAGNET DEFINITION -> LHC OPTICS 6.5
03ab2c93 473 // ----------------------------------------------------------------
474 // -- COMPENSATOR DIPOLE (MBXW)
475 zc = 1921.6;
476
477 // -- GAP (VACUUM WITH MAGNETIC FIELD)
478 tubpar[0] = 0.;
479 tubpar[1] = 4.5;
480 tubpar[2] = 170./2.;
481 gMC->Gsvolu("MBXW", "TUBE", idtmed[11], tubpar, 3);
482
483 // -- YOKE
484 tubpar[0] = 4.5;
485 tubpar[1] = 55.;
486 tubpar[2] = 170./2.;
3e3ba835 487 gMC->Gsvolu("YMBX", "TUBE", idtmed[13], tubpar, 3);
03ab2c93 488
489 gMC->Gspos("MBXW", 1, "ZDC ", 0., 0., -tubpar[2]-zc, 0, "ONLY");
490 gMC->Gspos("YMBX", 1, "ZDC ", 0., 0., -tubpar[2]-zc, 0, "ONLY");
4663d63d 491
4663d63d 492
03ab2c93 493 // -- INNER TRIPLET
494 zq = 2296.5;
495
4663d63d 496 // -- DEFINE MQXL AND MQX QUADRUPOLE ELEMENT
03ab2c93 497 // -- MQXL
4663d63d 498 // -- GAP (VACUUM WITH MAGNETIC FIELD)
4663d63d 499 tubpar[0] = 0.;
ee0c4fc1 500 tubpar[1] = 3.5;
501 tubpar[2] = 637./2.;
502 gMC->Gsvolu("MQXL", "TUBE", idtmed[11], tubpar, 3);
503
4663d63d 504
505 // -- YOKE
4663d63d 506 tubpar[0] = 3.5;
507 tubpar[1] = 22.;
508 tubpar[2] = 637./2.;
509 gMC->Gsvolu("YMQL", "TUBE", idtmed[7], tubpar, 3);
510
bc7e1cd6 511 gMC->Gspos("MQXL", 1, "ZDC ", 0., 0., -tubpar[2]-zq, 0, "ONLY");
512 gMC->Gspos("YMQL", 1, "ZDC ", 0., 0., -tubpar[2]-zq, 0, "ONLY");
4663d63d 513
bc7e1cd6 514 gMC->Gspos("MQXL", 2, "ZDC ", 0., 0., -tubpar[2]-zq-2430., 0, "ONLY");
515 gMC->Gspos("YMQL", 2, "ZDC ", 0., 0., -tubpar[2]-zq-2430., 0, "ONLY");
4663d63d 516
517 // -- MQX
518 // -- GAP (VACUUM WITH MAGNETIC FIELD)
4663d63d 519 tubpar[0] = 0.;
520 tubpar[1] = 3.5;
521 tubpar[2] = 550./2.;
522 gMC->Gsvolu("MQX ", "TUBE", idtmed[11], tubpar, 3);
523
524 // -- YOKE
4663d63d 525 tubpar[0] = 3.5;
526 tubpar[1] = 22.;
527 tubpar[2] = 550./2.;
528 gMC->Gsvolu("YMQ ", "TUBE", idtmed[7], tubpar, 3);
529
bc7e1cd6 530 gMC->Gspos("MQX ", 1, "ZDC ", 0., 0., -tubpar[2]-zq-908.5, 0, "ONLY");
531 gMC->Gspos("YMQ ", 1, "ZDC ", 0., 0., -tubpar[2]-zq-908.5, 0, "ONLY");
4663d63d 532
bc7e1cd6 533 gMC->Gspos("MQX ", 2, "ZDC ", 0., 0., -tubpar[2]-zq-1558.5, 0, "ONLY");
534 gMC->Gspos("YMQ ", 2, "ZDC ", 0., 0., -tubpar[2]-zq-1558.5, 0, "ONLY");
4663d63d 535
536 // -- SEPARATOR DIPOLE D1
4663d63d 537 zd1 = 5838.3;
538
539 // -- GAP (VACUUM WITH MAGNETIC FIELD)
4663d63d 540 tubpar[0] = 0.;
541 tubpar[1] = 6.94/2.;
542 tubpar[2] = 945./2.;
543 gMC->Gsvolu("MD1 ", "TUBE", idtmed[11], tubpar, 3);
544
545 // -- Insert horizontal Cu plates inside D1
546 // -- (to simulate the vacuum chamber)
8ed59a88 547 boxpar[0] = TMath::Sqrt(tubpar[1]*tubpar[1]-(2.98+0.2)*(2.98+0.2)) - 0.05;
4663d63d 548 boxpar[1] = 0.2/2.;
549 boxpar[2] =945./2.;
550 gMC->Gsvolu("MD1V", "BOX ", idtmed[6], boxpar, 3);
551 gMC->Gspos("MD1V", 1, "MD1 ", 0., 2.98+boxpar[1], 0., 0, "ONLY");
552 gMC->Gspos("MD1V", 2, "MD1 ", 0., -2.98-boxpar[1], 0., 0, "ONLY");
553
554 // -- YOKE
4663d63d 555 tubpar[0] = 0.;
556 tubpar[1] = 110./2;
557 tubpar[2] = 945./2.;
558 gMC->Gsvolu("YD1 ", "TUBE", idtmed[7], tubpar, 3);
559
bc7e1cd6 560 gMC->Gspos("YD1 ", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
4663d63d 561 gMC->Gspos("MD1 ", 1, "YD1 ", 0., 0., 0., 0, "ONLY");
562
563 // -- DIPOLE D2
03ab2c93 564 // --- LHC optics v6.4
4663d63d 565 zd2 = 12147.6;
566
567 // -- GAP (VACUUM WITH MAGNETIC FIELD)
4663d63d 568 tubpar[0] = 0.;
569 tubpar[1] = 7.5/2.;
570 tubpar[2] = 945./2.;
571 gMC->Gsvolu("MD2 ", "TUBE", idtmed[11], tubpar, 3);
572
573 // -- YOKE
4663d63d 574 tubpar[0] = 0.;
575 tubpar[1] = 55.;
576 tubpar[2] = 945./2.;
577 gMC->Gsvolu("YD2 ", "TUBE", idtmed[7], tubpar, 3);
578
bc7e1cd6 579 gMC->Gspos("YD2 ", 1, "ZDC ", 0., 0., -tubpar[2]-zd2, 0, "ONLY");
4663d63d 580
581 gMC->Gspos("MD2 ", 1, "YD2 ", -9.4, 0., 0., 0, "ONLY");
582 gMC->Gspos("MD2 ", 2, "YD2 ", 9.4, 0., 0., 0, "ONLY");
583
584 // -- END OF MAGNET DEFINITION
585}
586
587//_____________________________________________________________________________
588void AliZDCv2::CreateZDC()
589{
c6937a87 590 //
591 // Create the various ZDCs (ZN + ZP)
592 //
4663d63d 593
c6937a87 594 Float_t dimPb[6], dimVoid[6];
4663d63d 595
596 Int_t *idtmed = fIdtmed->GetArray();
597
598 // Parameters for hadronic calorimeters geometry
599 // NB -> parameters used ONLY in CreateZDC()
4663d63d 600 Float_t fGrvZN[3] = {0.03, 0.03, 50.}; // Grooves for neutron detector
601 Float_t fGrvZP[3] = {0.04, 0.04, 75.}; // Grooves for proton detector
602 Int_t fDivZN[3] = {11, 11, 0}; // Division for neutron detector
603 Int_t fDivZP[3] = {7, 15, 0}; // Division for proton detector
604 Int_t fTowZN[2] = {2, 2}; // Tower for neutron detector
605 Int_t fTowZP[2] = {4, 1}; // Tower for proton detector
606
607 // Parameters for EM calorimeter geometry
608 // NB -> parameters used ONLY in CreateZDC()
7169b3db 609 Float_t kDimZEMPb = 0.15*(TMath::Sqrt(2.)); // z-dimension of the Pb slice
610 Float_t kFibRadZEM = 0.0315; // External fiber radius (including cladding)
4663d63d 611 Int_t fDivZEM[3] = {92, 0, 20}; // Divisions for EM detector
7169b3db 612 Float_t fDimZEM[6] = {fZEMLength, 3.5, 3.5, 45., 0., 0.}; // Dimensions of EM detector
613 Float_t fFibZEM2 = fDimZEM[2]/TMath::Sin(fDimZEM[3]*kDegrad)-kFibRadZEM;
4663d63d 614 Float_t fFibZEM[3] = {0., 0.0275, fFibZEM2}; // Fibers for EM calorimeter
615
616
617 //-- Create calorimeters geometry
618
619 // -------------------------------------------------------------------------------
620 //--> Neutron calorimeter (ZN)
621
622 gMC->Gsvolu("ZNEU", "BOX ", idtmed[1], fDimZN, 3); // Passive material
623 gMC->Gsvolu("ZNF1", "TUBE", idtmed[3], fFibZN, 3); // Active material
624 gMC->Gsvolu("ZNF2", "TUBE", idtmed[4], fFibZN, 3);
625 gMC->Gsvolu("ZNF3", "TUBE", idtmed[4], fFibZN, 3);
626 gMC->Gsvolu("ZNF4", "TUBE", idtmed[3], fFibZN, 3);
627 gMC->Gsvolu("ZNG1", "BOX ", idtmed[12], fGrvZN, 3); // Empty grooves
628 gMC->Gsvolu("ZNG2", "BOX ", idtmed[12], fGrvZN, 3);
629 gMC->Gsvolu("ZNG3", "BOX ", idtmed[12], fGrvZN, 3);
630 gMC->Gsvolu("ZNG4", "BOX ", idtmed[12], fGrvZN, 3);
631
632 // Divide ZNEU in towers (for hits purposes)
633
634 gMC->Gsdvn("ZNTX", "ZNEU", fTowZN[0], 1); // x-tower
635 gMC->Gsdvn("ZN1 ", "ZNTX", fTowZN[1], 2); // y-tower
636
637 //-- Divide ZN1 in minitowers
638 // fDivZN[0]= NUMBER OF FIBERS PER TOWER ALONG X-AXIS,
639 // fDivZN[1]= NUMBER OF FIBERS PER TOWER ALONG Y-AXIS
640 // (4 fibres per minitower)
641
642 gMC->Gsdvn("ZNSL", "ZN1 ", fDivZN[1], 2); // Slices
643 gMC->Gsdvn("ZNST", "ZNSL", fDivZN[0], 1); // Sticks
644
645 // --- Position the empty grooves in the sticks (4 grooves per stick)
646 Float_t dx = fDimZN[0] / fDivZN[0] / 4.;
647 Float_t dy = fDimZN[1] / fDivZN[1] / 4.;
648
649 gMC->Gspos("ZNG1", 1, "ZNST", 0.-dx, 0.+dy, 0., 0, "ONLY");
650 gMC->Gspos("ZNG2", 1, "ZNST", 0.+dx, 0.+dy, 0., 0, "ONLY");
651 gMC->Gspos("ZNG3", 1, "ZNST", 0.-dx, 0.-dy, 0., 0, "ONLY");
652 gMC->Gspos("ZNG4", 1, "ZNST", 0.+dx, 0.-dy, 0., 0, "ONLY");
653
654 // --- Position the fibers in the grooves
655 gMC->Gspos("ZNF1", 1, "ZNG1", 0., 0., 0., 0, "ONLY");
656 gMC->Gspos("ZNF2", 1, "ZNG2", 0., 0., 0., 0, "ONLY");
657 gMC->Gspos("ZNF3", 1, "ZNG3", 0., 0., 0., 0, "ONLY");
658 gMC->Gspos("ZNF4", 1, "ZNG4", 0., 0., 0., 0, "ONLY");
659
660 // --- Position the neutron calorimeter in ZDC
f05df11a 661 // -- Rotation of ZDCs
662 Int_t irotzdc;
663 gMC->Matrix(irotzdc, 90., 180., 90., 90., 180., 0.);
664 //
665 gMC->Gspos("ZNEU", 1, "ZDC ", fPosZN[0], fPosZN[1], fPosZN[2]-fDimZN[2], irotzdc, "ONLY");
bc7e1cd6 666 //Ch debug
667 //printf("\n ZN -> %f < z < %f cm\n",fPosZN[2],fPosZN[2]-2*fDimZN[2]);
4663d63d 668
669 // -------------------------------------------------------------------------------
670 //--> Proton calorimeter (ZP)
671
672 gMC->Gsvolu("ZPRO", "BOX ", idtmed[2], fDimZP, 3); // Passive material
673 gMC->Gsvolu("ZPF1", "TUBE", idtmed[3], fFibZP, 3); // Active material
674 gMC->Gsvolu("ZPF2", "TUBE", idtmed[4], fFibZP, 3);
675 gMC->Gsvolu("ZPF3", "TUBE", idtmed[4], fFibZP, 3);
676 gMC->Gsvolu("ZPF4", "TUBE", idtmed[3], fFibZP, 3);
677 gMC->Gsvolu("ZPG1", "BOX ", idtmed[12], fGrvZP, 3); // Empty grooves
678 gMC->Gsvolu("ZPG2", "BOX ", idtmed[12], fGrvZP, 3);
679 gMC->Gsvolu("ZPG3", "BOX ", idtmed[12], fGrvZP, 3);
680 gMC->Gsvolu("ZPG4", "BOX ", idtmed[12], fGrvZP, 3);
681
682 //-- Divide ZPRO in towers(for hits purposes)
683
684 gMC->Gsdvn("ZPTX", "ZPRO", fTowZP[0], 1); // x-tower
685 gMC->Gsdvn("ZP1 ", "ZPTX", fTowZP[1], 2); // y-tower
686
687
688 //-- Divide ZP1 in minitowers
689 // fDivZP[0]= NUMBER OF FIBERS ALONG X-AXIS PER MINITOWER,
690 // fDivZP[1]= NUMBER OF FIBERS ALONG Y-AXIS PER MINITOWER
691 // (4 fiber per minitower)
692
693 gMC->Gsdvn("ZPSL", "ZP1 ", fDivZP[1], 2); // Slices
694 gMC->Gsdvn("ZPST", "ZPSL", fDivZP[0], 1); // Sticks
695
696 // --- Position the empty grooves in the sticks (4 grooves per stick)
697 dx = fDimZP[0] / fTowZP[0] / fDivZP[0] / 2.;
698 dy = fDimZP[1] / fTowZP[1] / fDivZP[1] / 2.;
699
700 gMC->Gspos("ZPG1", 1, "ZPST", 0.-dx, 0.+dy, 0., 0, "ONLY");
701 gMC->Gspos("ZPG2", 1, "ZPST", 0.+dx, 0.+dy, 0., 0, "ONLY");
702 gMC->Gspos("ZPG3", 1, "ZPST", 0.-dx, 0.-dy, 0., 0, "ONLY");
703 gMC->Gspos("ZPG4", 1, "ZPST", 0.+dx, 0.-dy, 0., 0, "ONLY");
704
705 // --- Position the fibers in the grooves
706 gMC->Gspos("ZPF1", 1, "ZPG1", 0., 0., 0., 0, "ONLY");
707 gMC->Gspos("ZPF2", 1, "ZPG2", 0., 0., 0., 0, "ONLY");
708 gMC->Gspos("ZPF3", 1, "ZPG3", 0., 0., 0., 0, "ONLY");
709 gMC->Gspos("ZPF4", 1, "ZPG4", 0., 0., 0., 0, "ONLY");
710
711
712 // --- Position the proton calorimeter in ZDC
f05df11a 713 gMC->Gspos("ZPRO", 1, "ZDC ", fPosZP[0], fPosZP[1], fPosZP[2]-fDimZP[2], irotzdc, "ONLY");
bc7e1cd6 714 //Ch debug
715 //printf("\n ZP -> %f < z < %f cm\n",fPosZP[2],fPosZP[2]-2*fDimZP[2]);
4663d63d 716
717
718 // -------------------------------------------------------------------------------
719 // -> EM calorimeter (ZEM)
720
721 gMC->Gsvolu("ZEM ", "PARA", idtmed[10], fDimZEM, 6);
722
723 Int_t irot1, irot2;
c0f15647 724 gMC->Matrix(irot1,0.,0.,90.,90.,-90.,0.); // Rotation matrix 1
4663d63d 725 gMC->Matrix(irot2,180.,0.,90.,fDimZEM[3]+90.,90.,fDimZEM[3]);// Rotation matrix 2
c0f15647 726 //printf("irot1 = %d, irot2 = %d \n", irot1, irot2);
4663d63d 727
c0f15647 728 gMC->Gsvolu("ZEMF", "TUBE", idtmed[3], fFibZEM, 3); // Active material
4663d63d 729
c0f15647 730 gMC->Gsdvn("ZETR", "ZEM ", fDivZEM[2], 1); // Tranches
4663d63d 731
7169b3db 732 dimPb[0] = kDimZEMPb; // Lead slices
c6937a87 733 dimPb[1] = fDimZEM[2];
734 dimPb[2] = fDimZEM[1];
bc7e1cd6 735 //dimPb[3] = fDimZEM[3]; //controllare
736 dimPb[3] = 90.-fDimZEM[3]; //originale
c6937a87 737 dimPb[4] = 0.;
738 dimPb[5] = 0.;
739 gMC->Gsvolu("ZEL0", "PARA", idtmed[5], dimPb, 6);
740 gMC->Gsvolu("ZEL1", "PARA", idtmed[5], dimPb, 6);
bc7e1cd6 741 gMC->Gsvolu("ZEL2", "PARA", idtmed[5], dimPb, 6);
4663d63d 742
743 // --- Position the lead slices in the tranche
744 Float_t zTran = fDimZEM[0]/fDivZEM[2];
7169b3db 745 Float_t zTrPb = -zTran+kDimZEMPb;
4663d63d 746 gMC->Gspos("ZEL0", 1, "ZETR", zTrPb, 0., 0., 0, "ONLY");
7169b3db 747 gMC->Gspos("ZEL1", 1, "ZETR", kDimZEMPb, 0., 0., 0, "ONLY");
4663d63d 748
749 // --- Vacuum zone (to be filled with fibres)
7169b3db 750 dimVoid[0] = (zTran-2*kDimZEMPb)/2.;
c6937a87 751 dimVoid[1] = fDimZEM[2];
752 dimVoid[2] = fDimZEM[1];
753 dimVoid[3] = 90.-fDimZEM[3];
754 dimVoid[4] = 0.;
755 dimVoid[5] = 0.;
756 gMC->Gsvolu("ZEV0", "PARA", idtmed[10], dimVoid,6);
757 gMC->Gsvolu("ZEV1", "PARA", idtmed[10], dimVoid,6);
4663d63d 758
759 // --- Divide the vacuum slice into sticks along x axis
760 gMC->Gsdvn("ZES0", "ZEV0", fDivZEM[0], 3);
761 gMC->Gsdvn("ZES1", "ZEV1", fDivZEM[0], 3);
762
763 // --- Positioning the fibers into the sticks
764 gMC->Gspos("ZEMF", 1,"ZES0", 0., 0., 0., irot2, "ONLY");
765 gMC->Gspos("ZEMF", 1,"ZES1", 0., 0., 0., irot2, "ONLY");
766
767 // --- Positioning the vacuum slice into the tranche
c6937a87 768 Float_t displFib = fDimZEM[1]/fDivZEM[0];
769 gMC->Gspos("ZEV0", 1,"ZETR", -dimVoid[0], 0., 0., 0, "ONLY");
770 gMC->Gspos("ZEV1", 1,"ZETR", -dimVoid[0]+zTran, 0., displFib, 0, "ONLY");
4663d63d 771
772 // --- Positioning the ZEM into the ZDC - rotation for 90 degrees
c63eb7ab 773 // NB -> In AliZDCv2 ZEM is positioned in ALIC (instead of in ZDC) volume
774 // beacause it's impossible to make a ZDC pcon volume to contain
59ec6db4 775 // both hadronics and EM calorimeters.
bc7e1cd6 776 gMC->Gspos("ZEM ", 1,"ALIC", -fPosZEM[0], fPosZEM[1], fPosZEM[2]+fDimZEM[0], irot1, "ONLY");
4663d63d 777
410749b4 778 // Second EM ZDC (same side w.r.t. IP, just on the other side w.r.t. beam pipe)
bc7e1cd6 779 gMC->Gspos("ZEM ", 2,"ALIC", fPosZEM[0], fPosZEM[1], fPosZEM[2]+fDimZEM[0], irot1, "ONLY");
410749b4 780
4663d63d 781 // --- Adding last slice at the end of the EM calorimeter
7169b3db 782 Float_t zLastSlice = fPosZEM[2]+kDimZEMPb+2*fDimZEM[0];
bc7e1cd6 783 gMC->Gspos("ZEL2", 1,"ALIC", fPosZEM[0], fPosZEM[1], zLastSlice, irot1, "ONLY");
784 //Ch debug
785 //printf("\n ZEM lenght = %f cm\n",2*fZEMLength);
7169b3db 786 //printf("\n ZEM -> %f < z < %f cm\n",fPosZEM[2],fPosZEM[2]+2*fZEMLength+zLastSlice+kDimZEMPb);
4663d63d 787
788}
789
790//_____________________________________________________________________________
c6937a87 791void AliZDCv2::DrawModule() const
4663d63d 792{
793 //
794 // Draw a shaded view of the Zero Degree Calorimeter version 1
795 //
796
797 // Set everything unseen
798 gMC->Gsatt("*", "seen", -1);
799 //
800 // Set ALIC mother transparent
801 gMC->Gsatt("ALIC","SEEN",0);
802 //
803 // Set the volumes visible
804 gMC->Gsatt("ZDC ","SEEN",0);
805 gMC->Gsatt("QT01","SEEN",1);
806 gMC->Gsatt("QT02","SEEN",1);
807 gMC->Gsatt("QT03","SEEN",1);
808 gMC->Gsatt("QT04","SEEN",1);
809 gMC->Gsatt("QT05","SEEN",1);
810 gMC->Gsatt("QT06","SEEN",1);
811 gMC->Gsatt("QT07","SEEN",1);
812 gMC->Gsatt("QT08","SEEN",1);
813 gMC->Gsatt("QT09","SEEN",1);
814 gMC->Gsatt("QT10","SEEN",1);
815 gMC->Gsatt("QT11","SEEN",1);
816 gMC->Gsatt("QT12","SEEN",1);
817 gMC->Gsatt("QT13","SEEN",1);
818 gMC->Gsatt("QT14","SEEN",1);
819 gMC->Gsatt("QT15","SEEN",1);
820 gMC->Gsatt("QT16","SEEN",1);
821 gMC->Gsatt("QT17","SEEN",1);
822 gMC->Gsatt("QT18","SEEN",1);
823 gMC->Gsatt("QC01","SEEN",1);
824 gMC->Gsatt("QC02","SEEN",1);
825 gMC->Gsatt("QC03","SEEN",1);
826 gMC->Gsatt("QC04","SEEN",1);
827 gMC->Gsatt("QC05","SEEN",1);
828 gMC->Gsatt("QTD1","SEEN",1);
829 gMC->Gsatt("QTD2","SEEN",1);
830 gMC->Gsatt("QTD3","SEEN",1);
831 gMC->Gsatt("MQXL","SEEN",1);
832 gMC->Gsatt("YMQL","SEEN",1);
833 gMC->Gsatt("MQX ","SEEN",1);
834 gMC->Gsatt("YMQ ","SEEN",1);
835 gMC->Gsatt("ZQYX","SEEN",1);
836 gMC->Gsatt("MD1 ","SEEN",1);
837 gMC->Gsatt("MD1V","SEEN",1);
838 gMC->Gsatt("YD1 ","SEEN",1);
839 gMC->Gsatt("MD2 ","SEEN",1);
840 gMC->Gsatt("YD2 ","SEEN",1);
841 gMC->Gsatt("ZNEU","SEEN",0);
842 gMC->Gsatt("ZNF1","SEEN",0);
843 gMC->Gsatt("ZNF2","SEEN",0);
844 gMC->Gsatt("ZNF3","SEEN",0);
845 gMC->Gsatt("ZNF4","SEEN",0);
846 gMC->Gsatt("ZNG1","SEEN",0);
847 gMC->Gsatt("ZNG2","SEEN",0);
848 gMC->Gsatt("ZNG3","SEEN",0);
849 gMC->Gsatt("ZNG4","SEEN",0);
850 gMC->Gsatt("ZNTX","SEEN",0);
851 gMC->Gsatt("ZN1 ","COLO",4);
852 gMC->Gsatt("ZN1 ","SEEN",1);
853 gMC->Gsatt("ZNSL","SEEN",0);
854 gMC->Gsatt("ZNST","SEEN",0);
855 gMC->Gsatt("ZPRO","SEEN",0);
856 gMC->Gsatt("ZPF1","SEEN",0);
857 gMC->Gsatt("ZPF2","SEEN",0);
858 gMC->Gsatt("ZPF3","SEEN",0);
859 gMC->Gsatt("ZPF4","SEEN",0);
860 gMC->Gsatt("ZPG1","SEEN",0);
861 gMC->Gsatt("ZPG2","SEEN",0);
862 gMC->Gsatt("ZPG3","SEEN",0);
863 gMC->Gsatt("ZPG4","SEEN",0);
864 gMC->Gsatt("ZPTX","SEEN",0);
865 gMC->Gsatt("ZP1 ","COLO",6);
866 gMC->Gsatt("ZP1 ","SEEN",1);
867 gMC->Gsatt("ZPSL","SEEN",0);
868 gMC->Gsatt("ZPST","SEEN",0);
869 gMC->Gsatt("ZEM ","COLO",7);
870 gMC->Gsatt("ZEM ","SEEN",1);
871 gMC->Gsatt("ZEMF","SEEN",0);
872 gMC->Gsatt("ZETR","SEEN",0);
873 gMC->Gsatt("ZEL0","SEEN",0);
874 gMC->Gsatt("ZEL1","SEEN",0);
875 gMC->Gsatt("ZEL2","SEEN",0);
876 gMC->Gsatt("ZEV0","SEEN",0);
877 gMC->Gsatt("ZEV1","SEEN",0);
878 gMC->Gsatt("ZES0","SEEN",0);
879 gMC->Gsatt("ZES1","SEEN",0);
880
881 //
882 gMC->Gdopt("hide", "on");
883 gMC->Gdopt("shad", "on");
884 gMC->Gsatt("*", "fill", 7);
885 gMC->SetClipBox(".");
886 gMC->SetClipBox("*", 0, 100, -100, 100, 12000, 16000);
887 gMC->DefaultRange();
888 gMC->Gdraw("alic", 40, 30, 0, 488, 220, .07, .07);
889 gMC->Gdhead(1111, "Zero Degree Calorimeter Version 1");
890 gMC->Gdman(18, 4, "MAN");
891}
892
893//_____________________________________________________________________________
894void AliZDCv2::CreateMaterials()
895{
896 //
897 // Create Materials for the Zero Degree Calorimeter
898 //
899
900 Int_t *idtmed = fIdtmed->GetArray();
901
1e064588 902 Float_t dens, ubuf[1], wmat[2], a[2], z[2];
4663d63d 903 Int_t i;
904
905 // --- Store in UBUF r0 for nuclear radius calculation R=r0*A**1/3
906
907 // --- Tantalum -> ZN passive material
908 ubuf[0] = 1.1;
909 AliMaterial(1, "TANT", 180.95, 73., 16.65, .4, 11.9, ubuf, 1);
910
911 // --- Tungsten
912// ubuf[0] = 1.11;
913// AliMaterial(1, "TUNG", 183.85, 74., 19.3, .35, 10.3, ubuf, 1);
914
915 // --- Brass (CuZn) -> ZP passive material
916 dens = 8.48;
917 a[0] = 63.546;
918 a[1] = 65.39;
919 z[0] = 29.;
920 z[1] = 30.;
921 wmat[0] = .63;
922 wmat[1] = .37;
923 AliMixture(2, "BRASS ", a, z, dens, 2, wmat);
924
925 // --- SiO2
926 dens = 2.64;
927 a[0] = 28.086;
928 a[1] = 15.9994;
929 z[0] = 14.;
930 z[1] = 8.;
931 wmat[0] = 1.;
932 wmat[1] = 2.;
933 AliMixture(3, "SIO2 ", a, z, dens, -2, wmat);
934
935 // --- Lead
936 ubuf[0] = 1.12;
937 AliMaterial(5, "LEAD", 207.19, 82., 11.35, .56, 18.5, ubuf, 1);
938
939 // --- Copper
940 ubuf[0] = 1.10;
941 AliMaterial(6, "COPP", 63.54, 29., 8.96, 1.4, 0., ubuf, 1);
942
943 // --- Iron (energy loss taken into account)
944 ubuf[0] = 1.1;
4a9de4af 945 AliMaterial(7, "IRON0", 55.85, 26., 7.87, 1.76, 0., ubuf, 1);
4663d63d 946
947 // --- Iron (no energy loss)
948 ubuf[0] = 1.1;
4a9de4af 949 AliMaterial(8, "IRON1", 55.85, 26., 7.87, 1.76, 0., ubuf, 1);
3e3ba835 950 AliMaterial(13, "IRON2", 55.85, 26., 7.87, 1.76, 0., ubuf, 1);
4663d63d 951
1e064588 952 // ---------------------------------------------------------
953 Float_t aResGas[3]={1.008,12.0107,15.9994};
954 Float_t zResGas[3]={1.,6.,8.};
955 Float_t wResGas[3]={0.28,0.28,0.44};
956 Float_t dResGas = 3.2E-14;
957
4663d63d 958 // --- Vacuum (no magnetic field)
1e064588 959 AliMixture(10, "VOID", aResGas, zResGas, dResGas, 3, wResGas);
960 //AliMaterial(10, "VOID", 1e-16, 1e-16, 1e-16, 1e16, 1e16, ubuf,0);
4663d63d 961
962 // --- Vacuum (with magnetic field)
1e064588 963 AliMixture(11, "VOIM", aResGas, zResGas, dResGas, 3, wResGas);
964 //AliMaterial(11, "VOIM", 1e-16, 1e-16, 1e-16, 1e16, 1e16, ubuf,0);
4663d63d 965
966 // --- Air (no magnetic field)
1e064588 967 Float_t aAir[4]={12.0107,14.0067,15.9994,39.948};
968 Float_t zAir[4]={6.,7.,8.,18.};
969 Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827};
970 Float_t dAir = 1.20479E-3;
971 //
972 AliMixture(12, "Air $", aAir, zAir, dAir, 4, wAir);
973 //AliMaterial(12, "Air $", 14.61, 7.3, .001205, 30420., 67500., ubuf, 0);
4663d63d 974
975 // --- Definition of tracking media:
976
977 // --- Tantalum = 1 ;
978 // --- Brass = 2 ;
979 // --- Fibers (SiO2) = 3 ;
980 // --- Fibers (SiO2) = 4 ;
981 // --- Lead = 5 ;
982 // --- Copper = 6 ;
983 // --- Iron (with energy loss) = 7 ;
984 // --- Iron (without energy loss) = 8 ;
985 // --- Vacuum (no field) = 10
986 // --- Vacuum (with field) = 11
987 // --- Air (no field) = 12
988
1e064588 989 // ****************************************************
990 // Tracking media parameters
991 //
992 Float_t epsil = 0.01; // Tracking precision,
993 Float_t stmin = 0.01; // Min. value 4 max. step (cm)
994 Float_t stemax = 1.; // Max. step permitted (cm)
995 Float_t tmaxfd = 0.; // Maximum angle due to field (degrees)
996 Float_t deemax = -1.; // Maximum fractional energy loss
997 Float_t nofieldm = 0.; // Max. field value (no field)
998 Float_t fieldm = 45.; // Max. field value (with field)
999 Int_t isvol = 0; // ISVOL =0 -> not sensitive volume
1000 Int_t isvolActive = 1; // ISVOL =1 -> sensitive volume
1001 Int_t inofld = 0; // IFIELD=0 -> no magnetic field
1002 Int_t ifield =2; // IFIELD=2 -> magnetic field defined in AliMagFC.h
1003 // *****************************************************
1004
1005 AliMedium(1, "ZTANT", 1, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1006 AliMedium(2, "ZBRASS",2, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1007 AliMedium(3, "ZSIO2", 3, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1008 AliMedium(4, "ZQUAR", 3, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1009 AliMedium(5, "ZLEAD", 5, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1010 AliMedium(6, "ZCOPP", 6, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1011 AliMedium(7, "ZIRON", 7, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1012 AliMedium(8, "ZIRONN",8, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1013 AliMedium(10,"ZVOID",10, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1014 AliMedium(12,"ZAIR", 12, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1015 //
3e3ba835 1016 AliMedium(11,"ZVOIM", 11, isvol, ifield, fieldm, tmaxfd, stemax, deemax, epsil, stmin);
1017 AliMedium(13,"ZIRONE",13, isvol, ifield, fieldm, tmaxfd, stemax, deemax, epsil, stmin);
4663d63d 1018
1019 // Thresholds for showering in the ZDCs
1020 i = 1; //tantalum
1021 gMC->Gstpar(idtmed[i], "CUTGAM", .001);
1022 gMC->Gstpar(idtmed[i], "CUTELE", .001);
1023 gMC->Gstpar(idtmed[i], "CUTNEU", .01);
1024 gMC->Gstpar(idtmed[i], "CUTHAD", .01);
1025 i = 2; //brass
1026 gMC->Gstpar(idtmed[i], "CUTGAM", .001);
1027 gMC->Gstpar(idtmed[i], "CUTELE", .001);
1028 gMC->Gstpar(idtmed[i], "CUTNEU", .01);
1029 gMC->Gstpar(idtmed[i], "CUTHAD", .01);
1030 i = 5; //lead
1031 gMC->Gstpar(idtmed[i], "CUTGAM", .001);
1032 gMC->Gstpar(idtmed[i], "CUTELE", .001);
1033 gMC->Gstpar(idtmed[i], "CUTNEU", .01);
1034 gMC->Gstpar(idtmed[i], "CUTHAD", .01);
1035
1036 // Avoid too detailed showering in TDI
1037 i = 6; //copper
1038 gMC->Gstpar(idtmed[i], "CUTGAM", .1);
1039 gMC->Gstpar(idtmed[i], "CUTELE", .1);
1040 gMC->Gstpar(idtmed[i], "CUTNEU", 1.);
1041 gMC->Gstpar(idtmed[i], "CUTHAD", 1.);
1042
1043 // Avoid too detailed showering along the beam line
1044 i = 7; //iron with energy loss (ZIRON)
1045 gMC->Gstpar(idtmed[i], "CUTGAM", .1);
1046 gMC->Gstpar(idtmed[i], "CUTELE", .1);
1047 gMC->Gstpar(idtmed[i], "CUTNEU", 1.);
1048 gMC->Gstpar(idtmed[i], "CUTHAD", 1.);
1049
1050 // Avoid too detailed showering along the beam line
1051 i = 8; //iron with energy loss (ZIRONN)
1052 gMC->Gstpar(idtmed[i], "CUTGAM", .1);
1053 gMC->Gstpar(idtmed[i], "CUTELE", .1);
1054 gMC->Gstpar(idtmed[i], "CUTNEU", 1.);
1055 gMC->Gstpar(idtmed[i], "CUTHAD", 1.);
3e3ba835 1056 // Avoid too detailed showering along the beam line
1057 i = 13; //iron with energy loss (ZIRONN)
1058 gMC->Gstpar(idtmed[i], "CUTGAM", 1.);
1059 gMC->Gstpar(idtmed[i], "CUTELE", 1.);
1060 gMC->Gstpar(idtmed[i], "CUTNEU", 1.);
1061 gMC->Gstpar(idtmed[i], "CUTHAD", 1.);
4663d63d 1062
1063 // Avoid interaction in fibers (only energy loss allowed)
1064 i = 3; //fibers (ZSI02)
1065 gMC->Gstpar(idtmed[i], "DCAY", 0.);
1066 gMC->Gstpar(idtmed[i], "MULS", 0.);
1067 gMC->Gstpar(idtmed[i], "PFIS", 0.);
1068 gMC->Gstpar(idtmed[i], "MUNU", 0.);
1069 gMC->Gstpar(idtmed[i], "LOSS", 1.);
1070 gMC->Gstpar(idtmed[i], "PHOT", 0.);
1071 gMC->Gstpar(idtmed[i], "COMP", 0.);
1072 gMC->Gstpar(idtmed[i], "PAIR", 0.);
1073 gMC->Gstpar(idtmed[i], "BREM", 0.);
1074 gMC->Gstpar(idtmed[i], "DRAY", 0.);
1075 gMC->Gstpar(idtmed[i], "ANNI", 0.);
1076 gMC->Gstpar(idtmed[i], "HADR", 0.);
1077 i = 4; //fibers (ZQUAR)
1078 gMC->Gstpar(idtmed[i], "DCAY", 0.);
1079 gMC->Gstpar(idtmed[i], "MULS", 0.);
1080 gMC->Gstpar(idtmed[i], "PFIS", 0.);
1081 gMC->Gstpar(idtmed[i], "MUNU", 0.);
1082 gMC->Gstpar(idtmed[i], "LOSS", 1.);
1083 gMC->Gstpar(idtmed[i], "PHOT", 0.);
1084 gMC->Gstpar(idtmed[i], "COMP", 0.);
1085 gMC->Gstpar(idtmed[i], "PAIR", 0.);
1086 gMC->Gstpar(idtmed[i], "BREM", 0.);
1087 gMC->Gstpar(idtmed[i], "DRAY", 0.);
1088 gMC->Gstpar(idtmed[i], "ANNI", 0.);
1089 gMC->Gstpar(idtmed[i], "HADR", 0.);
1090
1091 // Avoid interaction in void
1092 i = 11; //void with field
1093 gMC->Gstpar(idtmed[i], "DCAY", 0.);
1094 gMC->Gstpar(idtmed[i], "MULS", 0.);
1095 gMC->Gstpar(idtmed[i], "PFIS", 0.);
1096 gMC->Gstpar(idtmed[i], "MUNU", 0.);
1097 gMC->Gstpar(idtmed[i], "LOSS", 0.);
1098 gMC->Gstpar(idtmed[i], "PHOT", 0.);
1099 gMC->Gstpar(idtmed[i], "COMP", 0.);
1100 gMC->Gstpar(idtmed[i], "PAIR", 0.);
1101 gMC->Gstpar(idtmed[i], "BREM", 0.);
1102 gMC->Gstpar(idtmed[i], "DRAY", 0.);
1103 gMC->Gstpar(idtmed[i], "ANNI", 0.);
1104 gMC->Gstpar(idtmed[i], "HADR", 0.);
1105
1106 //
1107 fMedSensZN = idtmed[1]; // Sensitive volume: ZN passive material
1108 fMedSensZP = idtmed[2]; // Sensitive volume: ZP passive material
1109 fMedSensF1 = idtmed[3]; // Sensitive volume: fibres type 1
1110 fMedSensF2 = idtmed[4]; // Sensitive volume: fibres type 2
1111 fMedSensZEM = idtmed[5]; // Sensitive volume: ZEM passive material
4700b983 1112 fMedSensTDI = idtmed[6]; // Sensitive volume: TDI Cu shield
1113 fMedSensPI = idtmed[7]; // Sensitive volume: beam pipes
4663d63d 1114 fMedSensGR = idtmed[12]; // Sensitive volume: air into the grooves
1115}
1116
1117//_____________________________________________________________________________
1118void AliZDCv2::Init()
1119{
1120 InitTables();
1121}
1122
1123//_____________________________________________________________________________
1124void AliZDCv2::InitTables()
1125{
c6937a87 1126 //
1127 // Read light tables for Cerenkov light production parameterization
1128 //
1129
4663d63d 1130 Int_t k, j;
1131
1132 char *lightfName1,*lightfName2,*lightfName3,*lightfName4,
1133 *lightfName5,*lightfName6,*lightfName7,*lightfName8;
1134 FILE *fp1, *fp2, *fp3, *fp4, *fp5, *fp6, *fp7, *fp8;
1135
1136 // --- Reading light tables for ZN
1137 lightfName1 = gSystem->ExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620362207s");
1138 if((fp1 = fopen(lightfName1,"r")) == NULL){
1139 printf("Cannot open file fp1 \n");
1140 return;
1141 }
1142 lightfName2 = gSystem->ExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620362208s");
1143 if((fp2 = fopen(lightfName2,"r")) == NULL){
1144 printf("Cannot open file fp2 \n");
1145 return;
1146 }
1147 lightfName3 = gSystem->ExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620362209s");
1148 if((fp3 = fopen(lightfName3,"r")) == NULL){
1149 printf("Cannot open file fp3 \n");
1150 return;
1151 }
1152 lightfName4 = gSystem->ExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620362210s");
1153 if((fp4 = fopen(lightfName4,"r")) == NULL){
1154 printf("Cannot open file fp4 \n");
1155 return;
1156 }
1157
1158 for(k=0; k<fNalfan; k++){
1159 for(j=0; j<fNben; j++){
1160 fscanf(fp1,"%f",&fTablen[0][k][j]);
1161 fscanf(fp2,"%f",&fTablen[1][k][j]);
1162 fscanf(fp3,"%f",&fTablen[2][k][j]);
1163 fscanf(fp4,"%f",&fTablen[3][k][j]);
1164 }
1165 }
1166 fclose(fp1);
1167 fclose(fp2);
1168 fclose(fp3);
1169 fclose(fp4);
1170
1171 // --- Reading light tables for ZP and ZEM
1172 lightfName5 = gSystem->ExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620552207s");
1173 if((fp5 = fopen(lightfName5,"r")) == NULL){
1174 printf("Cannot open file fp5 \n");
1175 return;
1176 }
1177 lightfName6 = gSystem->ExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620552208s");
1178 if((fp6 = fopen(lightfName6,"r")) == NULL){
1179 printf("Cannot open file fp6 \n");
1180 return;
1181 }
1182 lightfName7 = gSystem->ExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620552209s");
1183 if((fp7 = fopen(lightfName7,"r")) == NULL){
1184 printf("Cannot open file fp7 \n");
1185 return;
1186 }
1187 lightfName8 = gSystem->ExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620552210s");
1188 if((fp8 = fopen(lightfName8,"r")) == NULL){
1189 printf("Cannot open file fp8 \n");
1190 return;
1191 }
1192
1193 for(k=0; k<fNalfap; k++){
1194 for(j=0; j<fNbep; j++){
1195 fscanf(fp5,"%f",&fTablep[0][k][j]);
1196 fscanf(fp6,"%f",&fTablep[1][k][j]);
1197 fscanf(fp7,"%f",&fTablep[2][k][j]);
1198 fscanf(fp8,"%f",&fTablep[3][k][j]);
1199 }
1200 }
1201 fclose(fp5);
1202 fclose(fp6);
1203 fclose(fp7);
1204 fclose(fp8);
1205}
4663d63d 1206//_____________________________________________________________________________
1207void AliZDCv2::StepManager()
1208{
1209 //
1210 // Routine called at every step in the Zero Degree Calorimeters
1211 //
bc7e1cd6 1212
4663d63d 1213 Int_t j, vol[2], ibeta=0, ialfa, ibe, nphe;
f05df11a 1214 Float_t x[3], xdet[3], destep, hits[10], m, ekin, um[3], ud[3], be, out;
1215 //Float_t radius;
c6937a87 1216 Float_t xalic[3], z, guiEff, guiPar[4]={0.31,-0.0004,0.0197,0.7958};
4663d63d 1217 TLorentzVector s, p;
1218 const char *knamed;
1219
68826ad9 1220 for (j=0;j<10;j++) hits[j]=-999.;
bc7e1cd6 1221
4700b983 1222 // --- This part is for no shower developement in beam pipe and TDI
1223 // If particle interacts with beam pipe or TDI -> return
47708541 1224 if((gMC->CurrentMedium() == fMedSensPI) || (gMC->CurrentMedium() == fMedSensTDI)){
4700b983 1225 // If option NoShower is set -> StopTrack
1226 if(fNoShower==1) {
47708541 1227 if(gMC->CurrentMedium() == fMedSensPI) {
4700b983 1228 knamed = gMC->CurrentVolName();
1e064588 1229 if(!strncmp(knamed,"YMQ",3)) fpLostIT += 1;
68826ad9 1230 if(!strncmp(knamed,"YD1",3)) fpLostD1 += 1;
bc7e1cd6 1231 }
47708541 1232 else if(gMC->CurrentMedium() == fMedSensTDI){ // NB->Cu = TDI or D1 vacuum chamber
bc7e1cd6 1233 knamed = gMC->CurrentVolName();
bc7e1cd6 1234 if(!strncmp(knamed,"MD1",3)) fpLostD1 += 1;
1235 if(!strncmp(knamed,"QTD",3)) fpLostTDI += 1;
4700b983 1236 }
ee0c4fc1 1237 printf("\n # of spectators lost in IT = %d\n",fpLostIT);
1238 printf("\n # of spectators lost in D1 = %d\n",fpLostD1);
1239 printf("\n # of spectators lost in TDI = %d\n\n",fpLostTDI);
4700b983 1240 gMC->StopTrack();
4700b983 1241 }
1242 return;
1243 }
1244
47708541 1245 if((gMC->CurrentMedium() == fMedSensZN) || (gMC->CurrentMedium() == fMedSensZP) ||
1246 (gMC->CurrentMedium() == fMedSensGR) || (gMC->CurrentMedium() == fMedSensF1) ||
1247 (gMC->CurrentMedium() == fMedSensF2) || (gMC->CurrentMedium() == fMedSensZEM)){
8cc32cbc 1248
4663d63d 1249
1250 //Particle coordinates
1251 gMC->TrackPosition(s);
68826ad9 1252 for(j=0; j<=2; j++) x[j] = s[j];
4663d63d 1253 hits[0] = x[0];
1254 hits[1] = x[1];
1255 hits[2] = x[2];
1256
1257 // Determine in which ZDC the particle is
1258 knamed = gMC->CurrentVolName();
68826ad9 1259 if(!strncmp(knamed,"ZN",2)) vol[0]=1;
1260 else if(!strncmp(knamed,"ZP",2)) vol[0]=2;
1261 else if(!strncmp(knamed,"ZE",2)) vol[0]=3;
4663d63d 1262
1263 // Determine in which quadrant the particle is
8cc32cbc 1264 if(vol[0]==1){ //Quadrant in ZN
410749b4 1265 // Calculating particle coordinates inside ZN
4663d63d 1266 xdet[0] = x[0]-fPosZN[0];
1267 xdet[1] = x[1]-fPosZN[1];
410749b4 1268 // Calculating quadrant in ZN
1269 if(xdet[0]<=0.){
1270 if(xdet[1]>=0.) vol[1]=1;
1271 else if(xdet[1]<0.) vol[1]=3;
1272 }
1273 else if(xdet[0]>0.){
1274 if(xdet[1]>=0.) vol[1]=2;
1275 else if(xdet[1]<0.) vol[1]=4;
1276 }
1277 if((vol[1]!=1) && (vol[1]!=2) && (vol[1]!=3) && (vol[1]!=4))
6de91202 1278 printf("\n ZDC StepManager->ERROR in ZN!!! vol[1] = %d, xdet[0] = %f,"
410749b4 1279 "xdet[1] = %f\n",vol[1], xdet[0], xdet[1]);
4663d63d 1280 }
410749b4 1281
8cc32cbc 1282 else if(vol[0]==2){ //Quadrant in ZP
410749b4 1283 // Calculating particle coordinates inside ZP
4663d63d 1284 xdet[0] = x[0]-fPosZP[0];
1285 xdet[1] = x[1]-fPosZP[1];
410749b4 1286 if(xdet[0]>=fDimZP[0]) xdet[0]=fDimZP[0]-0.01;
1287 if(xdet[0]<=-fDimZP[0]) xdet[0]=-fDimZP[0]+0.01;
1288 // Calculating tower in ZP
1289 Float_t xqZP = xdet[0]/(fDimZP[0]/2.);
4663d63d 1290 for(int i=1; i<=4; i++){
1291 if(xqZP>=(i-3) && xqZP<(i-2)){
1292 vol[1] = i;
1293 break;
1294 }
1295 }
410749b4 1296 if((vol[1]!=1) && (vol[1]!=2) && (vol[1]!=3) && (vol[1]!=4))
6de91202 1297 printf(" ZDC StepManager->ERROR in ZP!!! vol[1] = %d, xdet[0] = %f,"
68826ad9 1298 "xdet[1] = %f\n",vol[1], xdet[0], xdet[1]);
4663d63d 1299 }
410749b4 1300
1301 // Quadrant in ZEM: vol[1] = 1 -> particle in 1st ZEM (placed at x = 8.5 cm)
1302 // vol[1] = 2 -> particle in 2nd ZEM (placed at x = -8.5 cm)
1303 else if(vol[0] == 3){
1304 if(x[0]>0.){
1305 vol[1] = 1;
1306 // Particle x-coordinate inside ZEM1
1307 xdet[0] = x[0]-fPosZEM[0];
1308 }
1309 else{
1310 vol[1] = 2;
1311 // Particle x-coordinate inside ZEM2
1312 xdet[0] = x[0]+fPosZEM[0];
1313 }
4663d63d 1314 xdet[1] = x[1]-fPosZEM[1];
1315 }
1316
1317 // Store impact point and kinetic energy of the ENTERING particle
1318
4663d63d 1319 if(gMC->IsTrackEntering()){
1320 //Particle energy
1321 gMC->TrackMomentum(p);
1322 hits[3] = p[3];
1323 // Impact point on ZDC
1324 hits[4] = xdet[0];
1325 hits[5] = xdet[1];
1326 hits[6] = 0;
1327 hits[7] = 0;
1328 hits[8] = 0;
1329 hits[9] = 0;
1330
5d12ce38 1331 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
4663d63d 1332
1333 if(fNoShower==1){
63abc73a 1334 if(vol[0]==1) fnDetected += 1;
1335 else if(vol[0]==2) fpDetected += 1;
1336 printf("\n # of nucleons in ZN = %d",fnDetected);
1337 printf("\n # of nucleons in ZP = %d\n\n",fpDetected);
4663d63d 1338 gMC->StopTrack();
4663d63d 1339 return;
1340 }
1341 }
4663d63d 1342
1343 // Charged particles -> Energy loss
1344 if((destep=gMC->Edep())){
1345 if(gMC->IsTrackStop()){
1346 gMC->TrackMomentum(p);
1347 m = gMC->TrackMass();
1348 ekin = p[3]-m;
1349 hits[9] = ekin;
1350 hits[7] = 0.;
1351 hits[8] = 0.;
5d12ce38 1352 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
4663d63d 1353 }
1354 else{
1355 hits[9] = destep;
1356 hits[7] = 0.;
1357 hits[8] = 0.;
5d12ce38 1358 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
4663d63d 1359 }
4663d63d 1360 }
68826ad9 1361 }
4663d63d 1362
1363
1364 // *** Light production in fibres
47708541 1365 if((gMC->CurrentMedium() == fMedSensF1) || (gMC->CurrentMedium() == fMedSensF2)){
4663d63d 1366
1367 //Select charged particles
1368 if((destep=gMC->Edep())){
1369
1370 // Particle velocity
410749b4 1371 Float_t beta = 0.;
4663d63d 1372 gMC->TrackMomentum(p);
1373 Float_t ptot=TMath::Sqrt(p[0]*p[0]+p[1]*p[1]+p[2]*p[2]);
410749b4 1374 if(p[3] > 0.00001) beta = ptot/p[3];
1375 else return;
f05df11a 1376 if(beta<0.67)return;
1377 else if((beta>=0.67) && (beta<=0.75)) ibeta = 0;
1378 else if((beta>0.75) && (beta<=0.85)) ibeta = 1;
1379 else if((beta>0.85) && (beta<=0.95)) ibeta = 2;
1380 else if(beta>0.95) ibeta = 3;
4663d63d 1381
1382 // Angle between particle trajectory and fibre axis
1383 // 1 -> Momentum directions
1384 um[0] = p[0]/ptot;
1385 um[1] = p[1]/ptot;
1386 um[2] = p[2]/ptot;
1387 gMC->Gmtod(um,ud,2);
1388 // 2 -> Angle < limit angle
1389 Double_t alfar = TMath::ACos(ud[2]);
1390 Double_t alfa = alfar*kRaddeg;
1391 if(alfa>=110.) return;
f05df11a 1392 //
4663d63d 1393 ialfa = Int_t(1.+alfa/2.);
1394
1395 // Distance between particle trajectory and fibre axis
1396 gMC->TrackPosition(s);
1397 for(j=0; j<=2; j++){
1398 x[j] = s[j];
1399 }
1400 gMC->Gmtod(x,xdet,1);
1401 if(TMath::Abs(ud[0])>0.00001){
1402 Float_t dcoeff = ud[1]/ud[0];
1403 be = TMath::Abs((xdet[1]-dcoeff*xdet[0])/TMath::Sqrt(dcoeff*dcoeff+1.));
1404 }
1405 else{
1406 be = TMath::Abs(ud[0]);
1407 }
1408
4663d63d 1409 ibe = Int_t(be*1000.+1);
f05df11a 1410 //if((vol[0]==1)) radius = fFibZN[1];
1411 //else if((vol[0]==2)) radius = fFibZP[1];
4663d63d 1412
1413 //Looking into the light tables
1414 Float_t charge = gMC->TrackCharge();
1415
8cc32cbc 1416 if((vol[0]==1)) { // (1) ZN fibres
4663d63d 1417 if(ibe>fNben) ibe=fNben;
1418 out = charge*charge*fTablen[ibeta][ialfa][ibe];
1419 nphe = gRandom->Poisson(out);
f05df11a 1420 // Ch. debug
1421 //if(ibeta==3) printf("\t %f \t %f \t %f\n",alfa, be, out);
1422 //printf("\t ibeta = %d, ialfa = %d, ibe = %d -> nphe = %d\n\n",ibeta,ialfa,ibe,nphe);
47708541 1423 if(gMC->CurrentMedium() == fMedSensF1){
4663d63d 1424 hits[7] = nphe; //fLightPMQ
1425 hits[8] = 0;
1426 hits[9] = 0;
5d12ce38 1427 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
4663d63d 1428 }
1429 else{
1430 hits[7] = 0;
1431 hits[8] = nphe; //fLightPMC
1432 hits[9] = 0;
5d12ce38 1433 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
4663d63d 1434 }
1435 }
8cc32cbc 1436 else if((vol[0]==2)) { // (2) ZP fibres
4663d63d 1437 if(ibe>fNbep) ibe=fNbep;
1438 out = charge*charge*fTablep[ibeta][ialfa][ibe];
1439 nphe = gRandom->Poisson(out);
47708541 1440 if(gMC->CurrentMedium() == fMedSensF1){
4663d63d 1441 hits[7] = nphe; //fLightPMQ
1442 hits[8] = 0;
1443 hits[9] = 0;
5d12ce38 1444 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
4663d63d 1445 }
1446 else{
1447 hits[7] = 0;
1448 hits[8] = nphe; //fLightPMC
1449 hits[9] = 0;
5d12ce38 1450 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
4663d63d 1451 }
1452 }
8cc32cbc 1453 else if((vol[0]==3)) { // (3) ZEM fibres
4663d63d 1454 if(ibe>fNbep) ibe=fNbep;
1455 out = charge*charge*fTablep[ibeta][ialfa][ibe];
8cc32cbc 1456 gMC->TrackPosition(s);
1457 for(j=0; j<=2; j++){
1458 xalic[j] = s[j];
1459 }
1460 // z-coordinate from ZEM front face
1461 // NB-> fPosZEM[2]+fZEMLength = -1000.+2*10.3 = 979.69 cm
1462 z = -xalic[2]+fPosZEM[2]+2*fZEMLength-xalic[1];
1463// z = xalic[2]-fPosZEM[2]-fZEMLength-xalic[1]*(TMath::Tan(45.*kDegrad));
1464// printf("\n fPosZEM[2]+2*fZEMLength = %f", fPosZEM[2]+2*fZEMLength);
c6937a87 1465 guiEff = guiPar[0]*(guiPar[1]*z*z+guiPar[2]*z+guiPar[3]);
c6937a87 1466 out = out*guiEff;
4663d63d 1467 nphe = gRandom->Poisson(out);
c6937a87 1468// printf(" out*guiEff = %f nphe = %d", out, nphe);
410749b4 1469 if(vol[1] == 1){
1470 hits[7] = 0;
1471 hits[8] = nphe; //fLightPMC (ZEM1)
1472 hits[9] = 0;
5d12ce38 1473 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
410749b4 1474 }
1475 else{
1476 hits[7] = nphe; //fLightPMQ (ZEM2)
1477 hits[8] = 0;
1478 hits[9] = 0;
5d12ce38 1479 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
410749b4 1480 }
4663d63d 1481 }
1482 }
1483 }
1484}