]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - TRD/AliTRDseedV1.cxx
Coding rules
[u/mrichter/AliRoot.git] / TRD / AliTRDseedV1.cxx
... / ...
CommitLineData
1/**************************************************************************
2* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3* *
4* Author: The ALICE Off-line Project. *
5* Contributors are mentioned in the code where appropriate. *
6* *
7* Permission to use, copy, modify and distribute this software and its *
8* documentation strictly for non-commercial purposes is hereby granted *
9* without fee, provided that the above copyright notice appears in all *
10* copies and that both the copyright notice and this permission notice *
11* appear in the supporting documentation. The authors make no claims *
12* about the suitability of this software for any purpose. It is *
13* provided "as is" without express or implied warranty. *
14**************************************************************************/
15
16/* $Id$ */
17
18////////////////////////////////////////////////////////////////////////////
19////
20// The TRD offline tracklet
21//
22// The running horse of the TRD reconstruction. The following tasks are preformed:
23// 1. Clusters attachment to tracks based on prior information stored at tracklet level (see AttachClusters)
24// 2. Clusters position recalculation based on track information (see GetClusterXY and Fit)
25// 3. Cluster error parametrization recalculation (see Fit)
26// 4. Linear track approximation (Fit)
27// 5. Optimal position (including z estimate for pad row cross tracklets) and covariance matrix of the track fit inside one TRD chamber (Fit)
28// 6. Tilt pad correction and systematic effects (GetCovAt)
29// 7. dEdx calculation (CookdEdx)
30// 8. PID probabilities estimation (CookPID)
31//
32// Authors: //
33// Alex Bercuci <A.Bercuci@gsi.de> //
34// Markus Fasel <M.Fasel@gsi.de> //
35// //
36////////////////////////////////////////////////////////////////////////////
37
38#include "TMath.h"
39#include "TLinearFitter.h"
40#include "TClonesArray.h" // tmp
41#include <TTreeStream.h>
42
43#include "AliLog.h"
44#include "AliMathBase.h"
45#include "AliCDBManager.h"
46#include "AliTracker.h"
47
48#include "AliTRDpadPlane.h"
49#include "AliTRDcluster.h"
50#include "AliTRDseedV1.h"
51#include "AliTRDtrackV1.h"
52#include "AliTRDcalibDB.h"
53#include "AliTRDchamberTimeBin.h"
54#include "AliTRDtrackingChamber.h"
55#include "AliTRDtrackerV1.h"
56#include "AliTRDrecoParam.h"
57#include "AliTRDCommonParam.h"
58
59#include "Cal/AliTRDCalPID.h"
60#include "Cal/AliTRDCalROC.h"
61#include "Cal/AliTRDCalDet.h"
62
63ClassImp(AliTRDseedV1)
64
65TLinearFitter *AliTRDseedV1::fgFitterY = 0x0;
66TLinearFitter *AliTRDseedV1::fgFitterZ = 0x0;
67
68//____________________________________________________________________
69AliTRDseedV1::AliTRDseedV1(Int_t det)
70 :AliTRDtrackletBase()
71 ,fReconstructor(0x0)
72 ,fClusterIter(0x0)
73 ,fExB(0.)
74 ,fVD(0.)
75 ,fT0(0.)
76 ,fS2PRF(0.)
77 ,fDiffL(0.)
78 ,fDiffT(0.)
79 ,fClusterIdx(0)
80 ,fN(0)
81 ,fDet(det)
82 ,fPt(0.)
83 ,fdX(0.)
84 ,fX0(0.)
85 ,fX(0.)
86 ,fY(0.)
87 ,fZ(0.)
88 ,fS2Y(0.)
89 ,fS2Z(0.)
90 ,fC(0.)
91 ,fChi2(0.)
92{
93 //
94 // Constructor
95 //
96 memset(fIndexes,0xFF,kNclusters*sizeof(fIndexes[0]));
97 memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*));
98 memset(fPad, 0, 3*sizeof(Float_t));
99 fYref[0] = 0.; fYref[1] = 0.;
100 fZref[0] = 0.; fZref[1] = 0.;
101 fYfit[0] = 0.; fYfit[1] = 0.;
102 fZfit[0] = 0.; fZfit[1] = 0.;
103 memset(fdEdx, 0, kNslices*sizeof(Float_t));
104 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++) fProb[ispec] = -1.;
105 fLabels[0]=-1; fLabels[1]=-1; // most freq MC labels
106 fLabels[2]=0; // number of different labels for tracklet
107 memset(fRefCov, 0, 7*sizeof(Double_t));
108 // covariance matrix [diagonal]
109 // default sy = 200um and sz = 2.3 cm
110 fCov[0] = 4.e-4; fCov[1] = 0.; fCov[2] = 5.3;
111 SetStandAlone(kFALSE);
112}
113
114//____________________________________________________________________
115AliTRDseedV1::AliTRDseedV1(const AliTRDseedV1 &ref)
116 :AliTRDtrackletBase((AliTRDtrackletBase&)ref)
117 ,fReconstructor(0x0)
118 ,fClusterIter(0x0)
119 ,fExB(0.)
120 ,fVD(0.)
121 ,fT0(0.)
122 ,fS2PRF(0.)
123 ,fDiffL(0.)
124 ,fDiffT(0.)
125 ,fClusterIdx(0)
126 ,fN(0)
127 ,fDet(-1)
128 ,fPt(0.)
129 ,fdX(0.)
130 ,fX0(0.)
131 ,fX(0.)
132 ,fY(0.)
133 ,fZ(0.)
134 ,fS2Y(0.)
135 ,fS2Z(0.)
136 ,fC(0.)
137 ,fChi2(0.)
138{
139 //
140 // Copy Constructor performing a deep copy
141 //
142 if(this != &ref){
143 ref.Copy(*this);
144 }
145 SetBit(kOwner, kFALSE);
146 SetStandAlone(ref.IsStandAlone());
147}
148
149
150//____________________________________________________________________
151AliTRDseedV1& AliTRDseedV1::operator=(const AliTRDseedV1 &ref)
152{
153 //
154 // Assignment Operator using the copy function
155 //
156
157 if(this != &ref){
158 ref.Copy(*this);
159 }
160 SetBit(kOwner, kFALSE);
161
162 return *this;
163}
164
165//____________________________________________________________________
166AliTRDseedV1::~AliTRDseedV1()
167{
168 //
169 // Destructor. The RecoParam object belongs to the underlying tracker.
170 //
171
172 //printf("I-AliTRDseedV1::~AliTRDseedV1() : Owner[%s]\n", IsOwner()?"YES":"NO");
173
174 if(IsOwner()) {
175 for(int itb=0; itb<kNclusters; itb++){
176 if(!fClusters[itb]) continue;
177 //AliInfo(Form("deleting c %p @ %d", fClusters[itb], itb));
178 delete fClusters[itb];
179 fClusters[itb] = 0x0;
180 }
181 }
182}
183
184//____________________________________________________________________
185void AliTRDseedV1::Copy(TObject &ref) const
186{
187 //
188 // Copy function
189 //
190
191 //AliInfo("");
192 AliTRDseedV1 &target = (AliTRDseedV1 &)ref;
193
194 target.fReconstructor = fReconstructor;
195 target.fClusterIter = 0x0;
196 target.fExB = fExB;
197 target.fVD = fVD;
198 target.fT0 = fT0;
199 target.fS2PRF = fS2PRF;
200 target.fDiffL = fDiffL;
201 target.fDiffT = fDiffT;
202 target.fClusterIdx = 0;
203 target.fN = fN;
204 target.fDet = fDet;
205 target.fPt = fPt;
206 target.fdX = fdX;
207 target.fX0 = fX0;
208 target.fX = fX;
209 target.fY = fY;
210 target.fZ = fZ;
211 target.fS2Y = fS2Y;
212 target.fS2Z = fS2Z;
213 target.fC = fC;
214 target.fChi2 = fChi2;
215
216 memcpy(target.fIndexes, fIndexes, kNclusters*sizeof(Int_t));
217 memcpy(target.fClusters, fClusters, kNclusters*sizeof(AliTRDcluster*));
218 memcpy(target.fPad, fPad, 3*sizeof(Float_t));
219 target.fYref[0] = fYref[0]; target.fYref[1] = fYref[1];
220 target.fZref[0] = fZref[0]; target.fZref[1] = fZref[1];
221 target.fYfit[0] = fYfit[0]; target.fYfit[1] = fYfit[1];
222 target.fZfit[0] = fZfit[0]; target.fZfit[1] = fZfit[1];
223 memcpy(target.fdEdx, fdEdx, kNslices*sizeof(Float_t));
224 memcpy(target.fProb, fProb, AliPID::kSPECIES*sizeof(Float_t));
225 memcpy(target.fLabels, fLabels, 3*sizeof(Int_t));
226 memcpy(target.fRefCov, fRefCov, 7*sizeof(Double_t));
227 memcpy(target.fCov, fCov, 3*sizeof(Double_t));
228
229 TObject::Copy(ref);
230}
231
232
233//____________________________________________________________
234Bool_t AliTRDseedV1::Init(AliTRDtrackV1 *track)
235{
236// Initialize this tracklet using the track information
237//
238// Parameters:
239// track - the TRD track used to initialize the tracklet
240//
241// Detailed description
242// The function sets the starting point and direction of the
243// tracklet according to the information from the TRD track.
244//
245// Caution
246// The TRD track has to be propagated to the beginning of the
247// chamber where the tracklet will be constructed
248//
249
250 Double_t y, z;
251 if(!track->GetProlongation(fX0, y, z)) return kFALSE;
252 Update(track);
253 return kTRUE;
254}
255
256
257//_____________________________________________________________________________
258void AliTRDseedV1::Reset()
259{
260 //
261 // Reset seed
262 //
263 fExB=0.;fVD=0.;fT0=0.;fS2PRF=0.;
264 fDiffL=0.;fDiffT=0.;
265 fClusterIdx=0;
266 fN=0;
267 fDet=-1;
268 fPt=0.;
269 fdX=0.;fX0=0.; fX=0.; fY=0.; fZ=0.;
270 fS2Y=0.; fS2Z=0.;
271 fC=0.; fChi2 = 0.;
272
273 for(Int_t ic=kNclusters; ic--;) fIndexes[ic] = -1;
274 memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*));
275 memset(fPad, 0, 3*sizeof(Float_t));
276 fYref[0] = 0.; fYref[1] = 0.;
277 fZref[0] = 0.; fZref[1] = 0.;
278 fYfit[0] = 0.; fYfit[1] = 0.;
279 fZfit[0] = 0.; fZfit[1] = 0.;
280 memset(fdEdx, 0, kNslices*sizeof(Float_t));
281 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++) fProb[ispec] = -1.;
282 fLabels[0]=-1; fLabels[1]=-1; // most freq MC labels
283 fLabels[2]=0; // number of different labels for tracklet
284 memset(fRefCov, 0, 7*sizeof(Double_t));
285 // covariance matrix [diagonal]
286 // default sy = 200um and sz = 2.3 cm
287 fCov[0] = 4.e-4; fCov[1] = 0.; fCov[2] = 5.3;
288}
289
290//____________________________________________________________________
291void AliTRDseedV1::Update(const AliTRDtrackV1 *trk)
292{
293 // update tracklet reference position from the TRD track
294
295 Double_t fSnp = trk->GetSnp();
296 Double_t fTgl = trk->GetTgl();
297 fPt = trk->Pt();
298 Double_t norm =1./TMath::Sqrt(1. - fSnp*fSnp);
299 fYref[1] = fSnp*norm;
300 fZref[1] = fTgl*norm;
301 SetCovRef(trk->GetCovariance());
302
303 Double_t dx = trk->GetX() - fX0;
304 fYref[0] = trk->GetY() - dx*fYref[1];
305 fZref[0] = trk->GetZ() - dx*fZref[1];
306}
307
308//_____________________________________________________________________________
309void AliTRDseedV1::UpdateUsed()
310{
311 //
312 // Calculate number of used clusers in the tracklet
313 //
314
315 Int_t nused = 0, nshared = 0;
316 for (Int_t i = kNclusters; i--; ) {
317 if (!fClusters[i]) continue;
318 if(fClusters[i]->IsUsed()){
319 nused++;
320 } else if(fClusters[i]->IsShared()){
321 if(IsStandAlone()) nused++;
322 else nshared++;
323 }
324 }
325 SetNUsed(nused);
326 SetNShared(nshared);
327}
328
329//_____________________________________________________________________________
330void AliTRDseedV1::UseClusters()
331{
332 //
333 // Use clusters
334 //
335 // In stand alone mode:
336 // Clusters which are marked as used or shared from another track are
337 // removed from the tracklet
338 //
339 // In barrel mode:
340 // - Clusters which are used by another track become shared
341 // - Clusters which are attached to a kink track become shared
342 //
343 AliTRDcluster **c = &fClusters[0];
344 for (Int_t ic=kNclusters; ic--; c++) {
345 if(!(*c)) continue;
346 if(IsStandAlone()){
347 if((*c)->IsShared() || (*c)->IsUsed()){
348 if((*c)->IsShared()) SetNShared(GetNShared()-1);
349 else SetNUsed(GetNUsed()-1);
350 (*c) = 0x0;
351 fIndexes[ic] = -1;
352 SetN(GetN()-1);
353 continue;
354 }
355 } else {
356 if((*c)->IsUsed() || IsKink()){
357 (*c)->SetShared();
358 continue;
359 }
360 }
361 (*c)->Use();
362 }
363}
364
365
366
367//____________________________________________________________________
368void AliTRDseedV1::CookdEdx(Int_t nslices)
369{
370// Calculates average dE/dx for all slices and store them in the internal array fdEdx.
371//
372// Parameters:
373// nslices : number of slices for which dE/dx should be calculated
374// Output:
375// store results in the internal array fdEdx. This can be accessed with the method
376// AliTRDseedV1::GetdEdx()
377//
378// Detailed description
379// Calculates average dE/dx for all slices. Depending on the PID methode
380// the number of slices can be 3 (LQ) or 8(NN).
381// The calculation of dQ/dl are done using the tracklet fit results (see AliTRDseedV1::GetdQdl(Int_t))
382//
383// The following effects are included in the calculation:
384// 1. calibration values for t0 and vdrift (using x coordinate to calculate slice)
385// 2. cluster sharing (optional see AliTRDrecoParam::SetClusterSharing())
386// 3. cluster size
387//
388
389 Int_t nclusters[kNslices];
390 memset(nclusters, 0, kNslices*sizeof(Int_t));
391 memset(fdEdx, 0, kNslices*sizeof(Float_t));
392
393 const Double_t kDriftLength = (.5 * AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick());
394
395 AliTRDcluster *c = 0x0;
396 for(int ic=0; ic<AliTRDtrackerV1::GetNTimeBins(); ic++){
397 if(!(c = fClusters[ic]) && !(c = fClusters[ic+kNtb])) continue;
398 Float_t dx = TMath::Abs(fX0 - c->GetX());
399
400 // Filter clusters for dE/dx calculation
401
402 // 1.consider calibration effects for slice determination
403 Int_t slice;
404 if(dx<kDriftLength){ // TODO should be replaced by c->IsInChamber()
405 slice = Int_t(dx * nslices / kDriftLength);
406 } else slice = c->GetX() < fX0 ? nslices-1 : 0;
407
408
409 // 2. take sharing into account
410 Float_t w = /*c->IsShared() ? .5 :*/ 1.;
411
412 // 3. take into account large clusters TODO
413 //w *= c->GetNPads() > 3 ? .8 : 1.;
414
415 //CHECK !!!
416 fdEdx[slice] += w * GetdQdl(ic); //fdQdl[ic];
417 nclusters[slice]++;
418 } // End of loop over clusters
419
420 //if(fReconstructor->GetPIDMethod() == AliTRDReconstructor::kLQPID){
421 if(nslices == AliTRDpidUtil::kLQslices){
422 // calculate mean charge per slice (only LQ PID)
423 for(int is=0; is<nslices; is++){
424 if(nclusters[is]) fdEdx[is] /= nclusters[is];
425 }
426 }
427}
428
429//_____________________________________________________________________________
430void AliTRDseedV1::CookLabels()
431{
432 //
433 // Cook 2 labels for seed
434 //
435
436 Int_t labels[200];
437 Int_t out[200];
438 Int_t nlab = 0;
439 for (Int_t i = 0; i < kNclusters; i++) {
440 if (!fClusters[i]) continue;
441 for (Int_t ilab = 0; ilab < 3; ilab++) {
442 if (fClusters[i]->GetLabel(ilab) >= 0) {
443 labels[nlab] = fClusters[i]->GetLabel(ilab);
444 nlab++;
445 }
446 }
447 }
448
449 fLabels[2] = AliMathBase::Freq(nlab,labels,out,kTRUE);
450 fLabels[0] = out[0];
451 if ((fLabels[2] > 1) && (out[3] > 1)) fLabels[1] = out[2];
452}
453
454
455//____________________________________________________________________
456Float_t AliTRDseedV1::GetdQdl(Int_t ic, Float_t *dl) const
457{
458// Using the linear approximation of the track inside one TRD chamber (TRD tracklet)
459// the charge per unit length can be written as:
460// BEGIN_LATEX
461// #frac{dq}{dl} = #frac{q_{c}}{dx * #sqrt{1 + #(){#frac{dy}{dx}}^{2}_{fit} + #(){#frac{dz}{dx}}^{2}_{ref}}}
462// END_LATEX
463// where qc is the total charge collected in the current time bin and dx is the length
464// of the time bin.
465// The following correction are applied :
466// - charge : pad row cross corrections
467// [diffusion and TRF assymetry] TODO
468// - dx : anisochronity, track inclination - see Fit and AliTRDcluster::GetXloc()
469// and AliTRDcluster::GetYloc() for the effects taken into account
470//
471//Begin_Html
472//<img src="TRD/trackletDQDT.gif">
473//End_Html
474// In the picture the energy loss measured on the tracklet as a function of drift time [left] and respectively
475// drift length [right] for different particle species is displayed.
476// Author : Alex Bercuci <A.Bercuci@gsi.de>
477//
478 Float_t dq = 0.;
479 // check whether both clusters are inside the chamber
480 Bool_t hasClusterInChamber = kFALSE;
481 if(fClusters[ic] && fClusters[ic]->IsInChamber()){
482 hasClusterInChamber = kTRUE;
483 dq += TMath::Abs(fClusters[ic]->GetQ());
484 }else if(fClusters[ic+kNtb] && fClusters[ic+kNtb]->IsInChamber()){
485 hasClusterInChamber = kTRUE;
486 dq += TMath::Abs(fClusters[ic+kNtb]->GetQ());
487 }
488 if(!hasClusterInChamber) return 0.;
489 if(dq<1.e-3) return 0.;
490
491 Double_t dx = fdX;
492 if(ic-1>=0 && ic+1<kNtb){
493 Float_t x2(0.), x1(0.);
494 // try to estimate upper radial position (find the cluster which is inside the chamber)
495 if(fClusters[ic-1] && fClusters[ic-1]->IsInChamber()) x2 = fClusters[ic-1]->GetX();
496 else if(fClusters[ic-1+kNtb] && fClusters[ic-1+kNtb]->IsInChamber()) x2 = fClusters[ic-1+kNtb]->GetX();
497 else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x2 = fClusters[ic]->GetX()+fdX;
498 else x2 = fClusters[ic+kNtb]->GetX()+fdX;
499 // try to estimate lower radial position (find the cluster which is inside the chamber)
500 if(fClusters[ic+1] && fClusters[ic+1]->IsInChamber()) x1 = fClusters[ic+1]->GetX();
501 else if(fClusters[ic+1+kNtb] && fClusters[ic+1+kNtb]->IsInChamber()) x1 = fClusters[ic+1+kNtb]->GetX();
502 else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x1 = fClusters[ic]->GetX()-fdX;
503 else x1 = fClusters[ic+kNtb]->GetX()-fdX;
504
505 dx = .5*(x2 - x1);
506 }
507 dx *= TMath::Sqrt(1. + fYfit[1]*fYfit[1] + fZref[1]*fZref[1]);
508 if(dl) (*dl) = dx;
509 return dq/dx;
510}
511
512//____________________________________________________________
513Float_t AliTRDseedV1::GetMomentum(Float_t *err) const
514{
515// Returns momentum of the track after update with the current tracklet as:
516// BEGIN_LATEX
517// p=#frac{1}{1/p_{t}} #sqrt{1+tgl^{2}}
518// END_LATEX
519// and optionally the momentum error (if err is not null).
520// The estimated variance of the momentum is given by:
521// BEGIN_LATEX
522// #sigma_{p}^{2} = (#frac{dp}{dp_{t}})^{2} #sigma_{p_{t}}^{2}+(#frac{dp}{dtgl})^{2} #sigma_{tgl}^{2}+2#frac{dp}{dp_{t}}#frac{dp}{dtgl} cov(tgl,1/p_{t})
523// END_LATEX
524// which can be simplified to
525// BEGIN_LATEX
526// #sigma_{p}^{2} = p^{2}p_{t}^{4}tgl^{2}#sigma_{tgl}^{2}-2p^{2}p_{t}^{3}tgl cov(tgl,1/p_{t})+p^{2}p_{t}^{2}#sigma_{1/p_{t}}^{2}
527// END_LATEX
528//
529
530 Double_t p = fPt*TMath::Sqrt(1.+fZref[1]*fZref[1]);
531 Double_t p2 = p*p;
532 Double_t tgl2 = fZref[1]*fZref[1];
533 Double_t pt2 = fPt*fPt;
534 if(err){
535 Double_t s2 =
536 p2*tgl2*pt2*pt2*fRefCov[4]
537 -2.*p2*fZref[1]*fPt*pt2*fRefCov[5]
538 +p2*pt2*fRefCov[6];
539 (*err) = TMath::Sqrt(s2);
540 }
541 return p;
542}
543
544
545//____________________________________________________________________
546Float_t* AliTRDseedV1::GetProbability(Bool_t force)
547{
548 if(!force) return &fProb[0];
549 if(!CookPID()) return 0x0;
550 return &fProb[0];
551}
552
553//____________________________________________________________
554Bool_t AliTRDseedV1::CookPID()
555{
556// Fill probability array for tracklet from the DB.
557//
558// Parameters
559//
560// Output
561// returns pointer to the probability array and 0x0 if missing DB access
562//
563// Retrieve PID probabilities for e+-, mu+-, K+-, pi+- and p+- from the DB according to tracklet information:
564// - estimated momentum at tracklet reference point
565// - dE/dx measurements
566// - tracklet length
567// - TRD layer
568// According to the steering settings specified in the reconstruction one of the following methods are used
569// - Neural Network [default] - option "nn"
570// - 2D Likelihood - option "!nn"
571
572 AliTRDcalibDB *calibration = AliTRDcalibDB::Instance();
573 if (!calibration) {
574 AliError("No access to calibration data");
575 return kFALSE;
576 }
577
578 if (!fReconstructor) {
579 AliError("Reconstructor not set.");
580 return kFALSE;
581 }
582
583 // Retrieve the CDB container class with the parametric detector response
584 const AliTRDCalPID *pd = calibration->GetPIDObject(fReconstructor->GetPIDMethod());
585 if (!pd) {
586 AliError("No access to AliTRDCalPID object");
587 return kFALSE;
588 }
589 //AliInfo(Form("Method[%d] : %s", fReconstructor->GetRecoParam() ->GetPIDMethod(), pd->IsA()->GetName()));
590
591 // calculate tracklet length TO DO
592 Float_t length = (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick());
593 /// TMath::Sqrt((1.0 - fSnp[iPlane]*fSnp[iPlane]) / (1.0 + fTgl[iPlane]*fTgl[iPlane]));
594
595 //calculate dE/dx
596 CookdEdx(fReconstructor->GetNdEdxSlices());
597
598 // Sets the a priori probabilities
599 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++)
600 fProb[ispec] = pd->GetProbability(ispec, GetMomentum(), &fdEdx[0], length, GetPlane());
601
602 return kTRUE;
603}
604
605//____________________________________________________________________
606Float_t AliTRDseedV1::GetQuality(Bool_t kZcorr) const
607{
608 //
609 // Returns a quality measurement of the current seed
610 //
611
612 Float_t zcorr = kZcorr ? GetTilt() * (fZfit[0] - fZref[0]) : 0.;
613 return
614 .5 * TMath::Abs(18.0 - GetN())
615 + 10.* TMath::Abs(fYfit[1] - fYref[1])
616 + 5. * TMath::Abs(fYfit[0] - fYref[0] + zcorr)
617 + 2. * TMath::Abs(fZfit[0] - fZref[0]) / GetPadLength();
618}
619
620//____________________________________________________________________
621void AliTRDseedV1::GetCovAt(Double_t x, Double_t *cov) const
622{
623// Computes covariance in the y-z plane at radial point x (in tracking coordinates)
624// and returns the results in the preallocated array cov[3] as :
625// cov[0] = Var(y)
626// cov[1] = Cov(yz)
627// cov[2] = Var(z)
628//
629// Details
630//
631// For the linear transformation
632// BEGIN_LATEX
633// Y = T_{x} X^{T}
634// END_LATEX
635// The error propagation has the general form
636// BEGIN_LATEX
637// C_{Y} = T_{x} C_{X} T_{x}^{T}
638// END_LATEX
639// We apply this formula 2 times. First to calculate the covariance of the tracklet
640// at point x we consider:
641// BEGIN_LATEX
642// T_{x} = (1 x); X=(y0 dy/dx); C_{X}=#(){#splitline{Var(y0) Cov(y0, dy/dx)}{Cov(y0, dy/dx) Var(dy/dx)}}
643// END_LATEX
644// and secondly to take into account the tilt angle
645// BEGIN_LATEX
646// T_{#alpha} = #(){#splitline{cos(#alpha) __ sin(#alpha)}{-sin(#alpha) __ cos(#alpha)}}; X=(y z); C_{X}=#(){#splitline{Var(y) 0}{0 Var(z)}}
647// END_LATEX
648//
649// using simple trigonometrics one can write for this last case
650// BEGIN_LATEX
651// C_{Y}=#frac{1}{1+tg^{2}#alpha} #(){#splitline{(#sigma_{y}^{2}+tg^{2}#alpha#sigma_{z}^{2}) __ tg#alpha(#sigma_{z}^{2}-#sigma_{y}^{2})}{tg#alpha(#sigma_{z}^{2}-#sigma_{y}^{2}) __ (#sigma_{z}^{2}+tg^{2}#alpha#sigma_{y}^{2})}}
652// END_LATEX
653// which can be aproximated for small alphas (2 deg) with
654// BEGIN_LATEX
655// C_{Y}=#(){#splitline{#sigma_{y}^{2} __ (#sigma_{z}^{2}-#sigma_{y}^{2})tg#alpha}{((#sigma_{z}^{2}-#sigma_{y}^{2})tg#alpha __ #sigma_{z}^{2}}}
656// END_LATEX
657//
658// before applying the tilt rotation we also apply systematic uncertainties to the tracklet
659// position which can be tunned from outside via the AliTRDrecoParam::SetSysCovMatrix(). They might
660// account for extra misalignment/miscalibration uncertainties.
661//
662// Author :
663// Alex Bercuci <A.Bercuci@gsi.de>
664// Date : Jan 8th 2009
665//
666
667
668 Double_t xr = fX0-x;
669 Double_t sy2 = fCov[0] +2.*xr*fCov[1] + xr*xr*fCov[2];
670 Double_t sz2 = fS2Z;
671 //GetPadLength()*GetPadLength()/12.;
672
673 // insert systematic uncertainties
674 if(fReconstructor){
675 Double_t sys[15]; memset(sys, 0, 15*sizeof(Double_t));
676 fReconstructor->GetRecoParam()->GetSysCovMatrix(sys);
677 sy2 += sys[0];
678 sz2 += sys[1];
679 }
680 // rotate covariance matrix
681 Double_t t2 = GetTilt()*GetTilt();
682 Double_t correction = 1./(1. + t2);
683 cov[0] = (sy2+t2*sz2)*correction;
684 cov[1] = GetTilt()*(sz2 - sy2)*correction;
685 cov[2] = (t2*sy2+sz2)*correction;
686
687 //printf("C(%6.1f %+6.3f %6.1f) [%s]\n", 1.e4*TMath::Sqrt(cov[0]), cov[1], 1.e4*TMath::Sqrt(cov[2]), IsRowCross()?" RC ":"-");
688}
689
690//____________________________________________________________
691Double_t AliTRDseedV1::GetCovSqrt(Double_t *c, Double_t *d)
692{
693// Helper function to calculate the square root of the covariance matrix.
694// The input matrix is stored in the vector c and the result in the vector d.
695// Both arrays have to be initialized by the user with at least 3 elements. Return negative in case of failure.
696//
697// For calculating the square root of the symmetric matrix c
698// the following relation is used:
699// BEGIN_LATEX
700// C^{1/2} = VD^{1/2}V^{-1}
701// END_LATEX
702// with V being the matrix with the n eigenvectors as columns.
703// In case C is symmetric the followings are true:
704// - matrix D is diagonal with the diagonal given by the eigenvalues of C
705// - V = V^{-1}
706//
707// Author A.Bercuci <A.Bercuci@gsi.de>
708// Date Mar 19 2009
709
710 Double_t L[2], // eigenvalues
711 V[3]; // eigenvectors
712 // the secular equation and its solution :
713 // (c[0]-L)(c[2]-L)-c[1]^2 = 0
714 // L^2 - L*Tr(c)+DET(c) = 0
715 // L12 = [Tr(c) +- sqrt(Tr(c)^2-4*DET(c))]/2
716 Double_t Tr = c[0]+c[2], // trace
717 DET = c[0]*c[2]-c[1]*c[1]; // determinant
718 if(TMath::Abs(DET)<1.e-20) return -1.;
719 Double_t DD = TMath::Sqrt(Tr*Tr - 4*DET);
720 L[0] = .5*(Tr + DD);
721 L[1] = .5*(Tr - DD);
722 if(L[0]<0. || L[1]<0.) return -1.;
723
724 // the sym V matrix
725 // | v00 v10|
726 // | v10 v11|
727 Double_t tmp = (L[0]-c[0])/c[1];
728 V[0] = TMath::Sqrt(1./(tmp*tmp+1));
729 V[1] = tmp*V[0];
730 V[2] = V[1]*c[1]/(L[1]-c[2]);
731 // the VD^{1/2}V is:
732 L[0] = TMath::Sqrt(L[0]); L[1] = TMath::Sqrt(L[1]);
733 d[0] = V[0]*V[0]*L[0]+V[1]*V[1]*L[1];
734 d[1] = V[0]*V[1]*L[0]+V[1]*V[2]*L[1];
735 d[2] = V[1]*V[1]*L[0]+V[2]*V[2]*L[1];
736
737 return 1.;
738}
739
740//____________________________________________________________
741Double_t AliTRDseedV1::GetCovInv(Double_t *c, Double_t *d)
742{
743// Helper function to calculate the inverse of the covariance matrix.
744// The input matrix is stored in the vector c and the result in the vector d.
745// Both arrays have to be initialized by the user with at least 3 elements
746// The return value is the determinant or 0 in case of singularity.
747//
748// Author A.Bercuci <A.Bercuci@gsi.de>
749// Date Mar 19 2009
750
751 Double_t Det = c[0]*c[2] - c[1]*c[1];
752 if(TMath::Abs(Det)<1.e-20) return 0.;
753 Double_t InvDet = 1./Det;
754 d[0] = c[2]*InvDet;
755 d[1] =-c[1]*InvDet;
756 d[2] = c[0]*InvDet;
757 return Det;
758}
759
760//____________________________________________________________________
761UShort_t AliTRDseedV1::GetVolumeId() const
762{
763 Int_t ic=0;
764 while(ic<kNclusters && !fClusters[ic]) ic++;
765 return fClusters[ic] ? fClusters[ic]->GetVolumeId() : 0;
766}
767
768//____________________________________________________________________
769TLinearFitter* AliTRDseedV1::GetFitterY()
770{
771 if(!fgFitterY) fgFitterY = new TLinearFitter(1, "pol1");
772 fgFitterY->ClearPoints();
773 return fgFitterY;
774}
775
776//____________________________________________________________________
777TLinearFitter* AliTRDseedV1::GetFitterZ()
778{
779 if(!fgFitterZ) fgFitterZ = new TLinearFitter(1, "pol1");
780 fgFitterZ->ClearPoints();
781 return fgFitterZ;
782}
783
784//____________________________________________________________________
785void AliTRDseedV1::Calibrate()
786{
787// Retrieve calibration and position parameters from OCDB.
788// The following information are used
789// - detector index
790// - column and row position of first attached cluster. If no clusters are attached
791// to the tracklet a random central chamber position (c=70, r=7) will be used.
792//
793// The following information is cached in the tracklet
794// t0 (trigger delay)
795// drift velocity
796// PRF width
797// omega*tau = tg(a_L)
798// diffusion coefficients (longitudinal and transversal)
799//
800// Author :
801// Alex Bercuci <A.Bercuci@gsi.de>
802// Date : Jan 8th 2009
803//
804
805 AliCDBManager *cdb = AliCDBManager::Instance();
806 if(cdb->GetRun() < 0){
807 AliError("OCDB manager not properly initialized");
808 return;
809 }
810
811 AliTRDcalibDB *calib = AliTRDcalibDB::Instance();
812 AliTRDCalROC *vdROC = calib->GetVdriftROC(fDet),
813 *t0ROC = calib->GetT0ROC(fDet);;
814 const AliTRDCalDet *vdDet = calib->GetVdriftDet();
815 const AliTRDCalDet *t0Det = calib->GetT0Det();
816
817 Int_t col = 70, row = 7;
818 AliTRDcluster **c = &fClusters[0];
819 if(GetN()){
820 Int_t ic = 0;
821 while (ic<kNclusters && !(*c)){ic++; c++;}
822 if(*c){
823 col = (*c)->GetPadCol();
824 row = (*c)->GetPadRow();
825 }
826 }
827
828 fT0 = t0Det->GetValue(fDet) + t0ROC->GetValue(col,row);
829 fVD = vdDet->GetValue(fDet) * vdROC->GetValue(col, row);
830 fS2PRF = calib->GetPRFWidth(fDet, col, row); fS2PRF *= fS2PRF;
831 fExB = AliTRDCommonParam::Instance()->GetOmegaTau(fVD);
832 AliTRDCommonParam::Instance()->GetDiffCoeff(fDiffL,
833 fDiffT, fVD);
834 SetBit(kCalib, kTRUE);
835}
836
837//____________________________________________________________________
838void AliTRDseedV1::SetOwner()
839{
840 //AliInfo(Form("own [%s] fOwner[%s]", own?"YES":"NO", fOwner?"YES":"NO"));
841
842 if(TestBit(kOwner)) return;
843 for(int ic=0; ic<kNclusters; ic++){
844 if(!fClusters[ic]) continue;
845 fClusters[ic] = new AliTRDcluster(*fClusters[ic]);
846 }
847 SetBit(kOwner);
848}
849
850//____________________________________________________________
851void AliTRDseedV1::SetPadPlane(AliTRDpadPlane *p)
852{
853// Shortcut method to initialize pad geometry.
854 if(!p) return;
855 SetTilt(TMath::Tan(TMath::DegToRad()*p->GetTiltingAngle()));
856 SetPadLength(p->GetLengthIPad());
857 SetPadWidth(p->GetWidthIPad());
858}
859
860
861//____________________________________________________________________
862Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *chamber, Bool_t tilt)
863{
864//
865// Projective algorithm to attach clusters to seeding tracklets. The following steps are performed :
866// 1. Collapse x coordinate for the full detector plane
867// 2. truncated mean on y (r-phi) direction
868// 3. purge clusters
869// 4. truncated mean on z direction
870// 5. purge clusters
871//
872// Parameters
873// - chamber : pointer to tracking chamber container used to search the tracklet
874// - tilt : switch for tilt correction during road building [default true]
875// Output
876// - true : if tracklet found successfully. Failure can happend because of the following:
877// -
878// Detailed description
879//
880// We start up by defining the track direction in the xy plane and roads. The roads are calculated based
881// on tracking information (variance in the r-phi direction) and estimated variance of the standard
882// clusters (see AliTRDcluster::SetSigmaY2()) corrected for tilt (see GetCovAt()). From this the road is
883// BEGIN_LATEX
884// r_{y} = 3*#sqrt{12*(#sigma^{2}_{Trk}(y) + #frac{#sigma^{2}_{cl}(y) + tg^{2}(#alpha_{L})#sigma^{2}_{cl}(z)}{1+tg^{2}(#alpha_{L})})}
885// r_{z} = 1.5*L_{pad}
886// END_LATEX
887//
888// Author : Alexandru Bercuci <A.Bercuci@gsi.de>
889// Debug : level >3
890
891 Bool_t kPRINT = kFALSE;
892 if(!fReconstructor->GetRecoParam() ){
893 AliError("Seed can not be used without a valid RecoParam.");
894 return kFALSE;
895 }
896 // Initialize reco params for this tracklet
897 // 1. first time bin in the drift region
898 Int_t t0 = 14;
899 Int_t kClmin = Int_t(fReconstructor->GetRecoParam() ->GetFindableClusters()*AliTRDtrackerV1::GetNTimeBins());
900
901 Double_t s2yTrk= fRefCov[0],
902 s2yCl = 0.,
903 s2zCl = GetPadLength()*GetPadLength()/12.,
904 syRef = TMath::Sqrt(s2yTrk),
905 t2 = GetTilt()*GetTilt();
906 //define roads
907 Double_t kroady = 1., //fReconstructor->GetRecoParam() ->GetRoad1y();
908 kroadz = GetPadLength() * 1.5 + 1.;
909 // define probing cluster (the perfect cluster) and default calibration
910 Short_t sig[] = {0, 0, 10, 30, 10, 0,0};
911 AliTRDcluster cp(fDet, 6, 75, 0, sig, 0);
912 if(fReconstructor->IsHLT())cp.SetRPhiMethod(AliTRDcluster::kCOG);
913 Calibrate();
914
915 if(kPRINT) printf("AttachClusters() sy[%f] road[%f]\n", syRef, kroady);
916
917 // working variables
918 const Int_t kNrows = 16;
919 const Int_t kNcls = 3*kNclusters; // buffer size
920 AliTRDcluster *clst[kNrows][kNcls];
921 Double_t cond[4], dx, dy, yt, zt, yres[kNrows][kNcls];
922 Int_t idxs[kNrows][kNcls], ncl[kNrows], ncls = 0;
923 memset(ncl, 0, kNrows*sizeof(Int_t));
924 memset(yres, 0, kNrows*kNcls*sizeof(Double_t));
925 memset(clst, 0, kNrows*kNcls*sizeof(AliTRDcluster*));
926
927 // Do cluster projection
928 AliTRDcluster *c = 0x0;
929 AliTRDchamberTimeBin *layer = 0x0;
930 Bool_t kBUFFER = kFALSE;
931 for (Int_t it = 0; it < kNtb; it++) {
932 if(!(layer = chamber->GetTB(it))) continue;
933 if(!Int_t(*layer)) continue;
934 // get track projection at layers position
935 dx = fX0 - layer->GetX();
936 yt = fYref[0] - fYref[1] * dx;
937 zt = fZref[0] - fZref[1] * dx;
938 // get standard cluster error corrected for tilt
939 cp.SetLocalTimeBin(it);
940 cp.SetSigmaY2(0.02, fDiffT, fExB, dx, -1./*zt*/, fYref[1]);
941 s2yCl = (cp.GetSigmaY2() + t2*s2zCl)/(1.+t2);
942 // get estimated road
943 kroady = 3.*TMath::Sqrt(12.*(s2yTrk + s2yCl));
944
945 if(kPRINT) printf(" %2d dx[%f] yt[%f] zt[%f] sT[um]=%6.2f sy[um]=%6.2f syTilt[um]=%6.2f yRoad[mm]=%f\n", it, dx, yt, zt, 1.e4*TMath::Sqrt(s2yTrk), 1.e4*TMath::Sqrt(cp.GetSigmaY2()), 1.e4*TMath::Sqrt(s2yCl), 1.e1*kroady);
946
947 // select clusters
948 cond[0] = yt; cond[2] = kroady;
949 cond[1] = zt; cond[3] = kroadz;
950 Int_t n=0, idx[6];
951 layer->GetClusters(cond, idx, n, 6);
952 for(Int_t ic = n; ic--;){
953 c = (*layer)[idx[ic]];
954 dy = yt - c->GetY();
955 dy += tilt ? GetTilt() * (c->GetZ() - zt) : 0.;
956 // select clusters on a 3 sigmaKalman level
957/* if(tilt && TMath::Abs(dy) > 3.*syRef){
958 printf("too large !!!\n");
959 continue;
960 }*/
961 Int_t r = c->GetPadRow();
962 if(kPRINT) printf("\t\t%d dy[%f] yc[%f] r[%d]\n", ic, TMath::Abs(dy), c->GetY(), r);
963 clst[r][ncl[r]] = c;
964 idxs[r][ncl[r]] = idx[ic];
965 yres[r][ncl[r]] = dy;
966 ncl[r]++; ncls++;
967
968 if(ncl[r] >= kNcls) {
969 AliWarning(Form("Cluster candidates reached buffer limit %d. Some may be lost.", kNcls));
970 kBUFFER = kTRUE;
971 break;
972 }
973 }
974 if(kBUFFER) break;
975 }
976 if(kPRINT) printf("Found %d clusters\n", ncls);
977 if(ncls<kClmin) return kFALSE;
978
979 // analyze each row individualy
980 Double_t mean, syDis;
981 Int_t nrow[] = {0, 0, 0}, nr = 0, lr=-1;
982 for(Int_t ir=kNrows; ir--;){
983 if(!(ncl[ir])) continue;
984 if(lr>0 && lr-ir != 1){
985 if(kPRINT) printf("W - gap in rows attached !!\n");
986 }
987 if(kPRINT) printf("\tir[%d] lr[%d] n[%d]\n", ir, lr, ncl[ir]);
988 // Evaluate truncated mean on the y direction
989 if(ncl[ir] > 3) AliMathBase::EvaluateUni(ncl[ir], yres[ir], mean, syDis, Int_t(ncl[ir]*.8));
990 else {
991 mean = 0.; syDis = 0.;
992 continue;
993 }
994
995 if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker) > 3){
996 TTreeSRedirector &cstreamer = *fReconstructor->GetDebugStream(AliTRDReconstructor::kTracker);
997 TVectorD vdy(ncl[ir], yres[ir]);
998 UChar_t stat(0);
999 if(IsKink()) SETBIT(stat, 0);
1000 if(IsStandAlone()) SETBIT(stat, 1);
1001 cstreamer << "AttachClusters"
1002 << "stat=" << stat
1003 << "det=" << fDet
1004 << "pt=" << fPt
1005 << "s2y=" << s2yTrk
1006 << "dy=" << &vdy
1007 << "m=" << mean
1008 << "s=" << syDis
1009 << "\n";
1010 }
1011
1012 // TODO check mean and sigma agains cluster resolution !!
1013 if(kPRINT) printf("\tr[%2d] m[%f %5.3fsigma] s[%f]\n", ir, mean, TMath::Abs(mean/syDis), syDis);
1014 // select clusters on a 3 sigmaDistr level
1015 Bool_t kFOUND = kFALSE;
1016 for(Int_t ic = ncl[ir]; ic--;){
1017 if(yres[ir][ic] - mean > 3. * syDis){
1018 clst[ir][ic] = 0x0; continue;
1019 }
1020 nrow[nr]++; kFOUND = kTRUE;
1021 }
1022 // exit loop
1023 if(kFOUND) nr++;
1024 lr = ir; if(nr>=3) break;
1025 }
1026 if(kPRINT) printf("lr[%d] nr[%d] nrow[0]=%d nrow[1]=%d nrow[2]=%d\n", lr, nr, nrow[0], nrow[1], nrow[2]);
1027
1028 // classify cluster rows
1029 Int_t row = -1;
1030 switch(nr){
1031 case 1:
1032 row = lr;
1033 break;
1034 case 2:
1035 SetBit(kRowCross, kTRUE); // mark pad row crossing
1036 if(nrow[0] > nrow[1]){ row = lr+1; lr = -1;}
1037 else{
1038 row = lr; lr = 1;
1039 nrow[2] = nrow[1];
1040 nrow[1] = nrow[0];
1041 nrow[0] = nrow[2];
1042 }
1043 break;
1044 case 3:
1045 SetBit(kRowCross, kTRUE); // mark pad row crossing
1046 break;
1047 }
1048 if(kPRINT) printf("\trow[%d] n[%d]\n\n", row, nrow[0]);
1049 if(row<0) return kFALSE;
1050
1051 // Select and store clusters
1052 // We should consider here :
1053 // 1. How far is the chamber boundary
1054 // 2. How big is the mean
1055 Int_t n = 0;
1056 for (Int_t ir = 0; ir < nr; ir++) {
1057 Int_t jr = row + ir*lr;
1058 if(kPRINT) printf("\tattach %d clusters for row %d\n", ncl[jr], jr);
1059 for (Int_t ic = 0; ic < ncl[jr]; ic++) {
1060 if(!(c = clst[jr][ic])) continue;
1061 Int_t it = c->GetPadTime();
1062 // TODO proper indexing of clusters !!
1063 fIndexes[it+kNtb*ir] = chamber->GetTB(it)->GetGlobalIndex(idxs[jr][ic]);
1064 fClusters[it+kNtb*ir] = c;
1065
1066 //printf("\tid[%2d] it[%d] idx[%d]\n", ic, it, fIndexes[it]);
1067
1068 n++;
1069 }
1070 }
1071
1072 // number of minimum numbers of clusters expected for the tracklet
1073 if (n < kClmin){
1074 //AliWarning(Form("Not enough clusters to fit the tracklet %d [%d].", n, kClmin));
1075 return kFALSE;
1076 }
1077 SetN(n);
1078
1079 // Load calibration parameters for this tracklet
1080 Calibrate();
1081
1082 // calculate dx for time bins in the drift region (calibration aware)
1083 Float_t x[2] = {0.,0.}; Int_t tb[2]={0,0};
1084 for (Int_t it = t0, irp=0; irp<2 && it < AliTRDtrackerV1::GetNTimeBins(); it++) {
1085 if(!fClusters[it]) continue;
1086 x[irp] = fClusters[it]->GetX();
1087 tb[irp] = fClusters[it]->GetLocalTimeBin();
1088 irp++;
1089 }
1090 Int_t dtb = tb[1] - tb[0];
1091 fdX = dtb ? (x[0] - x[1]) / dtb : 0.15;
1092 return kTRUE;
1093}
1094
1095//____________________________________________________________
1096void AliTRDseedV1::Bootstrap(const AliTRDReconstructor *rec)
1097{
1098// Fill in all derived information. It has to be called after recovery from file or HLT.
1099// The primitive data are
1100// - list of clusters
1101// - detector (as the detector will be removed from clusters)
1102// - position of anode wire (fX0) - temporary
1103// - track reference position and direction
1104// - momentum of the track
1105// - time bin length [cm]
1106//
1107// A.Bercuci <A.Bercuci@gsi.de> Oct 30th 2008
1108//
1109 fReconstructor = rec;
1110 AliTRDgeometry g;
1111 AliTRDpadPlane *pp = g.GetPadPlane(fDet);
1112 fPad[0] = pp->GetLengthIPad();
1113 fPad[1] = pp->GetWidthIPad();
1114 fPad[3] = TMath::Tan(TMath::DegToRad()*pp->GetTiltingAngle());
1115 //fSnp = fYref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]);
1116 //fTgl = fZref[1];
1117 Int_t n = 0, nshare = 0, nused = 0;
1118 AliTRDcluster **cit = &fClusters[0];
1119 for(Int_t ic = kNclusters; ic--; cit++){
1120 if(!(*cit)) return;
1121 n++;
1122 if((*cit)->IsShared()) nshare++;
1123 if((*cit)->IsUsed()) nused++;
1124 }
1125 SetN(n); SetNUsed(nused); SetNShared(nshare);
1126 Fit();
1127 CookLabels();
1128 GetProbability();
1129}
1130
1131
1132//____________________________________________________________________
1133Bool_t AliTRDseedV1::Fit(Bool_t tilt, Bool_t zcorr)
1134{
1135//
1136// Linear fit of the clusters attached to the tracklet
1137//
1138// Parameters :
1139// - tilt : switch for tilt pad correction of cluster y position based on
1140// the z, dzdx info from outside [default false].
1141// - zcorr : switch for using z information to correct for anisochronity
1142// and a finner error parameterization estimation [default false]
1143// Output :
1144// True if successful
1145//
1146// Detailed description
1147//
1148// Fit in the xy plane
1149//
1150// The fit is performed to estimate the y position of the tracklet and the track
1151// angle in the bending plane. The clusters are represented in the chamber coordinate
1152// system (with respect to the anode wire - see AliTRDtrackerV1::FollowBackProlongation()
1153// on how this is set). The x and y position of the cluster and also their variances
1154// are known from clusterizer level (see AliTRDcluster::GetXloc(), AliTRDcluster::GetYloc(),
1155// AliTRDcluster::GetSX() and AliTRDcluster::GetSY()).
1156// If gaussian approximation is used to calculate y coordinate of the cluster the position
1157// is recalculated taking into account the track angle. The general formula to calculate the
1158// error of cluster position in the gaussian approximation taking into account diffusion and track
1159// inclination is given for TRD by:
1160// BEGIN_LATEX
1161// #sigma^{2}_{y} = #sigma^{2}_{PRF} + #frac{x#delta_{t}^{2}}{(1+tg(#alpha_{L}))^{2}} + #frac{x^{2}tg^{2}(#phi-#alpha_{L})tg^{2}(#alpha_{L})}{12}
1162// END_LATEX
1163//
1164// Since errors are calculated only in the y directions, radial errors (x direction) are mapped to y
1165// by projection i.e.
1166// BEGIN_LATEX
1167// #sigma_{x|y} = tg(#phi) #sigma_{x}
1168// END_LATEX
1169// and also by the lorentz angle correction
1170//
1171// Fit in the xz plane
1172//
1173// The "fit" is performed to estimate the radial position (x direction) where pad row cross happens.
1174// If no pad row crossing the z position is taken from geometry and radial position is taken from the xy
1175// fit (see below).
1176//
1177// There are two methods to estimate the radial position of the pad row cross:
1178// 1. leading cluster radial position : Here the lower part of the tracklet is considered and the last
1179// cluster registered (at radial x0) on this segment is chosen to mark the pad row crossing. The error
1180// of the z estimate is given by :
1181// BEGIN_LATEX
1182// #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12
1183// END_LATEX
1184// The systematic errors for this estimation are generated by the following sources:
1185// - no charge sharing between pad rows is considered (sharp cross)
1186// - missing cluster at row cross (noise peak-up, under-threshold signal etc.).
1187//
1188// 2. charge fit over the crossing point : Here the full energy deposit along the tracklet is considered
1189// to estimate the position of the crossing by a fit in the qx plane. The errors in the q directions are
1190// parameterized as s_q = q^2. The systematic errors for this estimation are generated by the following sources:
1191// - no general model for the qx dependence
1192// - physical fluctuations of the charge deposit
1193// - gain calibration dependence
1194//
1195// Estimation of the radial position of the tracklet
1196//
1197// For pad row cross the radial position is taken from the xz fit (see above). Otherwise it is taken as the
1198// interpolation point of the tracklet i.e. the point where the error in y of the fit is minimum. The error
1199// in the y direction of the tracklet is (see AliTRDseedV1::GetCovAt()):
1200// BEGIN_LATEX
1201// #sigma_{y} = #sigma^{2}_{y_{0}} + 2xcov(y_{0}, dy/dx) + #sigma^{2}_{dy/dx}
1202// END_LATEX
1203// and thus the radial position is:
1204// BEGIN_LATEX
1205// x = - cov(y_{0}, dy/dx)/#sigma^{2}_{dy/dx}
1206// END_LATEX
1207//
1208// Estimation of tracklet position error
1209//
1210// The error in y direction is the error of the linear fit at the radial position of the tracklet while in the z
1211// direction is given by the cluster error or pad row cross error. In case of no pad row cross this is given by:
1212// BEGIN_LATEX
1213// #sigma_{y} = #sigma^{2}_{y_{0}} - 2cov^{2}(y_{0}, dy/dx)/#sigma^{2}_{dy/dx} + #sigma^{2}_{dy/dx}
1214// #sigma_{z} = Pad_{length}/12
1215// END_LATEX
1216// For pad row cross the full error is calculated at the radial position of the crossing (see above) and the error
1217// in z by the width of the crossing region - being a matter of parameterization.
1218// BEGIN_LATEX
1219// #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12
1220// END_LATEX
1221// In case of no tilt correction (default in the barrel tracking) the tilt is taken into account by the rotation of
1222// the covariance matrix. See AliTRDseedV1::GetCovAt() for details.
1223//
1224// Author
1225// A.Bercuci <A.Bercuci@gsi.de>
1226
1227 if(!IsCalibrated()) Calibrate();
1228
1229 const Int_t kClmin = 8;
1230
1231 // get track direction
1232 Double_t y0 = fYref[0];
1233 Double_t dydx = fYref[1];
1234 Double_t z0 = fZref[0];
1235 Double_t dzdx = fZref[1];
1236 Double_t yt, zt;
1237
1238 //AliTRDtrackerV1::AliTRDLeastSquare fitterZ;
1239 TLinearFitter& fitterY=*GetFitterY();
1240 TLinearFitter& fitterZ=*GetFitterZ();
1241
1242 // book cluster information
1243 Double_t qc[kNclusters], xc[kNclusters], yc[kNclusters], zc[kNclusters], sy[kNclusters];
1244
1245 Int_t n = 0;
1246 AliTRDcluster *c=0x0, **jc = &fClusters[0];
1247 for (Int_t ic=0; ic<kNtb; ic++, ++jc) {
1248 xc[ic] = -1.;
1249 yc[ic] = 999.;
1250 zc[ic] = 999.;
1251 sy[ic] = 0.;
1252 if(!(c = (*jc))) continue;
1253 if(!c->IsInChamber()) continue;
1254
1255 Float_t w = 1.;
1256 if(c->GetNPads()>4) w = .5;
1257 if(c->GetNPads()>5) w = .2;
1258
1259 // cluster charge
1260 qc[n] = TMath::Abs(c->GetQ());
1261 // pad row of leading
1262
1263 // Radial cluster position
1264 //Int_t jc = TMath::Max(fN-3, 0);
1265 //xc[fN] = c->GetXloc(fT0, fVD, &qc[jc], &xc[jc]/*, z0 - c->GetX()*dzdx*/);
1266 xc[n] = fX0 - c->GetX();
1267
1268 // extrapolated track to cluster position
1269 yt = y0 - xc[n]*dydx;
1270 zt = z0 - xc[n]*dzdx;
1271
1272 // Recalculate cluster error based on tracking information
1273 c->SetSigmaY2(fS2PRF, fDiffT, fExB, xc[n], zcorr?zt:-1., dydx);
1274 sy[n] = TMath::Sqrt(c->GetSigmaY2());
1275
1276 yc[n] = fReconstructor->UseGAUS() ?
1277 c->GetYloc(y0, sy[n], GetPadWidth()): c->GetY();
1278 zc[n] = c->GetZ();
1279 //optional tilt correction
1280 if(tilt) yc[n] -= (GetTilt()*(zc[n] - zt));
1281
1282 fitterY.AddPoint(&xc[n], yc[n], TMath::Sqrt(sy[n]));
1283 fitterZ.AddPoint(&xc[n], qc[n], 1.);
1284 n++;
1285 }
1286 // to few clusters
1287 if (n < kClmin) return kFALSE;
1288
1289 // fit XY
1290 fitterY.Eval();
1291 fYfit[0] = fitterY.GetParameter(0);
1292 fYfit[1] = -fitterY.GetParameter(1);
1293 // store covariance
1294 Double_t *p = fitterY.GetCovarianceMatrix();
1295 fCov[0] = p[0]; // variance of y0
1296 fCov[1] = p[1]; // covariance of y0, dydx
1297 fCov[2] = p[3]; // variance of dydx
1298 // the ref radial position is set at the minimum of
1299 // the y variance of the tracklet
1300 fX = -fCov[1]/fCov[2];
1301
1302 // fit XZ
1303 if(IsRowCross()){
1304/* // THE LEADING CLUSTER METHOD
1305 Float_t xMin = fX0;
1306 Int_t ic=n=kNclusters-1; jc = &fClusters[ic];
1307 AliTRDcluster *c0 =0x0, **kc = &fClusters[kNtb-1];
1308 for(; ic>kNtb; ic--, --jc, --kc){
1309 if((c0 = (*kc)) && c0->IsInChamber() && (xMin>c0->GetX())) xMin = c0->GetX();
1310 if(!(c = (*jc))) continue;
1311 if(!c->IsInChamber()) continue;
1312 zc[kNclusters-1] = c->GetZ();
1313 fX = fX0 - c->GetX();
1314 }
1315 fZfit[0] = .5*(zc[0]+zc[kNclusters-1]); fZfit[1] = 0.;
1316 // Error parameterization
1317 fS2Z = fdX*fZref[1];
1318 fS2Z *= fS2Z; fS2Z *= 0.2887; // 1/sqrt(12)*/
1319
1320 // THE FIT X-Q PLANE METHOD
1321 Int_t ic=n=kNclusters-1; jc = &fClusters[ic];
1322 for(; ic>kNtb; ic--, --jc){
1323 if(!(c = (*jc))) continue;
1324 if(!c->IsInChamber()) continue;
1325 qc[n] = TMath::Abs(c->GetQ());
1326 xc[n] = fX0 - c->GetX();
1327 zc[n] = c->GetZ();
1328 fitterZ.AddPoint(&xc[n], -qc[n], 1.);
1329 n--;
1330 }
1331 // fit XZ
1332 fitterZ.Eval();
1333 if(fitterZ.GetParameter(1)!=0.){
1334 fX = -fitterZ.GetParameter(0)/fitterZ.GetParameter(1);
1335 fX=(fX<0.)?0.:fX;
1336 Float_t dl = .5*AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght();
1337 fX=(fX> dl)?dl:fX;
1338 fX-=.055; // TODO to be understood
1339 }
1340
1341 fZfit[0] = .5*(zc[0]+zc[kNclusters-1]); fZfit[1] = 0.;
1342 // temporary external error parameterization
1343 fS2Z = 0.05+0.4*TMath::Abs(fZref[1]); fS2Z *= fS2Z;
1344 // TODO correct formula
1345 //fS2Z = sigma_x*TMath::Abs(fZref[1]);
1346 } else {
1347 fZfit[0] = zc[0]; fZfit[1] = 0.;
1348 fS2Z = GetPadLength()*GetPadLength()/12.;
1349 }
1350 fS2Y = fCov[0] +2.*fX*fCov[1] + fX*fX*fCov[2];
1351 return kTRUE;
1352}
1353
1354
1355/*
1356//_____________________________________________________________________________
1357void AliTRDseedV1::FitMI()
1358{
1359//
1360// Fit the seed.
1361// Marian Ivanov's version
1362//
1363// linear fit on the y direction with respect to the reference direction.
1364// The residuals for each x (x = xc - x0) are deduced from:
1365// dy = y - yt (1)
1366// the tilting correction is written :
1367// y = yc + h*(zc-zt) (2)
1368// yt = y0+dy/dx*x (3)
1369// zt = z0+dz/dx*x (4)
1370// from (1),(2),(3) and (4)
1371// dy = yc - y0 - (dy/dx + h*dz/dx)*x + h*(zc-z0)
1372// the last term introduces the correction on y direction due to tilting pads. There are 2 ways to account for this:
1373// 1. use tilting correction for calculating the y
1374// 2. neglect tilting correction here and account for it in the error parametrization of the tracklet.
1375 const Float_t kRatio = 0.8;
1376 const Int_t kClmin = 5;
1377 const Float_t kmaxtan = 2;
1378
1379 if (TMath::Abs(fYref[1]) > kmaxtan){
1380 //printf("Exit: Abs(fYref[1]) = %3.3f, kmaxtan = %3.3f\n", TMath::Abs(fYref[1]), kmaxtan);
1381 return; // Track inclined too much
1382 }
1383
1384 Float_t sigmaexp = 0.05 + TMath::Abs(fYref[1] * 0.25); // Expected r.m.s in y direction
1385 Float_t ycrosscor = GetPadLength() * GetTilt() * 0.5; // Y correction for crossing
1386 Int_t fNChange = 0;
1387
1388 Double_t sumw;
1389 Double_t sumwx;
1390 Double_t sumwx2;
1391 Double_t sumwy;
1392 Double_t sumwxy;
1393 Double_t sumwz;
1394 Double_t sumwxz;
1395
1396 // Buffering: Leave it constant fot Performance issues
1397 Int_t zints[kNtb]; // Histograming of the z coordinate
1398 // Get 1 and second max probable coodinates in z
1399 Int_t zouts[2*kNtb];
1400 Float_t allowedz[kNtb]; // Allowed z for given time bin
1401 Float_t yres[kNtb]; // Residuals from reference
1402 //Float_t anglecor = GetTilt() * fZref[1]; // Correction to the angle
1403
1404 Float_t pos[3*kNtb]; memset(pos, 0, 3*kNtb*sizeof(Float_t));
1405 Float_t *fX = &pos[0], *fY = &pos[kNtb], *fZ = &pos[2*kNtb];
1406
1407 Int_t fN = 0; AliTRDcluster *c = 0x0;
1408 fN2 = 0;
1409 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) {
1410 yres[i] = 10000.0;
1411 if (!(c = fClusters[i])) continue;
1412 if(!c->IsInChamber()) continue;
1413 // Residual y
1414 //yres[i] = fY[i] - fYref[0] - (fYref[1] + anglecor) * fX[i] + GetTilt()*(fZ[i] - fZref[0]);
1415 fX[i] = fX0 - c->GetX();
1416 fY[i] = c->GetY();
1417 fZ[i] = c->GetZ();
1418 yres[i] = fY[i] - GetTilt()*(fZ[i] - (fZref[0] - fX[i]*fZref[1]));
1419 zints[fN] = Int_t(fZ[i]);
1420 fN++;
1421 }
1422
1423 if (fN < kClmin){
1424 //printf("Exit fN < kClmin: fN = %d\n", fN);
1425 return;
1426 }
1427 Int_t nz = AliTRDtrackerV1::Freq(fN, zints, zouts, kFALSE);
1428 Float_t fZProb = zouts[0];
1429 if (nz <= 1) zouts[3] = 0;
1430 if (zouts[1] + zouts[3] < kClmin) {
1431 //printf("Exit zouts[1] = %d, zouts[3] = %d\n",zouts[1],zouts[3]);
1432 return;
1433 }
1434
1435 // Z distance bigger than pad - length
1436 if (TMath::Abs(zouts[0]-zouts[2]) > 12.0) zouts[3] = 0;
1437
1438 Int_t breaktime = -1;
1439 Bool_t mbefore = kFALSE;
1440 Int_t cumul[kNtb][2];
1441 Int_t counts[2] = { 0, 0 };
1442
1443 if (zouts[3] >= 3) {
1444
1445 //
1446 // Find the break time allowing one chage on pad-rows
1447 // with maximal number of accepted clusters
1448 //
1449 fNChange = 1;
1450 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) {
1451 cumul[i][0] = counts[0];
1452 cumul[i][1] = counts[1];
1453 if (TMath::Abs(fZ[i]-zouts[0]) < 2) counts[0]++;
1454 if (TMath::Abs(fZ[i]-zouts[2]) < 2) counts[1]++;
1455 }
1456 Int_t maxcount = 0;
1457 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) {
1458 Int_t after = cumul[AliTRDtrackerV1::GetNTimeBins()][0] - cumul[i][0];
1459 Int_t before = cumul[i][1];
1460 if (after + before > maxcount) {
1461 maxcount = after + before;
1462 breaktime = i;
1463 mbefore = kFALSE;
1464 }
1465 after = cumul[AliTRDtrackerV1::GetNTimeBins()-1][1] - cumul[i][1];
1466 before = cumul[i][0];
1467 if (after + before > maxcount) {
1468 maxcount = after + before;
1469 breaktime = i;
1470 mbefore = kTRUE;
1471 }
1472 }
1473 breaktime -= 1;
1474 }
1475
1476 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1477 if (i > breaktime) allowedz[i] = mbefore ? zouts[2] : zouts[0];
1478 if (i <= breaktime) allowedz[i] = (!mbefore) ? zouts[2] : zouts[0];
1479 }
1480
1481 if (((allowedz[0] > allowedz[AliTRDtrackerV1::GetNTimeBins()]) && (fZref[1] < 0)) ||
1482 ((allowedz[0] < allowedz[AliTRDtrackerV1::GetNTimeBins()]) && (fZref[1] > 0))) {
1483 //
1484 // Tracklet z-direction not in correspondance with track z direction
1485 //
1486 fNChange = 0;
1487 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1488 allowedz[i] = zouts[0]; // Only longest taken
1489 }
1490 }
1491
1492 if (fNChange > 0) {
1493 //
1494 // Cross pad -row tracklet - take the step change into account
1495 //
1496 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1497 if (!fClusters[i]) continue;
1498 if(!fClusters[i]->IsInChamber()) continue;
1499 if (TMath::Abs(fZ[i] - allowedz[i]) > 2) continue;
1500 // Residual y
1501 //yres[i] = fY[i] - fYref[0] - (fYref[1] + anglecor) * fX[i] + GetTilt()*(fZ[i] - fZref[0]);
1502 yres[i] = fY[i] - GetTilt()*(fZ[i] - (fZref[0] - fX[i]*fZref[1]));
1503// if (TMath::Abs(fZ[i] - fZProb) > 2) {
1504// if (fZ[i] > fZProb) yres[i] += GetTilt() * GetPadLength();
1505// if (fZ[i] < fZProb) yres[i] -= GetTilt() * GetPadLength();
1506 }
1507 }
1508 }
1509
1510 Double_t yres2[kNtb];
1511 Double_t mean;
1512 Double_t sigma;
1513 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1514 if (!fClusters[i]) continue;
1515 if(!fClusters[i]->IsInChamber()) continue;
1516 if (TMath::Abs(fZ[i] - allowedz[i]) > 2) continue;
1517 yres2[fN2] = yres[i];
1518 fN2++;
1519 }
1520 if (fN2 < kClmin) {
1521 //printf("Exit fN2 < kClmin: fN2 = %d\n", fN2);
1522 fN2 = 0;
1523 return;
1524 }
1525 AliMathBase::EvaluateUni(fN2,yres2,mean,sigma, Int_t(fN2*kRatio-2.));
1526 if (sigma < sigmaexp * 0.8) {
1527 sigma = sigmaexp;
1528 }
1529 //Float_t fSigmaY = sigma;
1530
1531 // Reset sums
1532 sumw = 0;
1533 sumwx = 0;
1534 sumwx2 = 0;
1535 sumwy = 0;
1536 sumwxy = 0;
1537 sumwz = 0;
1538 sumwxz = 0;
1539
1540 fN2 = 0;
1541 Float_t fMeanz = 0;
1542 Float_t fMPads = 0;
1543 fUsable = 0;
1544 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1545 if (!fClusters[i]) continue;
1546 if (!fClusters[i]->IsInChamber()) continue;
1547 if (TMath::Abs(fZ[i] - allowedz[i]) > 2){fClusters[i] = 0x0; continue;}
1548 if (TMath::Abs(yres[i] - mean) > 4.0 * sigma){fClusters[i] = 0x0; continue;}
1549 SETBIT(fUsable,i);
1550 fN2++;
1551 fMPads += fClusters[i]->GetNPads();
1552 Float_t weight = 1.0;
1553 if (fClusters[i]->GetNPads() > 4) weight = 0.5;
1554 if (fClusters[i]->GetNPads() > 5) weight = 0.2;
1555
1556
1557 Double_t x = fX[i];
1558 //printf("x = %7.3f dy = %7.3f fit %7.3f\n", x, yres[i], fY[i]-yres[i]);
1559
1560 sumw += weight;
1561 sumwx += x * weight;
1562 sumwx2 += x*x * weight;
1563 sumwy += weight * yres[i];
1564 sumwxy += weight * (yres[i]) * x;
1565 sumwz += weight * fZ[i];
1566 sumwxz += weight * fZ[i] * x;
1567
1568 }
1569
1570 if (fN2 < kClmin){
1571 //printf("Exit fN2 < kClmin(2): fN2 = %d\n",fN2);
1572 fN2 = 0;
1573 return;
1574 }
1575 fMeanz = sumwz / sumw;
1576 Float_t correction = 0;
1577 if (fNChange > 0) {
1578 // Tracklet on boundary
1579 if (fMeanz < fZProb) correction = ycrosscor;
1580 if (fMeanz > fZProb) correction = -ycrosscor;
1581 }
1582
1583 Double_t det = sumw * sumwx2 - sumwx * sumwx;
1584 fYfit[0] = (sumwx2 * sumwy - sumwx * sumwxy) / det;
1585 fYfit[1] = (sumw * sumwxy - sumwx * sumwy) / det;
1586
1587 fS2Y = 0;
1588 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1589 if (!TESTBIT(fUsable,i)) continue;
1590 Float_t delta = yres[i] - fYfit[0] - fYfit[1] * fX[i];
1591 fS2Y += delta*delta;
1592 }
1593 fS2Y = TMath::Sqrt(fS2Y / Float_t(fN2-2));
1594 // TEMPORARY UNTIL covariance properly calculated
1595 fS2Y = TMath::Max(fS2Y, Float_t(.1));
1596
1597 fZfit[0] = (sumwx2 * sumwz - sumwx * sumwxz) / det;
1598 fZfit[1] = (sumw * sumwxz - sumwx * sumwz) / det;
1599// fYfitR[0] += fYref[0] + correction;
1600// fYfitR[1] += fYref[1];
1601// fYfit[0] = fYfitR[0];
1602 fYfit[1] = -fYfit[1];
1603
1604 UpdateUsed();
1605}*/
1606
1607//___________________________________________________________________
1608void AliTRDseedV1::Print(Option_t *o) const
1609{
1610 //
1611 // Printing the seedstatus
1612 //
1613
1614 AliInfo(Form("Det[%3d] X0[%7.2f] Pad{L[%5.2f] W[%5.2f] Tilt[%+6.2f]}", fDet, fX0, GetPadLength(), GetPadWidth(), GetTilt()));
1615 AliInfo(Form("N[%2d] Nused[%2d] Nshared[%2d] [%d]", GetN(), GetNUsed(), GetNShared(), fN));
1616 AliInfo(Form("FLAGS : RC[%c] Kink[%c] SA[%c]", IsRowCross()?'y':'n', IsKink()?'y':'n', IsStandAlone()?'y':'n'));
1617
1618 Double_t cov[3], x=GetX();
1619 GetCovAt(x, cov);
1620 AliInfo(" | x[cm] | y[cm] | z[cm] | dydx | dzdx |");
1621 AliInfo(Form("Fit | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | ----- |", x, GetY(), TMath::Sqrt(cov[0]), GetZ(), TMath::Sqrt(cov[2]), fYfit[1]));
1622 AliInfo(Form("Ref | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | %5.2f |", x, fYref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[0]), fZref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[2]), fYref[1], fZref[1]))
1623
1624
1625 if(strcmp(o, "a")!=0) return;
1626
1627 AliTRDcluster* const* jc = &fClusters[0];
1628 for(int ic=0; ic<kNclusters; ic++, jc++) {
1629 if(!(*jc)) continue;
1630 (*jc)->Print(o);
1631 }
1632}
1633
1634
1635//___________________________________________________________________
1636Bool_t AliTRDseedV1::IsEqual(const TObject *o) const
1637{
1638 // Checks if current instance of the class has the same essential members
1639 // as the given one
1640
1641 if(!o) return kFALSE;
1642 const AliTRDseedV1 *inTracklet = dynamic_cast<const AliTRDseedV1*>(o);
1643 if(!inTracklet) return kFALSE;
1644
1645 for (Int_t i = 0; i < 2; i++){
1646 if ( fYref[i] != inTracklet->fYref[i] ) return kFALSE;
1647 if ( fZref[i] != inTracklet->fZref[i] ) return kFALSE;
1648 }
1649
1650 if ( fS2Y != inTracklet->fS2Y ) return kFALSE;
1651 if ( GetTilt() != inTracklet->GetTilt() ) return kFALSE;
1652 if ( GetPadLength() != inTracklet->GetPadLength() ) return kFALSE;
1653
1654 for (Int_t i = 0; i < kNclusters; i++){
1655// if ( fX[i] != inTracklet->GetX(i) ) return kFALSE;
1656// if ( fY[i] != inTracklet->GetY(i) ) return kFALSE;
1657// if ( fZ[i] != inTracklet->GetZ(i) ) return kFALSE;
1658 if ( fIndexes[i] != inTracklet->fIndexes[i] ) return kFALSE;
1659 }
1660// if ( fUsable != inTracklet->fUsable ) return kFALSE;
1661
1662 for (Int_t i=0; i < 2; i++){
1663 if ( fYfit[i] != inTracklet->fYfit[i] ) return kFALSE;
1664 if ( fZfit[i] != inTracklet->fZfit[i] ) return kFALSE;
1665 if ( fLabels[i] != inTracklet->fLabels[i] ) return kFALSE;
1666 }
1667
1668/* if ( fMeanz != inTracklet->GetMeanz() ) return kFALSE;
1669 if ( fZProb != inTracklet->GetZProb() ) return kFALSE;*/
1670 if ( fN != inTracklet->fN ) return kFALSE;
1671 //if ( fNUsed != inTracklet->fNUsed ) return kFALSE;
1672 //if ( fFreq != inTracklet->GetFreq() ) return kFALSE;
1673 //if ( fNChange != inTracklet->GetNChange() ) return kFALSE;
1674
1675 if ( fC != inTracklet->fC ) return kFALSE;
1676 //if ( fCC != inTracklet->GetCC() ) return kFALSE;
1677 if ( fChi2 != inTracklet->fChi2 ) return kFALSE;
1678 // if ( fChi2Z != inTracklet->GetChi2Z() ) return kFALSE;
1679
1680 if ( fDet != inTracklet->fDet ) return kFALSE;
1681 if ( fPt != inTracklet->fPt ) return kFALSE;
1682 if ( fdX != inTracklet->fdX ) return kFALSE;
1683
1684 for (Int_t iCluster = 0; iCluster < kNclusters; iCluster++){
1685 AliTRDcluster *curCluster = fClusters[iCluster];
1686 AliTRDcluster *inCluster = inTracklet->fClusters[iCluster];
1687 if (curCluster && inCluster){
1688 if (! curCluster->IsEqual(inCluster) ) {
1689 curCluster->Print();
1690 inCluster->Print();
1691 return kFALSE;
1692 }
1693 } else {
1694 // if one cluster exists, and corresponding
1695 // in other tracklet doesn't - return kFALSE
1696 if(curCluster || inCluster) return kFALSE;
1697 }
1698 }
1699 return kTRUE;
1700}
1701