]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - PMD/AliPMDv1.cxx
- Adapted comments for Doxygen
[u/mrichter/AliRoot.git] / PMD / AliPMDv1.cxx
... / ...
CommitLineData
1/***************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15/* $Id$ */
16
17//
18///////////////////////////////////////////////////////////////////////////////
19// //
20// Photon Multiplicity Detector Version 1 //
21// Bedanga Mohanty : February 14th 2006
22// //
23//Begin_Html
24/*
25<img src="picts/AliPMDv1Class.gif">
26*/
27//End_Html
28// //
29///////////////////////////////////////////////////////////////////////////////
30////
31
32#include "Riostream.h"
33#include <TVirtualMC.h>
34
35#include "AliConst.h"
36#include "AliLog.h"
37#include "AliMC.h"
38#include "AliMagF.h"
39#include "AliPMDv1.h"
40#include "AliRun.h"
41
42const Int_t AliPMDv1::fgkNcolUM1 = 48; // Number of cols in UM, type 1
43const Int_t AliPMDv1::fgkNcolUM2 = 96; // Number of cols in UM, type 2
44const Int_t AliPMDv1::fgkNrowUM1 = 96; // Number of rows in UM, type 1
45const Int_t AliPMDv1::fgkNrowUM2 = 48; // Number of rows in UM, type 2
46const Float_t AliPMDv1::fgkCellRadius = 0.25; // Radius of a hexagonal cell
47const Float_t AliPMDv1::fgkCellWall = 0.02; // Thickness of cell Wall
48const Float_t AliPMDv1::fgkCellDepth = 0.50; // Gas thickness
49const Float_t AliPMDv1::fgkThBase = 0.2; // Thickness of Base plate
50const Float_t AliPMDv1::fgkThBKP = 0.1; // Thickness of Back plane
51const Float_t AliPMDv1::fgkThAir = 1.03; // Thickness of Air
52const Float_t AliPMDv1::fgkThPCB = 0.16; // Thickness of PCB
53const Float_t AliPMDv1::fgkThLead = 1.5; // Thickness of Pb
54const Float_t AliPMDv1::fgkThSteel = 0.5; // Thickness of Steel
55const Float_t AliPMDv1::fgkGap = 0.025; // Air Gap
56const Float_t AliPMDv1::fgkZdist = 361.5; // z-position of the detector
57const Float_t AliPMDv1::fgkSqroot3 = 1.7320508;// Square Root of 3
58const Float_t AliPMDv1::fgkSqroot3by2 = 0.8660254;// Square Root of 3 by 2
59const Float_t AliPMDv1::fgkSSBoundary = 0.3;
60const Float_t AliPMDv1::fgkThSS = 1.03;
61const Float_t AliPMDv1::fgkThG10 = 1.03;
62ClassImp(AliPMDv1)
63
64 //_____________________________________________________________________________
65 AliPMDv1::AliPMDv1()
66{
67 //
68 // Default constructor
69 //
70 fMedSens=0;
71}
72
73//_____________________________________________________________________________
74AliPMDv1::AliPMDv1(const char *name, const char *title)
75 : AliPMD(name,title)
76{
77 //
78 // Standard constructor
79 //
80 fMedSens=0;
81}
82
83//_____________________________________________________________________________
84void AliPMDv1::CreateGeometry()
85{
86 // Create geometry for Photon Multiplicity Detector
87
88 GetParameters();
89 CreateSupermodule();
90 CreatePMD();
91}
92
93//_____________________________________________________________________________
94void AliPMDv1::CreateSupermodule()
95{
96 //
97 // Creates the geometry of the cells of PMD, places them in supermodule
98 // which is a rectangular object.
99 // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is
100 // placed inside another hexagonal cell made of Cu (ECCU) with larger
101 // radius, compared to ECAR. The difference in radius gives the dimension
102 // of half width of each cell wall.
103 // These cells are placed in a rectangular strip which are of 2 types
104 // EST1 and EST2
105 // 2 types of unit modules are made EUM1 and EUM2 which contains these strips
106 // placed repeatedly
107 // Each supermodule (ESMA, ESMB), made of G10 is filled with following
108 //components. They have 6 unit moudles inside them
109 // ESMA, ESMB are placed in EPMD along with EMPB (Pb converter)
110 // and EMFE (iron support)
111
112
113 Int_t i,j;
114 Int_t number;
115 Int_t ihrotm,irotdm;
116 Float_t xb, yb, zb;
117
118 Int_t *idtmed = fIdtmed->GetArray()-599;
119
120 AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.);
121 AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.);
122
123 // STEP - I
124 //******************************************************//
125 // First create the sensitive medium of a hexagon cell (ECAR)
126 // Inner hexagon filled with gas (Ar+CO2)
127
128 Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23};
129 hexd2[4] = -fgkCellDepth/2.;
130 hexd2[7] = fgkCellDepth/2.;
131 hexd2[6] = fgkCellRadius - fgkCellWall;
132 hexd2[9] = fgkCellRadius - fgkCellWall;
133
134 gMC->Gsvolu("ECAR", "PGON", idtmed[604], hexd2,10);
135 gMC->Gsatt("ECAR", "SEEN", 0);
136 //******************************************************//
137
138 // STEP - II
139 //******************************************************//
140 // Place the sensitive medium inside a hexagon copper cell (ECCU)
141 // Outer hexagon made of Copper
142
143 Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25};
144 hexd1[4] = -fgkCellDepth/2.;
145 hexd1[7] = fgkCellDepth/2.;
146 hexd1[6] = fgkCellRadius;
147 hexd1[9] = fgkCellRadius;
148
149 gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10);
150 gMC->Gsatt("ECCU", "SEEN", 0);
151 gMC->Gsatt("ECCU", "COLO", 4);
152
153 // Place inner hex (sensitive volume) inside outer hex (copper)
154
155 gMC->Gspos("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY");
156 //******************************************************//
157
158 // STEP - III
159 //******************************************************//
160 // Now create Rectangular TWO strips (EST1, EST2)
161 // of 1 column and 48 or 96 cells length
162
163 // volume for first strip EST1 made of AIR
164
165 Float_t dbox1[3];
166 dbox1[0] = fgkCellRadius/fgkSqroot3by2;
167 dbox1[1] = fgkNrowUM1*fgkCellRadius;
168 dbox1[2] = fgkCellDepth/2.;
169
170 gMC->Gsvolu("EST1","BOX", idtmed[698], dbox1, 3);
171 gMC->Gsatt("EST1", "SEEN", 0);
172
173 // volume for second strip EST2
174
175
176 Float_t dbox2[3];
177 dbox2[1] = fgkNrowUM2*fgkCellRadius;
178 dbox2[0] = dbox1[0];
179 dbox2[2] = dbox1[2];
180
181 gMC->Gsvolu("EST2","BOX", idtmed[698], dbox2, 3);
182 gMC->Gsatt("EST2", "SEEN", 0);
183
184 // Place hexagonal cells ECCU placed inside EST1
185 xb = 0.;
186 zb = 0.;
187 yb = (dbox1[1]) - fgkCellRadius;
188 for (i = 1; i <= fgkNrowUM1; ++i)
189 {
190 number = i;
191 gMC->Gspos("ECCU", number, "EST1", xb,yb,zb, 0, "ONLY");
192 yb -= (fgkCellRadius*2.);
193 }
194
195 // Place hexagonal cells ECCU placed inside EST2
196 xb = 0.;
197 zb = 0.;
198 yb = (dbox2[1]) - fgkCellRadius;
199 for (i = 1; i <= fgkNrowUM2; ++i)
200 {
201 number = i;
202 gMC->Gspos("ECCU", number, "EST2", xb,yb,zb, 0, "ONLY");
203 //PH cout << "ECCU in EST2 ==> " << number << "\t"<<xb << "\t"<<yb <<endl;
204 yb -= (fgkCellRadius*2.);
205 }
206
207
208 //******************************************************//
209
210
211 // STEP - IV
212 //******************************************************//
213 // 2 types of rectangular shaped unit modules EUM1 and EUM2 (defined by BOX)
214 //---------------------------------EHC1 Start----------------------//
215 // Create EHC1 : The honey combs for a unit module type 1
216 // First step is to create a honey comb unit module.
217 // This is named as EHC1, we will lay the EST1 strips of
218 // honey comb cells inside it.
219
220 //Dimensions of EHC1
221 //X-dimension = Number of columns + cell radius
222 //Y-dimension = Number of rows * cell radius/sqrt3by2 - (some factor)
223 //Z-dimension = cell depth/2
224
225 Float_t dbox3[3];
226 dbox3[0] = (dbox1[0]*fgkNcolUM1)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM1-1)/6.);
227 dbox3[1] = dbox1[1]+fgkCellRadius/2.;
228 dbox3[2] = fgkCellDepth/2.;
229
230 //Create a BOX, Material AIR
231 gMC->Gsvolu("EHC1","BOX", idtmed[698], dbox3, 3);
232 gMC->Gsatt("EHC1", "SEEN", 0);
233 // Place rectangular strips EST1 inside EHC1 unit module
234 xb = dbox3[0]-dbox1[0];
235
236 for (j = 1; j <= fgkNcolUM1; ++j)
237 {
238 if(j%2 == 0)
239 {
240 yb = -fgkCellRadius/2.0;
241 }
242 else
243 {
244 yb = fgkCellRadius/2.0;
245 }
246 number = j;
247 gMC->Gspos("EST1",number, "EHC1", xb, yb , 0. , 0, "MANY");
248 //The strips are being placed from top towards bottom of the module
249 //This is because the first cell in a module in hardware is the top
250 //left corner cell
251 xb = (dbox3[0]-dbox1[0])-j*fgkCellRadius*fgkSqroot3;
252
253 }
254 //--------------------EHC1 done----------------------------------//
255
256
257 //---------------------------------EHC2 Start----------------------//
258 // Create EHC2 : The honey combs for a unit module type 2
259 // First step is to create a honey comb unit module.
260 // This is named as EHC2, we will lay the EST2 strips of
261 // honey comb cells inside it.
262
263 //Dimensions of EHC2
264 //X-dimension = Number of columns + cell radius
265 //Y-dimension = Number of rows * cell radius/sqrt3by2 - (some factor)
266 //Z-dimension = cell depth/2
267
268 dbox3[0] = (dbox1[0]*fgkNcolUM1)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM1-1)/6.);
269 dbox3[1] = dbox1[1]+fgkCellRadius/2.;
270 dbox3[2] = fgkCellDepth/2.;
271
272 Float_t dbox4[3];
273
274 dbox4[0] =(dbox2[0]*fgkNcolUM2)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM2-1)/6.);
275 dbox4[1] = dbox2[1] + fgkCellRadius/2.;
276 dbox4[2] = dbox3[2];
277
278 //Create a BOX of AIR
279 gMC->Gsvolu("EHC2","BOX", idtmed[698], dbox4, 3);
280 gMC->Gsatt("EHC2", "SEEN", 0);
281
282 // Place rectangular strips EST2 inside EHC2 unit module
283 xb = dbox4[0]-dbox2[0];
284 for (j = 1; j <= fgkNcolUM2; ++j)
285 {
286 if(j%2 == 0)
287 {
288 yb = -fgkCellRadius/2.0;
289 }
290 else
291 {
292 yb = +fgkCellRadius/2.0;
293 }
294 number = j;
295 gMC->Gspos("EST2",number, "EHC2", xb, yb , 0. ,0, "MANY");
296 xb = (dbox4[0]-dbox2[0])-j*fgkCellRadius*fgkSqroot3;
297 }
298
299
300 //--------------------EHC2 done----------------------------------//
301
302
303 // Now the job is to assmeble an Unit module
304 // It will have the following components
305 // (a) Base plate of G10 of 0.2 cm
306 // (b) Air gap of 0.05 cm
307 // (c) Bottom PCB of 0.16 cm G10
308 // (d) Honey comb 0f 0.5 cm
309 // (e) Top PCB of 0.16 cm G10
310 // (f) Air gap of 0.16 cm
311 // (g) Back Plane of 0.1 cm G10
312 // (h) Then all around then we have an air gap of 0.5mm
313 // (i) Then all around 0.5mm thick G10 insulation
314 // (h) Then all around Stainless Steel boundary channel 0.3 cm thick
315 //Let us first create them one by one
316 //---------------------------------------------------//
317
318 // ---------------- Lets do it first for UM Type A -----//
319
320 //--------------------------------------------------//
321 //Bottom and Top PCB : EPCA
322 //===========================
323 // Make a 1.6mm thick G10 Bottom and Top PCB for Unit module A
324 // X-dimension same as EHC1 - dbox3[0]
325 // Y-dimension same as EHC1 - dbox3[1]
326 // Z-dimension 0.16/2 = 0.08 cm
327 //-------------------------------------------------//
328 Float_t dboxPcbA[3];
329 dboxPcbA[0] = dbox3[0];
330 dboxPcbA[1] = dbox3[1];
331 dboxPcbA[2] = fgkThPCB/2.;
332
333 //Top and Bottom PCB is a BOX of Material G10
334 gMC->Gsvolu("EPCA","BOX", idtmed[607], dboxPcbA, 3);
335 gMC->Gsatt("EPCA", "SEEN", 0);
336 //--------------------------------------------------------//
337 //Back Plane : EBKA
338 //==================
339 // Make a 1.0mm thick Back Plane PCB for Unit module A
340 // X-dimension same as EHC1 - dbox3[0]
341 // Y-dimension same as EHC1 - dbox3[1]
342 // Z-dimension 0.1/2 = 0.05 cm
343 //------------------------------------------------------//
344 Float_t dboxBPlaneA[3];
345 dboxBPlaneA[0] = dbox3[0];
346 dboxBPlaneA[1] = dbox3[1];
347 dboxBPlaneA[2] = fgkThBKP/2.;
348
349 //Back PLane PCB of MAterial G10
350 gMC->Gsvolu("EBKA","BOX", idtmed[607], dboxBPlaneA, 3);
351 gMC->Gsatt("EBKA", "SEEN", 0);
352 //-------------------------------------------------------------//
353
354 //---------- That was all in the Z -direction of Unit Module A----//
355
356 // Now lets us construct the boundary arround the Unit Module --//
357 // This boundary has
358 // (a) 0.5 mm X and Y and 10.3 mm Z dimension AIR gap
359 // (b) 0.5 mm X and Y and 10.3 mm Z dimension G10
360 // (c) 3.0 mm X and Y and 12.3 mm Z dimension Stainless Steel
361
362
363
364 //-------------------------------------------------//
365 //AIR GAP between UM and Boundary : ECGA FOR PRESHOWER PLANE
366 //==========================================================
367 // Make a 10.3mm thick Air gap for Unit module A
368 // X-dimension same as EHC1+0.05
369 // Y-dimension same as EHC1+0.05
370 // Z-dimension 1.03/2 = 0.515 cm
371 Float_t dboxAir3A[3];
372 dboxAir3A[0] = dbox3[0]+(2.0*fgkGap);
373 dboxAir3A[1] = dbox3[1]+(2.0*fgkGap);
374 dboxAir3A[2] = fgkThAir/2.;
375
376 //FOR PRESHOWER
377 //Air gap is a BOX of Material Air
378 gMC->Gsvolu("ECGA","BOX", idtmed[698], dboxAir3A, 3);
379 gMC->Gsatt("ECGA", "SEEN", 0);
380
381 //FOR VETO
382 //Air gap is a BOX of Material Air
383 gMC->Gsvolu("ECVA","BOX", idtmed[698], dboxAir3A, 3);
384 gMC->Gsatt("ECVA", "SEEN", 0);
385 //-------------------------------------------------//
386
387 //-------------------------------------------------//
388 //G10 boundary between honeycomb and SS : EDGA
389 //================================================
390 // Make a 10.3mm thick G10 Boundary for Unit module A
391 // X-dimension same as EHC1+Airgap+0.05
392 // Y-dimension same as EHC1+Airgap+0.05
393 // Z-dimension 1.03/2 = 0.515 cm
394 Float_t dboxGGA[3];
395 dboxGGA[0] = dboxAir3A[0]+(2.0*fgkGap);
396 dboxGGA[1] = dboxAir3A[1]+(2.0*fgkGap);
397 dboxGGA[2] = fgkThG10/2.;
398
399 //FOR PRESHOWER
400 //G10 BOX
401 gMC->Gsvolu("EDGA","BOX", idtmed[607], dboxGGA, 3);
402 gMC->Gsatt("EDGA", "SEEN", 0);
403
404 //FOR VETO
405 //G10 BOX
406 gMC->Gsvolu("EDVA","BOX", idtmed[607], dboxGGA, 3);
407 gMC->Gsatt("EDVA", "SEEN", 0);
408
409 //-------------------------------------------------//
410 //----------------------------------------------------------//
411 //Stainless Steel Bounadry : ESSA
412 //==================================
413 // Make a 10.3mm thick Stainless Steel boundary for Unit module A
414 // X-dimension same as EHC1 + Airgap + G10 + 0.3
415 // Y-dimension same as EHC1 + Airgap + G10 + 0.3
416 // Z-dimension 1.03/2 = 0.515 cm
417 //------------------------------------------------------//
418 // A Stainless Steel Boundary Channel to house the unit module
419 Float_t fDboxss1[3];
420 fDboxss1[0] = dboxGGA[0]+fgkSSBoundary;
421 fDboxss1[1] = dboxGGA[1]+fgkSSBoundary;
422 fDboxss1[2] = fgkThSS/2.;
423
424 //FOR PRESHOWER
425
426 //Stainless Steel boundary - Material Stainless Steel
427 gMC->Gsvolu("ESSA","BOX", idtmed[618], fDboxss1, 3);
428 gMC->Gsatt("ESSA", "SEEN", 0);
429
430 //FOR VETO
431 //Stainless Steel boundary - Material Stainless Steel
432 gMC->Gsvolu("ESVA","BOX", idtmed[618], fDboxss1, 3);
433 gMC->Gsatt("ESVA", "SEEN", 0);
434
435 //----------------------------------------------------------------//
436
437 //----------------------------------------------------------------//
438 // Here we need to place the volume in order ESSA -> EDGA -> ECGA
439 // this makes the SS boundary and the 0.5mm thick FR4 insulation in place,
440 // and the air volume ECGA acts as mother for the rest of components.
441 // The above placeemnt is done at (0.,0.,0.) relative coordiante
442 // Now we place bottom PCB, honeycomb, top PCB in this volume. We donot place
443 // unnecessary air volumes now. Just leave the gap as we are placing them
444 // in air only. This also reduces the number of volumes for geant to track.
445
446// Tree structure for different volumes
447//
448// EUM1
449// |
450// --------------------
451// | | |
452// EBPA ESSA EBKA
453// |
454// EDGA
455// |
456// ECGA
457// |
458// --------------------
459// | | |
460// EPCA(1) EHC1 EPCA(2)
461// (bottom) | (top PCB)
462// |
463// Sensitive volume
464// (gas)
465//
466
467
468 //FOR VETO
469//Creating the side channels
470// SS boundary channel, followed by G10 and Air Gap
471 gMC->Gspos("EDVA", 1, "ESVA", 0., 0., 0., 0, "ONLY");
472 gMC->Gspos("ECVA", 1, "EDVA", 0., 0., 0., 0, "ONLY");
473
474//FOR PRESHOWER
475 gMC->Gspos("EDGA", 1, "ESSA", 0., 0., 0., 0, "ONLY");
476 gMC->Gspos("ECGA", 1, "EDGA", 0., 0., 0., 0, "ONLY");
477
478 // now other components, using Bedanga's code, but changing the values.
479 //Positioning Bottom PCB, Honey Comb abd Top PCB in AIR
480
481 //For veto plane
482 //Positioning the Bottom 0.16 cm PCB
483 Float_t zbpcb = -dboxAir3A[2] + (2.0*fgkGap) + fgkThPCB/2.;
484 gMC->Gspos("EPCA", 1, "ECVA", 0., 0., zbpcb, 0, "ONLY");
485 //Positioning the Honey Comb 0.5 cm
486 Float_t zhc = zbpcb + fgkThPCB/2. + fgkCellDepth/2.;
487 gMC->Gspos("EHC1", 1, "ECVA", 0., 0., zhc, 0, "ONLY");
488 //Positioning the Top PCB 0.16 cm
489 Float_t ztpcb = zhc + fgkCellDepth/2 + fgkThPCB/2.;
490 gMC->Gspos("EPCA", 2, "ECVA", 0., 0., ztpcb, 0, "ONLY");
491
492
493 //For Preshower plane the ordering is reversed
494 //Positioning the Bottom 0.16 cm PCB
495 zbpcb = -dboxAir3A[2] + fgkThPCB + fgkThPCB/2.;
496 gMC->Gspos("EPCA", 1, "ECGA", 0., 0., zbpcb, 0, "ONLY");
497 //Positioning the Honey Comb 0.5 cm
498 zhc = zbpcb + fgkThPCB/2. + fgkCellDepth/2.;
499 gMC->Gspos("EHC1", 1, "ECGA", 0., 0., zhc, 0, "ONLY");
500 //Positioning the Top PCB 0.16 cm
501 ztpcb = zhc + fgkCellDepth/2 + fgkThPCB/2.;
502 gMC->Gspos("EPCA", 2, "ECGA", 0., 0., ztpcb, 0, "ONLY");
503
504
505
506
507 //--------------Now let us construct final UM ---------------//
508 // We will do it as follows :
509 // (i) First make a UM of air. which will have dimensions
510 // of the SS boundary Channel (in x,y) and of height 13.3mm
511 //(ii) Then we will place all the components
512
513 //----------------------------------------------------------//
514 // A unit module type A of Air
515 // Dimensions of Unit Module same as SS boundary channel
516 Float_t fDboxum1[3];
517 fDboxum1[0] = fDboxss1[0];
518 fDboxum1[1] = fDboxss1[1];
519 fDboxum1[2] = fgkThSS/2. +0.15; // 0.15 added to accomodate Base Plate at
520 // the bottom and the backplane PCB at the top.
521
522 //FOR PRESHOWER
523 //Create a Unit module of above dimensions Material : AIR
524 gMC->Gsvolu("EUM1","BOX", idtmed[698], fDboxum1, 3);
525 gMC->Gsatt("EUM1", "SEEN", 0);
526 //FOR VETO
527 gMC->Gsvolu("EUV1","BOX", idtmed[698], fDboxum1, 3);
528 gMC->Gsatt("EUV1", "SEEN", 0);
529
530 //----------------------------------------------------------------//
531
532 //BASE PLATE : EBPA
533 //==================
534 // Make a 2mm thick G10 Base plate for Unit module A
535 // Base plate is as big as the final UM dimensions that is as
536 // SS boundary channel
537 Float_t dboxBaseA[3];
538 dboxBaseA[0] = fDboxss1[0];
539 dboxBaseA[1] = fDboxss1[1];
540 dboxBaseA[2] = fgkThBase/2.;
541
542 //Base Blate is a G10 BOX
543 gMC->Gsvolu("EBPA","BOX", idtmed[607], dboxBaseA, 3);
544 gMC->Gsatt("EBPA", "SEEN", 0);
545 //----------------------------------------------------//
546
547 //FOR VETO
548 //- Placing of all components of UM in AIR BOX EUM1--//
549 //(1) FIRST PUT THE BASE PLATE
550 Float_t zbaseplate = -fDboxum1[2] + fgkThBase/2.;
551 gMC->Gspos("EBPA", 1, "EUV1", 0., 0., zbaseplate, 0, "ONLY");
552
553 //(2) NEXT PLACING the SS BOX
554 Float_t zss = zbaseplate + fgkThBase/2. + fgkThSS/2.;
555 gMC->Gspos("ESVA", 1, "EUV1", 0., 0., zss, 0, "ONLY");
556
557 // (3) Positioning the Backplane PCB 0.1 cm
558 Float_t zbkp = zss + fgkThSS/2. + fgkThBKP/2.;
559 gMC->Gspos("EBKA", 1, "EUV1", 0., 0., zbkp, 0, "ONLY");
560
561 //FOR PRESHOWER
562 // (3) Positioning the Backplane PCB 0.1 cm
563 zbkp = -fDboxum1[2] + fgkThBKP/2.;
564 gMC->Gspos("EBKA", 1, "EUM1", 0., 0., zbkp, 0, "ONLY");
565
566 //(2) NEXT PLACING the SS BOX
567 zss = zbkp + fgkThBKP/2. + fgkThSS/2.;
568 gMC->Gspos("ESSA", 1, "EUM1", 0., 0., zss, 0, "ONLY");
569
570 //(1) FIRST PUT THE BASE PLATE
571 zbaseplate = zss + fgkThSS/2 + fgkThBase/2.;
572 gMC->Gspos("EBPA", 1, "EUM1", 0., 0., zbaseplate, 0, "ONLY");
573 //-------------------- UM Type A completed ------------------------//
574
575
576
577 //-------------------- Lets do the same thing for UM type B -------//
578 //--------------------------------------------------//
579 //Bottom and Top PCB : EPCB
580 //===========================
581 // Make a 1.6mm thick G10 Bottom and Top PCB for Unit module B
582 // X-dimension same as EHC2 - dbox4[0]
583 // Y-dimension same as EHC2 - dbox4[1]
584 // Z-dimension 0.16/2 = 0.08 cm
585 //-------------------------------------------------//
586 Float_t dboxPcbB[3];
587 dboxPcbB[0] = dbox4[0];
588 dboxPcbB[1] = dbox4[1];
589 dboxPcbB[2] = fgkThPCB/2.;
590
591 //Top and Bottom PCB is a BOX of Material G10
592 gMC->Gsvolu("EPCB","BOX", idtmed[607], dboxPcbB, 3);
593 gMC->Gsatt("EPCB", "SEEN", 0);
594 //--------------------------------------------------------//
595 //Back Plane : EBKB
596 //==================
597 // Make a 1.0mm thick Back Plane PCB for Unit module B
598 // X-dimension same as EHC2 - dbox4[0]
599 // Y-dimension same as EHC2 - dbox4[1]
600 // Z-dimension 0.1/2 = 0.05 cm
601 //------------------------------------------------------//
602 Float_t dboxBPlaneB[3];
603 dboxBPlaneB[0] = dbox4[0];
604 dboxBPlaneB[1] = dbox4[1];
605 dboxBPlaneB[2] = fgkThBKP/2.;
606
607 //Back PLane PCB of MAterial G10
608 gMC->Gsvolu("EBKB","BOX", idtmed[607], dboxBPlaneB, 3);
609 gMC->Gsatt("EBKB", "SEEN", 0);
610 //-------------------------------------------------------------//
611
612 //---------- That was all in the Z -direction of Unit Module B----//
613
614 // Now lets us construct the boundary arround the Unit Module --//
615 // This boundary has
616 // (a) 0.5 mm X and Y and 10.3 mm Z dimension AIR gap
617 // (b) 0.5 mm X and Y and 10.3 mm Z dimension G10
618 // (c) 3.0 mm X and Y and 12.3 mm Z dimension Stainless Steel
619
620 //-------------------------------------------------//
621 //AIR GAP between UM and Boundary : ECGB
622 //================================================
623 // Make a 10.3mm thick Air gap for Unit module B
624 // X-dimension same as EHC2+0.05
625 // Y-dimension same as EHC2+0.05
626 // Z-dimension 1.03/2 = 0.515 cm
627 Float_t dboxAir3B[3];
628 dboxAir3B[0] = dbox4[0]+(2.0*fgkGap);
629 dboxAir3B[1] = dbox4[1]+(2.0*fgkGap);
630 dboxAir3B[2] = fgkThAir/2.;
631
632 //PRESHOWER
633 //Air gap is a BOX of Material Air
634 gMC->Gsvolu("ECGB","BOX", idtmed[698], dboxAir3B, 3);
635 gMC->Gsatt("ECGB", "SEEN", 0);
636 //VETO
637 gMC->Gsvolu("ECVB","BOX", idtmed[698], dboxAir3B, 3);
638 gMC->Gsatt("ECVB", "SEEN", 0);
639
640 //-------------------------------------------------//
641
642 //-------------------------------------------------//
643 //G10 boundary between honeycomb and SS : EDGB
644 //================================================
645 // Make a 10.3mm thick G10 Boundary for Unit module B
646 // X-dimension same as EHC2+Airgap+0.05
647 // Y-dimension same as EHC2+Airgap+0.05
648 // Z-dimension 1.03/2 = 0.515 cm
649 Float_t dboxGGB[3];
650 dboxGGB[0] = dboxAir3B[0]+(2.0*fgkGap);
651 dboxGGB[1] = dboxAir3B[1]+(2.0*fgkGap);
652 dboxGGB[2] = fgkThG10/2.;
653
654 //PRESHOWER
655 //G10 BOX
656 gMC->Gsvolu("EDGB","BOX", idtmed[607], dboxGGB, 3);
657 gMC->Gsatt("EDGB", "SEEN", 0);
658 //VETO
659 gMC->Gsvolu("EDVB","BOX", idtmed[607], dboxGGB, 3);
660 gMC->Gsatt("EDVB", "SEEN", 0);
661 //-------------------------------------------------//
662 //----------------------------------------------------------//
663 //Stainless Steel Bounadry : ESSB
664 //==================================
665 // Make a 10.3mm thick Stainless Steel boundary for Unit module B
666 // X-dimension same as EHC2 + Airgap + G10 + 0.3
667 // Y-dimension same as EHC2 + Airgap + G10 + 0.3
668 // Z-dimension 1.03/2 = 0.515 cm
669 //------------------------------------------------------//
670 // A Stainless Steel Boundary Channel to house the unit module
671 Float_t fDboxss2[3];
672 fDboxss2[0] = dboxGGB[0]+fgkSSBoundary;
673 fDboxss2[1] = dboxGGB[1]+fgkSSBoundary;
674 fDboxss2[2] = fgkThSS/2.;
675
676 //PRESHOWER
677 //Stainless Steel boundary - Material Stainless Steel
678 gMC->Gsvolu("ESSB","BOX", idtmed[618], fDboxss2, 3);
679 gMC->Gsatt("ESSB", "SEEN", 0);
680 //VETO
681 gMC->Gsvolu("ESVB","BOX", idtmed[618], fDboxss2, 3);
682 gMC->Gsatt("ESVB", "SEEN", 0);
683 //----------------------------------------------------------------//
684
685 //----------------------------------------------------------------//
686 // Here we need to place the volume in order ESSB -> EDGB -> ECGB
687 // this makes the SS boiundary and the 0.5mm thick FR4 insulation in place,
688 // and the air volume ECGB acts as mother for the rest of components.
689 // The above placeemnt is done at (0.,0.,0.) relative coordiante
690 // Now we place bottom PCB, honeycomb, top PCB in this volume. We donot place
691 // unnecessary air volumes now. Just leave the gap as we are placing them
692 // in air only. This also reduces the number of volumes for geant to track.
693
694// Tree structure for different volumes
695//
696// EUM2
697// |
698// --------------------
699// | | |
700// EBPB ESSB EBKB
701// |
702// EDGB
703// |
704// ECGB
705// |
706// --------------------
707// | | |
708// EPCB(1) EHC2 EPCB(2)
709// (bottom) | (top PCB)
710// |
711// Sensitive volume
712// (gas)
713//
714
715//PRESHOWER
716//Creating the side channels
717// SS boundary channel, followed by G10 and Air Gap
718 gMC->Gspos("EDGB", 1, "ESSB", 0., 0., 0., 0, "ONLY");
719 gMC->Gspos("ECGB", 1, "EDGB", 0., 0., 0., 0, "ONLY");
720 //VETO
721 gMC->Gspos("EDVB", 1, "ESVB", 0., 0., 0., 0, "ONLY");
722 gMC->Gspos("ECVB", 1, "EDVB", 0., 0., 0., 0, "ONLY");
723
724 // now other components, using Bedang's code, but changing the values.
725 //Positioning Bottom PCB, Honey Comb abd Top PCB in AIR
726
727 //VETO
728 //Positioning the Bottom 0.16 cm PCB
729 Float_t zbpcb2 = -dboxAir3B[2] + (2.0*fgkGap) + fgkThPCB/2.;
730 gMC->Gspos("EPCB", 1, "ECVB", 0., 0., zbpcb2, 0, "ONLY");
731 //Positioning the Honey Comb 0.5 cm
732 Float_t zhc2 = zbpcb2 + fgkThPCB/2. + fgkCellDepth/2.;
733 gMC->Gspos("EHC2", 1, "ECVB", 0., 0., zhc2, 0, "ONLY");
734 //Positioning the Top PCB 0.16 cm
735 Float_t ztpcb2 = zhc2 + fgkCellDepth/2 + fgkThPCB/2.;
736 gMC->Gspos("EPCB", 2, "ECVB", 0., 0., ztpcb2, 0, "ONLY");
737
738 //PRESHOWER
739 //For preshower plane the ordering is reversed
740 //Positioning the Bottom 0.16 cm PCB
741 zbpcb2 = -dboxAir3B[2] + fgkThPCB + fgkThPCB/2.;
742 gMC->Gspos("EPCB", 1, "ECGB", 0., 0., zbpcb2, 0, "ONLY");
743 //Positioning the Honey Comb 0.5 cm
744 zhc2 = zbpcb2 + fgkThPCB/2. + fgkCellDepth/2.;
745 gMC->Gspos("EHC2", 1, "ECGB", 0., 0., zhc2, 0, "ONLY");
746 //Positioning the Top PCB 0.16 cm
747 ztpcb2 = zhc2 + fgkCellDepth/2 + fgkThPCB/2.;
748 gMC->Gspos("EPCB", 2, "ECGB", 0., 0., ztpcb2, 0, "ONLY");
749
750
751
752 //--------------Now let us construct final UM ---------------//
753 // We will do it as follows :
754 // (i) First make a UM of air. which will have dimensions
755 // of the SS boundary Channel (in x,y) and of height 13.3mm
756 //(ii) Then we will place all the components
757
758 //----------------------------------------------------------//
759 // A unit module type B of Air
760 // Dimensions of Unit Module same as SS boundary channel
761 Float_t fDboxum2[3];
762 fDboxum2[0] = fDboxss2[0];
763 fDboxum2[1] = fDboxss2[1];
764 fDboxum2[2] = fgkThSS/2. +0.15; // 0.15 added to accomodate Base Plate at
765 // the bottom and the backplane PCB at the top.
766
767 //PRESHOWER
768 //Create a Unit module of above dimensions Material : AIR
769 gMC->Gsvolu("EUM2","BOX", idtmed[698], fDboxum2, 3);
770 gMC->Gsatt("EUM2", "SEEN", 0);
771
772 //VETO
773 gMC->Gsvolu("EUV2","BOX", idtmed[698], fDboxum2, 3);
774 gMC->Gsatt("EUV2", "SEEN", 0);
775 //----------------------------------------------------------------//
776
777 //BASE PLATE : EBPB
778 //==================
779 // Make a 2mm thick G10 Base plate for Unit module B
780 // Base plate is as big as the final UM dimensions that is as
781 // SS boundary channel
782 Float_t dboxBaseB[3];
783 dboxBaseB[0] = fDboxss2[0];
784 dboxBaseB[1] = fDboxss2[1];
785 dboxBaseB[2] = fgkThBase/2.;
786
787 //Base Blate is a G10 BOX
788 gMC->Gsvolu("EBPB","BOX", idtmed[607], dboxBaseB, 3);
789 gMC->Gsatt("EBPB", "SEEN", 0);
790 //----------------------------------------------------//
791
792 //VETO
793 //- Placing of all components of UM in AIR BOX EUM2--//
794 //(1) FIRST PUT THE BASE PLATE
795 Float_t zbaseplate2 = -fDboxum2[2] + fgkThBase/2.;
796 gMC->Gspos("EBPB", 1, "EUV2", 0., 0., zbaseplate2, 0, "ONLY");
797
798 //(2) NEXT PLACING the SS BOX
799 Float_t zss2 = zbaseplate2 + fgkThBase/2. + fgkThSS/2.;
800 gMC->Gspos("ESVB", 1, "EUV2", 0., 0., zss2, 0, "ONLY");
801
802 // (3) Positioning the Backplane PCB 0.1 cm
803 Float_t zbkp2 = zss2 + fgkThSS/2. + fgkThBKP/2.;
804 gMC->Gspos("EBKB", 1, "EUV2", 0., 0., zbkp2, 0, "ONLY");
805
806
807
808 //FOR PRESHOWER
809 // (3) Positioning the Backplane PCB 0.1 cm
810 zbkp2 = -fDboxum2[2] + fgkThBKP/2.;
811 gMC->Gspos("EBKB", 1, "EUM2", 0., 0., zbkp2, 0, "ONLY");
812
813 //(2) NEXT PLACING the SS BOX
814 zss2 = zbkp2 + fgkThBKP/2. + fgkThSS/2.;
815 gMC->Gspos("ESSB", 1, "EUM2", 0., 0., zss2, 0, "ONLY");
816
817 //(1) FIRST PUT THE BASE PLATE
818 zbaseplate2 = zss2 + fgkThSS/2 + fgkThBase/2.;
819 gMC->Gspos("EBPB", 1, "EUM2", 0., 0., zbaseplate2, 0, "ONLY");
820 //-------------------- UM Type B completed ------------------------//
821
822
823 //--- Now we need to make Lead plates of UM dimension -----//
824
825 /**************************/
826 //----------------------------------------------------------//
827 // The lead convertor is of unit module size
828 // Dimensions of Unit Module same as SS boundary channel
829
830 Float_t dboxPba[3];
831 dboxPba[0] = fDboxum1[0];
832 dboxPba[1] = fDboxum1[1];
833 dboxPba[2] = fgkThLead/2.;
834 // Lead of UM dimension
835 gMC->Gsvolu("EPB1","BOX", idtmed[600], dboxPba, 3);
836 gMC->Gsatt ("EPB1", "SEEN", 0);
837
838 Float_t dboxPbb[3];
839 dboxPbb[0] = fDboxum2[0];
840 dboxPbb[1] = fDboxum2[1];
841 dboxPbb[2] = fgkThLead/2.;
842 // Lead of UM dimension
843 gMC->Gsvolu("EPB2","BOX", idtmed[600], dboxPbb, 3);
844 gMC->Gsatt ("EPB2", "SEEN", 0);
845
846 //----------------------------------------------------------------//
847
848 // 2 types of Rectangular shaped supermodules (BOX)
849 //each with 6 unit modules
850
851 // volume for SUPERMODULE ESMA
852 //Space added to provide a gapping for HV between UM's
853 //There is a gap of 0.15 cm between two Modules (UMs)
854 // in x-direction and 0.1cm along y-direction
855
856 Float_t dboxSM1[3];
857 dboxSM1[0] = 3.0*fDboxum1[0] + (2.0*0.075);
858 dboxSM1[1] = 2.0*fDboxum1[1] + 0.05;
859 dboxSM1[2] = fDboxum1[2];
860
861 //FOR PRESHOWER
862 gMC->Gsvolu("ESMA","BOX", idtmed[698], dboxSM1, 3);
863 gMC->Gsatt("ESMA", "SEEN", 0);
864
865 //FOR VETO
866 gMC->Gsvolu("EMVA","BOX", idtmed[698], dboxSM1, 3);
867 gMC->Gsatt("EMVA", "SEEN", 0);
868
869 //Position the 6 unit modules in EMSA
870 Float_t xa1,xa2,xa3,ya1,ya2;
871 xa1 = dboxSM1[0] - fDboxum1[0];
872 xa2 = xa1 - fDboxum1[0] - 0.15 - fDboxum1[0];
873 xa3 = xa2 - fDboxum1[0] - 0.15 - fDboxum1[0];
874 ya1 = dboxSM1[1] - fDboxum1[1];
875 ya2 = ya1 - fDboxum1[1] - 0.1 - fDboxum1[1];
876
877 //PRESHOWER
878 gMC->Gspos("EUM1", 1, "ESMA", xa1, ya1, 0., 0, "ONLY");
879 gMC->Gspos("EUM1", 2, "ESMA", xa2, ya1, 0., 0, "ONLY");
880 gMC->Gspos("EUM1", 3, "ESMA", xa3, ya1, 0., 0, "ONLY");
881 gMC->Gspos("EUM1", 4, "ESMA", xa1, ya2, 0., 0, "ONLY");
882 gMC->Gspos("EUM1", 5, "ESMA", xa2, ya2, 0., 0, "ONLY");
883 gMC->Gspos("EUM1", 6, "ESMA", xa3, ya2, 0., 0, "ONLY");
884
885 //VETO
886 gMC->Gspos("EUV1", 1, "EMVA", xa1, ya1, 0., 0, "ONLY");
887 gMC->Gspos("EUV1", 2, "EMVA", xa2, ya1, 0., 0, "ONLY");
888 gMC->Gspos("EUV1", 3, "EMVA", xa3, ya1, 0., 0, "ONLY");
889 gMC->Gspos("EUV1", 4, "EMVA", xa1, ya2, 0., 0, "ONLY");
890 gMC->Gspos("EUV1", 5, "EMVA", xa2, ya2, 0., 0, "ONLY");
891 gMC->Gspos("EUV1", 6, "EMVA", xa3, ya2, 0., 0, "ONLY");
892
893
894 // volume for SUPERMODULE ESMB
895 //Space is added to provide a gapping for HV between UM's
896 Float_t dboxSM2[3];
897 dboxSM2[0] = 2.0*fDboxum2[0] + 0.075;
898 dboxSM2[1] = 3.0*fDboxum2[1] + (2.0*0.05);
899 dboxSM2[2] = fDboxum2[2];
900
901 //PRESHOWER
902 gMC->Gsvolu("ESMB","BOX", idtmed[698], dboxSM2, 3);
903 gMC->Gsatt("ESMB", "SEEN", 0);
904 //VETO
905 gMC->Gsvolu("EMVB","BOX", idtmed[698], dboxSM2, 3);
906 gMC->Gsatt("EMVB", "SEEN", 0);
907
908 //Position the 6 unit modules in EMSB
909 Float_t xb1,xb2,yb1,yb2,yb3;
910 xb1 = dboxSM2[0] - fDboxum2[0];
911 xb2 = xb1 - fDboxum2[0] - 0.15 - fDboxum2[0];
912 yb1 = dboxSM2[1]-fDboxum2[1];
913 yb2 = yb1 - fDboxum2[1] - 0.1 - fDboxum2[1];
914 yb3 = yb2 - fDboxum2[1] - 0.1 - fDboxum2[1];
915
916
917 //PRESHOWER
918 gMC->Gspos("EUM2", 1, "ESMB", xb1, yb1, 0., 0, "ONLY");
919 gMC->Gspos("EUM2", 2, "ESMB", xb2, yb1, 0., 0, "ONLY");
920 gMC->Gspos("EUM2", 3, "ESMB", xb1, yb2, 0., 0, "ONLY");
921 gMC->Gspos("EUM2", 4, "ESMB", xb2, yb2, 0., 0, "ONLY");
922 gMC->Gspos("EUM2", 5, "ESMB", xb1, yb3, 0., 0, "ONLY");
923 gMC->Gspos("EUM2", 6, "ESMB", xb2, yb3, 0., 0, "ONLY");
924
925 //VETO
926 gMC->Gspos("EUV2", 1, "EMVB", xb1, yb1, 0., 0, "ONLY");
927 gMC->Gspos("EUV2", 2, "EMVB", xb2, yb1, 0., 0, "ONLY");
928 gMC->Gspos("EUV2", 3, "EMVB", xb1, yb2, 0., 0, "ONLY");
929 gMC->Gspos("EUV2", 4, "EMVB", xb2, yb2, 0., 0, "ONLY");
930 gMC->Gspos("EUV2", 5, "EMVB", xb1, yb3, 0., 0, "ONLY");
931 gMC->Gspos("EUV2", 6, "EMVB", xb2, yb3, 0., 0, "ONLY");
932
933 // Make smiliar stucture for lead as for PMD plane
934 //================================================
935
936 // 2 types of Rectangular shaped supermodules (BOX)
937 //each with 6 unit modules
938
939 // volume for SUPERMODULE ESMPbA
940 //Space added to provide a gapping for HV between UM's
941
942 Float_t dboxSMPb1[3];
943 dboxSMPb1[0] = 3.0*fDboxum1[0] + (2.0*0.075);
944 dboxSMPb1[1] = 2.0*fDboxum1[1] + 0.05;
945 dboxSMPb1[2] = fgkThLead/2.;
946
947 gMC->Gsvolu("ESPA","BOX", idtmed[698], dboxSMPb1, 3);
948 gMC->Gsatt("ESPA", "SEEN", 0);
949
950
951 //Position the 6 unit modules in ESMPbA
952 Float_t xpa1,xpa2,xpa3,ypa1,ypa2;
953 xpa1 = -dboxSMPb1[0] + fDboxum1[0];
954 xpa2 = xpa1 + fDboxum1[0] + 0.15 + fDboxum1[0];
955 xpa3 = xpa2 + fDboxum1[0] + 0.15 + fDboxum1[0];
956 ypa1 = dboxSMPb1[1] - fDboxum1[1];
957 ypa2 = ypa1 - fDboxum1[1] - 0.1 - fDboxum1[1];
958
959
960 gMC->Gspos("EPB1", 1, "ESPA", xpa1, ypa1, 0., 0, "ONLY");
961 gMC->Gspos("EPB1", 2, "ESPA", xpa2, ypa1, 0., 0, "ONLY");
962 gMC->Gspos("EPB1", 3, "ESPA", xpa3, ypa1, 0., 0, "ONLY");
963 gMC->Gspos("EPB1", 4, "ESPA", xpa1, ypa2, 0., 0, "ONLY");
964 gMC->Gspos("EPB1", 5, "ESPA", xpa2, ypa2, 0., 0, "ONLY");
965 gMC->Gspos("EPB1", 6, "ESPA", xpa3, ypa2, 0., 0, "ONLY");
966
967
968 // volume for SUPERMODULE ESMPbB
969 //Space is added to provide a gapping for HV between UM's
970 Float_t dboxSMPb2[3];
971 dboxSMPb2[0] = 2.0*fDboxum2[0] + 0.075;
972 dboxSMPb2[1] = 3.0*fDboxum2[1] + (2.0*0.05);
973 dboxSMPb2[2] = fgkThLead/2.;
974
975 gMC->Gsvolu("ESPB","BOX", idtmed[698], dboxSMPb2, 3);
976 gMC->Gsatt("ESPB", "SEEN", 0);
977
978 //Position the 6 unit modules in ESMPbB
979 Float_t xpb1,xpb2,ypb1,ypb2,ypb3;
980 xpb1 = -dboxSMPb2[0] + fDboxum2[0];
981 xpb2 = xpb1 + fDboxum2[0] + 0.15 + fDboxum2[0];
982 ypb1 = dboxSMPb2[1] - fDboxum2[1];
983 ypb2 = ypb1 - fDboxum2[1] - 0.1 - fDboxum2[1];
984 ypb3 = ypb2 - fDboxum2[1] - 0.1 - fDboxum2[1];
985
986
987 gMC->Gspos("EPB2", 1, "ESPB", xpb1, ypb1, 0., 0, "ONLY");
988 gMC->Gspos("EPB2", 2, "ESPB", xpb2, ypb1, 0., 0, "ONLY");
989 gMC->Gspos("EPB2", 3, "ESPB", xpb1, ypb2, 0., 0, "ONLY");
990 gMC->Gspos("EPB2", 4, "ESPB", xpb2, ypb2, 0., 0, "ONLY");
991 gMC->Gspos("EPB2", 5, "ESPB", xpb1, ypb3, 0., 0, "ONLY");
992 gMC->Gspos("EPB2", 6, "ESPB", xpb2, ypb3, 0., 0, "ONLY");
993
994
995 //---------------------------------------------------
996 /// ALICE PMD FEE BOARDS IMPLEMENTATION
997 // Dt: 25th February 2006
998 // - M.M. Mondal, S.K. Prasad and P.K. Netrakanti
999 //---------------------------------------------------
1000
1001 //FEE boards
1002 // It is FR4 board of length 7cm
1003 // breadth of 2.4 cm and thickness 0.1cm
1004 Float_t dboxFEE[3];
1005 dboxFEE[0] = 0.05;
1006 dboxFEE[1] = 3.50;
1007 dboxFEE[2] = 1.20;
1008
1009 gMC->Gsvolu("EFEE","BOX", idtmed[607], dboxFEE, 3);
1010 gMC->Gsatt("EFEE", "SEEN", 0);
1011 gMC->Gsatt("EFEE", "COLO", 4);
1012
1013 //Mother volume to accomodate FEE boards
1014 // It should have the dimension
1015 // as the back plane or the
1016 //corresponding UM
1017 //TYPE A
1018 //------------------------------------------------------//
1019
1020 Float_t dboxFEEBPlaneA[3];
1021 dboxFEEBPlaneA[0] = dboxBPlaneA[0]; //dbox3[0];
1022 dboxFEEBPlaneA[1] = dboxBPlaneA[1];//dbox3[1];
1023 dboxFEEBPlaneA[2] = 1.2;
1024
1025 //Volume of same dimension as Back PLane of Material AIR
1026 gMC->Gsvolu("EFBA","BOX", idtmed[698], dboxFEEBPlaneA, 3);
1027 gMC->Gsatt("EFBA", "SEEN", 0);
1028
1029 //TYPE B
1030 Float_t dboxFEEBPlaneB[3];
1031 dboxFEEBPlaneB[0] = dboxBPlaneB[0]; //dbox4[0];
1032 dboxFEEBPlaneB[1] = dboxBPlaneB[1];//dbox4[1];
1033 dboxFEEBPlaneB[2] = 1.2;
1034
1035 //Back PLane PCB of MAterial G10
1036 gMC->Gsvolu("EFBB","BOX", idtmed[698], dboxFEEBPlaneB, 3);
1037 gMC->Gsatt("EFBB", "SEEN", 0);
1038
1039 //Placing the FEE boards in the Mother volume of AIR
1040
1041 //Type A
1042
1043 Float_t x_fee; // X-position of FEE board
1044 Float_t y_fee; // Y-position of FEE board
1045 Float_t z_fee = 0.0; // Z-position of FEE board
1046
1047 Float_t x_a = 0.25; //distance from the border to 1st FEE board
1048 Float_t y_a = 4.00; //distance from the border to 1st FEE board
1049 Float_t x_sepa = 1.70; //Distance between two FEE boards
1050 Float_t y_sepa = 8.00; //Distance between two FEE boards
1051
1052
1053 // FEE Boards EFEE placed inside EFBA
1054 number = 1;
1055 y_fee = dboxFEEBPlaneA[1] - y_a;
1056 for (i = 1; i <= 6; ++i)
1057 {
1058 x_fee = -dboxFEEBPlaneA[0] + x_a;
1059 for (j = 1; j <= 12; ++j)
1060 {
1061 gMC->Gspos("EFEE", number, "EFBA", x_fee,y_fee,z_fee, 0, "ONLY");
1062 x_fee += x_sepa;
1063 number += 1;
1064 }
1065 y_fee -= y_sepa;
1066 }
1067 // FEE Boards EFEE placed inside EFBB
1068 number = 1;
1069 y_fee = dboxFEEBPlaneB[1] - y_a;
1070 for (i = 1; i <= 3; ++i)
1071 {
1072 x_fee = -dboxFEEBPlaneB[0] + x_a;
1073 for (j = 1; j <= 24; ++j)
1074 {
1075 gMC->Gspos("EFEE", number, "EFBB", x_fee,y_fee,z_fee, 0, "ONLY");
1076 x_fee += x_sepa;
1077 number += 1;
1078 }
1079 y_fee -= y_sepa;
1080 }
1081
1082
1083 //Distance between the two backplanes of two UMs
1084 //in x-direction is 0.92 and ydirection is 0.95
1085 Float_t dboxEFSA[3];
1086 dboxEFSA[0] = 3.0*dboxFEEBPlaneA[0] + 0.92;
1087 dboxEFSA[1] = 2.0*dboxFEEBPlaneA[1] + (0.95/2.0);
1088 dboxEFSA[2] = dboxFEEBPlaneA[2];
1089
1090 //Type A
1091 gMC->Gsvolu("EFSA","BOX", idtmed[698],dboxEFSA, 3);
1092 gMC->Gsatt("EFSA", "SEEN", 0);
1093
1094 //Distance between the two backplanes of two UMs
1095 //in x-direction is 0.92 and ydirection is 0.95
1096 Float_t dboxEFSB[3];
1097 dboxEFSB[0] = 2.0*dboxFEEBPlaneB[0] + (0.938/2.0);
1098 dboxEFSB[1] = 3.0*dboxFEEBPlaneB[1] + 1.05;
1099 dboxEFSB[2] = dboxFEEBPlaneB[2];
1100
1101 //Type A
1102 gMC->Gsvolu("EFSB","BOX", idtmed[698],dboxEFSB, 3);
1103 gMC->Gsatt("EFSB", "SEEN", 0);
1104
1105
1106 Float_t xfs1,xfs2,xfs3,yfs1,yfs2,yfs3;
1107 xfs1 = -dboxEFSA[0] + dboxFEEBPlaneA[0];
1108 xfs2 = xfs1 + dboxFEEBPlaneA[0] + 0.92 + dboxFEEBPlaneA[0];
1109 xfs3 = xfs2 + dboxFEEBPlaneA[0] + 0.92 + dboxFEEBPlaneA[0];
1110 yfs1 = dboxEFSA[1] - dboxFEEBPlaneA[1];
1111 yfs2 = yfs1 - dboxFEEBPlaneA[1] - 0.95 - dboxFEEBPlaneA[1];
1112
1113
1114
1115 gMC->Gspos("EFBA", 1, "EFSA", xfs1, yfs1, 0., 0, "ONLY");
1116 gMC->Gspos("EFBA", 2, "EFSA", xfs2, yfs1, 0., 0, "ONLY");
1117 gMC->Gspos("EFBA", 3, "EFSA", xfs3, yfs1, 0., 0, "ONLY");
1118 gMC->Gspos("EFBA", 4, "EFSA", xfs1, yfs2, 0., 0, "ONLY");
1119 gMC->Gspos("EFBA", 5, "EFSA", xfs2, yfs2, 0., 0, "ONLY");
1120 gMC->Gspos("EFBA", 6, "EFSA", xfs3, yfs2, 0., 0, "ONLY");
1121
1122
1123 //Type B positioning
1124
1125 xfs1 = -dboxEFSB[0] + dboxFEEBPlaneB[0];
1126 xfs2 = xfs1 + dboxFEEBPlaneB[0] + 0.938 + dboxFEEBPlaneB[0];
1127 yfs1 = dboxEFSB[1] - dboxFEEBPlaneB[1];
1128 yfs2 = yfs1 - dboxFEEBPlaneB[1] - 1.05 - dboxFEEBPlaneB[1];
1129 yfs3 = yfs2 - dboxFEEBPlaneB[1] - 1.05 - dboxFEEBPlaneB[1];
1130
1131
1132
1133 gMC->Gspos("EFBB", 1, "EFSB", xfs1, yfs1, 0., 0, "ONLY");
1134 gMC->Gspos("EFBB", 2, "EFSB", xfs2, yfs1, 0., 0, "ONLY");
1135 gMC->Gspos("EFBB", 3, "EFSB", xfs1, yfs2, 0., 0, "ONLY");
1136 gMC->Gspos("EFBB", 4, "EFSB", xfs2, yfs2, 0., 0, "ONLY");
1137 gMC->Gspos("EFBB", 5, "EFSB", xfs1, yfs3, 0., 0, "ONLY");
1138 gMC->Gspos("EFBB", 6, "EFSB", xfs2, yfs3, 0., 0, "ONLY");
1139
1140
1141}
1142
1143//_____________________________________________________________________________
1144
1145void AliPMDv1::CreatePMD()
1146{
1147 //
1148 // Create final detector from supermodules
1149 // -- Author : Bedanga and Viyogi June 2003
1150
1151 Float_t zp;
1152 Int_t jhrot12,jhrot13, irotdm;
1153 Int_t *idtmed = fIdtmed->GetArray()-599;
1154
1155 //VOLUMES Names : begining with "E" for all PMD volumes,
1156
1157 // --- DEFINE Iron volumes for SM A
1158 // Fe Support
1159 Float_t dboxFea[3];
1160 dboxFea[0] = fSMLengthax;
1161 dboxFea[1] = fSMLengthay;
1162 dboxFea[2] = fgkThSteel/2.;
1163
1164 gMC->Gsvolu("EFEA","BOX", idtmed[618], dboxFea, 3);
1165 gMC->Gsatt ("EFEA", "SEEN", 0);
1166
1167 // --- DEFINE Iron volumes for SM B
1168
1169 // Fe Support
1170 Float_t dboxFeb[3];
1171 dboxFeb[0] = fSMLengthbx;
1172 dboxFeb[1] = fSMLengthby;
1173 dboxFeb[2] = fgkThSteel/2.;
1174
1175 gMC->Gsvolu("EFEB","BOX", idtmed[618], dboxFeb, 3);
1176 gMC->Gsatt ("EFEB", "SEEN", 0);
1177
1178 AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.);
1179 AliMatrix(jhrot12, 90., 180., 90., 270., 0., 0.);
1180 AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.);
1181
1182 // Gaspmd, the dimension of RECTANGULAR mother volume of PMD,
1183 // Four mother volumes EPM1,EPM2 for A-type and
1184 // volumes EPM3 and EPM4 for B-type. Four to create a hole
1185 // and avoid overlap with beam pipe
1186
1187 Float_t gaspmd[3];
1188 gaspmd[0] = fSMLengthax;
1189 gaspmd[1] = fSMLengthay;
1190 gaspmd[2] = fSMthick;
1191
1192 gMC->Gsvolu("EPM1", "BOX", idtmed[698], gaspmd, 3);
1193 gMC->Gsatt("EPM1", "SEEN", 1);
1194 gMC->Gsvolu("EPM2", "BOX", idtmed[698], gaspmd, 3);
1195 gMC->Gsatt("EPM2", "SEEN", 1);
1196
1197 //Complete detector for Type A
1198 //Position Super modules type A for both CPV and PMD in EPMD
1199 Float_t zpsa,zpba,zfea,zcva,zfee;
1200
1201 // zpsa = - gaspmd[2] + fSMthick/2.;
1202 // -2.5 is given to place PMD at -361.5
1203 // BM : In future after putting proper electronics
1204 // -2.5 will be replaced by -gaspmd[2]
1205
1206 //TYPE A
1207 //Fee board
1208 zfee=-gaspmd[2] + 1.2;
1209 gMC->Gspos("EFSA", 1, "EPM1", 0., 0., zfee, 0, "ONLY");
1210 gMC->Gspos("EFSA", 2, "EPM2", 0., 0., zfee, jhrot12, "ONLY");
1211 //VETO
1212 zcva = zfee + 1.2 + fDthick;
1213 gMC->Gspos("EMVA", 1, "EPM1", 0., 0., zcva, 0, "ONLY");
1214 gMC->Gspos("EMVA", 2, "EPM2", 0., 0., zcva, jhrot12, "ONLY");
1215 //Iron support
1216 zfea = zcva + fDthick + fgkThSteel/2.;
1217 gMC->Gspos("EFEA", 1, "EPM1", 0., 0., zfea, 0, "ONLY");
1218 gMC->Gspos("EFEA", 2, "EPM2", 0., 0., zfea, 0, "ONLY");
1219 //Lead
1220 zpba=zfea+fgkThSteel/2.+ fgkThLead/2.;
1221 gMC->Gspos("ESPA", 1, "EPM1", 0., 0., zpba, 0, "ONLY");
1222 gMC->Gspos("ESPA", 2, "EPM2", 0., 0., zpba, 0, "ONLY");
1223 //Preshower
1224 zpsa = zpba + fgkThLead/2. + fDthick;
1225 gMC->Gspos("ESMA", 1, "EPM1", 0., 0., zpsa, 0, "ONLY");
1226 gMC->Gspos("ESMA", 2, "EPM2", 0., 0., zpsa, jhrot12, "ONLY");
1227 //FEE boards
1228 zfee=zpsa + fDthick + 1.2;
1229 gMC->Gspos("EFSA", 3, "EPM1", 0., 0., zfee, 0, "ONLY");
1230 gMC->Gspos("EFSA", 4, "EPM2", 0., 0., zfee, jhrot12, "ONLY");
1231
1232
1233 //TYPE - B
1234 gaspmd[0] = fSMLengthbx;
1235 gaspmd[1] = fSMLengthby;
1236 gaspmd[2] = fSMthick;
1237
1238 gMC->Gsvolu("EPM3", "BOX", idtmed[698], gaspmd, 3);
1239 gMC->Gsatt("EPM3", "SEEN", 1);
1240 gMC->Gsvolu("EPM4", "BOX", idtmed[698], gaspmd, 3);
1241 gMC->Gsatt("EPM4", "SEEN", 1);
1242
1243 //Complete detector for Type B
1244 //Position Super modules type B for both CPV and PMD in EPMD
1245 Float_t zpsb,zpbb,zfeb,zcvb;
1246 // zpsb = - gaspmd[2] + fSMthick/2.;
1247 // -2.5 is given to place PMD at -361.5
1248 // BM: In future after putting proper electronics
1249 // -2.5 will be replaced by -gaspmd[2]
1250
1251 //Fee board
1252 zfee=-gaspmd[2] + 1.2;
1253 gMC->Gspos("EFSB", 5, "EPM3", 0., 0., zfee, 0, "ONLY");
1254 gMC->Gspos("EFSB", 6, "EPM4", 0., 0., zfee, jhrot12, "ONLY");
1255 //VETO
1256 zcvb= zfee + 1.2 + fDthick;
1257 gMC->Gspos("EMVB", 3, "EPM3", 0., 0., zcvb, 0, "ONLY");
1258 gMC->Gspos("EMVB", 4, "EPM4", 0., 0., zcvb, jhrot12, "ONLY");
1259
1260 //IRON SUPPORT
1261 zfeb= zcvb + fDthick + fgkThSteel/2.;
1262 gMC->Gspos("EFEB", 3, "EPM3", 0., 0., zfeb, 0, "ONLY");
1263 gMC->Gspos("EFEB", 4, "EPM4", 0., 0., zfeb, 0, "ONLY");
1264 //LEAD
1265 zpbb= zfeb + fgkThSteel/2.+ fgkThLead/2.;
1266 gMC->Gspos("ESPB", 3, "EPM3", 0., 0., zpbb, 0, "ONLY");
1267 gMC->Gspos("ESPB", 4, "EPM4", 0., 0., zpbb, 0, "ONLY");
1268 //PRESHOWER
1269 zpsb = zpbb + fgkThLead/2.+ fDthick;
1270 gMC->Gspos("ESMB", 3, "EPM3", 0., 0., zpsb, 0, "ONLY");
1271 gMC->Gspos("ESMB", 4, "EPM4", 0., 0., zpsb, jhrot12, "ONLY");
1272 //FEE boards
1273 zfee=zpsb + fDthick + 1.2;
1274 gMC->Gspos("EFSB", 7, "EPM3", 0., 0., zfee, 0, "ONLY");
1275 gMC->Gspos("EFSB", 8, "EPM4", 0., 0., zfee, jhrot12, "ONLY");
1276
1277
1278 // --- Place the EPMD in ALICE
1279 //Z-distance of PMD from Interaction Point
1280 zp = fgkZdist;
1281
1282 //X and Y-positions of the PMD planes
1283 Float_t xfinal,yfinal;
1284 Float_t xsmb,ysmb;
1285 Float_t xsma,ysma;
1286
1287 xfinal = fSMLengthax + 0.48/2 + fSMLengthbx;
1288 yfinal = fSMLengthay + 0.20/2 + fSMLengthby;
1289
1290
1291 xsma = xfinal - fSMLengthax;
1292 ysma = yfinal - fSMLengthay;
1293 xsmb = -xfinal + fSMLengthbx;
1294 ysmb = yfinal - fSMLengthby;
1295
1296
1297//Position Full PMD in ALICE
1298//
1299// EPM1 EPM3
1300//
1301// EPM4 EPM2
1302// (rotated (rotated EPM1)
1303// EPM3)
1304//
1305 gMC->Gspos("EPM1", 1, "ALIC", xsma,ysma,zp, 0, "ONLY");
1306 gMC->Gspos("EPM2", 1, "ALIC", -xsma,-ysma,zp, 0, "ONLY");
1307 gMC->Gspos("EPM3", 1, "ALIC", xsmb,ysmb,zp, 0, "ONLY");
1308 gMC->Gspos("EPM4", 1, "ALIC", -xsmb,-ysmb,zp, 0, "ONLY");
1309}
1310
1311
1312//_____________________________________________________________________________
1313void AliPMDv1::DrawModule() const
1314{
1315 // Draw a shaded view of the Photon Multiplicity Detector
1316 //
1317 // cout << " Inside Draw Modules " << endl;
1318
1319 gMC->Gsatt("*", "seen", -1);
1320 gMC->Gsatt("alic", "seen", 0);
1321 //
1322 // Set the visibility of the components
1323 //
1324 gMC->Gsatt("ECAR","seen",0);
1325 gMC->Gsatt("ECCU","seen",1);
1326 gMC->Gsatt("EST1","seen",1);
1327 gMC->Gsatt("EST2","seen",1);
1328 gMC->Gsatt("EUM1","seen",1);
1329 gMC->Gsatt("EUM2","seen",1);
1330 gMC->Gsatt("ESMA","seen",1);
1331 gMC->Gsatt("EPMD","seen",1);
1332 //
1333 gMC->Gdopt("hide", "on");
1334 gMC->Gdopt("shad", "on");
1335 gMC->Gsatt("*", "fill", 7);
1336 gMC->SetClipBox(".");
1337 gMC->SetClipBox("*", 0, 3000, -3000, 3000, -6000, 6000);
1338 gMC->DefaultRange();
1339 gMC->Gdraw("alic", 40, 30, 0, 22, 20.5, .02, .02);
1340 gMC->Gdhead(1111, "Photon Multiplicity Detector Version 1");
1341
1342 //gMC->Gdman(17, 5, "MAN");
1343 gMC->Gdopt("hide", "off");
1344
1345 AliDebug(1,"Outside Draw Modules");
1346}
1347
1348//_____________________________________________________________________________
1349void AliPMDv1::CreateMaterials()
1350{
1351 // Create materials for the PMD
1352 //
1353 // ORIGIN : Y. P. VIYOGI
1354 //
1355 // cout << " Inside create materials " << endl;
1356
1357 Int_t *idtmed = fIdtmed->GetArray()-599;
1358 Int_t isxfld = gAlice->Field()->Integ();
1359 Float_t sxmgmx = gAlice->Field()->Max();
1360
1361 // --- Define the various materials for GEANT ---
1362
1363 AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5);
1364
1365 // Argon
1366
1367 Float_t dAr = 0.001782; // --- Ar density in g/cm3 ---
1368 Float_t x0Ar = 19.55 / dAr;
1369 AliMaterial(2, "Argon$", 39.95, 18., dAr, x0Ar, 6.5e4);
1370
1371 // --- CO2 ---
1372
1373 Float_t aCO2[2] = { 12.,16. };
1374 Float_t zCO2[2] = { 6.,8. };
1375 Float_t wCO2[2] = { 1.,2. };
1376 Float_t dCO2 = 0.001977;
1377 AliMixture(3, "CO2 $", aCO2, zCO2, dCO2, -2, wCO2);
1378
1379 AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5);
1380
1381 // ArCO2
1382
1383 Float_t aArCO2[3] = {39.948,12.0107,15.9994};
1384 Float_t zArCO2[3] = {18.,6.,8.};
1385 Float_t wArCO2[3] = {0.7,0.08,0.22};
1386 Float_t dArCO2 = dAr * 0.7 + dCO2 * 0.3;
1387 AliMixture(5, "ArCO2$", aArCO2, zArCO2, dArCO2, 3, wArCO2);
1388
1389 AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5);
1390
1391 // G10
1392
1393 Float_t aG10[4]={1.,12.011,15.9994,28.086};
1394 Float_t zG10[4]={1.,6.,8.,14.};
1395 Float_t wG10[4]={0.15201,0.10641,0.49444,0.24714};
1396 AliMixture(8,"G10",aG10,zG10,1.7,4,wG10);
1397
1398 AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.);
1399
1400 // Steel
1401 Float_t aSteel[4] = { 55.847,51.9961,58.6934,28.0855 };
1402 Float_t zSteel[4] = { 26.,24.,28.,14. };
1403 Float_t wSteel[4] = { .715,.18,.1,.005 };
1404 Float_t dSteel = 7.88;
1405 AliMixture(19, "STAINLESS STEEL$", aSteel, zSteel, dSteel, 4, wSteel);
1406
1407 //Air
1408
1409 Float_t aAir[4]={12.0107,14.0067,15.9994,39.948};
1410 Float_t zAir[4]={6.,7.,8.,18.};
1411 Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827};
1412 Float_t dAir1 = 1.20479E-10;
1413 Float_t dAir = 1.20479E-3;
1414 AliMixture(98, "Vacum$", aAir, zAir, dAir1, 4, wAir);
1415 AliMixture(99, "Air $", aAir, zAir, dAir , 4, wAir);
1416
1417 // Define tracking media
1418 AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
1419 AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
1420 AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .10, .1);
1421 AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
1422 AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
1423 AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
1424 AliMedium(19, "S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
1425 AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .10, 10);
1426 AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .10, .1);
1427
1428 // --- Generate explicitly delta rays in the iron, aluminium and lead ---
1429 gMC->Gstpar(idtmed[600], "LOSS", 3.);
1430 gMC->Gstpar(idtmed[600], "DRAY", 1.);
1431
1432 gMC->Gstpar(idtmed[603], "LOSS", 3.);
1433 gMC->Gstpar(idtmed[603], "DRAY", 1.);
1434
1435 gMC->Gstpar(idtmed[604], "LOSS", 3.);
1436 gMC->Gstpar(idtmed[604], "DRAY", 1.);
1437
1438 gMC->Gstpar(idtmed[605], "LOSS", 3.);
1439 gMC->Gstpar(idtmed[605], "DRAY", 1.);
1440
1441 gMC->Gstpar(idtmed[607], "LOSS", 3.);
1442 gMC->Gstpar(idtmed[607], "DRAY", 1.);
1443
1444 // --- Energy cut-offs in the Pb and Al to gain time in tracking ---
1445 // --- without affecting the hit patterns ---
1446 gMC->Gstpar(idtmed[600], "CUTGAM", 1e-4);
1447 gMC->Gstpar(idtmed[600], "CUTELE", 1e-4);
1448 gMC->Gstpar(idtmed[600], "CUTNEU", 1e-4);
1449 gMC->Gstpar(idtmed[600], "CUTHAD", 1e-4);
1450
1451 gMC->Gstpar(idtmed[605], "CUTGAM", 1e-4);
1452 gMC->Gstpar(idtmed[605], "CUTELE", 1e-4);
1453 gMC->Gstpar(idtmed[605], "CUTNEU", 1e-4);
1454 gMC->Gstpar(idtmed[605], "CUTHAD", 1e-4);
1455
1456 gMC->Gstpar(idtmed[603], "CUTGAM", 1e-4);
1457 gMC->Gstpar(idtmed[603], "CUTELE", 1e-4);
1458 gMC->Gstpar(idtmed[603], "CUTNEU", 1e-4);
1459 gMC->Gstpar(idtmed[603], "CUTHAD", 1e-4);
1460// gMC->Gstpar(idtmed[609], "CUTGAM", 1e-4);
1461// gMC->Gstpar(idtmed[609], "CUTELE", 1e-4);
1462// gMC->Gstpar(idtmed[609], "CUTNEU", 1e-4);
1463// gMC->Gstpar(idtmed[609], "CUTHAD", 1e-4);
1464 // --- Prevent particles stopping in the gas due to energy cut-off ---
1465 gMC->Gstpar(idtmed[604], "CUTGAM", 1e-5);
1466 gMC->Gstpar(idtmed[604], "CUTELE", 1e-5);
1467 gMC->Gstpar(idtmed[604], "CUTNEU", 1e-5);
1468 gMC->Gstpar(idtmed[604], "CUTHAD", 1e-5);
1469 gMC->Gstpar(idtmed[604], "CUTMUO", 1e-5);
1470
1471 AliDebug(1,"Outside create materials");
1472
1473}
1474
1475//_____________________________________________________________________________
1476void AliPMDv1::Init()
1477{
1478 //
1479 // Initialises PMD detector after it has been built
1480 //
1481
1482 //
1483 AliDebug(2,"Inside Init");
1484 AliDebug(2,"PMD simulation package (v1) initialised");
1485 AliDebug(2,"parameters of pmd");
1486 AliDebug(2,Form("%10.2f %10.2f %10.2f %10.2f\n",
1487 fgkCellRadius,fgkCellWall,fgkCellDepth,fgkZdist));
1488 Int_t *idtmed = fIdtmed->GetArray()-599;
1489 fMedSens=idtmed[605-1];
1490
1491}
1492
1493//_____________________________________________________________________________
1494void AliPMDv1::StepManager()
1495{
1496 //
1497 // Called at each step in the PMD
1498 //
1499
1500 Int_t copy;
1501 Float_t hits[4], destep;
1502 Float_t center[3] = {0,0,0};
1503 Int_t vol[10];
1504 // const char *namep;
1505
1506 if(gMC->GetMedium() == fMedSens && (destep = gMC->Edep())) {
1507
1508 gMC->CurrentVolID(copy);
1509 // namep=gMC->CurrentVolName();
1510 // printf("Current vol is %s \n",namep);
1511 vol[0]=copy;
1512
1513 gMC->CurrentVolOffID(1,copy);
1514 //namep=gMC->CurrentVolOffName(1);
1515 // printf("Current vol 11 is %s \n",namep);
1516 vol[1]=copy;
1517
1518 gMC->CurrentVolOffID(2,copy);
1519 //namep=gMC->CurrentVolOffName(2);
1520 //printf("Current vol 22 is %s \n",namep);
1521 vol[2]=copy;
1522
1523 // if(strncmp(namep,"EHC1",4))vol[2]=1;
1524
1525 gMC->CurrentVolOffID(3,copy);
1526 // namep=gMC->CurrentVolOffName(3);
1527 //printf("Current vol 33 is %s \n",namep);
1528 vol[3]=copy;
1529
1530 gMC->CurrentVolOffID(4,copy);
1531 // namep=gMC->CurrentVolOffName(4);
1532 // printf("Current vol 44 is %s \n",namep);
1533 vol[4]=copy;
1534
1535 gMC->CurrentVolOffID(5,copy);
1536 // namep=gMC->CurrentVolOffName(5);
1537 // printf("Current vol 55 is %s \n",namep);
1538 vol[5]=copy;
1539
1540 gMC->CurrentVolOffID(6,copy);
1541 // namep=gMC->CurrentVolOffName(6);
1542 // printf("Current vol 66 is %s \n",namep);
1543 vol[6]=copy;
1544
1545 gMC->CurrentVolOffID(7,copy);
1546 // namep=gMC->CurrentVolOffName(7);
1547 // printf("Current vol 77 is %s \n",namep);
1548 vol[7]=copy;
1549
1550 gMC->CurrentVolOffID(8,copy);
1551 // namep=gMC->CurrentVolOffName(8);
1552 // printf("Current vol 88 is %s \n",namep);
1553 vol[8]=copy;
1554
1555
1556 gMC->CurrentVolOffID(9,copy);
1557 // namep=gMC->CurrentVolOffName(9);
1558 // printf("Current vol 99 is %s \n",namep);
1559 vol[9]=copy;
1560
1561
1562 // printf("volume number %4d %4d %4d %4d %4d %4d %4d %4d %4d %4d %10.3f \n",vol[0],vol[1],vol[2],vol[3],vol[4],vol[5],vol[6],vol[7],vol[8],vol[9],destep*1000000);
1563
1564 gMC->Gdtom(center,hits,1);
1565 hits[3] = destep*1e9; //Number in eV
1566 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
1567
1568 }
1569}
1570
1571
1572//------------------------------------------------------------------------
1573// Get parameters
1574
1575void AliPMDv1::GetParameters()
1576{
1577 // This gives all the parameters of the detector
1578 // such as Length of Supermodules, type A, type B,
1579 // thickness of the Supermodule
1580 //
1581
1582 fSMLengthax = 32.7434;
1583 //The total length in X is due to the following components
1584 // Factor 3 is because of 3 module length in X for this type
1585 // fgkNcolUM1*fgkCellRadius (48 x 0.25): Total span of each module in X
1586 // fgkCellRadius/2. : There is offset of 1/2 cell
1587 // 0.05+0.05 : Insulation gaps etc
1588 // fgkSSBoundary (0.3) : Boundary frame
1589 // double XA = 3.0*((fgkCellRadius/fgkSqroot3by2*fgkNcolUM1)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM1-1)/6.)+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + (2.0*0.075);
1590
1591 fSMLengthbx = 42.5886;
1592 //The total length in X is due to the following components
1593 // Factor 2 is because of 2 module length in X for this type
1594 // fgkNcolUM2*fgkCellRadius (96 x 0.25): Total span of each module in X
1595 // fgkCellRadius/2. : There is offset of 1/2 cell
1596 // 0.05+0.05 : Insulation gaps etc
1597 // fgkSSBoundary (0.3) : Boundary frame
1598 //double XB = 2.0*((fgkCellRadius/fgkSqroot3by2*fgkNcolUM2)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM2-1)/6.)+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + 0.075;
1599
1600
1601
1602 fSMLengthay = 49.1;
1603 //The total length in Y is due to the following components
1604 // Factor 2 is because of 2 module length in Y for this type
1605 // fgkCellRadius/fgkSqroot3by2)*fgkNrowUM1 (0.25/sqrt3/2 * 96): Total span of each module in Y
1606 // of strips
1607 // 0.05+0.05 : Insulation gaps etc
1608 // fgkSSBoundary (0.3) : Boundary frame
1609 // double YA = 2.0*(fgkNrowUM1*fgkCellRadius+fgkCellRadius/2.+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + 0.05;
1610
1611 fSMLengthby = 37.675;
1612 //The total length in Y is due to the following components
1613 // Factor 3 is because of 3 module length in Y for this type
1614 // fgkCellRadius/fgkSqroot3by2)*fgkNrowUM2 (0.25/sqrt3/2 * 48): Total span of each module in Y
1615 // of strips
1616 // 0.05+0.05 : Insulation gaps etc
1617 // fgkSSBoundary (0.3) : Boundary frame
1618 //double YB = 3.0*((fgkNrowUM2*fgkCellRadius + fgkCellRadius/2.)+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + (2.0*0.05);
1619
1620
1621 //Thickness of a pre/veto plane
1622 fDthick = fgkThSS/2. +0.15;
1623
1624 //Thickness of the PMD ; 2.4 added for FEE boards
1625 fSMthick = 2.0*(fgkThSS/2. +0.15)
1626 +fgkThSteel/2.+fgkThLead/2.0 + 2.4;
1627
1628
1629
1630}
1631