]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - TRD/AliTRDseedV1.cxx
Bug fix in the constructor (thanks to A.Marin)
[u/mrichter/AliRoot.git] / TRD / AliTRDseedV1.cxx
... / ...
CommitLineData
1/**************************************************************************
2* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3* *
4* Author: The ALICE Off-line Project. *
5* Contributors are mentioned in the code where appropriate. *
6* *
7* Permission to use, copy, modify and distribute this software and its *
8* documentation strictly for non-commercial purposes is hereby granted *
9* without fee, provided that the above copyright notice appears in all *
10* copies and that both the copyright notice and this permission notice *
11* appear in the supporting documentation. The authors make no claims *
12* about the suitability of this software for any purpose. It is *
13* provided "as is" without express or implied warranty. *
14**************************************************************************/
15
16/* $Id$ */
17
18////////////////////////////////////////////////////////////////////////////
19////
20// The TRD offline tracklet
21//
22// The running horse of the TRD reconstruction. The following tasks are preformed:
23// 1. Clusters attachment to tracks based on prior information stored at tracklet level (see AttachClusters)
24// 2. Clusters position recalculation based on track information (see GetClusterXY and Fit)
25// 3. Cluster error parametrization recalculation (see Fit)
26// 4. Linear track approximation (Fit)
27// 5. Optimal position (including z estimate for pad row cross tracklets) and covariance matrix of the track fit inside one TRD chamber (Fit)
28// 6. Tilt pad correction and systematic effects (GetCovAt)
29// 7. dEdx calculation (CookdEdx)
30// 8. PID probabilities estimation (CookPID)
31//
32// Authors: //
33// Alex Bercuci <A.Bercuci@gsi.de> //
34// Markus Fasel <M.Fasel@gsi.de> //
35// //
36////////////////////////////////////////////////////////////////////////////
37
38#include "TMath.h"
39#include "TTreeStream.h"
40#include "TGraphErrors.h"
41
42#include "AliLog.h"
43#include "AliMathBase.h"
44#include "AliRieman.h"
45#include "AliCDBManager.h"
46
47#include "AliTRDReconstructor.h"
48#include "AliTRDpadPlane.h"
49#include "AliTRDtransform.h"
50#include "AliTRDcluster.h"
51#include "AliTRDseedV1.h"
52#include "AliTRDtrackV1.h"
53#include "AliTRDcalibDB.h"
54#include "AliTRDchamberTimeBin.h"
55#include "AliTRDtrackingChamber.h"
56#include "AliTRDtrackerV1.h"
57#include "AliTRDrecoParam.h"
58#include "AliTRDCommonParam.h"
59#include "AliTRDtrackletOflHelper.h"
60
61#include "Cal/AliTRDCalTrkAttach.h"
62#include "Cal/AliTRDCalPID.h"
63#include "Cal/AliTRDCalROC.h"
64#include "Cal/AliTRDCalDet.h"
65
66class AliTracker;
67
68ClassImp(AliTRDseedV1)
69
70//____________________________________________________________________
71AliTRDseedV1::AliTRDseedV1(Int_t det)
72 :AliTRDtrackletBase()
73 ,fkReconstructor(NULL)
74 ,fClusterIter(NULL)
75 ,fExB(0.)
76 ,fVD(0.)
77 ,fT0(0.)
78 ,fS2PRF(0.)
79 ,fDiffL(0.)
80 ,fDiffT(0.)
81 ,fClusterIdx(0)
82 ,fErrorMsg(0)
83 ,fN(0)
84 ,fDet(det)
85 ,fPt(0.)
86 ,fdX(0.)
87 ,fX0(0.)
88 ,fX(0.)
89 ,fY(0.)
90 ,fZ(0.)
91 ,fS2Y(0.)
92 ,fS2Z(0.)
93 ,fChi2(0.)
94{
95 //
96 // Constructor
97 //
98 memset(fIndexes,0xFF,kNclusters*sizeof(fIndexes[0]));
99 memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*));
100 memset(fPad, 0, 4*sizeof(Float_t));
101 fYref[0] = 0.; fYref[1] = 0.;
102 fZref[0] = 0.; fZref[1] = 0.;
103 fYfit[0] = 0.; fYfit[1] = 0.;
104 fZfit[0] = 0.; fZfit[1] = 0.;
105 memset(fdEdx, 0, kNslices*sizeof(Float_t));
106 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++) fProb[ispec] = -1.;
107 fLabels[0]=-1; fLabels[1]=-1; // most freq MC labels
108 fLabels[2]=0; // number of different labels for tracklet
109 memset(fRefCov, 0, 7*sizeof(Double_t));
110 // stand alone curvature
111 fC[0] = 0.; fC[1] = 0.;
112 // covariance matrix [diagonal]
113 // default sy = 200um and sz = 2.3 cm
114 fCov[0] = 4.e-4; fCov[1] = 0.; fCov[2] = 5.3;
115 SetStandAlone(kFALSE);
116}
117
118//____________________________________________________________________
119AliTRDseedV1::AliTRDseedV1(const AliTRDseedV1 &ref)
120 :AliTRDtrackletBase((AliTRDtrackletBase&)ref)
121 ,fkReconstructor(NULL)
122 ,fClusterIter(NULL)
123 ,fExB(0.)
124 ,fVD(0.)
125 ,fT0(0.)
126 ,fS2PRF(0.)
127 ,fDiffL(0.)
128 ,fDiffT(0.)
129 ,fClusterIdx(0)
130 ,fErrorMsg(0)
131 ,fN(0)
132 ,fDet(-1)
133 ,fPt(0.)
134 ,fdX(0.)
135 ,fX0(0.)
136 ,fX(0.)
137 ,fY(0.)
138 ,fZ(0.)
139 ,fS2Y(0.)
140 ,fS2Z(0.)
141 ,fChi2(0.)
142{
143 //
144 // Copy Constructor performing a deep copy
145 //
146 if(this != &ref){
147 ref.Copy(*this);
148 }
149 SetBit(kOwner, kFALSE);
150 SetStandAlone(ref.IsStandAlone());
151}
152
153
154//____________________________________________________________________
155AliTRDseedV1& AliTRDseedV1::operator=(const AliTRDseedV1 &ref)
156{
157 //
158 // Assignment Operator using the copy function
159 //
160
161 if(this != &ref){
162 ref.Copy(*this);
163 }
164 SetBit(kOwner, kFALSE);
165
166 return *this;
167}
168
169//____________________________________________________________________
170AliTRDseedV1::~AliTRDseedV1()
171{
172 //
173 // Destructor. The RecoParam object belongs to the underlying tracker.
174 //
175
176 //printf("I-AliTRDseedV1::~AliTRDseedV1() : Owner[%s]\n", IsOwner()?"YES":"NO");
177
178 if(IsOwner()) {
179 for(int itb=0; itb<kNclusters; itb++){
180 if(!fClusters[itb]) continue;
181 //AliInfo(Form("deleting c %p @ %d", fClusters[itb], itb));
182 delete fClusters[itb];
183 fClusters[itb] = NULL;
184 }
185 }
186}
187
188//____________________________________________________________________
189void AliTRDseedV1::Copy(TObject &ref) const
190{
191 //
192 // Copy function
193 //
194
195 //AliInfo("");
196 AliTRDseedV1 &target = (AliTRDseedV1 &)ref;
197
198 target.fkReconstructor = fkReconstructor;
199 target.fClusterIter = NULL;
200 target.fExB = fExB;
201 target.fVD = fVD;
202 target.fT0 = fT0;
203 target.fS2PRF = fS2PRF;
204 target.fDiffL = fDiffL;
205 target.fDiffT = fDiffT;
206 target.fClusterIdx = 0;
207 target.fErrorMsg = fErrorMsg;
208 target.fN = fN;
209 target.fDet = fDet;
210 target.fPt = fPt;
211 target.fdX = fdX;
212 target.fX0 = fX0;
213 target.fX = fX;
214 target.fY = fY;
215 target.fZ = fZ;
216 target.fS2Y = fS2Y;
217 target.fS2Z = fS2Z;
218 target.fChi2 = fChi2;
219
220 memcpy(target.fIndexes, fIndexes, kNclusters*sizeof(Int_t));
221 memcpy(target.fClusters, fClusters, kNclusters*sizeof(AliTRDcluster*));
222 memcpy(target.fPad, fPad, 4*sizeof(Float_t));
223 target.fYref[0] = fYref[0]; target.fYref[1] = fYref[1];
224 target.fZref[0] = fZref[0]; target.fZref[1] = fZref[1];
225 target.fYfit[0] = fYfit[0]; target.fYfit[1] = fYfit[1];
226 target.fZfit[0] = fZfit[0]; target.fZfit[1] = fZfit[1];
227 memcpy(target.fdEdx, fdEdx, kNslices*sizeof(Float_t));
228 memcpy(target.fProb, fProb, AliPID::kSPECIES*sizeof(Float_t));
229 memcpy(target.fLabels, fLabels, 3*sizeof(Int_t));
230 memcpy(target.fRefCov, fRefCov, 7*sizeof(Double_t));
231 target.fC[0] = fC[0]; target.fC[1] = fC[1];
232 memcpy(target.fCov, fCov, 3*sizeof(Double_t));
233
234 TObject::Copy(ref);
235}
236
237
238//____________________________________________________________
239void AliTRDseedV1::Init(const AliRieman *rieman)
240{
241// Initialize this tracklet using the riemann fit information
242
243
244 fZref[0] = rieman->GetZat(fX0);
245 fZref[1] = rieman->GetDZat(fX0);
246 fYref[0] = rieman->GetYat(fX0);
247 fYref[1] = rieman->GetDYat(fX0);
248 if(fkReconstructor && fkReconstructor->IsHLT()){
249 fRefCov[0] = 1;
250 fRefCov[2] = 10;
251 }else{
252 fRefCov[0] = rieman->GetErrY(fX0);
253 fRefCov[2] = rieman->GetErrZ(fX0);
254 }
255 fC[0] = rieman->GetC();
256 fChi2 = rieman->GetChi2();
257}
258
259
260//____________________________________________________________
261Bool_t AliTRDseedV1::Init(AliTRDtrackV1 *track)
262{
263// Initialize this tracklet using the track information
264//
265// Parameters:
266// track - the TRD track used to initialize the tracklet
267//
268// Detailed description
269// The function sets the starting point and direction of the
270// tracklet according to the information from the TRD track.
271//
272// Caution
273// The TRD track has to be propagated to the beginning of the
274// chamber where the tracklet will be constructed
275//
276
277 Double_t y, z;
278 if(!track->GetProlongation(fX0, y, z)) return kFALSE;
279 Update(track);
280 return kTRUE;
281}
282
283
284//_____________________________________________________________________________
285void AliTRDseedV1::Reset(Option_t *opt)
286{
287//
288// Reset seed. If option opt="c" is given only cluster arrays are cleared.
289//
290 for(Int_t ic=kNclusters; ic--;) fIndexes[ic] = -1;
291 memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*));
292 fN=0; SetBit(kRowCross, kFALSE);
293 if(strcmp(opt, "c")==0) return;
294
295 fExB=0.;fVD=0.;fT0=0.;fS2PRF=0.;
296 fDiffL=0.;fDiffT=0.;
297 fClusterIdx=0;
298 fErrorMsg = 0;
299 fDet=-1;
300 fPt=0.;
301 fdX=0.;fX0=0.; fX=0.; fY=0.; fZ=0.;
302 fS2Y=0.; fS2Z=0.;
303 fC[0]=0.; fC[1]=0.;
304 fChi2 = 0.;
305
306 memset(fPad, 0, 4*sizeof(Float_t));
307 fYref[0] = 0.; fYref[1] = 0.;
308 fZref[0] = 0.; fZref[1] = 0.;
309 fYfit[0] = 0.; fYfit[1] = 0.;
310 fZfit[0] = 0.; fZfit[1] = 0.;
311 memset(fdEdx, 0, kNslices*sizeof(Float_t));
312 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++) fProb[ispec] = -1.;
313 fLabels[0]=-1; fLabels[1]=-1; // most freq MC labels
314 fLabels[2]=0; // number of different labels for tracklet
315 memset(fRefCov, 0, 7*sizeof(Double_t));
316 // covariance matrix [diagonal]
317 // default sy = 200um and sz = 2.3 cm
318 fCov[0] = 4.e-4; fCov[1] = 0.; fCov[2] = 5.3;
319}
320
321//____________________________________________________________________
322void AliTRDseedV1::Update(const AliTRDtrackV1 *trk)
323{
324 // update tracklet reference position from the TRD track
325
326 Double_t fSnp = trk->GetSnp();
327 Double_t fTgl = trk->GetTgl();
328 fPt = trk->Pt();
329 Double_t norm =1./TMath::Sqrt((1.-fSnp)*(1.+fSnp));
330 fYref[1] = fSnp*norm;
331 fZref[1] = fTgl*norm;
332 SetCovRef(trk->GetCovariance());
333
334 Double_t dx = trk->GetX() - fX0;
335 fYref[0] = trk->GetY() - dx*fYref[1];
336 fZref[0] = trk->GetZ() - dx*fZref[1];
337}
338
339//_____________________________________________________________________________
340void AliTRDseedV1::UpdateUsed()
341{
342 //
343 // Calculate number of used clusers in the tracklet
344 //
345
346 Int_t nused = 0, nshared = 0;
347 for (Int_t i = kNclusters; i--; ) {
348 if (!fClusters[i]) continue;
349 if(fClusters[i]->IsUsed()){
350 nused++;
351 } else if(fClusters[i]->IsShared()){
352 if(IsStandAlone()) nused++;
353 else nshared++;
354 }
355 }
356 SetNUsed(nused);
357 SetNShared(nshared);
358}
359
360//_____________________________________________________________________________
361void AliTRDseedV1::UseClusters()
362{
363 //
364 // Use clusters
365 //
366 // In stand alone mode:
367 // Clusters which are marked as used or shared from another track are
368 // removed from the tracklet
369 //
370 // In barrel mode:
371 // - Clusters which are used by another track become shared
372 // - Clusters which are attached to a kink track become shared
373 //
374 AliTRDcluster **c = &fClusters[0];
375 for (Int_t ic=kNclusters; ic--; c++) {
376 if(!(*c)) continue;
377 if(IsStandAlone()){
378 if((*c)->IsShared() || (*c)->IsUsed()){
379 if((*c)->IsShared()) SetNShared(GetNShared()-1);
380 else SetNUsed(GetNUsed()-1);
381 (*c) = NULL;
382 fIndexes[ic] = -1;
383 SetN(GetN()-1);
384 continue;
385 }
386 } else {
387 if((*c)->IsUsed() || IsKink()){
388 (*c)->SetShared();
389 continue;
390 }
391 }
392 (*c)->Use();
393 }
394}
395
396
397
398//____________________________________________________________________
399void AliTRDseedV1::CookdEdx(Int_t nslices)
400{
401// Calculates average dE/dx for all slices and store them in the internal array fdEdx.
402//
403// Parameters:
404// nslices : number of slices for which dE/dx should be calculated
405// Output:
406// store results in the internal array fdEdx. This can be accessed with the method
407// AliTRDseedV1::GetdEdx()
408//
409// Detailed description
410// Calculates average dE/dx for all slices. Depending on the PID methode
411// the number of slices can be 3 (LQ) or 8(NN).
412// The calculation of dQ/dl are done using the tracklet fit results (see AliTRDseedV1::GetdQdl(Int_t))
413//
414// The following effects are included in the calculation:
415// 1. calibration values for t0 and vdrift (using x coordinate to calculate slice)
416// 2. cluster sharing (optional see AliTRDrecoParam::SetClusterSharing())
417// 3. cluster size
418//
419
420 memset(fdEdx, 0, kNslices*sizeof(Float_t));
421 const Double_t kDriftLength = (.5 * AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick());
422
423 AliTRDcluster *c(NULL);
424 for(int ic=0; ic<AliTRDtrackerV1::GetNTimeBins(); ic++){
425 if(!(c = fClusters[ic]) && !(c = fClusters[ic+kNtb])) continue;
426 Float_t dx = TMath::Abs(fX0 - c->GetX());
427
428 // Filter clusters for dE/dx calculation
429
430 // 1.consider calibration effects for slice determination
431 Int_t slice;
432 if(dx<kDriftLength){ // TODO should be replaced by c->IsInChamber()
433 slice = Int_t(dx * nslices / kDriftLength);
434 } else slice = c->GetX() < fX0 ? nslices-1 : 0;
435
436
437 // 2. take sharing into account
438 Float_t w = /*c->IsShared() ? .5 :*/ 1.;
439
440 // 3. take into account large clusters TODO
441 //w *= c->GetNPads() > 3 ? .8 : 1.;
442
443 //CHECK !!!
444 fdEdx[slice] += w * GetdQdl(ic); //fdQdl[ic];
445 } // End of loop over clusters
446}
447
448//_____________________________________________________________________________
449void AliTRDseedV1::CookLabels()
450{
451 //
452 // Cook 2 labels for seed
453 //
454
455 Int_t labels[200];
456 Int_t out[200];
457 Int_t nlab = 0;
458 for (Int_t i = 0; i < kNclusters; i++) {
459 if (!fClusters[i]) continue;
460 for (Int_t ilab = 0; ilab < 3; ilab++) {
461 if (fClusters[i]->GetLabel(ilab) >= 0) {
462 labels[nlab] = fClusters[i]->GetLabel(ilab);
463 nlab++;
464 }
465 }
466 }
467
468 fLabels[2] = AliMathBase::Freq(nlab,labels,out,kTRUE);
469 fLabels[0] = out[0];
470 if ((fLabels[2] > 1) && (out[3] > 1)) fLabels[1] = out[2];
471}
472
473//____________________________________________________________
474Float_t AliTRDseedV1::GetAnodeWireOffset(Float_t zt)
475{
476// Find position inside the amplification cell for reading drift velocity map
477
478 Float_t d = fPad[3] - zt;
479 if(d<0.){
480 AliError(Form("Fail AnodeWireOffset calculation z0[%+7.2f] zt[%+7.2f] d[%+7.2f].", fPad[3], zt, d));
481 return 0.125;
482 }
483 d -= ((Int_t)(2 * d)) / 2.0;
484 if(d > 0.25) d = 0.5 - d;
485 return d;
486}
487
488
489//____________________________________________________________________
490Float_t AliTRDseedV1::GetCharge(Bool_t useOutliers) const
491{
492// Computes total charge attached to tracklet. If "useOutliers" is set clusters
493// which are not in chamber are also used (default false)
494
495 AliTRDcluster *c(NULL); Float_t qt(0.);
496 for(int ic=0; ic<kNclusters; ic++){
497 if(!(c=fClusters[ic])) continue;
498 if(c->IsInChamber() && !useOutliers) continue;
499 qt += TMath::Abs(c->GetQ());
500 }
501 return qt;
502}
503
504//____________________________________________________________________
505Bool_t AliTRDseedV1::GetEstimatedCrossPoint(Float_t &x, Float_t &z) const
506{
507// Algorithm to estimate cross point in the x-z plane for pad row cross tracklets.
508// Returns true in case of success.
509 if(!IsRowCross()) return kFALSE;
510
511 x=0.; z=0.;
512 AliTRDcluster *c(NULL);
513 // Find radial range for first row
514 Float_t x1[] = {0., 1.e3};
515 for(int ic=0; ic<kNtb; ic++){
516 if(!(c=fClusters[ic])) continue;
517 if(!c->IsInChamber()) continue;
518 if(c->GetX() <= x1[1]) x1[1] = c->GetX();
519 if(c->GetX() >= x1[0]) x1[0] = c->GetX();
520 z=c->GetZ();
521 }
522 if((x1[0] - x1[1])<1.e-5) return kFALSE;
523
524 // Find radial range for second row
525 Bool_t kZ(kFALSE);
526 Float_t x2[] = {0., 1.e3};
527 for(int ic=kNtb; ic<kNclusters; ic++){
528 if(!(c=fClusters[ic])) continue;
529 if(!c->IsInChamber()) continue;
530 if(c->GetX() <= x2[1]) x2[1] = c->GetX();
531 if(c->GetX() >= x2[0]) x2[0] = c->GetX();
532 if(!kZ){
533 z+=c->GetZ();
534 z*=0.5;
535 kZ=kTRUE;
536 }
537 }
538 if((x2[0] - x2[1])<1.e-5) return kFALSE;
539
540 // Find intersection of the 2 radial regions
541 x = 0.5*((x1[0]+x1[1] > x2[0]+x2[1]) ? (x1[1]+x2[0]) : (x1[0]+x2[1]));
542 return kTRUE;
543}
544
545//____________________________________________________________________
546Float_t AliTRDseedV1::GetdQdl() const
547{
548// Calculate total charge / tracklet length for 1D PID
549//
550 Float_t Q = GetCharge(kTRUE);
551 return Q/TMath::Sqrt(1. + fYref[1]*fYref[1] + fZref[1]*fZref[1]);
552}
553
554//____________________________________________________________________
555Float_t AliTRDseedV1::GetdQdl(Int_t ic, Float_t *dl) const
556{
557// Using the linear approximation of the track inside one TRD chamber (TRD tracklet)
558// the charge per unit length can be written as:
559// BEGIN_LATEX
560// #frac{dq}{dl} = #frac{q_{c}}{dx * #sqrt{1 + #(){#frac{dy}{dx}}^{2}_{fit} + #(){#frac{dz}{dx}}^{2}_{ref}}}
561// END_LATEX
562// where qc is the total charge collected in the current time bin and dx is the length
563// of the time bin.
564// The following correction are applied :
565// - charge : pad row cross corrections
566// [diffusion and TRF assymetry] TODO
567// - dx : anisochronity, track inclination - see Fit and AliTRDcluster::GetXloc()
568// and AliTRDcluster::GetYloc() for the effects taken into account
569//
570//Begin_Html
571//<img src="TRD/trackletDQDT.gif">
572//End_Html
573// In the picture the energy loss measured on the tracklet as a function of drift time [left] and respectively
574// drift length [right] for different particle species is displayed.
575// Author : Alex Bercuci <A.Bercuci@gsi.de>
576//
577 Float_t dq = 0.;
578 // check whether both clusters are inside the chamber
579 Bool_t hasClusterInChamber = kFALSE;
580 if(fClusters[ic] && fClusters[ic]->IsInChamber()){
581 hasClusterInChamber = kTRUE;
582 dq += TMath::Abs(fClusters[ic]->GetQ());
583 }
584 if(fClusters[ic+kNtb] && fClusters[ic+kNtb]->IsInChamber()){
585 hasClusterInChamber = kTRUE;
586 dq += TMath::Abs(fClusters[ic+kNtb]->GetQ());
587 }
588 if(!hasClusterInChamber) return 0.;
589 if(dq<1.e-3) return 0.;
590
591 Double_t dx = fdX;
592 if(ic-1>=0 && ic+1<kNtb){
593 Float_t x2(0.), x1(0.);
594 // try to estimate upper radial position (find the cluster which is inside the chamber)
595 if(fClusters[ic-1] && fClusters[ic-1]->IsInChamber()) x2 = fClusters[ic-1]->GetX();
596 else if(fClusters[ic-1+kNtb] && fClusters[ic-1+kNtb]->IsInChamber()) x2 = fClusters[ic-1+kNtb]->GetX();
597 else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x2 = fClusters[ic]->GetX()+fdX;
598 else x2 = fClusters[ic+kNtb]->GetX()+fdX;
599 // try to estimate lower radial position (find the cluster which is inside the chamber)
600 if(fClusters[ic+1] && fClusters[ic+1]->IsInChamber()) x1 = fClusters[ic+1]->GetX();
601 else if(fClusters[ic+1+kNtb] && fClusters[ic+1+kNtb]->IsInChamber()) x1 = fClusters[ic+1+kNtb]->GetX();
602 else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x1 = fClusters[ic]->GetX()-fdX;
603 else x1 = fClusters[ic+kNtb]->GetX()-fdX;
604
605 dx = .5*(x2 - x1);
606 }
607 dx *= TMath::Sqrt(1. + fYfit[1]*fYfit[1] + fZref[1]*fZref[1]);
608 if(dl) (*dl) = dx;
609 if(dx>1.e-9) return dq/dx;
610 else return 0.;
611}
612
613//____________________________________________________________
614Float_t AliTRDseedV1::GetMomentum(Float_t *err) const
615{
616// Returns momentum of the track after update with the current tracklet as:
617// BEGIN_LATEX
618// p=#frac{1}{1/p_{t}} #sqrt{1+tgl^{2}}
619// END_LATEX
620// and optionally the momentum error (if err is not null).
621// The estimated variance of the momentum is given by:
622// BEGIN_LATEX
623// #sigma_{p}^{2} = (#frac{dp}{dp_{t}})^{2} #sigma_{p_{t}}^{2}+(#frac{dp}{dtgl})^{2} #sigma_{tgl}^{2}+2#frac{dp}{dp_{t}}#frac{dp}{dtgl} cov(tgl,1/p_{t})
624// END_LATEX
625// which can be simplified to
626// BEGIN_LATEX
627// #sigma_{p}^{2} = p^{2}p_{t}^{4}tgl^{2}#sigma_{tgl}^{2}-2p^{2}p_{t}^{3}tgl cov(tgl,1/p_{t})+p^{2}p_{t}^{2}#sigma_{1/p_{t}}^{2}
628// END_LATEX
629//
630
631 Double_t p = fPt*TMath::Sqrt(1.+fZref[1]*fZref[1]);
632 Double_t p2 = p*p;
633 Double_t tgl2 = fZref[1]*fZref[1];
634 Double_t pt2 = fPt*fPt;
635 if(err){
636 Double_t s2 =
637 p2*tgl2*pt2*pt2*fRefCov[4]
638 -2.*p2*fZref[1]*fPt*pt2*fRefCov[5]
639 +p2*pt2*fRefCov[6];
640 (*err) = TMath::Sqrt(s2);
641 }
642 return p;
643}
644
645
646//____________________________________________________________________
647Float_t AliTRDseedV1::GetOccupancyTB() const
648{
649// Returns procentage of TB occupied by clusters
650
651 Int_t n(0);
652 AliTRDcluster *c(NULL);
653 for(int ic=0; ic<AliTRDtrackerV1::GetNTimeBins(); ic++){
654 if(!(c = fClusters[ic]) && !(c = fClusters[ic+kNtb])) continue;
655 n++;
656 }
657
658 return Float_t(n)/AliTRDtrackerV1::GetNTimeBins();
659}
660
661//____________________________________________________________________
662Float_t* AliTRDseedV1::GetProbability(Bool_t force)
663{
664 if(!force) return &fProb[0];
665 if(!CookPID()) return NULL;
666 return &fProb[0];
667}
668
669//____________________________________________________________
670Bool_t AliTRDseedV1::CookPID()
671{
672// Fill probability array for tracklet from the DB.
673//
674// Parameters
675//
676// Output
677// returns pointer to the probability array and NULL if missing DB access
678//
679// Retrieve PID probabilities for e+-, mu+-, K+-, pi+- and p+- from the DB according to tracklet information:
680// - estimated momentum at tracklet reference point
681// - dE/dx measurements
682// - tracklet length
683// - TRD layer
684// According to the steering settings specified in the reconstruction one of the following methods are used
685// - Neural Network [default] - option "nn"
686// - 2D Likelihood - option "!nn"
687
688 AliTRDcalibDB *calibration = AliTRDcalibDB::Instance();
689 if (!calibration) {
690 AliError("No access to calibration data");
691 return kFALSE;
692 }
693
694 if (!fkReconstructor) {
695 AliError("Reconstructor not set.");
696 return kFALSE;
697 }
698
699 // Retrieve the CDB container class with the parametric detector response
700 const AliTRDCalPID *pd = calibration->GetPIDObject(fkReconstructor->GetPIDMethod());
701 if (!pd) {
702 AliError("No access to AliTRDCalPID object");
703 return kFALSE;
704 }
705
706 // calculate tracklet length TO DO
707 Float_t length = (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick())/ TMath::Sqrt((1.0 - GetSnp()*GetSnp()) / (1.0 + GetTgl()*GetTgl()));
708
709 //calculate dE/dx
710 CookdEdx(AliTRDCalPID::kNSlicesNN);
711 AliDebug(4, Form("p=%6.4f[GeV/c] dEdx{%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f} l=%4.2f[cm]", GetMomentum(), fdEdx[0], fdEdx[1], fdEdx[2], fdEdx[3], fdEdx[4], fdEdx[5], fdEdx[6], fdEdx[7], length));
712
713 // Sets the a priori probabilities
714 Bool_t kPIDNN(fkReconstructor->GetPIDMethod()==AliTRDpidUtil::kNN);
715 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++)
716 fProb[ispec] = pd->GetProbability(ispec, GetMomentum(), &fdEdx[0], length, kPIDNN?GetPlane():fkReconstructor->GetRecoParam()->GetPIDLQslices());
717
718 return kTRUE;
719}
720
721//____________________________________________________________________
722Float_t AliTRDseedV1::GetQuality(Bool_t kZcorr) const
723{
724 //
725 // Returns a quality measurement of the current seed
726 //
727
728 Float_t zcorr = kZcorr ? GetTilt() * (fZfit[0] - fZref[0]) : 0.;
729 return
730 .5 * TMath::Abs(18.0 - GetN())
731 + 10.* TMath::Abs(fYfit[1] - fYref[1])
732 + 5. * TMath::Abs(fYfit[0] - fYref[0] + zcorr)
733 + 2. * TMath::Abs(fZfit[0] - fZref[0]) / GetPadLength();
734}
735
736//____________________________________________________________________
737void AliTRDseedV1::GetCovAt(Double_t x, Double_t *cov) const
738{
739// Computes covariance in the y-z plane at radial point x (in tracking coordinates)
740// and returns the results in the preallocated array cov[3] as :
741// cov[0] = Var(y)
742// cov[1] = Cov(yz)
743// cov[2] = Var(z)
744//
745// Details
746//
747// For the linear transformation
748// BEGIN_LATEX
749// Y = T_{x} X^{T}
750// END_LATEX
751// The error propagation has the general form
752// BEGIN_LATEX
753// C_{Y} = T_{x} C_{X} T_{x}^{T}
754// END_LATEX
755// We apply this formula 2 times. First to calculate the covariance of the tracklet
756// at point x we consider:
757// BEGIN_LATEX
758// T_{x} = (1 x); X=(y0 dy/dx); C_{X}=#(){#splitline{Var(y0) Cov(y0, dy/dx)}{Cov(y0, dy/dx) Var(dy/dx)}}
759// END_LATEX
760// and secondly to take into account the tilt angle
761// BEGIN_LATEX
762// T_{#alpha} = #(){#splitline{cos(#alpha) __ sin(#alpha)}{-sin(#alpha) __ cos(#alpha)}}; X=(y z); C_{X}=#(){#splitline{Var(y) 0}{0 Var(z)}}
763// END_LATEX
764//
765// using simple trigonometrics one can write for this last case
766// BEGIN_LATEX
767// C_{Y}=#frac{1}{1+tg^{2}#alpha} #(){#splitline{(#sigma_{y}^{2}+tg^{2}#alpha#sigma_{z}^{2}) __ tg#alpha(#sigma_{z}^{2}-#sigma_{y}^{2})}{tg#alpha(#sigma_{z}^{2}-#sigma_{y}^{2}) __ (#sigma_{z}^{2}+tg^{2}#alpha#sigma_{y}^{2})}}
768// END_LATEX
769// which can be aproximated for small alphas (2 deg) with
770// BEGIN_LATEX
771// C_{Y}=#(){#splitline{#sigma_{y}^{2} __ (#sigma_{z}^{2}-#sigma_{y}^{2})tg#alpha}{((#sigma_{z}^{2}-#sigma_{y}^{2})tg#alpha __ #sigma_{z}^{2}}}
772// END_LATEX
773//
774// before applying the tilt rotation we also apply systematic uncertainties to the tracklet
775// position which can be tunned from outside via the AliTRDrecoParam::SetSysCovMatrix(). They might
776// account for extra misalignment/miscalibration uncertainties.
777//
778// Author :
779// Alex Bercuci <A.Bercuci@gsi.de>
780// Date : Jan 8th 2009
781//
782
783
784 Double_t xr = fX0-x;
785 Double_t sy2 = fCov[0] +2.*xr*fCov[1] + xr*xr*fCov[2];
786 Double_t sz2 = fS2Z;
787 //GetPadLength()*GetPadLength()/12.;
788
789 // insert systematic uncertainties
790 if(fkReconstructor){
791 Double_t sys[15]; memset(sys, 0, 15*sizeof(Double_t));
792 fkReconstructor->GetRecoParam()->GetSysCovMatrix(sys);
793 sy2 += sys[0];
794 sz2 += sys[1];
795 }
796
797 // rotate covariance matrix if no RC
798 if(!IsRowCross()){
799 Double_t t2 = GetTilt()*GetTilt();
800 Double_t correction = 1./(1. + t2);
801 cov[0] = (sy2+t2*sz2)*correction;
802 cov[1] = GetTilt()*(sz2 - sy2)*correction;
803 cov[2] = (t2*sy2+sz2)*correction;
804 } else {
805 cov[0] = sy2; cov[1] = 0.; cov[2] = sy2;
806 }
807
808 AliDebug(4, Form("C(%6.1f %+6.3f %6.1f) RC[%c]", 1.e4*TMath::Sqrt(cov[0]), cov[1], 1.e4*TMath::Sqrt(cov[2]), IsRowCross()?'y':'n'));
809}
810
811//____________________________________________________________
812Int_t AliTRDseedV1::GetCovSqrt(const Double_t * const c, Double_t *d)
813{
814// Helper function to calculate the square root of the covariance matrix.
815// The input matrix is stored in the vector c and the result in the vector d.
816// Both arrays have to be initialized by the user with at least 3 elements. Return negative in case of failure.
817//
818// For calculating the square root of the symmetric matrix c
819// the following relation is used:
820// BEGIN_LATEX
821// C^{1/2} = VD^{1/2}V^{-1}
822// END_LATEX
823// with V being the matrix with the n eigenvectors as columns.
824// In case C is symmetric the followings are true:
825// - matrix D is diagonal with the diagonal given by the eigenvalues of C
826// - V = V^{-1}
827//
828// Author A.Bercuci <A.Bercuci@gsi.de>
829// Date Mar 19 2009
830
831 const Double_t kZero(1.e-20);
832 Double_t l[2], // eigenvalues
833 v[3]; // eigenvectors
834 // the secular equation and its solution :
835 // (c[0]-L)(c[2]-L)-c[1]^2 = 0
836 // L^2 - L*Tr(c)+DET(c) = 0
837 // L12 = [Tr(c) +- sqrt(Tr(c)^2-4*DET(c))]/2
838 Double_t tr = c[0]+c[2], // trace
839 det = c[0]*c[2]-c[1]*c[1]; // determinant
840 if(TMath::Abs(det)<kZero) return 1;
841 Double_t dd = TMath::Sqrt(tr*tr - 4*det);
842 l[0] = .5*(tr + dd*(c[0]>c[2]?-1.:1.));
843 l[1] = .5*(tr + dd*(c[0]>c[2]?1.:-1.));
844 if(l[0]<kZero || l[1]<kZero) return 2;
845 // the sym V matrix
846 // | v00 v10|
847 // | v10 v11|
848 Double_t den = (l[0]-c[0])*(l[0]-c[0])+c[1]*c[1];
849 if(den<kZero){ // almost diagonal
850 v[0] = TMath::Sign(0., c[1]);
851 v[1] = TMath::Sign(1., (l[0]-c[0]));
852 v[2] = TMath::Sign(0., c[1]*(l[0]-c[0])*(l[1]-c[2]));
853 } else {
854 Double_t tmp = 1./TMath::Sqrt(den);
855 v[0] = c[1]* tmp;
856 v[1] = (l[0]-c[0])*tmp;
857 if(TMath::Abs(l[1]-c[2])<kZero) v[2] = TMath::Sign(v[0]*(l[0]-c[0])/kZero, (l[1]-c[2]));
858 else v[2] = v[0]*(l[0]-c[0])/(l[1]-c[2]);
859 }
860 // the VD^{1/2}V is:
861 l[0] = TMath::Sqrt(l[0]); l[1] = TMath::Sqrt(l[1]);
862 d[0] = v[0]*v[0]*l[0]+v[1]*v[1]*l[1];
863 d[1] = v[0]*v[1]*l[0]+v[1]*v[2]*l[1];
864 d[2] = v[1]*v[1]*l[0]+v[2]*v[2]*l[1];
865
866 return 0;
867}
868
869//____________________________________________________________
870Double_t AliTRDseedV1::GetCovInv(const Double_t * const c, Double_t *d)
871{
872// Helper function to calculate the inverse of the covariance matrix.
873// The input matrix is stored in the vector c and the result in the vector d.
874// Both arrays have to be initialized by the user with at least 3 elements
875// The return value is the determinant or 0 in case of singularity.
876//
877// Author A.Bercuci <A.Bercuci@gsi.de>
878// Date Mar 19 2009
879
880 Double_t det = c[0]*c[2] - c[1]*c[1];
881 if(TMath::Abs(det)<1.e-20) return 0.;
882 Double_t invDet = 1./det;
883 d[0] = c[2]*invDet;
884 d[1] =-c[1]*invDet;
885 d[2] = c[0]*invDet;
886 return det;
887}
888
889//____________________________________________________________________
890UShort_t AliTRDseedV1::GetVolumeId() const
891{
892// Returns geometry volume id by delegation
893
894 for(Int_t ic(0);ic<kNclusters; ic++){
895 if(fClusters[ic]) return fClusters[ic]->GetVolumeId();
896 }
897 return 0;
898}
899
900
901//____________________________________________________________________
902void AliTRDseedV1::Calibrate()
903{
904// Retrieve calibration and position parameters from OCDB.
905// The following information are used
906// - detector index
907// - column and row position of first attached cluster. If no clusters are attached
908// to the tracklet a random central chamber position (c=70, r=7) will be used.
909//
910// The following information is cached in the tracklet
911// t0 (trigger delay)
912// drift velocity
913// PRF width
914// omega*tau = tg(a_L)
915// diffusion coefficients (longitudinal and transversal)
916//
917// Author :
918// Alex Bercuci <A.Bercuci@gsi.de>
919// Date : Jan 8th 2009
920//
921
922 AliCDBManager *cdb = AliCDBManager::Instance();
923 if(cdb->GetRun() < 0){
924 AliError("OCDB manager not properly initialized");
925 return;
926 }
927
928 AliTRDcalibDB *calib = AliTRDcalibDB::Instance();
929 AliTRDCalROC *vdROC = calib->GetVdriftROC(fDet),
930 *t0ROC = calib->GetT0ROC(fDet);;
931 const AliTRDCalDet *vdDet = calib->GetVdriftDet();
932 const AliTRDCalDet *t0Det = calib->GetT0Det();
933
934 Int_t col = 70, row = 7;
935 AliTRDcluster **c = &fClusters[0];
936 if(GetN()){
937 Int_t ic = 0;
938 while (ic<kNclusters && !(*c)){ic++; c++;}
939 if(*c){
940 col = (*c)->GetPadCol();
941 row = (*c)->GetPadRow();
942 }
943 }
944
945 fT0 = (t0Det->GetValue(fDet) + t0ROC->GetValue(col,row)) / AliTRDCommonParam::Instance()->GetSamplingFrequency();
946 fVD = vdDet->GetValue(fDet) * vdROC->GetValue(col, row);
947 fS2PRF = calib->GetPRFWidth(fDet, col, row); fS2PRF *= fS2PRF;
948 fExB = AliTRDCommonParam::Instance()->GetOmegaTau(fVD);
949 AliTRDCommonParam::Instance()->GetDiffCoeff(fDiffL,
950 fDiffT, fVD);
951 AliDebug(4, Form("Calibration params for Det[%3d] Col[%3d] Row[%2d]\n t0[%f] vd[%f] s2PRF[%f] ExB[%f] Dl[%f] Dt[%f]", fDet, col, row, fT0, fVD, fS2PRF, fExB, fDiffL, fDiffT));
952
953
954 SetBit(kCalib, kTRUE);
955}
956
957//____________________________________________________________________
958void AliTRDseedV1::SetOwner()
959{
960 //AliInfo(Form("own [%s] fOwner[%s]", own?"YES":"NO", fOwner?"YES":"NO"));
961
962 if(TestBit(kOwner)) return;
963 for(int ic=0; ic<kNclusters; ic++){
964 if(!fClusters[ic]) continue;
965 fClusters[ic] = new AliTRDcluster(*fClusters[ic]);
966 }
967 SetBit(kOwner);
968}
969
970//____________________________________________________________
971void AliTRDseedV1::SetPadPlane(AliTRDpadPlane * const p)
972{
973// Shortcut method to initialize pad geometry.
974 fPad[0] = p->GetLengthIPad();
975 fPad[1] = p->GetWidthIPad();
976 fPad[2] = TMath::Tan(TMath::DegToRad()*p->GetTiltingAngle());
977 fPad[3] = p->GetRow0() + p->GetAnodeWireOffset();
978}
979
980
981
982//____________________________________________________________________
983Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *const chamber, Bool_t tilt, Bool_t chgPos, Int_t ev)
984{
985//
986// Projective algorithm to attach clusters to seeding tracklets. The following steps are performed :
987// 1. Collapse x coordinate for the full detector plane
988// 2. truncated mean on y (r-phi) direction
989// 3. purge clusters
990// 4. truncated mean on z direction
991// 5. purge clusters
992//
993// Parameters
994// - chamber : pointer to tracking chamber container used to search the tracklet
995// - tilt : switch for tilt correction during road building [default true]
996// Output
997// - true : if tracklet found successfully. Failure can happend because of the following:
998// -
999// Detailed description
1000//
1001// We start up by defining the track direction in the xy plane and roads. The roads are calculated based
1002// on tracking information (variance in the r-phi direction) and estimated variance of the standard
1003// clusters (see AliTRDcluster::SetSigmaY2()) corrected for tilt (see GetCovAt()). From this the road is
1004// BEGIN_LATEX
1005// r_{y} = 3*#sqrt{12*(#sigma^{2}_{Trk}(y) + #frac{#sigma^{2}_{cl}(y) + tg^{2}(#alpha_{L})#sigma^{2}_{cl}(z)}{1+tg^{2}(#alpha_{L})})}
1006// r_{z} = 1.5*L_{pad}
1007// END_LATEX
1008//
1009// Author : Alexandru Bercuci <A.Bercuci@gsi.de>
1010// Debug : level = 2 for calibration
1011// level = 3 for visualization in the track SR
1012// level = 4 for full visualization including digit level
1013
1014 const AliTRDrecoParam* const recoParam = fkReconstructor->GetRecoParam(); //the dynamic cast in GetRecoParam is slow, so caching the pointer to it
1015
1016 if(!recoParam){
1017 AliError("Tracklets can not be used without a valid RecoParam.");
1018 return kFALSE;
1019 }
1020 AliTRDcalibDB *calibration = AliTRDcalibDB::Instance();
1021 if (!calibration) {
1022 AliError("No access to calibration data");
1023 return kFALSE;
1024 }
1025 // Retrieve the CDB container class with the parametric likelihood
1026 const AliTRDCalTrkAttach *attach = calibration->GetAttachObject();
1027 if (!attach) {
1028 AliError("No usable AttachClusters calib object.");
1029 return kFALSE;
1030 }
1031
1032 // Initialize reco params for this tracklet
1033 // 1. first time bin in the drift region
1034 Int_t t0 = 14;
1035 Int_t kClmin = Int_t(recoParam->GetFindableClusters()*AliTRDtrackerV1::GetNTimeBins());
1036 Int_t kTBmin = 4;
1037
1038 Double_t sysCov[5]; recoParam->GetSysCovMatrix(sysCov);
1039 Double_t s2yTrk= fRefCov[0],
1040 s2yCl = 0.,
1041 s2zCl = GetPadLength()*GetPadLength()/12.,
1042 syRef = TMath::Sqrt(s2yTrk),
1043 t2 = GetTilt()*GetTilt();
1044 //define roads
1045 const Double_t kroady = 3.; //recoParam->GetRoad1y();
1046 const Double_t kroadz = GetPadLength() * recoParam->GetRoadzMultiplicator() + 1.;
1047 // define probing cluster (the perfect cluster) and default calibration
1048 Short_t sig[] = {0, 0, 10, 30, 10, 0,0};
1049 AliTRDcluster cp(fDet, 6, 75, 0, sig, 0);
1050 if(fkReconstructor->IsHLT()) cp.SetRPhiMethod(AliTRDcluster::kCOG);
1051 if(!IsCalibrated()) Calibrate();
1052
1053 Int_t kroadyShift(0);
1054 Float_t bz(AliTrackerBase::GetBz());
1055 if(TMath::Abs(bz)>2.){
1056 if(bz<0.) kroadyShift = chgPos ? +1 : -1;
1057 else kroadyShift = chgPos ? -1 : +1;
1058 }
1059 AliDebug(4, Form("\n syTrk[cm]=%4.2f dydxTrk[deg]=%+6.2f rs[%d] Chg[%c] rY[cm]=%4.2f rZ[cm]=%5.2f TC[%c]", syRef, TMath::ATan(fYref[1])*TMath::RadToDeg(), kroadyShift, chgPos?'+':'-', kroady, kroadz, tilt?'y':'n'));
1060 Double_t phiTrk(TMath::ATan(fYref[1])),
1061 thtTrk(TMath::ATan(fZref[1]));
1062
1063 // working variables
1064 const Int_t kNrows = 16;
1065 const Int_t kNcls = 3*kNclusters; // buffer size
1066 TObjArray clst[kNrows];
1067 Bool_t blst[kNrows][kNcls];
1068 Double_t cond[4],
1069 dx, dy, dz,
1070 yt, zt,
1071 zc[kNrows],
1072 xres[kNrows][kNcls], yres[kNrows][kNcls], zres[kNrows][kNcls], s2y[kNrows][kNcls];
1073 Int_t idxs[kNrows][kNcls], ncl[kNrows], ncls = 0;
1074 memset(ncl, 0, kNrows*sizeof(Int_t));
1075 memset(zc, 0, kNrows*sizeof(Double_t));
1076 memset(idxs, 0, kNrows*kNcls*sizeof(Int_t));
1077 memset(xres, 0, kNrows*kNcls*sizeof(Double_t));
1078 memset(yres, 0, kNrows*kNcls*sizeof(Double_t));
1079 memset(zres, 0, kNrows*kNcls*sizeof(Double_t));
1080 memset(s2y, 0, kNrows*kNcls*sizeof(Double_t));
1081 memset(blst, 0, kNrows*kNcls*sizeof(Bool_t)); //this is 8 times faster to memset than "memset(clst, 0, kNrows*kNcls*sizeof(AliTRDcluster*))"
1082
1083 Double_t roady(0.), s2Mean(0.), sMean(0.); Int_t ns2Mean(0);
1084
1085 // Do cluster projection and pick up cluster candidates
1086 AliTRDcluster *c(NULL);
1087 AliTRDchamberTimeBin *layer(NULL);
1088 Bool_t kBUFFER = kFALSE;
1089 for (Int_t it = 0; it < kNtb; it++) {
1090 if(!(layer = chamber->GetTB(it))) continue;
1091 if(!Int_t(*layer)) continue;
1092 // get track projection at layers position
1093 dx = fX0 - layer->GetX();
1094 yt = fYref[0] - fYref[1] * dx;
1095 zt = fZref[0] - fZref[1] * dx;
1096 // get standard cluster error corrected for tilt if selected
1097 cp.SetLocalTimeBin(it);
1098 cp.SetSigmaY2(0.02, fDiffT, fExB, dx, -1./*zt*/, fYref[1]);
1099 s2yCl = cp.GetSigmaY2() + sysCov[0]; if(!tilt) s2yCl = (s2yCl + t2*s2zCl)/(1.+t2);
1100 if(TMath::Abs(it-12)<7){ s2Mean += cp.GetSigmaY2(); ns2Mean++;}
1101 // get estimated road in r-phi direction
1102 roady = TMath::Min(3.*TMath::Sqrt(12.*(s2yTrk + s2yCl)), kroady);
1103
1104 AliDebug(5, Form("\n"
1105 " %2d xd[cm]=%6.3f yt[cm]=%7.2f zt[cm]=%8.2f\n"
1106 " syTrk[um]=%6.2f syCl[um]=%6.2f syClTlt[um]=%6.2f\n"
1107 " Ry[mm]=%f"
1108 , it, dx, yt, zt
1109 , 1.e4*TMath::Sqrt(s2yTrk), 1.e4*TMath::Sqrt(cp.GetSigmaY2()+sysCov[0]), 1.e4*TMath::Sqrt(s2yCl)
1110 , 1.e1*roady));
1111
1112 // get clusters from layer
1113 cond[0] = yt/*+0.5*kroadyShift*kroady*/; cond[2] = roady;
1114 cond[1] = zt; cond[3] = kroadz;
1115 Int_t n=0, idx[6]; layer->GetClusters(cond, idx, n, 6);
1116 for(Int_t ic = n; ic--;){
1117 c = (*layer)[idx[ic]];
1118 dx = fX0 - c->GetX();
1119 yt = fYref[0] - fYref[1] * dx;
1120 zt = fZref[0] - fZref[1] * dx;
1121 dz = zt - c->GetZ();
1122 dy = yt - (c->GetY() + (tilt ? (GetTilt() * dz) : 0.));
1123 Int_t r = c->GetPadRow();
1124 clst[r].AddAtAndExpand(c, ncl[r]);
1125 blst[r][ncl[r]] = kTRUE;
1126 idxs[r][ncl[r]] = idx[ic];
1127 zres[r][ncl[r]] = dz/GetPadLength();
1128 yres[r][ncl[r]] = dy;
1129 xres[r][ncl[r]] = dx;
1130 zc[r] = c->GetZ();
1131 // TODO temporary solution to avoid divercences in error parametrization
1132 s2y[r][ncl[r]] = TMath::Min(c->GetSigmaY2()+sysCov[0], 0.025);
1133 AliDebug(5, Form(" -> dy[cm]=%+7.4f yc[cm]=%7.2f row[%d] idx[%2d]", dy, c->GetY(), r, ncl[r]));
1134 ncl[r]++; ncls++;
1135
1136 if(ncl[r] >= kNcls) {
1137 AliWarning(Form("Cluster candidates row[%d] reached buffer limit[%d]. Some may be lost.", r, kNcls));
1138 kBUFFER = kTRUE;
1139 break;
1140 }
1141 }
1142 if(kBUFFER) break;
1143 }
1144 if(ncls<kClmin){
1145 AliDebug(1, Form("CLUSTERS FOUND %d LESS THAN THRESHOLD %d.", ncls, kClmin));
1146 SetErrorMsg(kAttachClFound);
1147 for(Int_t ir(kNrows);ir--;) clst[ir].Clear();
1148 return kFALSE;
1149 }
1150 if(ns2Mean<kTBmin){
1151 AliDebug(1, Form("CLUSTERS IN TimeBins %d LESS THAN THRESHOLD %d.", ns2Mean, kTBmin));
1152 SetErrorMsg(kAttachClFound);
1153 for(Int_t ir(kNrows);ir--;) clst[ir].Clear();
1154 return kFALSE;
1155 }
1156 s2Mean /= ns2Mean; sMean = TMath::Sqrt(s2Mean);
1157 //Double_t sRef(TMath::Sqrt(s2Mean+s2yTrk)); // reference error parameterization
1158
1159 // organize row candidates
1160 Int_t idxRow[kNrows], nrc(0); Double_t zresRow[kNrows];
1161 for(Int_t ir(0); ir<kNrows; ir++){
1162 idxRow[ir]=-1; zresRow[ir] = 999.;
1163 if(!ncl[ir]) continue;
1164 // get mean z resolution
1165 dz = 0.; for(Int_t ic = ncl[ir]; ic--;) dz += zres[ir][ic]; dz/=ncl[ir];
1166 // insert row
1167 idxRow[nrc] = ir; zresRow[nrc] = TMath::Abs(dz); nrc++;
1168 }
1169 AliDebug(4, Form("Found %d clusters in %d rows. Sorting ...", ncls, nrc));
1170
1171 // sort row candidates
1172 if(nrc>=2){
1173 if(nrc==2){
1174 if(zresRow[0]>zresRow[1]){ // swap
1175 Int_t itmp=idxRow[1]; idxRow[1] = idxRow[0]; idxRow[0] = itmp;
1176 Double_t dtmp=zresRow[1]; zresRow[1] = zresRow[0]; zresRow[0] = dtmp;
1177 }
1178 if(TMath::Abs(idxRow[1] - idxRow[0]) != 1){
1179 SetErrorMsg(kAttachRowGap);
1180 AliDebug(2, Form("Rows attached not continuous. Select first candidate.\n"
1181 " row[%2d] Ncl[%2d] <dz>[cm]=%+8.2f row[%2d] Ncl[%2d] <dz>[cm]=%+8.2f",
1182 idxRow[0], ncl[idxRow[0]], zresRow[0], idxRow[1], idxRow[1]<0?0:ncl[idxRow[1]], zresRow[1]));
1183 nrc=1; idxRow[1] = -1; zresRow[1] = 999.;
1184 }
1185 } else {
1186 Int_t idx0[kNrows];
1187 TMath::Sort(nrc, zresRow, idx0, kFALSE);
1188 nrc = 3; // select only maximum first 3 candidates
1189 Int_t iatmp[] = {-1, -1, -1}; Double_t datmp[] = {999., 999., 999.};
1190 for(Int_t irc(0); irc<nrc; irc++){
1191 iatmp[irc] = idxRow[idx0[irc]];
1192 datmp[irc] = zresRow[idx0[irc]];
1193 }
1194 idxRow[0] = iatmp[0]; zresRow[0] = datmp[0];
1195 idxRow[1] = iatmp[1]; zresRow[1] = datmp[1];
1196 idxRow[2] = iatmp[2]; zresRow[2] = datmp[2]; // temporary
1197 if(TMath::Abs(idxRow[1] - idxRow[0]) != 1){
1198 SetErrorMsg(kAttachRowGap);
1199 AliDebug(2, Form("Rows attached not continuous. Turn on selection.\n"
1200 "row[%2d] Ncl[%2d] <dz>[cm]=%+8.2f\n"
1201 "row[%2d] Ncl[%2d] <dz>[cm]=%+8.2f\n"
1202 "row[%2d] Ncl[%2d] <dz>[cm]=%+8.2f",
1203 idxRow[0], ncl[idxRow[0]], zresRow[0],
1204 idxRow[1], ncl[idxRow[1]], zresRow[1],
1205 idxRow[2], ncl[idxRow[2]], zresRow[2]));
1206 if(TMath::Abs(idxRow[0] - idxRow[2]) == 1){ // select second candidate
1207 AliDebug(2, "Solved ! Remove second candidate.");
1208 nrc = 2;
1209 idxRow[1] = idxRow[2]; zresRow[1] = zresRow[2]; // swap
1210 idxRow[2] = -1; zresRow[2] = 999.; // remove
1211 } else if(TMath::Abs(idxRow[1] - idxRow[2]) == 1){
1212 if(ncl[idxRow[1]]+ncl[idxRow[2]] > ncl[idxRow[0]]){
1213 AliDebug(2, "Solved ! Remove first candidate.");
1214 nrc = 2;
1215 idxRow[0] = idxRow[1]; zresRow[0] = zresRow[1]; // swap
1216 idxRow[1] = idxRow[2]; zresRow[1] = zresRow[2]; // swap
1217 } else {
1218 AliDebug(2, "Solved ! Remove second and third candidate.");
1219 nrc = 1;
1220 idxRow[1] = -1; zresRow[1] = 999.; // remove
1221 idxRow[2] = -1; zresRow[2] = 999.; // remove
1222 }
1223 } else {
1224 AliDebug(2, "Unsolved !!! Remove second and third candidate.");
1225 nrc = 1;
1226 idxRow[1] = -1; zresRow[1] = 999.; // remove
1227 idxRow[2] = -1; zresRow[2] = 999.; // remove
1228 }
1229 } else { // remove temporary candidate
1230 nrc = 2;
1231 idxRow[2] = -1; zresRow[2] = 999.;
1232 }
1233 }
1234 }
1235 AliDebug(4, Form("Sorted row candidates:\n"
1236 " row[%2d] Ncl[%2d] <dz>[cm]=%+8.2f row[%2d] Ncl[%2d] <dz>[cm]=%+8.2f"
1237 , idxRow[0], ncl[idxRow[0]], zresRow[0], idxRow[1], idxRow[1]<0?0:ncl[idxRow[1]], zresRow[1]));
1238
1239 // initialize debug streamer
1240 TTreeSRedirector *pstreamer(NULL);
1241 if(recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 3 && fkReconstructor->IsDebugStreaming()) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
1242 if(pstreamer){
1243 // save config. for calibration
1244 TVectorD vdy[2], vdx[2], vs2[2];
1245 for(Int_t jr(0); jr<nrc; jr++){
1246 Int_t ir(idxRow[jr]);
1247 vdx[jr].ResizeTo(ncl[ir]); vdy[jr].ResizeTo(ncl[ir]); vs2[jr].ResizeTo(ncl[ir]);
1248 for(Int_t ic(ncl[ir]); ic--;){
1249 vdx[jr](ic) = xres[ir][ic];
1250 vdy[jr](ic) = yres[ir][ic];
1251 vs2[jr](ic) = s2y[ir][ic];
1252 }
1253 }
1254 (*pstreamer) << "AttachClusters4"
1255 << "r0=" << idxRow[0]
1256 << "dz0=" << zresRow[0]
1257 << "dx0=" << &vdx[0]
1258 << "dy0=" << &vdy[0]
1259 << "s20=" << &vs2[0]
1260 << "r1=" << idxRow[1]
1261 << "dz1=" << zresRow[1]
1262 << "dx1=" << &vdx[1]
1263 << "dy1=" << &vdy[1]
1264 << "s21=" << &vs2[1]
1265 << "\n";
1266 vdx[0].Clear(); vdy[0].Clear(); vs2[0].Clear();
1267 vdx[1].Clear(); vdy[1].Clear(); vs2[1].Clear();
1268 if(recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 4){
1269 Int_t idx(idxRow[1]);
1270 if(idx<0){
1271 for(Int_t ir(0); ir<kNrows; ir++){
1272 if(clst[ir].GetEntries()>0) continue;
1273 idx = ir;
1274 break;
1275 }
1276 }
1277 (*pstreamer) << "AttachClusters5"
1278 << "c0.=" << &clst[idxRow[0]]
1279 << "c1.=" << &clst[idx]
1280 << "\n";
1281 }
1282 }
1283
1284//=======================================================================================
1285 // Analyse cluster topology
1286 Double_t f[kNcls], // likelihood factors for segments
1287 r[2][kNcls], // d(dydx) of tracklet candidate with respect to track
1288 xm[2][kNcls], // mean <x>
1289 ym[2][kNcls], // mean <y>
1290 sm[2][kNcls], // mean <s_y>
1291 s[2][kNcls], // sigma_y
1292 p[2][kNcls], // prob of Gauss
1293 q[2][kNcls]; // charge/segment
1294 memset(f, 0, kNcls*sizeof(Double_t));
1295 Int_t index[2][kNcls], n[2][kNcls];
1296 memset(n, 0, 2*kNcls*sizeof(Int_t));
1297 Int_t mts(0), nts[2] = {0, 0}; // no of tracklet segments in row
1298 AliTRDpadPlane *pp(AliTRDtransform::Geometry().GetPadPlane(fDet));
1299 AliTRDtrackletOflHelper helper;
1300 Int_t lyDet(AliTRDgeometry::GetLayer(fDet));
1301 for(Int_t jr(0), n0(0); jr<nrc; jr++){
1302 Int_t ir(idxRow[jr]);
1303 // cluster segmentation
1304 Bool_t kInit(kFALSE);
1305 if(jr==0){
1306 n0 = helper.Init(pp, &clst[ir]); kInit = kTRUE;
1307 if(!n0 || (helper.ClassifyTopology() == AliTRDtrackletOflHelper::kNormal)){
1308 nts[jr] = 1; memset(index[jr], 0, ncl[ir]*sizeof(Int_t));
1309 n[jr][0] = ncl[ir];
1310 }
1311 }
1312 if(!n[jr][0]){
1313 nts[jr] = AliTRDtrackletOflHelper::Segmentation(ncl[ir], xres[ir], yres[ir], index[jr]);
1314 for(Int_t ic(ncl[ir]);ic--;) n[jr][index[jr][ic]]++;
1315 }
1316 mts += nts[jr];
1317
1318 // tracklet segment processing
1319 for(Int_t its(0); its<nts[jr]; its++){
1320 if(n[jr][its]<=2) { // don't touch small segments
1321 xm[jr][its] = 0.;ym[jr][its] = 0.;sm[jr][its] = 0.;
1322 for(Int_t ic(ncl[ir]); ic--;){
1323 if(its != index[jr][ic]) continue;
1324 ym[jr][its] += yres[ir][ic];
1325 xm[jr][its] += xres[ir][ic];
1326 sm[jr][its] += TMath::Sqrt(s2y[ir][ic]);
1327 }
1328 if(n[jr][its]==2){ xm[jr][its] *= 0.5; ym[jr][its] *= 0.5; sm[jr][its] *= 0.5;}
1329 xm[jr][its]= fX0 - xm[jr][its];
1330 r[jr][its] = 0.;
1331 s[jr][its] = 1.e-5;
1332 p[jr][its] = 1.;
1333 q[jr][its] = -1.;
1334 continue;
1335 }
1336
1337 // for longer tracklet segments
1338 if(!kInit) n0 = helper.Init(pp, &clst[ir], index[jr], its);
1339 Int_t n1 = helper.GetRMS(r[jr][its], ym[jr][its], s[jr][its], fX0/*xm[jr][its]*/);
1340 p[jr][its] = Double_t(n1)/n0;
1341 sm[jr][its] = helper.GetSyMean();
1342 q[jr][its] = helper.GetQ()/TMath::Sqrt(1. + fYref[1]*fYref[1] + fZref[1]*fZref[1]);
1343 xm[jr][its] = fX0;
1344 Double_t dxm= fX0 - xm[jr][its];
1345 yt = fYref[0] - fYref[1]*dxm;
1346 zt = fZref[0] - fZref[1]*dxm;
1347 // correct tracklet fit for tilt
1348 ym[jr][its]+= GetTilt()*(zt - zc[ir]);
1349 r[jr][its] += GetTilt() * fZref[1];
1350 // correct tracklet fit for track position/inclination
1351 ym[jr][its] = yt - ym[jr][its];
1352 r[jr][its] = (r[jr][its] - fYref[1])/(1+r[jr][its]*fYref[1]);
1353 // report inclination in radians
1354 r[jr][its] = TMath::ATan(r[jr][its]);
1355 if(jr) continue; // calculate only for first row likelihoods
1356
1357 f[its] = attach->CookLikelihood(chgPos, lyDet, fPt, phiTrk, n[jr][its], ym[jr][its]/*sRef*/, r[jr][its]*TMath::RadToDeg(), s[jr][its]/sm[jr][its]);
1358 }
1359 }
1360 AliDebug(4, Form(" Tracklet candidates: row[%2d] = %2d row[%2d] = %2d:", idxRow[0], nts[0], idxRow[1], nts[1]));
1361 if(AliLog::GetDebugLevel("TRD", "AliTRDseedV1")>3){
1362 for(Int_t jr(0); jr<nrc; jr++){
1363 Int_t ir(idxRow[jr]);
1364 for(Int_t its(0); its<nts[jr]; its++){
1365 printf(" segId[%2d] row[%2d] Ncl[%2d] x[cm]=%7.2f dz[pu]=%4.2f dy[mm]=%+7.3f r[deg]=%+6.2f p[%%]=%6.2f s[um]=%7.2f\n",
1366 its, ir, n[jr][its], xm[jr][its], zresRow[jr], 1.e1*ym[jr][its], r[jr][its]*TMath::RadToDeg(), 100.*p[jr][its], 1.e4*s[jr][its]);
1367 }
1368 }
1369 }
1370 if(!pstreamer && recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 2 && fkReconstructor->IsDebugStreaming()) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
1371 if(pstreamer){
1372 // save config. for calibration
1373 TVectorD vidx, vn, vx, vy, vr, vs, vsm, vp, vf;
1374 vidx.ResizeTo(ncl[idxRow[0]]+(idxRow[1]<0?0:ncl[idxRow[1]]));
1375 vn.ResizeTo(mts);
1376 vx.ResizeTo(mts);
1377 vy.ResizeTo(mts);
1378 vr.ResizeTo(mts);
1379 vs.ResizeTo(mts);
1380 vsm.ResizeTo(mts);
1381 vp.ResizeTo(mts);
1382 vf.ResizeTo(mts);
1383 for(Int_t jr(0), jts(0), jc(0); jr<nrc; jr++){
1384 Int_t ir(idxRow[jr]);
1385 for(Int_t its(0); its<nts[jr]; its++, jts++){
1386 vn[jts] = n[jr][its];
1387 vx[jts] = xm[jr][its];
1388 vy[jts] = ym[jr][its];
1389 vr[jts] = r[jr][its];
1390 vs[jts] = s[jr][its];
1391 vsm[jts]= sm[jr][its];
1392 vp[jts] = p[jr][its];
1393 vf[jts] = jr?-1.:f[its];
1394 }
1395 for(Int_t ic(0); ic<ncl[ir]; ic++, jc++) vidx[jc] = index[jr][ic];
1396 }
1397 (*pstreamer) << "AttachClusters3"
1398 << "idx=" << &vidx
1399 << "n=" << &vn
1400 << "x=" << &vx
1401 << "y=" << &vy
1402 << "r=" << &vr
1403 << "s=" << &vs
1404 << "sm=" << &vsm
1405 << "p=" << &vp
1406 << "f=" << &vf
1407 << "\n";
1408 }
1409
1410//=========================================================
1411 // Get seed tracklet segment
1412 Int_t idx2[kNcls]; memset(idx2, 0, kNcls*sizeof(Int_t)); // seeding indexing
1413 if(nts[0]>1) TMath::Sort(nts[0], f, idx2);
1414 Int_t is(idx2[0]); // seed index
1415 Int_t idxTrklt[kNcls],
1416 kts(0),
1417 nTrklt(n[0][is]);
1418 Double_t fTrklt(f[is]),
1419 rTrklt(r[0][is]),
1420 yTrklt(ym[0][is]),
1421 sTrklt(s[0][is]),
1422 smTrklt(sm[0][is]),
1423 xTrklt(xm[0][is]),
1424 pTrklt(p[0][is]),
1425 qTrklt(q[0][is]);
1426 memset(idxTrklt, 0, kNcls*sizeof(Int_t));
1427 // check seed idx2[0] exit if not found
1428 if(f[is]<1.e-2){
1429 AliDebug(1, Form("Seed seg[%d] row[%2d] n[%2d] f[%f]<0.01.", is, idxRow[0], n[0][is], f[is]));
1430 SetErrorMsg(kAttachClAttach);
1431 if(!pstreamer && recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 1 && fkReconstructor->IsDebugStreaming()) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
1432 if(pstreamer){
1433 UChar_t stat(0);
1434 if(IsKink()) SETBIT(stat, 1);
1435 if(IsStandAlone()) SETBIT(stat, 2);
1436 if(IsRowCross()) SETBIT(stat, 3);
1437 SETBIT(stat, 4); // set error bit
1438 TVectorD vidx; vidx.ResizeTo(1); vidx[0] = is;
1439 (*pstreamer) << "AttachClusters2"
1440 << "stat=" << stat
1441 << "ev=" << ev
1442 << "chg=" << chgPos
1443 << "det=" << fDet
1444 << "x0=" << fX0
1445 << "y0=" << fYref[0]
1446 << "z0=" << fZref[0]
1447 << "phi=" << phiTrk
1448 << "tht=" << thtTrk
1449 << "pt=" << fPt
1450 << "s2Trk=" << s2yTrk
1451 << "s2Cl=" << s2Mean
1452 << "idx=" << &vidx
1453 << "n=" << nTrklt
1454 << "f=" << fTrklt
1455 << "x=" << xTrklt
1456 << "y=" << yTrklt
1457 << "r=" << rTrklt
1458 << "s=" << sTrklt
1459 << "sm=" << smTrklt
1460 << "p=" << pTrklt
1461 << "q=" << qTrklt
1462 << "\n";
1463 }
1464 return kFALSE;
1465 }
1466 AliDebug(2, Form("Seed seg[%d] row[%2d] n[%2d] dy[%f] r[%+5.2f] s[%+5.2f] f[%5.3f] q[%6.2f]", is, idxRow[0], n[0][is], ym[0][is], r[0][is]*TMath::RadToDeg(), s[0][is]/sm[0][is], f[is], q[0][is]));
1467
1468 // save seeding segment in the helper
1469 idxTrklt[kts++] = is;
1470 helper.Init(pp, &clst[idxRow[0]], index[0], is);
1471 AliTRDtrackletOflHelper test; // helper to test segment expantion
1472 Float_t rcLikelihood(0.); SetBit(kRowCross, kFALSE);
1473 Double_t dyRez[kNcls]; Int_t idx3[kNcls];
1474
1475 //=========================================================
1476 // Define filter parameters from OCDB
1477 Int_t kNSgmDy[2]; attach->GetNsgmDy(kNSgmDy[0], kNSgmDy[1]);
1478 Float_t kLikeMinRelDecrease[2]; attach->GetLikeMinRelDecrease(kLikeMinRelDecrease[0], kLikeMinRelDecrease[1]);
1479 Float_t kRClikeLimit(attach->GetRClikeLimit());
1480
1481 //=========================================================
1482 // Try attaching next segments from first row (if any)
1483 if(nts[0]>1){
1484 Int_t jr(0), ir(idxRow[jr]);
1485 // organize secondary sgms. in decreasing order of their distance from seed
1486 memset(dyRez, 0, nts[jr]*sizeof(Double_t));
1487 for(Int_t jts(1); jts<nts[jr]; jts++) {
1488 Int_t its(idx2[jts]);
1489 Double_t rot(TMath::Tan(r[0][is]));
1490 dyRez[its] = TMath::Abs(ym[0][is] - ym[jr][its] + rot*(xm[0][is]-xm[jr][its]));
1491 }
1492 TMath::Sort(nts[jr], dyRez, idx3, kFALSE);
1493 for (Int_t jts(1); jts<nts[jr]; jts++) {
1494 Int_t its(idx3[jts]);
1495 if(dyRez[its] > kNSgmDy[jr]*smTrklt){
1496 AliDebug(2, Form("Reject seg[%d] row[%2d] n[%2d] dy[%f] > %d*s[%f].", its, idxRow[jr], n[jr][its], dyRez[its], kNSgmDy[jr], kNSgmDy[jr]*smTrklt));
1497 continue;
1498 }
1499
1500 test = helper;
1501 Int_t n0 = test.Expand(&clst[ir], index[jr], its);
1502 Double_t rt, dyt, st, xt, smt, pt, qt, ft;
1503 Int_t n1 = test.GetRMS(rt, dyt, st, fX0/*xt*/);
1504 pt = Double_t(n1)/n0;
1505 smt = test.GetSyMean();
1506 qt = test.GetQ()/TMath::Sqrt(1. + fYref[1]*fYref[1] + fZref[1]*fZref[1]);
1507 xt = fX0;
1508 // correct position
1509 Double_t dxm= fX0 - xt;
1510 yt = fYref[0] - fYref[1]*dxm;
1511 zt = fZref[0] - fZref[1]*dxm;
1512 // correct tracklet fit for tilt
1513 dyt+= GetTilt()*(zt - zc[idxRow[0]]);
1514 rt += GetTilt() * fZref[1];
1515 // correct tracklet fit for track position/inclination
1516 dyt = yt - dyt;
1517 rt = (rt - fYref[1])/(1+rt*fYref[1]);
1518 // report inclination in radians
1519 rt = TMath::ATan(rt);
1520
1521 ft = (n0>=2) ? attach->CookLikelihood(chgPos, lyDet, fPt, phiTrk, n0, dyt/*sRef*/, rt*TMath::RadToDeg(), st/smt) : 0.;
1522 Bool_t kAccept(ft>=fTrklt*(1.-kLikeMinRelDecrease[jr]));
1523
1524 AliDebug(2, Form("%s seg[%d] row[%2d] n[%2d] dy[%f] r[%+5.2f] s[%+5.2f] f[%f] < %4.2f*F[%f].",
1525 (kAccept?"Adding":"Reject"), its, idxRow[jr], n0, dyt, rt*TMath::RadToDeg(), st/smt, ft, 1.-kLikeMinRelDecrease[jr], fTrklt*(1.-kLikeMinRelDecrease[jr])));
1526 if(kAccept){
1527 idxTrklt[kts++] = its;
1528 nTrklt = n0;
1529 fTrklt = ft;
1530 rTrklt = rt;
1531 yTrklt = dyt;
1532 sTrklt = st;
1533 smTrklt= smt;
1534 xTrklt = xt;
1535 pTrklt = pt;
1536 qTrklt = qt;
1537 helper.Expand(&clst[ir], index[jr], its);
1538 }
1539 }
1540 }
1541
1542 //=========================================================
1543 // Try attaching next segments from second row (if any)
1544 if(nts[1] && (rcLikelihood = zresRow[0]/zresRow[1]) > kRClikeLimit){
1545 // organize secondaries in decreasing order of their distance from seed
1546 Int_t jr(1), ir(idxRow[jr]);
1547 memset(dyRez, 0, nts[jr]*sizeof(Double_t));
1548 Double_t rot(TMath::Tan(r[0][is]));
1549 for(Int_t jts(0); jts<nts[jr]; jts++) {
1550 dyRez[jts] = TMath::Abs(ym[0][is] - ym[jr][jts] + rot*(xm[0][is]-xm[jr][jts]));
1551 }
1552 TMath::Sort(nts[jr], dyRez, idx3, kFALSE);
1553 for (Int_t jts(0); jts<nts[jr]; jts++) {
1554 Int_t its(idx3[jts]);
1555 if(dyRez[its] > kNSgmDy[jr]*smTrklt){
1556 AliDebug(2, Form("Reject seg[%d] row[%2d] n[%2d] dy[%f] > %d*s[%f].", its, idxRow[jr], n[jr][its], dyRez[its], kNSgmDy[jr], kNSgmDy[jr]*smTrklt));
1557 continue;
1558 }
1559
1560 test = helper;
1561 Int_t n0 = test.Expand(&clst[ir], index[jr], its);
1562 Double_t rt, dyt, st, xt, smt, pt, qt, ft;
1563 Int_t n1 = test.GetRMS(rt, dyt, st, fX0/*xt*/);
1564 pt = Double_t(n1)/n0;
1565 smt = test.GetSyMean();
1566 qt = test.GetQ()/TMath::Sqrt(1. + fYref[1]*fYref[1] + fZref[1]*fZref[1]);
1567 xt = fX0;
1568 // correct position
1569 Double_t dxm= fX0 - xt;
1570 yt = fYref[0] - fYref[1]*dxm;
1571 zt = fZref[0] - fZref[1]*dxm;
1572 // correct tracklet fit for tilt
1573 dyt+= GetTilt()*(zt - zc[idxRow[0]]);
1574 rt += GetTilt() * fZref[1];
1575 // correct tracklet fit for track position/inclination
1576 dyt = yt - dyt;
1577 rt = (rt - fYref[1])/(1+rt*fYref[1]);
1578 // report inclination in radians
1579 rt = TMath::ATan(rt);
1580
1581 ft = (n0>=2) ? attach->CookLikelihood(chgPos, lyDet, fPt, phiTrk, n0, dyt/*sRef*/, rt*TMath::RadToDeg(), st/smt) : 0.;
1582 Bool_t kAccept(ft>=fTrklt*(1.-kLikeMinRelDecrease[jr]));
1583
1584 AliDebug(2, Form("%s seg[%d] row[%2d] n[%2d] dy[%f] r[%+5.2f] s[%+5.2f] f[%f] < %4.2f*F[%f].",
1585 (kAccept?"Adding":"Reject"), its, idxRow[jr], n0, dyt, rt*TMath::RadToDeg(), st/smt, ft, 1.-kLikeMinRelDecrease[jr], fTrklt*(1.-kLikeMinRelDecrease[jr])));
1586 if(kAccept){
1587 idxTrklt[kts++] = its;
1588 nTrklt = n0;
1589 fTrklt = ft;
1590 rTrklt = rt;
1591 yTrklt = dyt;
1592 sTrklt = st;
1593 smTrklt= smt;
1594 xTrklt = xt;
1595 pTrklt = pt;
1596 qTrklt = qt;
1597 helper.Expand(&clst[ir], index[jr], its);
1598 SetBit(kRowCross, kTRUE); // mark pad row crossing
1599 }
1600 }
1601 }
1602 // clear local copy of clusters
1603 for(Int_t ir(0); ir<kNrows; ir++) clst[ir].Clear();
1604
1605 if(!pstreamer && recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 1 && fkReconstructor->IsDebugStreaming()) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
1606 if(pstreamer){
1607 UChar_t stat(0);
1608 if(IsKink()) SETBIT(stat, 1);
1609 if(IsStandAlone()) SETBIT(stat, 2);
1610 if(IsRowCross()) SETBIT(stat, 3);
1611 TVectorD vidx; vidx.ResizeTo(kts);
1612 for(Int_t its(0); its<kts; its++) vidx[its] = idxTrklt[its];
1613 (*pstreamer) << "AttachClusters2"
1614 << "stat=" << stat
1615 << "ev=" << ev
1616 << "chg=" << chgPos
1617 << "det=" << fDet
1618 << "x0=" << fX0
1619 << "y0=" << fYref[0]
1620 << "z0=" << fZref[0]
1621 << "phi=" << phiTrk
1622 << "tht=" << thtTrk
1623 << "pt=" << fPt
1624 << "s2Trk=" << s2yTrk
1625 << "s2Cl=" << s2Mean
1626 << "idx=" << &vidx
1627 << "n=" << nTrklt
1628 << "q=" << qTrklt
1629 << "f=" << fTrklt
1630 << "x=" << xTrklt
1631 << "y=" << yTrklt
1632 << "r=" << rTrklt
1633 << "s=" << sTrklt
1634 << "sm=" << smTrklt
1635 << "p=" << pTrklt
1636 << "\n";
1637 }
1638
1639
1640 //=========================================================
1641 // Store clusters
1642 Int_t nselected(0), nc(0);
1643 TObjArray *selected(helper.GetClusters());
1644 if(!selected || !(nselected = selected->GetEntriesFast())){
1645 AliError("Cluster candidates missing !!!");
1646 SetErrorMsg(kAttachClAttach);
1647 return kFALSE;
1648 }
1649 for(Int_t ic(0); ic<nselected; ic++){
1650 if(!(c = (AliTRDcluster*)selected->At(ic))) continue;
1651 Int_t it(c->GetPadTime()),
1652 jr(Int_t(helper.GetRow() != c->GetPadRow())),
1653 idx(it+kNtb*jr);
1654 if(fClusters[idx]){
1655 AliDebug(1, Form("Multiple clusters/tb for D[%03d] Tb[%02d] Row[%2d]", fDet, it, c->GetPadRow()));
1656 continue; // already booked
1657 }
1658 // TODO proper indexing of clusters !!
1659 fIndexes[idx] = chamber->GetTB(it)->GetGlobalIndex(idxs[idxRow[jr]][ic]);
1660 fClusters[idx] = c;
1661 nc++;
1662 }
1663 AliDebug(2, Form("Clusters Found[%2d] Attached[%2d] RC[%c]", nselected, nc, IsRowCross()?'y':'n'));
1664
1665 // number of minimum numbers of clusters expected for the tracklet
1666 if (nc < kClmin){
1667 AliDebug(1, Form("NOT ENOUGH CLUSTERS %d ATTACHED TO THE TRACKLET [min %d] FROM FOUND %d.", nc, kClmin, ncls));
1668 SetErrorMsg(kAttachClAttach);
1669 return kFALSE;
1670 }
1671 SetN(nc);
1672
1673 // Load calibration parameters for this tracklet
1674 //Calibrate();
1675
1676 // calculate dx for time bins in the drift region (calibration aware)
1677 Float_t x[2] = {0.,0.}; Int_t tb[2]={0,0};
1678 for (Int_t it = t0, irp=0; irp<2 && it < AliTRDtrackerV1::GetNTimeBins(); it++) {
1679 if(!fClusters[it]) continue;
1680 x[irp] = fClusters[it]->GetX();
1681 tb[irp] = fClusters[it]->GetLocalTimeBin();
1682 irp++;
1683 }
1684 Int_t dtb = tb[1] - tb[0];
1685 fdX = dtb ? (x[0] - x[1]) / dtb : 0.15;
1686 return kTRUE;
1687}
1688
1689//____________________________________________________________
1690void AliTRDseedV1::Bootstrap(const AliTRDReconstructor *rec)
1691{
1692// Fill in all derived information. It has to be called after recovery from file or HLT.
1693// The primitive data are
1694// - list of clusters
1695// - detector (as the detector will be removed from clusters)
1696// - position of anode wire (fX0) - temporary
1697// - track reference position and direction
1698// - momentum of the track
1699// - time bin length [cm]
1700//
1701// A.Bercuci <A.Bercuci@gsi.de> Oct 30th 2008
1702//
1703 fkReconstructor = rec;
1704 AliTRDgeometry g;
1705 SetPadPlane(g.GetPadPlane(fDet));
1706
1707 //fSnp = fYref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]);
1708 //fTgl = fZref[1];
1709 Int_t n = 0, nshare = 0, nused = 0;
1710 AliTRDcluster **cit = &fClusters[0];
1711 for(Int_t ic = kNclusters; ic--; cit++){
1712 if(!(*cit)) return;
1713 n++;
1714 if((*cit)->IsShared()) nshare++;
1715 if((*cit)->IsUsed()) nused++;
1716 }
1717 SetN(n); SetNUsed(nused); SetNShared(nshare);
1718 Fit();
1719 CookLabels();
1720 GetProbability();
1721}
1722
1723
1724//____________________________________________________________________
1725Bool_t AliTRDseedV1::Fit(UChar_t opt)
1726{
1727//
1728// Linear fit of the clusters attached to the tracklet
1729//
1730// Parameters :
1731// - opt : switch for tilt pad correction of cluster y position. Options are
1732// 0 no correction [default]
1733// 1 full tilt correction [dz/dx and z0]
1734// 2 pseudo tilt correction [dz/dx from pad-chamber geometry]
1735//
1736// Output :
1737// True if successful
1738//
1739// Detailed description
1740//
1741// Fit in the xy plane
1742//
1743// The fit is performed to estimate the y position of the tracklet and the track
1744// angle in the bending plane. The clusters are represented in the chamber coordinate
1745// system (with respect to the anode wire - see AliTRDtrackerV1::FollowBackProlongation()
1746// on how this is set). The x and y position of the cluster and also their variances
1747// are known from clusterizer level (see AliTRDcluster::GetXloc(), AliTRDcluster::GetYloc(),
1748// AliTRDcluster::GetSX() and AliTRDcluster::GetSY()).
1749// If gaussian approximation is used to calculate y coordinate of the cluster the position
1750// is recalculated taking into account the track angle. The general formula to calculate the
1751// error of cluster position in the gaussian approximation taking into account diffusion and track
1752// inclination is given for TRD by:
1753// BEGIN_LATEX
1754// #sigma^{2}_{y} = #sigma^{2}_{PRF} + #frac{x#delta_{t}^{2}}{(1+tg(#alpha_{L}))^{2}} + #frac{x^{2}tg^{2}(#phi-#alpha_{L})tg^{2}(#alpha_{L})}{12}
1755// END_LATEX
1756//
1757// Since errors are calculated only in the y directions, radial errors (x direction) are mapped to y
1758// by projection i.e.
1759// BEGIN_LATEX
1760// #sigma_{x|y} = tg(#phi) #sigma_{x}
1761// END_LATEX
1762// and also by the lorentz angle correction
1763//
1764// Fit in the xz plane
1765//
1766// The "fit" is performed to estimate the radial position (x direction) where pad row cross happens.
1767// If no pad row crossing the z position is taken from geometry and radial position is taken from the xy
1768// fit (see below).
1769//
1770// There are two methods to estimate the radial position of the pad row cross:
1771// 1. leading cluster radial position : Here the lower part of the tracklet is considered and the last
1772// cluster registered (at radial x0) on this segment is chosen to mark the pad row crossing. The error
1773// of the z estimate is given by :
1774// BEGIN_LATEX
1775// #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12
1776// END_LATEX
1777// The systematic errors for this estimation are generated by the following sources:
1778// - no charge sharing between pad rows is considered (sharp cross)
1779// - missing cluster at row cross (noise peak-up, under-threshold signal etc.).
1780//
1781// 2. charge fit over the crossing point : Here the full energy deposit along the tracklet is considered
1782// to estimate the position of the crossing by a fit in the qx plane. The errors in the q directions are
1783// parameterized as s_q = q^2. The systematic errors for this estimation are generated by the following sources:
1784// - no general model for the qx dependence
1785// - physical fluctuations of the charge deposit
1786// - gain calibration dependence
1787//
1788// Estimation of the radial position of the tracklet
1789//
1790// For pad row cross the radial position is taken from the xz fit (see above). Otherwise it is taken as the
1791// interpolation point of the tracklet i.e. the point where the error in y of the fit is minimum. The error
1792// in the y direction of the tracklet is (see AliTRDseedV1::GetCovAt()):
1793// BEGIN_LATEX
1794// #sigma_{y} = #sigma^{2}_{y_{0}} + 2xcov(y_{0}, dy/dx) + #sigma^{2}_{dy/dx}
1795// END_LATEX
1796// and thus the radial position is:
1797// BEGIN_LATEX
1798// x = - cov(y_{0}, dy/dx)/#sigma^{2}_{dy/dx}
1799// END_LATEX
1800//
1801// Estimation of tracklet position error
1802//
1803// The error in y direction is the error of the linear fit at the radial position of the tracklet while in the z
1804// direction is given by the cluster error or pad row cross error. In case of no pad row cross this is given by:
1805// BEGIN_LATEX
1806// #sigma_{y} = #sigma^{2}_{y_{0}} - 2cov^{2}(y_{0}, dy/dx)/#sigma^{2}_{dy/dx} + #sigma^{2}_{dy/dx}
1807// #sigma_{z} = Pad_{length}/12
1808// END_LATEX
1809// For pad row cross the full error is calculated at the radial position of the crossing (see above) and the error
1810// in z by the width of the crossing region - being a matter of parameterization.
1811// BEGIN_LATEX
1812// #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12
1813// END_LATEX
1814// In case of no tilt correction (default in the barrel tracking) the tilt is taken into account by the rotation of
1815// the covariance matrix. See AliTRDseedV1::GetCovAt() for details.
1816//
1817// Author
1818// A.Bercuci <A.Bercuci@gsi.de>
1819
1820 if(!fkReconstructor){
1821 AliError("The tracklet needs the reconstruction setup. Please initialize by SetReconstructor().");
1822 return kFALSE;
1823 }
1824 if(!IsCalibrated()) Calibrate();
1825 if(opt>2){
1826 AliWarning(Form("Option [%d] outside range [0, 2]. Using default",opt));
1827 opt=0;
1828 }
1829
1830 const Int_t kClmin = 8;
1831 const Float_t kScalePulls = 10.; // factor to scale y pulls - NOT UNDERSTOOD
1832 // get track direction
1833 Double_t y0 = fYref[0];
1834 Double_t dydx = fYref[1];
1835 Double_t z0 = fZref[0];
1836 Double_t dzdx = fZref[1];
1837
1838 AliTRDtrackerV1::AliTRDLeastSquare fitterY;
1839 AliTRDtrackerV1::AliTRDLeastSquare fitterZ;
1840
1841 // book cluster information
1842 Double_t qc[kNclusters], xc[kNclusters], yc[kNclusters], zc[kNclusters], sy[kNclusters];
1843
1844 Bool_t tilt(opt==1) // full tilt correction
1845 ,pseudo(opt==2) // pseudo tilt correction
1846 ,rc(IsRowCross()) // row cross candidate
1847 ,kDZDX(IsPrimary());// switch dzdx calculation for barrel primary tracks
1848 Int_t n(0); // clusters used in fit
1849 AliTRDcluster *c(NULL), *cc(NULL), **jc = &fClusters[0];
1850 const AliTRDrecoParam* const recoParam = fkReconstructor->GetRecoParam(); //the dynamic cast in GetRecoParam is slow, so caching the pointer to it
1851
1852 const Char_t *tcName[]={"NONE", "FULL", "HALF"};
1853 AliDebug(2, Form("Options : TC[%s] dzdx[%c]", tcName[opt], kDZDX?'Y':'N'));
1854
1855
1856 for (Int_t ic=0; ic<kNclusters; ic++, ++jc) {
1857 xc[ic] = -1.; yc[ic] = 999.; zc[ic] = 999.; sy[ic] = 0.;
1858 if(!(c = (*jc))) continue;
1859 if(!c->IsInChamber()) continue;
1860 // compute pseudo tilt correction
1861 if(kDZDX){
1862 fZfit[0] = c->GetZ();
1863 if(rc){
1864 for(Int_t kc=AliTRDseedV1::kNtb; kc<AliTRDseedV1::kNclusters; kc++){
1865 if(!(cc=fClusters[kc])) continue;
1866 if(!cc->IsInChamber()) continue;
1867 fZfit[0] += cc->GetZ(); fZfit[0] *= 0.5;
1868 break;
1869 }
1870 }
1871 fZfit[1] = fZfit[0]/fX0;
1872 if(rc){
1873 fZfit[0] += fZfit[1]*0.5*AliTRDgeometry::CdrHght();
1874 fZfit[1] = fZfit[0]/fX0;
1875 }
1876 kDZDX=kFALSE;
1877 }
1878
1879 Float_t w = 1.;
1880 if(c->GetNPads()>4) w = .5;
1881 if(c->GetNPads()>5) w = .2;
1882
1883 // cluster charge
1884 qc[n] = TMath::Abs(c->GetQ());
1885 // pad row of leading
1886
1887 xc[n] = fX0 - c->GetX();
1888
1889 // Recalculate cluster error based on tracking information
1890 c->SetSigmaY2(fS2PRF, fDiffT, fExB, xc[n], -1./*zcorr?zt:-1.*/, dydx);
1891 c->SetSigmaZ2(fPad[0]*fPad[0]/12.); // for HLT
1892 sy[n] = TMath::Sqrt(c->GetSigmaY2());
1893
1894 yc[n] = recoParam->UseGAUS() ?
1895 c->GetYloc(y0, sy[n], GetPadWidth()): c->GetY();
1896 zc[n] = c->GetZ();
1897
1898 //optional r-phi correction
1899 //printf(" n[%2d] yc[%7.5f] ", n, yc[n]);
1900 Float_t correction(0.);
1901 if(tilt) correction = fPad[2]*(xc[n]*dzdx + zc[n] - z0);
1902 else if(pseudo) correction = fPad[2]*(xc[n]*fZfit[1] + zc[n]-fZfit[0]);
1903 yc[n]-=correction;
1904 //printf("corr(%s%s)[%7.5f] yc1[%7.5f]\n", (tilt?"TC":""), (zcorr?"PC":""), correction, yc[n]);
1905
1906 AliDebug(5, Form(" tb[%2d] dx[%6.3f] y[%6.2f+-%6.3f]", c->GetLocalTimeBin(), xc[n], yc[n], sy[n]));
1907 fitterY.AddPoint(&xc[n], yc[n], sy[n]);
1908 if(rc) fitterZ.AddPoint(&xc[n], qc[n]*(ic<kNtb?1.:-1.), 1.);
1909 n++;
1910 }
1911
1912 // to few clusters
1913 if (n < kClmin){
1914 AliDebug(1, Form("Not enough clusters to fit. Clusters: Attached[%d] Fit[%d].", GetN(), n));
1915 SetErrorMsg(kFitCl);
1916 return kFALSE;
1917 }
1918 // fit XY
1919 if(!fitterY.Eval()){
1920 AliDebug(1, "Fit Y failed.");
1921 SetErrorMsg(kFitFailedY);
1922 return kFALSE;
1923 }
1924 fYfit[0] = fitterY.GetFunctionParameter(0);
1925 fYfit[1] = -fitterY.GetFunctionParameter(1);
1926 // store covariance
1927 Double_t p[3];
1928 fitterY.GetCovarianceMatrix(p);
1929 fCov[0] = kScalePulls*p[1]; // variance of y0
1930 fCov[1] = kScalePulls*p[2]; // covariance of y0, dydx
1931 fCov[2] = kScalePulls*p[0]; // variance of dydx
1932 // the ref radial position is set at the minimum of
1933 // the y variance of the tracklet
1934 fX = -fCov[1]/fCov[2];
1935 fS2Y = fCov[0] +2.*fX*fCov[1] + fX*fX*fCov[2];
1936
1937 Float_t xs=fX+.5*AliTRDgeometry::CamHght();
1938 if(xs < 0. || xs > AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght()){
1939 AliDebug(1, Form("Ref radial position ouside chamber x[%5.2f].", fX));
1940 SetErrorMsg(kFitFailedY);
1941 return kFALSE;
1942 }
1943
1944/* // THE LEADING CLUSTER METHOD for z fit
1945 Float_t xMin = fX0;
1946 Int_t ic=n=kNclusters-1; jc = &fClusters[ic];
1947 AliTRDcluster *c0 =0x0, **kc = &fClusters[kNtb-1];
1948 for(; ic>kNtb; ic--, --jc, --kc){
1949 if((c0 = (*kc)) && c0->IsInChamber() && (xMin>c0->GetX())) xMin = c0->GetX();
1950 if(!(c = (*jc))) continue;
1951 if(!c->IsInChamber()) continue;
1952 zc[kNclusters-1] = c->GetZ();
1953 fX = fX0 - c->GetX();
1954 }
1955 fZfit[0] = .5*(zc[0]+zc[kNclusters-1]); fZfit[1] = 0.;
1956 // Error parameterization
1957 fS2Z = fdX*fZref[1];
1958 fS2Z *= fS2Z; fS2Z *= 0.2887; // 1/sqrt(12)*/
1959
1960 // fit QZ
1961 if(opt!=1 && IsRowCross()){
1962 if(!fitterZ.Eval()) SetErrorMsg(kFitFailedZ);
1963 if(!HasError(kFitFailedZ) && TMath::Abs(fitterZ.GetFunctionParameter(1))>1.e-10){
1964 // TODO - one has to recalculate xy fit based on
1965 // better knowledge of z position
1966// Double_t x = -fitterZ.GetFunctionParameter(0)/fitterZ.GetFunctionParameter(1);
1967// Double_t z0 = .5*(zc[0]+zc[n-1]);
1968// fZfit[0] = z0 + fZfit[1]*x;
1969// fZfit[1] = fZfit[0]/fX0;
1970// redo fit on xy plane
1971 }
1972 // temporary external error parameterization
1973 fS2Z = 0.05+0.4*TMath::Abs(fZref[1]); fS2Z *= fS2Z;
1974 // TODO correct formula
1975 //fS2Z = sigma_x*TMath::Abs(fZref[1]);
1976 } else {
1977 //fZfit[0] = zc[0] + dzdx*0.5*AliTRDgeometry::CdrHght();
1978 fS2Z = GetPadLength()*GetPadLength()/12.;
1979 }
1980 return kTRUE;
1981}
1982
1983
1984//____________________________________________________________________
1985Bool_t AliTRDseedV1::FitRobust(Bool_t chg)
1986{
1987//
1988// Linear fit of the clusters attached to the tracklet
1989//
1990// Author
1991// A.Bercuci <A.Bercuci@gsi.de>
1992
1993 TTreeSRedirector *pstreamer(NULL);
1994 const AliTRDrecoParam* const recoParam = fkReconstructor->GetRecoParam(); if(recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 3 && fkReconstructor->IsDebugStreaming()) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
1995
1996 // factor to scale y pulls.
1997 // ideally if error parametrization correct this is 1.
1998 //Float_t lyScaler = 1./(AliTRDgeometry::GetLayer(fDet)+1.);
1999 Float_t kScalePulls = 1.;
2000 AliTRDcalibDB *calibration = AliTRDcalibDB::Instance();
2001 if(!calibration){
2002 AliWarning("No access to calibration data");
2003 } else {
2004 // Retrieve the CDB container class with the parametric likelihood
2005 const AliTRDCalTrkAttach *attach = calibration->GetAttachObject();
2006 if(!attach){
2007 AliWarning("No usable AttachClusters calib object.");
2008 } else {
2009 kScalePulls = attach->GetScaleCov();//*lyScaler;
2010 }
2011 }
2012 Double_t xc[kNclusters], yc[kNclusters], sy[kNclusters];
2013 Int_t n(0), // clusters used in fit
2014 row[]={-1, 0}; // pad row spanned by the tracklet
2015 AliTRDcluster *c(NULL), **jc = &fClusters[0];
2016 for(Int_t ic=0; ic<kNtb; ic++, ++jc) {
2017 if(!(c = (*jc))) continue;
2018 if(!c->IsInChamber()) continue;
2019 if(row[0]<0){
2020 fZfit[0] = c->GetZ();
2021 fZfit[1] = 0.;
2022 row[0] = c->GetPadRow();
2023 }
2024 xc[n] = c->GetX();
2025 yc[n] = c->GetY();
2026 sy[n] = c->GetSigmaY2()>0?(TMath::Min(TMath::Sqrt(c->GetSigmaY2()), 0.08)):0.08;
2027 n++;
2028 }
2029 Double_t corr = fPad[2]*fPad[0];
2030
2031 for(Int_t ic=kNtb; ic<kNclusters; ic++, ++jc) {
2032 if(!(c = (*jc))) continue;
2033 if(!c->IsInChamber()) continue;
2034 if(row[1]==0) row[1] = c->GetPadRow() - row[0];
2035 xc[n] = c->GetX();
2036 yc[n] = c->GetY() + corr*row[1];
2037 sy[n] = c->GetSigmaY2()>0?(TMath::Min(TMath::Sqrt(c->GetSigmaY2()), 0.08)):0.08;
2038 n++;
2039 }
2040 UChar_t status(0);
2041 Double_t par[3] = {0.,0.,fX0}, cov[3];
2042 if(!AliTRDtrackletOflHelper::Fit(n, xc, yc, sy, par, 1.5, cov)){
2043 AliDebug(1, Form("Tracklet fit failed D[%03d].", fDet));
2044 SetErrorMsg(kFitCl);
2045 return kFALSE;
2046 }
2047 fYfit[0] = par[0];
2048 fYfit[1] = par[1];
2049 // store covariance
2050 fCov[0] = kScalePulls*cov[0]; // variance of y0
2051 fCov[1] = kScalePulls*cov[2]; // covariance of y0, dydx
2052 fCov[2] = kScalePulls*cov[1]; // variance of dydx
2053 // the ref radial position is set at the minimum of
2054 // the y variance of the tracklet
2055 fX = 0.;//-fCov[1]/fCov[2];
2056 // check radial position
2057 Float_t xs=fX+.5*AliTRDgeometry::CamHght();
2058 if(xs < 0. || xs > AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght()){
2059 AliDebug(1, Form("Ref radial position x[%5.2f] ouside D[%3d].", fX, fDet));
2060 SetErrorMsg(kFitFailedY);
2061 return kFALSE;
2062 }
2063 fS2Y = fCov[0] + fX*fCov[1];
2064 fS2Z = fPad[0]*fPad[0]/12.;
2065 AliDebug(2, Form("[I] x[cm]=%6.2f y[cm]=%+5.2f z[cm]=%+6.2f dydx[deg]=%+5.2f sy[um]=%6.2f sz[cm]=%6.2f", GetX(), GetY(), GetZ(), TMath::ATan(fYfit[1])*TMath::RadToDeg(), TMath::Sqrt(fS2Y)*1.e4, TMath::Sqrt(fS2Z)));
2066 if(IsRowCross()){
2067 Float_t x,z;
2068 if(!GetEstimatedCrossPoint(x,z)){
2069 AliDebug(2, Form("Failed(I) getting crossing point D[%03d].", fDet));
2070 SetErrorMsg(kFitFailedY);
2071 return kTRUE;
2072 }
2073 //if(IsPrimary()){
2074 fZfit[0] = fX0*z/x;
2075 fZfit[1] = z/x;
2076 fS2Z = 0.05+0.4*TMath::Abs(fZfit[1]); fS2Z *= fS2Z;
2077 //}
2078 AliDebug(2, Form("s2y[%f] s2z[%f]", fS2Y, fS2Z));
2079 AliDebug(2, Form("[II] x[cm]=%6.2f y[cm]=%+5.2f z[cm]=%+6.2f dydx[deg]=%+5.2f sy[um]=%6.2f sz[um]=%6.2f dzdx[deg]=%+5.2f", GetX(), GetY(), GetZ(), TMath::ATan(fYfit[1])*TMath::RadToDeg(), TMath::Sqrt(fS2Y)*1.e4, TMath::Sqrt(fS2Z)*1.e4, TMath::ATan(fZfit[1])*TMath::RadToDeg()));
2080 }
2081
2082 if(pstreamer){
2083 Float_t x= fX0 -fX,
2084 y = GetY(),
2085 yt = fYref[0]-fX*fYref[1];
2086 SETBIT(status, 2);
2087 TVectorD vcov(3); vcov[0]=cov[0];vcov[1]=cov[1];vcov[2]=cov[2];
2088 Double_t sm(0.), chi2(0.), tmp, dy[kNclusters];
2089 for(Int_t ic(0); ic<n; ic++){
2090 sm += sy[ic];
2091 dy[ic] = yc[ic]-(fYfit[0]+(xc[ic]-fX0)*fYfit[1]); tmp = dy[ic]/sy[ic];
2092 chi2 += tmp*tmp;
2093 }
2094 sm /= n; chi2 = TMath::Sqrt(chi2);
2095 Double_t m(0.), s(0.);
2096 AliMathBase::EvaluateUni(n, dy, m, s, 0);
2097 (*pstreamer) << "FitRobust4"
2098 << "stat=" << status
2099 << "chg=" << chg
2100 << "ncl=" << n
2101 << "det=" << fDet
2102 << "x0=" << fX0
2103 << "y0=" << fYfit[0]
2104 << "x=" << x
2105 << "y=" << y
2106 << "dydx=" << fYfit[1]
2107 << "pt=" << fPt
2108 << "yt=" << yt
2109 << "dydxt="<< fYref[1]
2110 << "cov=" << &vcov
2111 << "chi2=" << chi2
2112 << "sm=" << sm
2113 << "ss=" << s
2114 << "\n";
2115 }
2116 return kTRUE;
2117}
2118
2119//___________________________________________________________________
2120void AliTRDseedV1::Print(Option_t *o) const
2121{
2122 //
2123 // Printing the seedstatus
2124 //
2125
2126 AliInfo(Form("Det[%3d] X0[%7.2f] Pad{L[%5.2f] W[%5.2f] Tilt[%+6.2f]}", fDet, fX0, GetPadLength(), GetPadWidth(), GetTilt()));
2127 AliInfo(Form("N[%2d] Nused[%2d] Nshared[%2d] [%d]", GetN(), GetNUsed(), GetNShared(), fN));
2128 AliInfo(Form("FLAGS : RC[%c] Kink[%c] SA[%c]", IsRowCross()?'y':'n', IsKink()?'y':'n', IsStandAlone()?'y':'n'));
2129 AliInfo(Form("CALIB PARAMS : T0[%5.2f] Vd[%5.2f] s2PRF[%5.2f] ExB[%5.2f] Dl[%5.2f] Dt[%5.2f]", fT0, fVD, fS2PRF, fExB, fDiffL, fDiffT));
2130
2131 Double_t cov[3], x=GetX();
2132 GetCovAt(x, cov);
2133 AliInfo(" | x[cm] | y[cm] | z[cm] | dydx | dzdx |");
2134 AliInfo(Form("Fit | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | ----- |", x, GetY(), TMath::Sqrt(cov[0]), GetZ(), TMath::Sqrt(cov[2]), fYfit[1]));
2135 AliInfo(Form("Ref | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | %5.2f |", x, fYref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[0]), fZref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[2]), fYref[1], fZref[1]));
2136 AliInfo(Form("P / Pt [GeV/c] = %f / %f", GetMomentum(), fPt));
2137 if(IsStandAlone()) AliInfo(Form("C Rieman / Vertex [1/cm] = %f / %f", fC[0], fC[1]));
2138 AliInfo(Form("dEdx [a.u.] = %f / %f / %f / %f / %f/ %f / %f / %f", fdEdx[0], fdEdx[1], fdEdx[2], fdEdx[3], fdEdx[4], fdEdx[5], fdEdx[6], fdEdx[7]));
2139 AliInfo(Form("PID = %5.3f / %5.3f / %5.3f / %5.3f / %5.3f", fProb[0], fProb[1], fProb[2], fProb[3], fProb[4]));
2140
2141 if(strcmp(o, "a")!=0) return;
2142
2143 AliTRDcluster* const* jc = &fClusters[0];
2144 for(int ic=0; ic<kNclusters; ic++, jc++) {
2145 if(!(*jc)) continue;
2146 (*jc)->Print(o);
2147 }
2148}
2149
2150
2151//___________________________________________________________________
2152Bool_t AliTRDseedV1::IsEqual(const TObject *o) const
2153{
2154 // Checks if current instance of the class has the same essential members
2155 // as the given one
2156
2157 if(!o) return kFALSE;
2158 const AliTRDseedV1 *inTracklet = dynamic_cast<const AliTRDseedV1*>(o);
2159 if(!inTracklet) return kFALSE;
2160
2161 for (Int_t i = 0; i < 2; i++){
2162 if ( fYref[i] != inTracklet->fYref[i] ) return kFALSE;
2163 if ( fZref[i] != inTracklet->fZref[i] ) return kFALSE;
2164 }
2165
2166 if ( TMath::Abs(fS2Y - inTracklet->fS2Y)>1.e-10 ) return kFALSE;
2167 if ( TMath::Abs(GetTilt() - inTracklet->GetTilt())>1.e-10 ) return kFALSE;
2168 if ( TMath::Abs(GetPadLength() - inTracklet->GetPadLength())>1.e-10 ) return kFALSE;
2169
2170 for (Int_t i = 0; i < kNclusters; i++){
2171// if ( fX[i] != inTracklet->GetX(i) ) return kFALSE;
2172// if ( fY[i] != inTracklet->GetY(i) ) return kFALSE;
2173// if ( fZ[i] != inTracklet->GetZ(i) ) return kFALSE;
2174 if ( fIndexes[i] != inTracklet->fIndexes[i] ) return kFALSE;
2175 }
2176// if ( fUsable != inTracklet->fUsable ) return kFALSE;
2177
2178 for (Int_t i=0; i < 2; i++){
2179 if ( fYfit[i] != inTracklet->fYfit[i] ) return kFALSE;
2180 if ( fZfit[i] != inTracklet->fZfit[i] ) return kFALSE;
2181 if ( fLabels[i] != inTracklet->fLabels[i] ) return kFALSE;
2182 }
2183
2184/* if ( fMeanz != inTracklet->GetMeanz() ) return kFALSE;
2185 if ( fZProb != inTracklet->GetZProb() ) return kFALSE;*/
2186 if ( fN != inTracklet->fN ) return kFALSE;
2187 //if ( fNUsed != inTracklet->fNUsed ) return kFALSE;
2188 //if ( fFreq != inTracklet->GetFreq() ) return kFALSE;
2189 //if ( fNChange != inTracklet->GetNChange() ) return kFALSE;
2190
2191 if ( TMath::Abs(fC[0] - inTracklet->fC[0])>1.e-10 ) return kFALSE;
2192 //if ( fCC != inTracklet->GetCC() ) return kFALSE;
2193 if ( TMath::Abs(fChi2 - inTracklet->fChi2)>1.e-10 ) return kFALSE;
2194 // if ( fChi2Z != inTracklet->GetChi2Z() ) return kFALSE;
2195
2196 if ( fDet != inTracklet->fDet ) return kFALSE;
2197 if ( TMath::Abs(fPt - inTracklet->fPt)>1.e-10 ) return kFALSE;
2198 if ( TMath::Abs(fdX - inTracklet->fdX)>1.e-10 ) return kFALSE;
2199
2200 for (Int_t iCluster = 0; iCluster < kNclusters; iCluster++){
2201 AliTRDcluster *curCluster = fClusters[iCluster];
2202 AliTRDcluster *inCluster = inTracklet->fClusters[iCluster];
2203 if (curCluster && inCluster){
2204 if (! curCluster->IsEqual(inCluster) ) {
2205 curCluster->Print();
2206 inCluster->Print();
2207 return kFALSE;
2208 }
2209 } else {
2210 // if one cluster exists, and corresponding
2211 // in other tracklet doesn't - return kFALSE
2212 if(curCluster || inCluster) return kFALSE;
2213 }
2214 }
2215 return kTRUE;
2216}
2217