]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - PHOS/AliPHOSPIDv1.cxx
New default calibration parameters (Yu.Kharlov)
[u/mrichter/AliRoot.git] / PHOS / AliPHOSPIDv1.cxx
... / ...
CommitLineData
1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18/* History of cvs commits:
19 *
20 * $Log$
21 * Revision 1.101 2005/05/28 14:19:04 schutz
22 * Compilation warnings fixed by T.P.
23 *
24 */
25
26//_________________________________________________________________________
27// Implementation version v1 of the PHOS particle identifier
28// Particle identification based on the
29// - RCPV: distance from CPV recpoint to EMCA recpoint.
30// - TOF
31// - PCA: Principal Components Analysis..
32// The identified particle has an identification number corresponding
33// to a 9 bits number:
34// -Bit 0 to 2: bit set if RCPV > CpvEmcDistance (each bit corresponds
35// to a different efficiency-purity point of the photon identification)
36// -Bit 3 to 5: bit set if TOF < TimeGate (each bit corresponds
37// to a different efficiency-purity point of the photon identification)
38// -Bit 6 to 9: bit set if Principal Components are
39// inside an ellipse defined by the parameters a, b, c, x0 and y0.
40// (each bit corresponds to a different efficiency-purity point of the
41// photon identification)
42// The PCA (Principal components analysis) needs a file that contains
43// a previous analysis of the correlations between the particles. This
44// file is $ALICE_ROOT/PHOS/PCA8pa15_0.5-100.root. Analysis done for
45// energies between 0.5 and 100 GeV.
46// A calibrated energy is calculated. The energy of the reconstructed
47// cluster is corrected with the formula A + B * E + C * E^2, whose
48// parameters where obtained through the study of the reconstructed
49// energy distribution of monoenergetic photons.
50//
51// All the parameters (RCPV(2 rows-3 columns),TOF(1r-3c),PCA(5r-4c)
52// and calibration(1r-3c))are stored in a file called
53// $ALICE_ROOT/PHOS/Parameters.dat. Each time that AliPHOSPIDv1 is
54// initialized, this parameters are copied to a Matrix (9,4), a
55// TMatrixD object.
56//
57// use case:
58// root [0] AliPHOSPIDv1 * p = new AliPHOSPIDv1("galice1.root")
59// Warning in <TDatabasePDG::TDatabasePDG>: object already instantiated
60// // reading headers from file galice1.root and create RecParticles
61 // TrackSegments and RecPoints are used
62// // set file name for the branch RecParticles
63// root [1] p->ExecuteTask("deb all time")
64// // available options
65// // "deb" - prints # of reconstructed particles
66// // "deb all" - prints # and list of RecParticles
67// // "time" - prints benchmarking results
68//
69// root [2] AliPHOSPIDv1 * p2 = new AliPHOSPIDv1("galice1.root","v1",kTRUE)
70// Warning in <TDatabasePDG::TDatabasePDG>: object already instantiated
71// //Split mode.
72// root [3] p2->ExecuteTask()
73//
74
75
76//*-- Author: Yves Schutz (SUBATECH) & Gines Martinez (SUBATECH) &
77// Gustavo Conesa April 2002
78// PCA redesigned by Gustavo Conesa October 2002:
79// The way of using the PCA has changed. Instead of 2
80// files with the PCA, each one with different energy ranges
81// of application, we use the wide one (0.5-100 GeV), and instead
82// of fixing 3 ellipses for different ranges of energy, it has been
83// studied the dependency of the ellipses parameters with the
84// energy, and they are implemented in the code as a funtion
85// of the energy.
86//
87//
88//
89// --- ROOT system ---
90
91
92// --- Standard library ---
93#include <TMatrixF.h>
94#include "TFormula.h"
95#include "TBenchmark.h"
96#include "TPrincipal.h"
97#include "TFile.h"
98#include "TSystem.h"
99
100// --- AliRoot header files ---
101 //#include "AliLog.h"
102#include "AliGenerator.h"
103#include "AliPHOS.h"
104#include "AliPHOSPIDv1.h"
105#include "AliPHOSGetter.h"
106
107ClassImp( AliPHOSPIDv1)
108
109//____________________________________________________________________________
110AliPHOSPIDv1::AliPHOSPIDv1():AliPHOSPID()
111{
112 // default ctor
113
114 InitParameters() ;
115 fDefaultInit = kTRUE ;
116}
117
118//____________________________________________________________________________
119AliPHOSPIDv1::AliPHOSPIDv1(const AliPHOSPIDv1 & pid ):AliPHOSPID(pid)
120{
121 // ctor
122 InitParameters() ;
123 Init() ;
124
125}
126
127//____________________________________________________________________________
128AliPHOSPIDv1::AliPHOSPIDv1(const TString alirunFileName, const TString eventFolderName):AliPHOSPID(alirunFileName, eventFolderName)
129{
130 //ctor with the indication on where to look for the track segments
131
132 InitParameters() ;
133 Init() ;
134 fDefaultInit = kFALSE ;
135}
136
137//____________________________________________________________________________
138AliPHOSPIDv1::~AliPHOSPIDv1()
139{
140 // dtor
141 fPrincipalPhoton = 0;
142 fPrincipalPi0 = 0;
143
144 delete [] fX ; // Principal input
145 delete [] fPPhoton ; // Photon Principal components
146 delete [] fPPi0 ; // Pi0 Principal components
147
148 delete fParameters;
149 delete fTFphoton;
150 delete fTFpiong;
151 delete fTFkaong;
152 delete fTFkaonl;
153 delete fTFhhadrong;
154 delete fTFhhadronl;
155 delete fDFmuon;
156}
157//____________________________________________________________________________
158const TString AliPHOSPIDv1::BranchName() const
159{
160
161 return GetName() ;
162}
163
164//____________________________________________________________________________
165void AliPHOSPIDv1::Init()
166{
167 // Make all memory allocations that are not possible in default constructor
168 // Add the PID task to the list of PHOS tasks
169
170 AliPHOSGetter * gime = AliPHOSGetter::Instance() ;
171 if(!gime)
172 gime = AliPHOSGetter::Instance(GetTitle(), fEventFolderName.Data()) ;
173
174 if ( !gime->PID() )
175 gime->PostPID(this) ;
176}
177
178//____________________________________________________________________________
179void AliPHOSPIDv1::InitParameters()
180{
181 // Initialize PID parameters
182 fWrite = kTRUE ;
183 fRecParticlesInRun = 0 ;
184 fNEvent = 0 ;
185 fRecParticlesInRun = 0 ;
186 fBayesian = kTRUE ;
187 SetParameters() ; // fill the parameters matrix from parameters file
188 SetEventRange(0,-1) ;
189
190 // initialisation of response function parameters
191 // Tof
192
193// // Photons
194// fTphoton[0] = 0.218 ;
195// fTphoton[1] = 1.55E-8 ;
196// fTphoton[2] = 5.05E-10 ;
197// fTFphoton = new TFormula("ToF response to photons" , "gaus") ;
198// fTFphoton->SetParameters( fTphoton[0], fTphoton[1], fTphoton[2]) ;
199
200// // Pions
201// //Gaus (0 to max probability)
202// fTpiong[0] = 0.0971 ;
203// fTpiong[1] = 1.58E-8 ;
204// fTpiong[2] = 5.69E-10 ;
205// fTFpiong = new TFormula("ToF response to pions" , "gaus") ;
206// fTFpiong->SetParameters( fTpiong[0], fTpiong[1], fTpiong[2]) ;
207
208// // Kaons
209// //Gaus (0 to max probability)
210// fTkaong[0] = 0.0542 ;
211// fTkaong[1] = 1.64E-8 ;
212// fTkaong[2] = 6.07E-10 ;
213// fTFkaong = new TFormula("ToF response to kaon" , "gaus") ;
214// fTFkaong->SetParameters( fTkaong[0], fTkaong[1], fTkaong[2]) ;
215// //Landau (max probability to inf)
216// fTkaonl[0] = 0.264 ;
217// fTkaonl[1] = 1.68E-8 ;
218// fTkaonl[2] = 4.10E-10 ;
219// fTFkaonl = new TFormula("ToF response to kaon" , "landau") ;
220// fTFkaonl->SetParameters( fTkaonl[0], fTkaonl[1], fTkaonl[2]) ;
221
222// //Heavy Hadrons
223// //Gaus (0 to max probability)
224// fThhadrong[0] = 0.0302 ;
225// fThhadrong[1] = 1.73E-8 ;
226// fThhadrong[2] = 9.52E-10 ;
227// fTFhhadrong = new TFormula("ToF response to heavy hadrons" , "gaus") ;
228// fTFhhadrong->SetParameters( fThhadrong[0], fThhadrong[1], fThhadrong[2]) ;
229// //Landau (max probability to inf)
230// fThhadronl[0] = 0.139 ;
231// fThhadronl[1] = 1.745E-8 ;
232// fThhadronl[2] = 1.00E-9 ;
233// fTFhhadronl = new TFormula("ToF response to heavy hadrons" , "landau") ;
234// fTFhhadronl->SetParameters( fThhadronl[0], fThhadronl[1], fThhadronl[2]) ;
235
236 // Photons
237 fTphoton[0] = 7.83E8 ;
238 fTphoton[1] = 1.55E-8 ;
239 fTphoton[2] = 5.09E-10 ;
240 fTFphoton = new TFormula("ToF response to photons" , "gaus") ;
241 fTFphoton->SetParameters( fTphoton[0], fTphoton[1], fTphoton[2]) ;
242
243 // Pions
244 //Gaus (0 to max probability)
245 fTpiong[0] = 6.73E8 ;
246 fTpiong[1] = 1.58E-8 ;
247 fTpiong[2] = 5.87E-10 ;
248 fTFpiong = new TFormula("ToF response to pions" , "gaus") ;
249 fTFpiong->SetParameters( fTpiong[0], fTpiong[1], fTpiong[2]) ;
250
251 // Kaons
252 //Gaus (0 to max probability)
253 fTkaong[0] = 3.93E8 ;
254 fTkaong[1] = 1.64E-8 ;
255 fTkaong[2] = 6.07E-10 ;
256 fTFkaong = new TFormula("ToF response to kaon" , "gaus") ;
257 fTFkaong->SetParameters( fTkaong[0], fTkaong[1], fTkaong[2]) ;
258 //Landau (max probability to inf)
259 fTkaonl[0] = 2.0E9 ;
260 fTkaonl[1] = 1.68E-8 ;
261 fTkaonl[2] = 4.10E-10 ;
262 fTFkaonl = new TFormula("ToF response to kaon" , "landau") ;
263 fTFkaonl->SetParameters( fTkaonl[0], fTkaonl[1], fTkaonl[2]) ;
264
265 //Heavy Hadrons
266 //Gaus (0 to max probability)
267 fThhadrong[0] = 2.02E8 ;
268 fThhadrong[1] = 1.73E-8 ;
269 fThhadrong[2] = 9.52E-10 ;
270 fTFhhadrong = new TFormula("ToF response to heavy hadrons" , "gaus") ;
271 fTFhhadrong->SetParameters( fThhadrong[0], fThhadrong[1], fThhadrong[2]) ;
272 //Landau (max probability to inf)
273 fThhadronl[0] = 1.10E9 ;
274 fThhadronl[1] = 1.74E-8 ;
275 fThhadronl[2] = 1.00E-9 ;
276 fTFhhadronl = new TFormula("ToF response to heavy hadrons" , "landau") ;
277 fTFhhadronl->SetParameters( fThhadronl[0], fThhadronl[1], fThhadronl[2]) ;
278
279
280
281 // Shower shape: dispersion gaussian parameters
282 // Photons
283
284// fDphoton[0] = 4.62e-2; fDphoton[1] = 1.39e-2 ; fDphoton[2] = -3.80e-2;//constant
285// fDphoton[3] = 1.53 ; fDphoton[4] =-6.62e-2 ; fDphoton[5] = 0.339 ;//mean
286// fDphoton[6] = 6.89e-2; fDphoton[7] =-6.59e-2 ; fDphoton[8] = 0.194 ;//sigma
287
288// fDpi0[0] = 0.0586 ; fDpi0[1] = 1.06E-3 ; fDpi0[2] = 0. ;//constant
289// fDpi0[3] = 2.67 ; fDpi0[4] =-2.00E-2 ; fDpi0[5] = 9.37E-5 ;//mean
290// fDpi0[6] = 0.153 ; fDpi0[7] = 9.34E-4 ; fDpi0[8] =-1.49E-5 ;//sigma
291
292// fDhadron[0] = 1.61E-2 ; fDhadron[1] = 3.03E-3 ; fDhadron[2] = 1.01E-2 ;//constant
293// fDhadron[3] = 3.81 ; fDhadron[4] = 0.232 ; fDhadron[5] =-1.25 ;//mean
294// fDhadron[6] = 0.897 ; fDhadron[7] = 0.0987 ; fDhadron[8] =-0.534 ;//sigma
295
296 fDphoton[0] = 1.5 ; fDphoton[1] = 0.49 ; fDphoton[2] =-1.7E-2 ;//constant
297 fDphoton[3] = 1.5 ; fDphoton[4] = 4.0E-2 ; fDphoton[5] = 0.21 ;//mean
298 fDphoton[6] = 4.8E-2 ; fDphoton[7] =-0.12 ; fDphoton[8] = 0.27 ;//sigma
299 fDphoton[9] = 16.; //for E> fDphoton[9] parameters calculated at fDphoton[9]
300
301 fDpi0[0] = 0.25 ; fDpi0[1] = 3.3E-2 ; fDpi0[2] =-1.0e-5 ;//constant
302 fDpi0[3] = 1.50 ; fDpi0[4] = 398. ; fDpi0[5] = 12. ;//mean
303 fDpi0[6] =-7.0E-2 ; fDpi0[7] =-524. ; fDpi0[8] = 22. ;//sigma
304 fDpi0[9] = 110.; //for E> fDpi0[9] parameters calculated at fDpi0[9]
305
306 fDhadron[0] = 6.5 ; fDhadron[1] =-5.3 ; fDhadron[2] = 1.5 ;//constant
307 fDhadron[3] = 3.8 ; fDhadron[4] = 0.23 ; fDhadron[5] =-1.2 ;//mean
308 fDhadron[6] = 0.88 ; fDhadron[7] = 9.3E-2 ; fDhadron[8] =-0.51 ;//sigma
309 fDhadron[9] = 2.; //for E> fDhadron[9] parameters calculated at fDhadron[9]
310
311 fDmuon[0] = 0.0631 ;
312 fDmuon[1] = 1.4 ;
313 fDmuon[2] = 0.0557 ;
314 fDFmuon = new TFormula("Shower shape response to muons" , "landau") ;
315 fDFmuon->SetParameters( fDmuon[0], fDmuon[1], fDmuon[2]) ;
316
317
318 // x(CPV-EMC) distance gaussian parameters
319
320// fXelectron[0] = 8.06e-2 ; fXelectron[1] = 1.00e-2; fXelectron[2] =-5.14e-2;//constant
321// fXelectron[3] = 0.202 ; fXelectron[4] = 8.15e-3; fXelectron[5] = 4.55 ;//mean
322// fXelectron[6] = 0.334 ; fXelectron[7] = 0.186 ; fXelectron[8] = 4.32e-2;//sigma
323
324// //charged hadrons gaus
325// fXcharged[0] = 6.43e-3 ; fXcharged[1] =-4.19e-5; fXcharged[2] = 1.42e-3;//constant
326// fXcharged[3] = 2.75 ; fXcharged[4] =-0.40 ; fXcharged[5] = 1.68 ;//mean
327// fXcharged[6] = 3.135 ; fXcharged[7] =-9.41e-2; fXcharged[8] = 1.31e-2;//sigma
328
329// // z(CPV-EMC) distance gaussian parameters
330
331// fZelectron[0] = 8.22e-2 ; fZelectron[1] = 5.11e-3; fZelectron[2] =-3.05e-2;//constant
332// fZelectron[3] = 3.09e-2 ; fZelectron[4] = 5.87e-2; fZelectron[5] =-9.49e-2;//mean
333// fZelectron[6] = 0.263 ; fZelectron[7] =-9.02e-3; fZelectron[8] = 0.151 ;//sigma
334
335// //charged hadrons gaus
336
337// fZcharged[0] = 1.00e-2 ; fZcharged[1] = 2.82E-4 ; fZcharged[2] = 2.87E-3 ;//constant
338// fZcharged[3] =-4.68e-2 ; fZcharged[4] =-9.21e-3 ; fZcharged[5] = 4.91e-2 ;//mean
339// fZcharged[6] = 1.425 ; fZcharged[7] =-5.90e-2 ; fZcharged[8] = 5.07e-2 ;//sigma
340
341
342 fXelectron[0] =-1.6E-2 ; fXelectron[1] = 0.77 ; fXelectron[2] =-0.15 ;//constant
343 fXelectron[3] = 0.35 ; fXelectron[4] = 0.25 ; fXelectron[5] = 4.12 ;//mean
344 fXelectron[6] = 0.30 ; fXelectron[7] = 0.11 ; fXelectron[8] = 0.16 ;//sigma
345 fXelectron[9] = 3.; //for E> fXelectron[9] parameters calculated at fXelectron[9]
346
347 //charged hadrons gaus
348 fXcharged[0] = 0.14 ; fXcharged[1] =-3.0E-2 ; fXcharged[2] = 0 ;//constant
349 fXcharged[3] = 1.4 ; fXcharged[4] =-9.3E-2 ; fXcharged[5] = 1.4 ;//mean
350 fXcharged[6] = 5.7 ; fXcharged[7] = 0.27 ; fXcharged[8] =-1.8 ;//sigma
351 fXcharged[9] = 1.2; //for E> fXcharged[9] parameters calculated at fXcharged[9]
352
353 // z(CPV-EMC) distance gaussian parameters
354
355 fZelectron[0] = 0.49 ; fZelectron[1] = 0.53 ; fZelectron[2] =-9.8E-2 ;//constant
356 fZelectron[3] = 2.8E-2 ; fZelectron[4] = 5.0E-2 ; fZelectron[5] =-8.2E-2 ;//mean
357 fZelectron[6] = 0.25 ; fZelectron[7] =-1.7E-2 ; fZelectron[8] = 0.17 ;//sigma
358 fZelectron[9] = 3.; //for E> fZelectron[9] parameters calculated at fZelectron[9]
359
360 //charged hadrons gaus
361
362 fZcharged[0] = 0.46 ; fZcharged[1] =-0.65 ; fZcharged[2] = 0.52 ;//constant
363 fZcharged[3] = 1.1E-2 ; fZcharged[4] = 0. ; fZcharged[5] = 0. ;//mean
364 fZcharged[6] = 0.60 ; fZcharged[7] =-8.2E-2 ; fZcharged[8] = 0.45 ;//sigma
365 fZcharged[9] = 1.2; //for E> fXcharged[9] parameters calculated at fXcharged[9]
366
367 //Threshold to differentiate between charged and neutral
368 fChargedNeutralThreshold = 1e-5;
369 fTOFEnThreshold = 2; //Maximum energy to use TOF
370 fDispEnThreshold = 0.5; //Minimum energy to use shower shape
371 fDispMultThreshold = 3; //Minimum multiplicity to use shower shape
372
373 //Weight to hadrons recontructed energy
374
375 fERecWeightPar[0] = 0.32 ;
376 fERecWeightPar[1] = 3.8 ;
377 fERecWeightPar[2] = 5.4E-3 ;
378 fERecWeightPar[3] = 5.6E-2 ;
379 fERecWeight = new TFormula("Weight for hadrons" , "[0]*exp(-x*[1])+[2]*exp(-x*[3])") ;
380 fERecWeight ->SetParameters(fERecWeightPar[0],fERecWeightPar[1] ,fERecWeightPar[2] ,fERecWeightPar[3]) ;
381
382
383 for (Int_t i =0; i< AliPID::kSPECIESN ; i++)
384 fInitPID[i] = 1.;
385
386}
387
388//________________________________________________________________________
389void AliPHOSPIDv1::Exec(Option_t *option)
390{
391 // Steering method to perform particle reconstruction and identification
392 // for the event range from fFirstEvent to fLastEvent.
393 // This range is optionally set by SetEventRange().
394 // if fLastEvent=-1 (by default), then process events until the end.
395
396 if(strstr(option,"tim"))
397 gBenchmark->Start("PHOSPID");
398
399 if(strstr(option,"print")) {
400 Print() ;
401 return ;
402 }
403
404
405 AliPHOSGetter * gime = AliPHOSGetter::Instance() ;
406
407 if (fLastEvent == -1)
408 fLastEvent = gime->MaxEvent() - 1 ;
409 else
410 fLastEvent = TMath::Min(fLastEvent,gime->MaxEvent());
411 Int_t nEvents = fLastEvent - fFirstEvent + 1;
412
413 Int_t ievent ;
414 for (ievent = fFirstEvent; ievent <= fLastEvent; ievent++) {
415 gime->Event(ievent,"TR") ;
416 if(gime->TrackSegments() && //Skip events, where no track segments made
417 gime->TrackSegments()->GetEntriesFast()) {
418
419 MakeRecParticles() ;
420
421 if(fBayesian)
422 MakePID() ;
423
424 WriteRecParticles();
425 if(strstr(option,"deb"))
426 PrintRecParticles(option) ;
427 //increment the total number of rec particles per run
428 fRecParticlesInRun += gime->RecParticles()->GetEntriesFast() ;
429 }
430 }
431 if(strstr(option,"deb"))
432 PrintRecParticles(option);
433 if(strstr(option,"tim")){
434 gBenchmark->Stop("PHOSPID");
435 AliInfo(Form("took %f seconds for PID %f seconds per event",
436 gBenchmark->GetCpuTime("PHOSPID"),
437 gBenchmark->GetCpuTime("PHOSPID")/nEvents)) ;
438 }
439 if(fWrite)
440 Unload();
441}
442
443//________________________________________________________________________
444Double_t AliPHOSPIDv1::GausF(Double_t x, Double_t y, Double_t * par)
445{
446 //Given the energy x and the parameter y (tof, shower dispersion or cpv-emc distance),
447 //this method returns a density probability of this parameter, given by a gaussian
448 //function whose parameters depend with the energy with a function: a/(x*x)+b/x+b
449 //Float_t xorg = x;
450 if (x > par[9]) x = par[9];
451
452 //Double_t cnt = par[1] / (x*x) + par[2] / x + par[0] ;
453 Double_t cnt = par[0] + par[1] * x + par[2] * x * x ;
454 Double_t mean = par[4] / (x*x) + par[5] / x + par[3] ;
455 Double_t sigma = par[7] / (x*x) + par[8] / x + par[6] ;
456
457// if(xorg > 30)
458// cout<<"En_in = "<<xorg<<"; En_out = "<<x<<"; cnt = "<<cnt
459// <<"; mean = "<<mean<<"; sigma = "<<sigma<<endl;
460
461 // Double_t arg = - (y-mean) * (y-mean) / (2*sigma*sigma) ;
462 // return cnt * TMath::Exp(arg) ;
463 if(TMath::Abs(sigma) > 1.e-10){
464 return cnt*TMath::Gaus(y,mean,sigma);
465 }
466 else
467 return 0.;
468
469}
470//________________________________________________________________________
471Double_t AliPHOSPIDv1::GausPol2(Double_t x, Double_t y, Double_t * par)
472{
473 //Given the energy x and the parameter y (tof, shower dispersion or cpv-emc distance),
474 //this method returns a density probability of this parameter, given by a gaussian
475 //function whose parameters depend with the energy like second order polinomial
476
477 Double_t cnt = par[0] + par[1] * x + par[2] * x * x ;
478 Double_t mean = par[3] + par[4] * x + par[5] * x * x ;
479 Double_t sigma = par[6] + par[7] * x + par[8] * x * x ;
480
481 if(TMath::Abs(sigma) > 1.e-10){
482 return cnt*TMath::Gaus(y,mean,sigma);
483 }
484 else
485 return 0.;
486
487
488
489}
490
491//____________________________________________________________________________
492const TString AliPHOSPIDv1::GetFileNamePrincipal(TString particle) const
493{
494 //Get file name that contains the PCA for a particle ("photon or pi0")
495 particle.ToLower();
496 TString name;
497 if (particle=="photon")
498 name = fFileNamePrincipalPhoton ;
499 else if (particle=="pi0" )
500 name = fFileNamePrincipalPi0 ;
501 else
502 AliError(Form("Wrong particle name: %s (choose from pi0/photon)\n",
503 particle.Data()));
504 return name;
505}
506
507//____________________________________________________________________________
508Float_t AliPHOSPIDv1::GetParameterCalibration(Int_t i) const
509{
510 // Get the i-th parameter "Calibration"
511 Float_t param = 0.;
512 if (i>2 || i<0) {
513 AliError(Form("Invalid parameter number: %d",i));
514 } else
515 param = (*fParameters)(0,i);
516 return param;
517}
518
519//____________________________________________________________________________
520Float_t AliPHOSPIDv1::GetCalibratedEnergy(Float_t e) const
521{
522// It calibrates Energy depending on the recpoint energy.
523// The energy of the reconstructed cluster is corrected with
524// the formula A + B* E + C* E^2, whose parameters where obtained
525// through the study of the reconstructed energy distribution of
526// monoenergetic photons.
527
528 Float_t p[]={0.,0.,0.};
529 for (Int_t i=0; i<3; i++) p[i] = GetParameterCalibration(i);
530 Float_t enerec = p[0] + p[1]*e + p[2]*e*e;
531 return enerec ;
532
533}
534
535//____________________________________________________________________________
536Float_t AliPHOSPIDv1::GetParameterCpv2Emc(Int_t i, TString axis) const
537{
538 // Get the i-th parameter "CPV-EMC distance" for the specified axis
539 Float_t param = 0.;
540 if(i>2 || i<0) {
541 AliError(Form("Invalid parameter number: %d",i));
542 } else {
543 axis.ToLower();
544 if (axis == "x")
545 param = (*fParameters)(1,i);
546 else if (axis == "z")
547 param = (*fParameters)(2,i);
548 else {
549 AliError(Form("Invalid axis name: %s",axis.Data()));
550 }
551 }
552 return param;
553}
554
555//____________________________________________________________________________
556Float_t AliPHOSPIDv1::GetCpv2EmcDistanceCut(TString axis, Float_t e) const
557{
558 // Get CpvtoEmcDistance Cut depending on the cluster energy, axis and
559 // Purity-Efficiency point
560
561 axis.ToLower();
562 Float_t p[]={0.,0.,0.};
563 for (Int_t i=0; i<3; i++) p[i] = GetParameterCpv2Emc(i,axis);
564 Float_t sig = p[0] + TMath::Exp(p[1] - p[2]*e);
565 return sig;
566}
567
568//____________________________________________________________________________
569Float_t AliPHOSPIDv1::GetEllipseParameter(TString particle, TString param, Float_t e) const
570{
571 // Calculates the parameter param of the ellipse
572
573 particle.ToLower();
574 param. ToLower();
575 Float_t p[4]={0.,0.,0.,0.};
576 Float_t value = 0.0;
577 for (Int_t i=0; i<4; i++) p[i] = GetParameterToCalculateEllipse(particle,param,i);
578 if (particle == "photon") {
579 if (param.Contains("a")) e = TMath::Min((Double_t)e,70.);
580 else if (param.Contains("b")) e = TMath::Min((Double_t)e,70.);
581 else if (param.Contains("x0")) e = TMath::Max((Double_t)e,1.1);
582 }
583
584 if (particle == "photon")
585 value = p[0]/TMath::Sqrt(e) + p[1]*e + p[2]*e*e + p[3];
586 else if (particle == "pi0")
587 value = p[0] + p[1]*e + p[2]*e*e;
588
589 return value;
590}
591
592//_____________________________________________________________________________
593Float_t AliPHOSPIDv1::GetParameterPhotonBoundary (Int_t i) const
594{
595 // Get the parameter "i" to calculate the boundary on the moment M2x
596 // for photons at high p_T
597 Float_t param = 0;
598 if (i>3 || i<0) {
599 AliError(Form("Wrong parameter number: %d\n",i));
600 } else
601 param = (*fParameters)(14,i) ;
602 return param;
603}
604
605//____________________________________________________________________________
606Float_t AliPHOSPIDv1::GetParameterPi0Boundary (Int_t i) const
607{
608 // Get the parameter "i" to calculate the boundary on the moment M2x
609 // for pi0 at high p_T
610 Float_t param = 0;
611 if (i>2 || i<0) {
612 AliError(Form("Wrong parameter number: %d\n",i));
613 } else
614 param = (*fParameters)(15,i) ;
615 return param;
616}
617
618//____________________________________________________________________________
619Float_t AliPHOSPIDv1::GetParameterTimeGate(Int_t i) const
620{
621 // Get TimeGate parameter depending on Purity-Efficiency i:
622 // i=0 - Low purity, i=1 - Medium purity, i=2 - High purity
623 Float_t param = 0.;
624 if(i>2 || i<0) {
625 AliError(Form("Invalid Efficiency-Purity choice %d",i));
626 } else
627 param = (*fParameters)(3,i) ;
628 return param;
629}
630
631//_____________________________________________________________________________
632Float_t AliPHOSPIDv1::GetParameterToCalculateEllipse(TString particle, TString param, Int_t i) const
633{
634 // Get the parameter "i" that is needed to calculate the ellipse
635 // parameter "param" for the particle "particle" ("photon" or "pi0")
636
637 particle.ToLower();
638 param. ToLower();
639 Int_t offset = -1;
640 if (particle == "photon")
641 offset=0;
642 else if (particle == "pi0")
643 offset=5;
644 else
645 AliError(Form("Wrong particle name: %s (choose from pi0/photon)\n",
646 particle.Data()));
647
648 Int_t p= -1;
649 Float_t par = 0;
650
651 if (param.Contains("a")) p=4+offset;
652 else if(param.Contains("b")) p=5+offset;
653 else if(param.Contains("c")) p=6+offset;
654 else if(param.Contains("x0"))p=7+offset;
655 else if(param.Contains("y0"))p=8+offset;
656
657 if (i>4 || i<0) {
658 AliError(Form("No parameter with index %d", i)) ;
659 } else if (p==-1) {
660 AliError(Form("No parameter with name %s", param.Data() )) ;
661 } else
662 par = (*fParameters)(p,i) ;
663
664 return par;
665}
666
667
668//____________________________________________________________________________
669Float_t AliPHOSPIDv1::GetDistance(AliPHOSEmcRecPoint * emc,AliPHOSCpvRecPoint * cpv, Option_t * axis)const
670{
671 // Calculates the distance between the EMC RecPoint and the PPSD RecPoint
672
673 const AliPHOSGeometry * geom = AliPHOSGetter::Instance()->PHOSGeometry() ;
674 TVector3 vecEmc ;
675 TVector3 vecCpv ;
676 if(cpv){
677 emc->GetLocalPosition(vecEmc) ;
678 cpv->GetLocalPosition(vecCpv) ;
679
680 if(emc->GetPHOSMod() == cpv->GetPHOSMod()){
681 // Correct to difference in CPV and EMC position due to different distance to center.
682 // we assume, that particle moves from center
683 Float_t dCPV = geom->GetIPtoOuterCoverDistance();
684 Float_t dEMC = geom->GetIPtoCrystalSurface() ;
685 dEMC = dEMC / dCPV ;
686 vecCpv = dEMC * vecCpv - vecEmc ;
687 if (axis == "X") return vecCpv.X();
688 if (axis == "Y") return vecCpv.Y();
689 if (axis == "Z") return vecCpv.Z();
690 if (axis == "R") return vecCpv.Mag();
691 }
692 return 100000000 ;
693 }
694 return 100000000 ;
695}
696//____________________________________________________________________________
697Int_t AliPHOSPIDv1::GetCPVBit(AliPHOSEmcRecPoint * emc,AliPHOSCpvRecPoint * cpv, Int_t effPur, Float_t e) const
698{
699 //Calculates the pid bit for the CPV selection per each purity.
700 if(effPur>2 || effPur<0)
701 AliError(Form("Invalid Efficiency-Purity choice %d",effPur));
702
703 Float_t sigX = GetCpv2EmcDistanceCut("X",e);
704 Float_t sigZ = GetCpv2EmcDistanceCut("Z",e);
705
706 Float_t deltaX = TMath::Abs(GetDistance(emc, cpv, "X"));
707 Float_t deltaZ = TMath::Abs(GetDistance(emc, cpv, "Z"));
708 //Info("GetCPVBit"," xdist %f, sigx %f, zdist %f, sigz %f",deltaX, sigX, deltaZ,sigZ) ;
709
710 //if(deltaX>sigX*(effPur+1))
711 //if((deltaX>sigX*(effPur+1)) || (deltaZ>sigZ*(effPur+1)))
712 if((deltaX>sigX*(effPur+1)) && (deltaZ>sigZ*(effPur+1)))
713 return 1;//Neutral
714 else
715 return 0;//Charged
716}
717
718//____________________________________________________________________________
719Int_t AliPHOSPIDv1::GetPrincipalBit(TString particle, const Double_t* p, Int_t effPur, Float_t e)const
720{
721 //Is the particle inside de PCA ellipse?
722
723 particle.ToLower();
724 Int_t prinbit = 0 ;
725 Float_t a = GetEllipseParameter(particle,"a" , e);
726 Float_t b = GetEllipseParameter(particle,"b" , e);
727 Float_t c = GetEllipseParameter(particle,"c" , e);
728 Float_t x0 = GetEllipseParameter(particle,"x0", e);
729 Float_t y0 = GetEllipseParameter(particle,"y0", e);
730
731 Float_t r = TMath::Power((p[0] - x0)/a,2) +
732 TMath::Power((p[1] - y0)/b,2) +
733 c*(p[0] - x0)*(p[1] - y0)/(a*b) ;
734 //3 different ellipses defined
735 if((effPur==2) && (r<1./2.)) prinbit= 1;
736 if((effPur==1) && (r<2. )) prinbit= 1;
737 if((effPur==0) && (r<9./2.)) prinbit= 1;
738
739 if(r<0)
740 AliError("Negative square?") ;
741
742 return prinbit;
743
744}
745//____________________________________________________________________________
746Int_t AliPHOSPIDv1::GetHardPhotonBit(AliPHOSEmcRecPoint * emc) const
747{
748 // Set bit for identified hard photons (E > 30 GeV)
749 // if the second moment M2x is below the boundary
750
751 Float_t e = emc->GetEnergy();
752 if (e < 30.0) return 0;
753 Float_t m2x = emc->GetM2x();
754 Float_t m2xBoundary = GetParameterPhotonBoundary(0) *
755 TMath::Exp(-TMath::Power(e-GetParameterPhotonBoundary(1),2)/2.0/
756 TMath::Power(GetParameterPhotonBoundary(2),2)) +
757 GetParameterPhotonBoundary(3);
758 AliDebug(1, Form("GetHardPhotonBit","E=%f, m2x=%f, boundary=%f",
759 e,m2x,m2xBoundary));
760 if (m2x < m2xBoundary)
761 return 1;// A hard photon
762 else
763 return 0;// Not a hard photon
764}
765
766//____________________________________________________________________________
767Int_t AliPHOSPIDv1::GetHardPi0Bit(AliPHOSEmcRecPoint * emc) const
768{
769 // Set bit for identified hard pi0 (E > 30 GeV)
770 // if the second moment M2x is above the boundary
771
772 Float_t e = emc->GetEnergy();
773 if (e < 30.0) return 0;
774 Float_t m2x = emc->GetM2x();
775 Float_t m2xBoundary = GetParameterPi0Boundary(0) +
776 e * GetParameterPi0Boundary(1);
777 AliDebug(1,Form("E=%f, m2x=%f, boundary=%f",e,m2x,m2xBoundary));
778 if (m2x > m2xBoundary)
779 return 1;// A hard pi0
780 else
781 return 0;// Not a hard pi0
782}
783
784//____________________________________________________________________________
785TVector3 AliPHOSPIDv1::GetMomentumDirection(AliPHOSEmcRecPoint * emc, AliPHOSCpvRecPoint * )const
786{
787 // Calculates the momentum direction:
788 // 1. if only a EMC RecPoint, direction is given by IP and this RecPoint
789 // 2. if a EMC RecPoint and CPV RecPoint, direction is given by the line through the 2 recpoints
790 // However because of the poor position resolution of PPSD the direction is always taken as if we were
791 // in case 1.
792
793 TVector3 dir(0,0,0) ;
794 TMatrixF dummy ;
795
796 emc->GetGlobalPosition(dir, dummy) ;
797
798 //account correction to the position of IP
799 Float_t xo,yo,zo ; //Coordinates of the origin
800 if(gAlice && gAlice->GetMCApp() && gAlice->Generator()){
801 gAlice->Generator()->GetOrigin(xo,yo,zo) ;
802 }
803 else{
804 xo=yo=zo=0.;
805 }
806 TVector3 origin(xo,yo,zo);
807 dir = dir - origin ;
808 dir.SetMag(1.) ;
809
810 return dir ;
811}
812
813//________________________________________________________________________
814Double_t AliPHOSPIDv1::LandauF(Double_t x, Double_t y, Double_t * par)
815{
816 //Given the energy x and the parameter y (tof, shower dispersion or cpv-emc distance),
817 //this method returns a density probability of this parameter, given by a landau
818 //function whose parameters depend with the energy with a function: a/(x*x)+b/x+b
819
820 if (x > par[9]) x = par[9];
821
822 //Double_t cnt = par[1] / (x*x) + par[2] / x + par[0] ;
823 Double_t cnt = par[0] + par[1] * x + par[2] * x * x ;
824 Double_t mean = par[4] / (x*x) + par[5] / x + par[3] ;
825 Double_t sigma = par[7] / (x*x) + par[8] / x + par[6] ;
826
827 if(TMath::Abs(sigma) > 1.e-10){
828 return cnt*TMath::Landau(y,mean,sigma);
829 }
830 else
831 return 0.;
832
833}
834//________________________________________________________________________
835Double_t AliPHOSPIDv1::LandauPol2(Double_t x, Double_t y, Double_t * par)
836{
837
838 //Given the energy x and the parameter y (tof, shower dispersion or cpv-emc distance),
839 //this method returns a density probability of this parameter, given by a landau
840 //function whose parameters depend with the energy like second order polinomial
841
842 Double_t cnt = par[2] * (x*x) + par[1] * x + par[0] ;
843 Double_t mean = par[5] * (x*x) + par[4] * x + par[3] ;
844 Double_t sigma = par[8] * (x*x) + par[7] * x + par[6] ;
845
846 if(TMath::Abs(sigma) > 1.e-10){
847 return cnt*TMath::Landau(y,mean,sigma);
848 }
849 else
850 return 0.;
851
852
853}
854// //________________________________________________________________________
855// Double_t AliPHOSPIDv1::ChargedHadronDistProb(Double_t x, Double_t y, Double_t * parg, Double_t * parl)
856// {
857// Double_t cnt = 0.0 ;
858// Double_t mean = 0.0 ;
859// Double_t sigma = 0.0 ;
860// Double_t arg = 0.0 ;
861// if (y < parl[4] / (x*x) + parl[5] / x + parl[3]){
862// cnt = parg[1] / (x*x) + parg[2] / x + parg[0] ;
863// mean = parg[4] / (x*x) + parg[5] / x + parg[3] ;
864// sigma = parg[7] / (x*x) + parg[8] / x + parg[6] ;
865// TF1 * f = new TF1("gaus","gaus",0.,100.);
866// f->SetParameters(cnt,mean,sigma);
867// arg = f->Eval(y) ;
868// }
869// else{
870// cnt = parl[1] / (x*x) + parl[2] / x + parl[0] ;
871// mean = parl[4] / (x*x) + parl[5] / x + parl[3] ;
872// sigma = parl[7] / (x*x) + parl[8] / x + parl[6] ;
873// TF1 * f = new TF1("landau","landau",0.,100.);
874// f->SetParameters(cnt,mean,sigma);
875// arg = f->Eval(y) ;
876// }
877// // Double_t mean = par[3] + par[4] * x + par[5] * x * x ;
878// // Double_t sigma = par[6] + par[7] * x + par[8] * x * x ;
879
880// //Double_t arg = -(y-mean)*(y-mean)/(2*sigma*sigma) ;
881// //return cnt * TMath::Exp(arg) ;
882
883// return arg;
884
885// }
886//____________________________________________________________________________
887void AliPHOSPIDv1::MakePID()
888{
889 // construct the PID weight from a Bayesian Method
890
891 const Int_t kSPECIES = AliPID::kSPECIESN ;
892
893 AliPHOSGetter * gime = AliPHOSGetter::Instance() ;
894
895 Int_t nparticles = gime->RecParticles()->GetEntriesFast() ;
896
897 TObjArray * emcRecPoints = gime->EmcRecPoints() ;
898 TObjArray * cpvRecPoints = gime->CpvRecPoints() ;
899 TClonesArray * trackSegments = gime->TrackSegments() ;
900 if ( !emcRecPoints || !cpvRecPoints || !trackSegments ) {
901 AliFatal("RecPoints or TrackSegments not found !") ;
902 }
903 TIter next(trackSegments) ;
904 AliPHOSTrackSegment * ts ;
905 Int_t index = 0 ;
906
907 Double_t * stof[kSPECIES] ;
908 Double_t * sdp [kSPECIES] ;
909 Double_t * scpv[kSPECIES] ;
910 Double_t * sw [kSPECIES] ;
911 //Info("MakePID","Begin MakePID");
912
913 for (Int_t i =0; i< kSPECIES; i++){
914 stof[i] = new Double_t[nparticles] ;
915 sdp [i] = new Double_t[nparticles] ;
916 scpv[i] = new Double_t[nparticles] ;
917 sw [i] = new Double_t[nparticles] ;
918 }
919
920
921 while ( (ts = (AliPHOSTrackSegment *)next()) ) {
922
923 //cout<<">>>>>> Bayesian Index "<<index<<endl;
924
925 AliPHOSEmcRecPoint * emc = 0 ;
926 if(ts->GetEmcIndex()>=0)
927 emc = (AliPHOSEmcRecPoint *) emcRecPoints->At(ts->GetEmcIndex()) ;
928
929 AliPHOSCpvRecPoint * cpv = 0 ;
930 if(ts->GetCpvIndex()>=0)
931 cpv = (AliPHOSCpvRecPoint *) cpvRecPoints->At(ts->GetCpvIndex()) ;
932
933// Int_t track = 0 ;
934// track = ts->GetTrackIndex() ; //TPC tracks ?
935
936 if (!emc) {
937 AliFatal(Form("-> emc(%d) = %d", ts->GetEmcIndex(), emc )) ;
938 }
939
940
941 // ############Tof#############################
942
943 // Info("MakePID", "TOF");
944 Float_t en = emc->GetEnergy();
945 Double_t time = emc->GetTime() ;
946 // cout<<">>>>>>>Energy "<<en<<"Time "<<time<<endl;
947
948 // now get the signals probability
949 // s(pid) in the Bayesian formulation
950
951 stof[AliPID::kPhoton][index] = 1.;
952 stof[AliPID::kElectron][index] = 1.;
953 stof[AliPID::kEleCon][index] = 1.;
954 //We assing the same prob to charged hadrons, sum is 1
955 stof[AliPID::kPion][index] = 1./3.;
956 stof[AliPID::kKaon][index] = 1./3.;
957 stof[AliPID::kProton][index] = 1./3.;
958 //We assing the same prob to neutral hadrons, sum is 1
959 stof[AliPID::kNeutron][index] = 1./2.;
960 stof[AliPID::kKaon0][index] = 1./2.;
961 stof[AliPID::kMuon][index] = 1.;
962
963 if(en < fTOFEnThreshold) {
964
965 Double_t pTofPion = fTFpiong ->Eval(time) ; //gaus distribution
966 Double_t pTofKaon = 0;
967
968 if(time < fTkaonl[1])
969 pTofKaon = fTFkaong ->Eval(time) ; //gaus distribution
970 else
971 pTofKaon = fTFkaonl ->Eval(time) ; //landau distribution
972
973 Double_t pTofNucleon = 0;
974
975 if(time < fThhadronl[1])
976 pTofNucleon = fTFhhadrong ->Eval(time) ; //gaus distribution
977 else
978 pTofNucleon = fTFhhadronl ->Eval(time) ; //landau distribution
979 //We assing the same prob to neutral hadrons, sum is the average prob
980 Double_t pTofNeHadron = (pTofKaon + pTofNucleon)/2. ;
981 //We assing the same prob to charged hadrons, sum is the average prob
982 Double_t pTofChHadron = (pTofPion + pTofKaon + pTofNucleon)/3. ;
983
984 stof[AliPID::kPhoton][index] = fTFphoton ->Eval(time) ;
985 //gaus distribution
986 stof[AliPID::kEleCon][index] = stof[AliPID::kPhoton][index] ;
987 //a conversion electron has the photon ToF
988 stof[AliPID::kMuon][index] = stof[AliPID::kPhoton][index] ;
989
990 stof[AliPID::kElectron][index] = pTofPion ;
991
992 stof[AliPID::kPion][index] = pTofChHadron ;
993 stof[AliPID::kKaon][index] = pTofChHadron ;
994 stof[AliPID::kProton][index] = pTofChHadron ;
995
996 stof[AliPID::kKaon0][index] = pTofNeHadron ;
997 stof[AliPID::kNeutron][index] = pTofNeHadron ;
998 }
999
1000 // Info("MakePID", "Dispersion");
1001
1002 // ###########Shower shape: Dispersion####################
1003 Float_t dispersion = emc->GetDispersion();
1004 //dispersion is not well defined if the cluster is only in few crystals
1005
1006 sdp[AliPID::kPhoton][index] = 1. ;
1007 sdp[AliPID::kElectron][index] = 1. ;
1008 sdp[AliPID::kPion][index] = 1. ;
1009 sdp[AliPID::kKaon][index] = 1. ;
1010 sdp[AliPID::kProton][index] = 1. ;
1011 sdp[AliPID::kNeutron][index] = 1. ;
1012 sdp[AliPID::kEleCon][index] = 1. ;
1013 sdp[AliPID::kKaon0][index] = 1. ;
1014 sdp[AliPID::kMuon][index] = 1. ;
1015
1016 if(en > fDispEnThreshold && emc->GetMultiplicity() > fDispMultThreshold){
1017 sdp[AliPID::kPhoton][index] = GausF(en , dispersion, fDphoton) ;
1018 sdp[AliPID::kElectron][index] = sdp[AliPID::kPhoton][index] ;
1019 sdp[AliPID::kPion][index] = LandauF(en , dispersion, fDhadron ) ;
1020 sdp[AliPID::kKaon][index] = sdp[AliPID::kPion][index] ;
1021 sdp[AliPID::kProton][index] = sdp[AliPID::kPion][index] ;
1022 sdp[AliPID::kNeutron][index] = sdp[AliPID::kPion][index] ;
1023 sdp[AliPID::kEleCon][index] = sdp[AliPID::kPhoton][index];
1024 sdp[AliPID::kKaon0][index] = sdp[AliPID::kPion][index] ;
1025 sdp[AliPID::kMuon][index] = fDFmuon ->Eval(dispersion) ;
1026 //landau distribution
1027 }
1028
1029// Info("MakePID","multiplicity %d, dispersion %f", emc->GetMultiplicity(), dispersion);
1030// Info("MakePID","ss: photon %f, hadron %f ", sdp[AliPID::kPhoton][index], sdp[AliPID::kPion][index]);
1031// cout<<">>>>>multiplicity "<<emc->GetMultiplicity()<<", dispersion "<< dispersion<<endl ;
1032// cout<<"<<<<<ss: photon "<<sdp[AliPID::kPhoton][index]<<", hadron "<<sdp[AliPID::kPion][index]<<endl;
1033
1034 //########## CPV-EMC Distance#######################
1035 // Info("MakePID", "Distance");
1036
1037 Float_t x = TMath::Abs(GetDistance(emc, cpv, "X")) ;
1038 Float_t z = GetDistance(emc, cpv, "Z") ;
1039
1040 Double_t pcpv = 0 ;
1041 Double_t pcpvneutral = 0. ;
1042
1043 Double_t elprobx = GausF(en , x, fXelectron) ;
1044 Double_t elprobz = GausF(en , z, fZelectron) ;
1045 Double_t chprobx = GausF(en , x, fXcharged) ;
1046 Double_t chprobz = GausF(en , z, fZcharged) ;
1047 Double_t pcpvelectron = elprobx * elprobz;
1048 Double_t pcpvcharged = chprobx * chprobz;
1049
1050// cout<<">>>>energy "<<en<<endl;
1051// cout<<">>>>electron : x "<<x<<" xprob "<<elprobx<<" z "<<z<<" zprob "<<elprobz<<endl;
1052// cout<<">>>>hadron : x "<<x<<" xprob "<<chprobx<<" z "<<z<<" zprob "<<chprobz<<endl;
1053// cout<<">>>>electron : px*pz "<<pcpvelectron <<" hadron: px*pz "<<pcpvcharged<<endl;
1054
1055 // Is neutral or charged?
1056 if(pcpvelectron >= pcpvcharged)
1057 pcpv = pcpvelectron ;
1058 else
1059 pcpv = pcpvcharged ;
1060
1061 if(pcpv < fChargedNeutralThreshold)
1062 {
1063 pcpvneutral = 1. ;
1064 pcpvcharged = 0. ;
1065 pcpvelectron = 0. ;
1066 }
1067 // else
1068 // cout<<">>>>>>>>>>>CHARGED>>>>>>>>>>>"<<endl;
1069
1070 scpv[AliPID::kPion][index] = pcpvcharged ;
1071 scpv[AliPID::kKaon][index] = pcpvcharged ;
1072 scpv[AliPID::kProton][index] = pcpvcharged ;
1073
1074 scpv[AliPID::kMuon][index] = pcpvelectron ;
1075 scpv[AliPID::kElectron][index] = pcpvelectron ;
1076 scpv[AliPID::kEleCon][index] = pcpvelectron ;
1077
1078 scpv[AliPID::kPhoton][index] = pcpvneutral ;
1079 scpv[AliPID::kNeutron][index] = pcpvneutral ;
1080 scpv[AliPID::kKaon0][index] = pcpvneutral ;
1081
1082
1083 // Info("MakePID", "CPV passed");
1084
1085 //############## Pi0 #############################
1086 stof[AliPID::kPi0][index] = 0. ;
1087 scpv[AliPID::kPi0][index] = 0. ;
1088 sdp [AliPID::kPi0][index] = 0. ;
1089
1090 if(en > 30.){
1091 // pi0 are detected via decay photon
1092 stof[AliPID::kPi0][index] = stof[AliPID::kPhoton][index];
1093 scpv[AliPID::kPi0][index] = pcpvneutral ;
1094 if(emc->GetMultiplicity() > fDispMultThreshold)
1095 sdp [AliPID::kPi0][index] = GausF(en , dispersion, fDpi0) ;
1096 //sdp [AliPID::kPi0][index] = GausPol2(en , dispersion, fDpi0) ;
1097// cout<<"E = "<<en<<" GeV; disp = "<<dispersion<<"; mult = "
1098// <<emc->GetMultiplicity()<<endl;
1099// cout<<"PDF: photon = "<<sdp [AliPID::kPhoton][index]<<"; pi0 = "
1100// <<sdp [AliPID::kPi0][index]<<endl;
1101 }
1102
1103
1104
1105
1106 //############## muon #############################
1107
1108 if(en > 0.5){
1109 //Muons deposit few energy
1110 scpv[AliPID::kMuon][index] = 0 ;
1111 stof[AliPID::kMuon][index] = 0 ;
1112 sdp [AliPID::kMuon][index] = 0 ;
1113 }
1114
1115 //Weight to apply to hadrons due to energy reconstruction
1116
1117 Float_t weight = fERecWeight ->Eval(en) ;
1118
1119 sw[AliPID::kPhoton][index] = 1. ;
1120 sw[AliPID::kElectron][index] = 1. ;
1121 sw[AliPID::kPion][index] = weight ;
1122 sw[AliPID::kKaon][index] = weight ;
1123 sw[AliPID::kProton][index] = weight ;
1124 sw[AliPID::kNeutron][index] = weight ;
1125 sw[AliPID::kEleCon][index] = 1. ;
1126 sw[AliPID::kKaon0][index] = weight ;
1127 sw[AliPID::kMuon][index] = weight ;
1128 sw[AliPID::kPi0][index] = 1. ;
1129
1130// if(en > 0.5){
1131// cout<<"######################################################"<<endl;
1132// //cout<<"MakePID: energy "<<en<<", tof "<<time<<", distance "<<distance<<", dispersion "<<dispersion<<endl ;
1133// cout<<"MakePID: energy "<<en<<", tof "<<time<<", dispersion "<<dispersion<<", x "<<x<<", z "<<z<<endl ;
1134// cout<<">>>>>multiplicity "<<emc->GetMultiplicity()<<endl;
1135// cout<<">>>>electron : xprob "<<elprobx<<" zprob "<<elprobz<<endl;
1136// cout<<">>>>hadron : xprob "<<chprobx<<" zprob "<<chprobz<<endl;
1137// cout<<">>>>electron : px*pz "<<pcpvelectron <<" hadron: px*pz "<<pcpvcharged<<endl;
1138
1139// cout<<"Photon , pid "<< fInitPID[AliPID::kPhoton]<<" tof "<<stof[AliPID::kPhoton][index]
1140// <<", cpv "<<scpv[AliPID::kPhoton][index]<<", ss "<<sdp[AliPID::kPhoton][index]<<endl;
1141// cout<<"EleCon , pid "<< fInitPID[AliPID::kEleCon]<<", tof "<<stof[AliPID::kEleCon][index]
1142// <<", cpv "<<scpv[AliPID::kEleCon][index]<<" ss "<<sdp[AliPID::kEleCon][index]<<endl;
1143// cout<<"Electron , pid "<< fInitPID[AliPID::kElectron]<<", tof "<<stof[AliPID::kElectron][index]
1144// <<", cpv "<<scpv[AliPID::kElectron][index]<<" ss "<<sdp[AliPID::kElectron][index]<<endl;
1145// cout<<"Muon , pid "<< fInitPID[AliPID::kMuon]<<", tof "<<stof[AliPID::kMuon][index]
1146// <<", cpv "<<scpv[AliPID::kMuon][index]<<" ss "<<sdp[AliPID::kMuon][index]<<endl;
1147// cout<<"Pi0 , pid "<< fInitPID[AliPID::kPi0]<<", tof "<<stof[AliPID::kPi0][index]
1148// <<", cpv "<<scpv[AliPID::kPi0][index]<<" ss "<<sdp[AliPID::kPi0][index]<<endl;
1149// cout<<"Pion , pid "<< fInitPID[AliPID::kPion]<<", tof "<<stof[AliPID::kPion][index]
1150// <<", cpv "<<scpv[AliPID::kPion][index]<<" ss "<<sdp[AliPID::kPion][index]<<endl;
1151// cout<<"Kaon0 , pid "<< fInitPID[AliPID::kKaon0]<<", tof "<<stof[AliPID::kKaon0][index]
1152// <<", cpv "<<scpv[AliPID::kKaon0][index]<<" ss "<<sdp[AliPID::kKaon0][index]<<endl;
1153// cout<<"Kaon , pid "<< fInitPID[AliPID::kKaon]<<", tof "<<stof[AliPID::kKaon][index]
1154// <<", cpv "<<scpv[AliPID::kKaon][index]<<" ss "<<sdp[AliPID::kKaon][index]<<endl;
1155// cout<<"Neutron , pid "<< fInitPID[AliPID::kNeutron]<<", tof "<<stof[AliPID::kNeutron][index]
1156// <<", cpv "<<scpv[AliPID::kNeutron][index]<<" ss "<<sdp[AliPID::kNeutron][index]<<endl;
1157// cout<<"Proton , pid "<< fInitPID[AliPID::kProton]<<", tof "<<stof[AliPID::kProton][index]
1158// <<", cpv "<<scpv[AliPID::kProton][index]<<" ss "<<sdp[AliPID::kProton][index]<<endl;
1159// cout<<"######################################################"<<endl;
1160// }
1161 index++;
1162 }
1163
1164 //for (index = 0 ; index < kSPECIES ; index++)
1165 // pid[index] /= nparticles ;
1166
1167
1168 // Info("MakePID", "Total Probability calculation");
1169
1170 for(index = 0 ; index < nparticles ; index ++) {
1171
1172 AliPHOSRecParticle * recpar = gime->RecParticle(index) ;
1173
1174 //Conversion electron?
1175
1176 if(recpar->IsEleCon()){
1177 fInitPID[AliPID::kEleCon] = 1. ;
1178 fInitPID[AliPID::kPhoton] = 0. ;
1179 fInitPID[AliPID::kElectron] = 0. ;
1180 }
1181 else{
1182 fInitPID[AliPID::kEleCon] = 0. ;
1183 fInitPID[AliPID::kPhoton] = 1. ;
1184 fInitPID[AliPID::kElectron] = 1. ;
1185 }
1186 // fInitPID[AliPID::kEleCon] = 0. ;
1187
1188
1189 // calculates the Bayesian weight
1190
1191 Int_t jndex ;
1192 Double_t wn = 0.0 ;
1193 for (jndex = 0 ; jndex < kSPECIES ; jndex++)
1194 wn += stof[jndex][index] * sdp[jndex][index] * scpv[jndex][index] *
1195 sw[jndex][index] * fInitPID[jndex] ;
1196
1197 // cout<<"*************wn "<<wn<<endl;
1198 if (TMath::Abs(wn)>0)
1199 for (jndex = 0 ; jndex < kSPECIES ; jndex++) {
1200 //cout<<"jndex "<<jndex<<" wn "<<wn<<" SetPID * wn"
1201 //<<stof[jndex][index] * sdp[jndex][index] * pid[jndex] << endl;
1202 //cout<<" tof "<<stof[jndex][index] << " disp " <<sdp[jndex][index] << " pid "<< fInitPID[jndex] << endl;
1203 // if(jndex == AliPID::kPi0 || jndex == AliPID::kPhoton){
1204 // cout<<"Particle "<<jndex<<" final prob * wn "
1205 // <<stof[jndex][index] * sdp[jndex][index] * scpv[jndex][index] *
1206 // fInitPID[jndex] <<" wn "<< wn<<endl;
1207 // cout<<"pid "<< fInitPID[jndex]<<", tof "<<stof[jndex][index]
1208 // <<", cpv "<<scpv[jndex][index]<<" ss "<<sdp[jndex][index]<<endl;
1209 // }
1210 recpar->SetPID(jndex, stof[jndex][index] * sdp[jndex][index] *
1211 sw[jndex][index] * scpv[jndex][index] *
1212 fInitPID[jndex] / wn) ;
1213 }
1214 }
1215 // Info("MakePID", "Delete");
1216
1217 for (Int_t i =0; i< kSPECIES; i++){
1218 delete [] stof[i];
1219 delete [] sdp [i];
1220 delete [] scpv[i];
1221 delete [] sw [i];
1222 }
1223 // Info("MakePID","End MakePID");
1224}
1225
1226//____________________________________________________________________________
1227void AliPHOSPIDv1::MakeRecParticles()
1228{
1229 // Makes a RecParticle out of a TrackSegment
1230
1231 AliPHOSGetter * gime = AliPHOSGetter::Instance() ;
1232 TObjArray * emcRecPoints = gime->EmcRecPoints() ;
1233 TObjArray * cpvRecPoints = gime->CpvRecPoints() ;
1234 TClonesArray * trackSegments = gime->TrackSegments() ;
1235 if ( !emcRecPoints || !cpvRecPoints || !trackSegments ) {
1236 AliFatal("RecPoints or TrackSegments not found !") ;
1237 }
1238 TClonesArray * recParticles = gime->RecParticles() ;
1239 recParticles->Clear();
1240
1241 TIter next(trackSegments) ;
1242 AliPHOSTrackSegment * ts ;
1243 Int_t index = 0 ;
1244 AliPHOSRecParticle * rp ;
1245 while ( (ts = (AliPHOSTrackSegment *)next()) ) {
1246 // cout<<">>>>>>>>>>>>>>>PCA Index "<<index<<endl;
1247 new( (*recParticles)[index] ) AliPHOSRecParticle() ;
1248 rp = (AliPHOSRecParticle *)recParticles->At(index) ;
1249 rp->SetTrackSegment(index) ;
1250 rp->SetIndexInList(index) ;
1251
1252 AliPHOSEmcRecPoint * emc = 0 ;
1253 if(ts->GetEmcIndex()>=0)
1254 emc = (AliPHOSEmcRecPoint *) emcRecPoints->At(ts->GetEmcIndex()) ;
1255
1256 AliPHOSCpvRecPoint * cpv = 0 ;
1257 if(ts->GetCpvIndex()>=0)
1258 cpv = (AliPHOSCpvRecPoint *) cpvRecPoints->At(ts->GetCpvIndex()) ;
1259
1260 Int_t track = 0 ;
1261 track = ts->GetTrackIndex() ;
1262
1263 // Now set type (reconstructed) of the particle
1264
1265 // Choose the cluster energy range
1266
1267 if (!emc) {
1268 AliFatal(Form("-> emc(%d) = %d", ts->GetEmcIndex(), emc )) ;
1269 }
1270
1271 Float_t e = emc->GetEnergy() ;
1272
1273 Float_t lambda[2] ;
1274 emc->GetElipsAxis(lambda) ;
1275
1276 if((lambda[0]>0.01) && (lambda[1]>0.01)){
1277 // Looking PCA. Define and calculate the data (X),
1278 // introduce in the function X2P that gives the components (P).
1279
1280 Float_t spher = 0. ;
1281 Float_t emaxdtotal = 0. ;
1282
1283 if((lambda[0]+lambda[1])!=0)
1284 spher=fabs(lambda[0]-lambda[1])/(lambda[0]+lambda[1]);
1285
1286 emaxdtotal=emc->GetMaximalEnergy()/emc->GetEnergy();
1287
1288 fX[0] = lambda[0] ;
1289 fX[1] = lambda[1] ;
1290 fX[2] = emc->GetDispersion() ;
1291 fX[3] = spher ;
1292 fX[4] = emc->GetMultiplicity() ;
1293 fX[5] = emaxdtotal ;
1294 fX[6] = emc->GetCoreEnergy() ;
1295
1296 fPrincipalPhoton->X2P(fX,fPPhoton);
1297 fPrincipalPi0 ->X2P(fX,fPPi0);
1298
1299 }
1300 else{
1301 fPPhoton[0]=-100.0; //We do not accept clusters with
1302 fPPhoton[1]=-100.0; //one cell as a photon-like
1303 fPPi0[0] =-100.0;
1304 fPPi0[1] =-100.0;
1305 }
1306
1307 Float_t time = emc->GetTime() ;
1308 rp->SetTof(time) ;
1309
1310 // Loop of Efficiency-Purity (the 3 points of purity or efficiency
1311 // are taken into account to set the particle identification)
1312 for(Int_t effPur = 0; effPur < 3 ; effPur++){
1313
1314 // Looking at the CPV detector. If RCPV greater than CpvEmcDistance,
1315 // 1st,2nd or 3rd bit (depending on the efficiency-purity point )
1316 // is set to 1
1317 if(GetCPVBit(emc, cpv, effPur,e) == 1 ){
1318 rp->SetPIDBit(effPur) ;
1319 //cout<<"CPV bit "<<effPur<<endl;
1320 }
1321 // Looking the TOF. If TOF smaller than gate, 4th, 5th or 6th
1322 // bit (depending on the efficiency-purity point )is set to 1
1323 if(time< (*fParameters)(3,effPur))
1324 rp->SetPIDBit(effPur+3) ;
1325
1326 //Photon PCA
1327 //If we are inside the ellipse, 7th, 8th or 9th
1328 // bit (depending on the efficiency-purity point )is set to 1
1329 if(GetPrincipalBit("photon",fPPhoton,effPur,e) == 1)
1330 rp->SetPIDBit(effPur+6) ;
1331
1332 //Pi0 PCA
1333 //If we are inside the ellipse, 10th, 11th or 12th
1334 // bit (depending on the efficiency-purity point )is set to 1
1335 if(GetPrincipalBit("pi0" ,fPPi0 ,effPur,e) == 1)
1336 rp->SetPIDBit(effPur+9) ;
1337 }
1338 if(GetHardPhotonBit(emc))
1339 rp->SetPIDBit(12) ;
1340 if(GetHardPi0Bit (emc))
1341 rp->SetPIDBit(13) ;
1342
1343 if(track >= 0)
1344 rp->SetPIDBit(14) ;
1345
1346 //Set momentum, energy and other parameters
1347 Float_t encal = GetCalibratedEnergy(e);
1348 TVector3 dir = GetMomentumDirection(emc,cpv) ;
1349 dir.SetMag(encal) ;
1350 rp->SetMomentum(dir.X(),dir.Y(),dir.Z(),encal) ;
1351 rp->SetCalcMass(0);
1352 rp->Name(); //If photon sets the particle pdg name to gamma
1353 rp->SetProductionVertex(0,0,0,0);
1354 rp->SetFirstMother(-1);
1355 rp->SetLastMother(-1);
1356 rp->SetFirstDaughter(-1);
1357 rp->SetLastDaughter(-1);
1358 rp->SetPolarisation(0,0,0);
1359 //Set the position in global coordinate system from the RecPoint
1360 AliPHOSGeometry * geom = gime->PHOSGeometry() ;
1361 AliPHOSTrackSegment * ts = gime->TrackSegment(rp->GetPHOSTSIndex()) ;
1362 AliPHOSEmcRecPoint * erp = gime->EmcRecPoint(ts->GetEmcIndex()) ;
1363 TVector3 pos ;
1364 geom->GetGlobal(erp, pos) ;
1365 rp->SetPos(pos);
1366 index++ ;
1367 }
1368}
1369
1370//____________________________________________________________________________
1371void AliPHOSPIDv1::Print(const Option_t *) const
1372{
1373 // Print the parameters used for the particle type identification
1374
1375 AliInfo("=============== AliPHOSPIDv1 ================") ;
1376 printf("Making PID\n") ;
1377 printf(" Pricipal analysis file from 0.5 to 100 %s\n", fFileNamePrincipalPhoton.Data() ) ;
1378 printf(" Name of parameters file %s\n", fFileNameParameters.Data() ) ;
1379 printf(" Matrix of Parameters: 14x4\n") ;
1380 printf(" Energy Calibration 1x3 [3 parametres to calibrate energy: A + B* E + C * E^2]\n") ;
1381 printf(" RCPV 2x3 rows x and z, columns function cut parameters\n") ;
1382 printf(" TOF 1x3 [High Eff-Low Pur,Medium Eff-Pur, Low Eff-High Pur]\n") ;
1383 printf(" PCA 5x4 [5 ellipse parametres and 4 parametres to calculate them: A/Sqrt(E) + B* E + C * E^2 + D]\n") ;
1384 Printf(" Pi0 PCA 5x3 [5 ellipse parametres and 3 parametres to calculate them: A + B* E + C * E^2]\n") ;
1385 fParameters->Print() ;
1386}
1387
1388
1389
1390//____________________________________________________________________________
1391void AliPHOSPIDv1::PrintRecParticles(Option_t * option)
1392{
1393 // Print table of reconstructed particles
1394
1395 AliPHOSGetter *gime = AliPHOSGetter::Instance() ;
1396
1397 TClonesArray * recParticles = gime->RecParticles() ;
1398
1399 TString message ;
1400 message = "\nevent " ;
1401 message += gAlice->GetEvNumber() ;
1402 message += " found " ;
1403 message += recParticles->GetEntriesFast();
1404 message += " RecParticles\n" ;
1405
1406 if(strstr(option,"all")) { // printing found TS
1407 message += "\n PARTICLE Index \n" ;
1408
1409 Int_t index ;
1410 for (index = 0 ; index < recParticles->GetEntries() ; index++) {
1411 AliPHOSRecParticle * rp = (AliPHOSRecParticle * ) recParticles->At(index) ;
1412 message += "\n" ;
1413 message += rp->Name().Data() ;
1414 message += " " ;
1415 message += rp->GetIndexInList() ;
1416 message += " " ;
1417 message += rp->GetType() ;
1418 }
1419 }
1420 AliInfo(message.Data() ) ;
1421}
1422
1423//____________________________________________________________________________
1424void AliPHOSPIDv1::SetParameters()
1425{
1426 // PCA : To do the Principal Components Analysis it is necessary
1427 // the Principal file, which is opened here
1428 fX = new double[7]; // Data for the PCA
1429 fPPhoton = new double[7]; // Eigenvalues of the PCA
1430 fPPi0 = new double[7]; // Eigenvalues of the Pi0 PCA
1431
1432 // Read photon principals from the photon file
1433
1434 fFileNamePrincipalPhoton = "$ALICE_ROOT/PHOS/PCA8pa15_0.5-100.root" ;
1435 TFile f( fFileNamePrincipalPhoton.Data(), "read" ) ;
1436 fPrincipalPhoton = dynamic_cast<TPrincipal*> (f.Get("principal")) ;
1437 f.Close() ;
1438
1439 // Read pi0 principals from the pi0 file
1440
1441 fFileNamePrincipalPi0 = "$ALICE_ROOT/PHOS/PCA_pi0_40-120.root" ;
1442 TFile fPi0( fFileNamePrincipalPi0.Data(), "read" ) ;
1443 fPrincipalPi0 = dynamic_cast<TPrincipal*> (fPi0.Get("principal")) ;
1444 fPi0.Close() ;
1445
1446 // Open parameters file and initialization of the Parameters matrix.
1447 // In the File Parameters.dat are all the parameters. These are introduced
1448 // in a matrix of 16x4
1449 //
1450 // All the parameters defined in this file are, in order of row:
1451 // line 0 : calibration
1452 // lines 1,2 : CPV rectangular cat for X and Z
1453 // line 3 : TOF cut
1454 // lines 4-8 : parameters to calculate photon PCA ellipse
1455 // lines 9-13: parameters to calculate pi0 PCA ellipse
1456 // lines 14-15: parameters to calculate border for high-pt photons and pi0
1457
1458 fFileNameParameters = gSystem->ExpandPathName("$ALICE_ROOT/PHOS/Parameters.dat");
1459 fParameters = new TMatrixF(16,4) ;
1460 const Int_t kMaxLeng=255;
1461 char string[kMaxLeng];
1462
1463 // Open a text file with PID parameters
1464 FILE *fd = fopen(fFileNameParameters.Data(),"r");
1465 if (!fd)
1466 AliFatal(Form("File %s with a PID parameters cannot be opened\n",
1467 fFileNameParameters.Data()));
1468
1469 Int_t i=0;
1470 // Read parameter file line-by-line and skip empty line and comments
1471 while (fgets(string,kMaxLeng,fd) != NULL) {
1472 if (string[0] == '\n' ) continue;
1473 if (string[0] == '!' ) continue;
1474 sscanf(string, "%f %f %f %f",
1475 &(*fParameters)(i,0), &(*fParameters)(i,1),
1476 &(*fParameters)(i,2), &(*fParameters)(i,3));
1477 i++;
1478 AliDebug(1, Form("SetParameters", "line %d: %s",i,string));
1479 }
1480 fclose(fd);
1481}
1482
1483//____________________________________________________________________________
1484void AliPHOSPIDv1::SetParameterCalibration(Int_t i,Float_t param)
1485{
1486 // Set parameter "Calibration" i to a value param
1487 if(i>2 || i<0) {
1488 AliError(Form("Invalid parameter number: %d",i));
1489 } else
1490 (*fParameters)(0,i) = param ;
1491}
1492
1493//____________________________________________________________________________
1494void AliPHOSPIDv1::SetParameterCpv2Emc(Int_t i, TString axis, Float_t cut)
1495{
1496 // Set the parameters to calculate Cpv-to-Emc Distance Cut depending on
1497 // Purity-Efficiency point i
1498
1499 if(i>2 || i<0) {
1500 AliError(Form("Invalid parameter number: %d",i));
1501 } else {
1502 axis.ToLower();
1503 if (axis == "x") (*fParameters)(1,i) = cut;
1504 else if (axis == "z") (*fParameters)(2,i) = cut;
1505 else {
1506 AliError(Form("Invalid axis name: %s",axis.Data()));
1507 }
1508 }
1509}
1510
1511//____________________________________________________________________________
1512void AliPHOSPIDv1::SetParameterPhotonBoundary(Int_t i,Float_t param)
1513{
1514 // Set parameter "Hard photon boundary" i to a value param
1515 if(i>4 || i<0) {
1516 AliError(Form("Invalid parameter number: %d",i));
1517 } else
1518 (*fParameters)(14,i) = param ;
1519}
1520
1521//____________________________________________________________________________
1522void AliPHOSPIDv1::SetParameterPi0Boundary(Int_t i,Float_t param)
1523{
1524 // Set parameter "Hard pi0 boundary" i to a value param
1525 if(i>1 || i<0) {
1526 AliError(Form("Invalid parameter number: %d",i));
1527 } else
1528 (*fParameters)(15,i) = param ;
1529}
1530
1531//_____________________________________________________________________________
1532void AliPHOSPIDv1::SetParameterTimeGate(Int_t i, Float_t gate)
1533{
1534 // Set the parameter TimeGate depending on Purity-Efficiency point i
1535 if (i>2 || i<0) {
1536 AliError(Form("Invalid Efficiency-Purity choice %d",i));
1537 } else
1538 (*fParameters)(3,i)= gate ;
1539}
1540
1541//_____________________________________________________________________________
1542void AliPHOSPIDv1::SetParameterToCalculateEllipse(TString particle, TString param, Int_t i, Float_t par)
1543{
1544 // Set the parameter "i" that is needed to calculate the ellipse
1545 // parameter "param" for a particle "particle"
1546
1547 particle.ToLower();
1548 param. ToLower();
1549 Int_t p= -1;
1550 Int_t offset=0;
1551
1552 if (particle == "photon") offset=0;
1553 else if (particle == "pi0") offset=5;
1554 else
1555 AliError(Form("Wrong particle name: %s (choose from pi0/photon)\n",
1556 particle.Data()));
1557
1558 if (param.Contains("a")) p=4+offset;
1559 else if(param.Contains("b")) p=5+offset;
1560 else if(param.Contains("c")) p=6+offset;
1561 else if(param.Contains("x0"))p=7+offset;
1562 else if(param.Contains("y0"))p=8+offset;
1563 if((i>4)||(i<0)) {
1564 AliError(Form("No parameter with index %d", i)) ;
1565 } else if(p==-1) {
1566 AliError(Form("No parameter with name %s", param.Data() )) ;
1567 } else
1568 (*fParameters)(p,i) = par ;
1569}
1570
1571//____________________________________________________________________________
1572void AliPHOSPIDv1::Unload()
1573{
1574 //Unloads RecPoints, Tracks and RecParticles
1575 AliPHOSGetter * gime = AliPHOSGetter::Instance() ;
1576 gime->PhosLoader()->UnloadRecPoints() ;
1577 gime->PhosLoader()->UnloadTracks() ;
1578 gime->PhosLoader()->UnloadRecParticles() ;
1579}
1580
1581//____________________________________________________________________________
1582void AliPHOSPIDv1::WriteRecParticles()
1583{
1584 //It writes reconstructed particles and pid to file
1585
1586 AliPHOSGetter *gime = AliPHOSGetter::Instance() ;
1587
1588 TClonesArray * recParticles = gime->RecParticles() ;
1589 recParticles->Expand(recParticles->GetEntriesFast() ) ;
1590 if(fWrite){
1591 TTree * treeP = gime->TreeP();
1592
1593 //First rp
1594 Int_t bufferSize = 32000 ;
1595 TBranch * rpBranch = treeP->Branch("PHOSRP",&recParticles,bufferSize);
1596 rpBranch->SetTitle(BranchName());
1597
1598 rpBranch->Fill() ;
1599
1600 gime->WriteRecParticles("OVERWRITE");
1601 gime->WritePID("OVERWRITE");
1602 }
1603}
1604
1605
1606//_______________________________________________________________________
1607void AliPHOSPIDv1::SetInitPID(const Double_t *p) {
1608 // Sets values for the initial population of each particle type
1609 for (Int_t i=0; i<AliPID::kSPECIESN; i++) fInitPID[i] = p[i];
1610}
1611//_______________________________________________________________________
1612void AliPHOSPIDv1::GetInitPID(Double_t *p) const {
1613 // Gets values for the initial population of each particle type
1614 for (Int_t i=0; i<AliPID::kSPECIESN; i++) p[i] = fInitPID[i];
1615}