]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - TRD/AliTRDseedV1.cxx
switch to using the new GRP manager
[u/mrichter/AliRoot.git] / TRD / AliTRDseedV1.cxx
... / ...
CommitLineData
1/**************************************************************************
2* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3* *
4* Author: The ALICE Off-line Project. *
5* Contributors are mentioned in the code where appropriate. *
6* *
7* Permission to use, copy, modify and distribute this software and its *
8* documentation strictly for non-commercial purposes is hereby granted *
9* without fee, provided that the above copyright notice appears in all *
10* copies and that both the copyright notice and this permission notice *
11* appear in the supporting documentation. The authors make no claims *
12* about the suitability of this software for any purpose. It is *
13* provided "as is" without express or implied warranty. *
14**************************************************************************/
15
16/* $Id$ */
17
18////////////////////////////////////////////////////////////////////////////
19////
20// The TRD offline tracklet
21//
22// The running horse of the TRD reconstruction. The following tasks are preformed:
23// 1. Clusters attachment to tracks based on prior information stored at tracklet level (see AttachClusters)
24// 2. Clusters position recalculation based on track information (see GetClusterXY and Fit)
25// 3. Cluster error parametrization recalculation (see Fit)
26// 4. Linear track approximation (Fit)
27// 5. Optimal position (including z estimate for pad row cross tracklets) and covariance matrix of the track fit inside one TRD chamber (Fit)
28// 6. Tilt pad correction and systematic effects (GetCovAt)
29// 7. dEdx calculation (CookdEdx)
30// 8. PID probabilities estimation (CookPID)
31//
32// Authors: //
33// Alex Bercuci <A.Bercuci@gsi.de> //
34// Markus Fasel <M.Fasel@gsi.de> //
35// //
36////////////////////////////////////////////////////////////////////////////
37
38#include "TMath.h"
39#include "TLinearFitter.h"
40#include "TClonesArray.h" // tmp
41#include <TTreeStream.h>
42
43#include "AliLog.h"
44#include "AliMathBase.h"
45#include "AliCDBManager.h"
46#include "AliTracker.h"
47
48#include "AliTRDpadPlane.h"
49#include "AliTRDcluster.h"
50#include "AliTRDseedV1.h"
51#include "AliTRDtrackV1.h"
52#include "AliTRDcalibDB.h"
53#include "AliTRDchamberTimeBin.h"
54#include "AliTRDtrackingChamber.h"
55#include "AliTRDtrackerV1.h"
56#include "AliTRDReconstructor.h"
57#include "AliTRDrecoParam.h"
58#include "AliTRDCommonParam.h"
59
60#include "Cal/AliTRDCalPID.h"
61#include "Cal/AliTRDCalROC.h"
62#include "Cal/AliTRDCalDet.h"
63
64ClassImp(AliTRDseedV1)
65
66//____________________________________________________________________
67AliTRDseedV1::AliTRDseedV1(Int_t det)
68 :AliTRDtrackletBase()
69 ,fReconstructor(0x0)
70 ,fClusterIter(0x0)
71 ,fExB(0.)
72 ,fVD(0.)
73 ,fT0(0.)
74 ,fS2PRF(0.)
75 ,fDiffL(0.)
76 ,fDiffT(0.)
77 ,fClusterIdx(0)
78 ,fN(0)
79 ,fDet(det)
80 ,fPt(0.)
81 ,fdX(0.)
82 ,fX0(0.)
83 ,fX(0.)
84 ,fY(0.)
85 ,fZ(0.)
86 ,fS2Y(0.)
87 ,fS2Z(0.)
88 ,fC(0.)
89 ,fChi2(0.)
90{
91 //
92 // Constructor
93 //
94 for(Int_t ic=kNclusters; ic--;) fIndexes[ic] = -1;
95 memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*));
96 memset(fPad, 0, 3*sizeof(Float_t));
97 fYref[0] = 0.; fYref[1] = 0.;
98 fZref[0] = 0.; fZref[1] = 0.;
99 fYfit[0] = 0.; fYfit[1] = 0.;
100 fZfit[0] = 0.; fZfit[1] = 0.;
101 memset(fdEdx, 0, kNslices*sizeof(Float_t));
102 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++) fProb[ispec] = -1.;
103 fLabels[0]=-1; fLabels[1]=-1; // most freq MC labels
104 fLabels[2]=0; // number of different labels for tracklet
105 memset(fRefCov, 0, 7*sizeof(Double_t));
106 // covariance matrix [diagonal]
107 // default sy = 200um and sz = 2.3 cm
108 fCov[0] = 4.e-4; fCov[1] = 0.; fCov[2] = 5.3;
109 SetStandAlone(kFALSE);
110}
111
112//____________________________________________________________________
113AliTRDseedV1::AliTRDseedV1(const AliTRDseedV1 &ref)
114 :AliTRDtrackletBase((AliTRDtrackletBase&)ref)
115 ,fReconstructor(0x0)
116 ,fClusterIter(0x0)
117 ,fExB(0.)
118 ,fVD(0.)
119 ,fT0(0.)
120 ,fS2PRF(0.)
121 ,fDiffL(0.)
122 ,fDiffT(0.)
123 ,fClusterIdx(0)
124 ,fN(0)
125 ,fDet(-1)
126 ,fPt(0.)
127 ,fdX(0.)
128 ,fX0(0.)
129 ,fX(0.)
130 ,fY(0.)
131 ,fZ(0.)
132 ,fS2Y(0.)
133 ,fS2Z(0.)
134 ,fC(0.)
135 ,fChi2(0.)
136{
137 //
138 // Copy Constructor performing a deep copy
139 //
140 if(this != &ref){
141 ref.Copy(*this);
142 }
143 SetBit(kOwner, kFALSE);
144 SetStandAlone(ref.IsStandAlone());
145}
146
147
148//____________________________________________________________________
149AliTRDseedV1& AliTRDseedV1::operator=(const AliTRDseedV1 &ref)
150{
151 //
152 // Assignment Operator using the copy function
153 //
154
155 if(this != &ref){
156 ref.Copy(*this);
157 }
158 SetBit(kOwner, kFALSE);
159
160 return *this;
161}
162
163//____________________________________________________________________
164AliTRDseedV1::~AliTRDseedV1()
165{
166 //
167 // Destructor. The RecoParam object belongs to the underlying tracker.
168 //
169
170 //printf("I-AliTRDseedV1::~AliTRDseedV1() : Owner[%s]\n", IsOwner()?"YES":"NO");
171
172 if(IsOwner()) {
173 for(int itb=0; itb<kNclusters; itb++){
174 if(!fClusters[itb]) continue;
175 //AliInfo(Form("deleting c %p @ %d", fClusters[itb], itb));
176 delete fClusters[itb];
177 fClusters[itb] = 0x0;
178 }
179 }
180}
181
182//____________________________________________________________________
183void AliTRDseedV1::Copy(TObject &ref) const
184{
185 //
186 // Copy function
187 //
188
189 //AliInfo("");
190 AliTRDseedV1 &target = (AliTRDseedV1 &)ref;
191
192 target.fReconstructor = fReconstructor;
193 target.fClusterIter = 0x0;
194 target.fExB = fExB;
195 target.fVD = fVD;
196 target.fT0 = fT0;
197 target.fS2PRF = fS2PRF;
198 target.fDiffL = fDiffL;
199 target.fDiffT = fDiffT;
200 target.fClusterIdx = 0;
201 target.fN = fN;
202 target.fDet = fDet;
203 target.fPt = fPt;
204 target.fdX = fdX;
205 target.fX0 = fX0;
206 target.fX = fX;
207 target.fY = fY;
208 target.fZ = fZ;
209 target.fS2Y = fS2Y;
210 target.fS2Z = fS2Z;
211 target.fC = fC;
212 target.fChi2 = fChi2;
213
214 memcpy(target.fIndexes, fIndexes, kNclusters*sizeof(Int_t));
215 memcpy(target.fClusters, fClusters, kNclusters*sizeof(AliTRDcluster*));
216 memcpy(target.fPad, fPad, 3*sizeof(Float_t));
217 target.fYref[0] = fYref[0]; target.fYref[1] = fYref[1];
218 target.fZref[0] = fZref[0]; target.fZref[1] = fZref[1];
219 target.fYfit[0] = fYfit[0]; target.fYfit[1] = fYfit[1];
220 target.fZfit[0] = fZfit[0]; target.fZfit[1] = fZfit[1];
221 memcpy(target.fdEdx, fdEdx, kNslices*sizeof(Float_t));
222 memcpy(target.fProb, fProb, AliPID::kSPECIES*sizeof(Float_t));
223 memcpy(target.fLabels, fLabels, 3*sizeof(Int_t));
224 memcpy(target.fRefCov, fRefCov, 7*sizeof(Double_t));
225 memcpy(target.fCov, fCov, 3*sizeof(Double_t));
226
227 TObject::Copy(ref);
228}
229
230
231//____________________________________________________________
232Bool_t AliTRDseedV1::Init(AliTRDtrackV1 *track)
233{
234// Initialize this tracklet using the track information
235//
236// Parameters:
237// track - the TRD track used to initialize the tracklet
238//
239// Detailed description
240// The function sets the starting point and direction of the
241// tracklet according to the information from the TRD track.
242//
243// Caution
244// The TRD track has to be propagated to the beginning of the
245// chamber where the tracklet will be constructed
246//
247
248 Double_t y, z;
249 if(!track->GetProlongation(fX0, y, z)) return kFALSE;
250 Update(track);
251 return kTRUE;
252}
253
254
255//_____________________________________________________________________________
256void AliTRDseedV1::Reset()
257{
258 //
259 // Reset seed
260 //
261 fExB=0.;fVD=0.;fT0=0.;fS2PRF=0.;
262 fDiffL=0.;fDiffT=0.;
263 fClusterIdx=0;
264 fN=0;
265 fDet=-1;
266 fPt=0.;
267 fdX=0.;fX0=0.; fX=0.; fY=0.; fZ=0.;
268 fS2Y=0.; fS2Z=0.;
269 fC=0.; fChi2 = 0.;
270
271 for(Int_t ic=kNclusters; ic--;) fIndexes[ic] = -1;
272 memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*));
273 memset(fPad, 0, 3*sizeof(Float_t));
274 fYref[0] = 0.; fYref[1] = 0.;
275 fZref[0] = 0.; fZref[1] = 0.;
276 fYfit[0] = 0.; fYfit[1] = 0.;
277 fZfit[0] = 0.; fZfit[1] = 0.;
278 memset(fdEdx, 0, kNslices*sizeof(Float_t));
279 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++) fProb[ispec] = -1.;
280 fLabels[0]=-1; fLabels[1]=-1; // most freq MC labels
281 fLabels[2]=0; // number of different labels for tracklet
282 memset(fRefCov, 0, 7*sizeof(Double_t));
283 // covariance matrix [diagonal]
284 // default sy = 200um and sz = 2.3 cm
285 fCov[0] = 4.e-4; fCov[1] = 0.; fCov[2] = 5.3;
286}
287
288//____________________________________________________________________
289void AliTRDseedV1::Update(const AliTRDtrackV1 *trk)
290{
291 // update tracklet reference position from the TRD track
292
293 Double_t fSnp = trk->GetSnp();
294 Double_t fTgl = trk->GetTgl();
295 fPt = trk->Pt();
296 Double_t norm =1./TMath::Sqrt(1. - fSnp*fSnp);
297 fYref[1] = fSnp*norm;
298 fZref[1] = fTgl*norm;
299 SetCovRef(trk->GetCovariance());
300
301 Double_t dx = trk->GetX() - fX0;
302 fYref[0] = trk->GetY() - dx*fYref[1];
303 fZref[0] = trk->GetZ() - dx*fZref[1];
304}
305
306//_____________________________________________________________________________
307void AliTRDseedV1::UpdateUsed()
308{
309 //
310 // Calculate number of used clusers in the tracklet
311 //
312
313 Int_t nused = 0, nshared = 0;
314 for (Int_t i = kNclusters; i--; ) {
315 if (!fClusters[i]) continue;
316 if(fClusters[i]->IsUsed()){
317 nused++;
318 } else if(fClusters[i]->IsShared()){
319 if(IsStandAlone()) nused++;
320 else nshared++;
321 }
322 }
323 SetNUsed(nused);
324 SetNShared(nshared);
325}
326
327//_____________________________________________________________________________
328void AliTRDseedV1::UseClusters()
329{
330 //
331 // Use clusters
332 //
333 // In stand alone mode:
334 // Clusters which are marked as used or shared from another track are
335 // removed from the tracklet
336 //
337 // In barrel mode:
338 // - Clusters which are used by another track become shared
339 // - Clusters which are attached to a kink track become shared
340 //
341 AliTRDcluster **c = &fClusters[0];
342 for (Int_t ic=kNclusters; ic--; c++) {
343 if(!(*c)) continue;
344 if(IsStandAlone()){
345 if((*c)->IsShared() || (*c)->IsUsed()){
346 if((*c)->IsShared()) SetNShared(GetNShared()-1);
347 else SetNUsed(GetNUsed()-1);
348 (*c) = 0x0;
349 fIndexes[ic] = -1;
350 SetN(GetN()-1);
351 continue;
352 }
353 } else {
354 if((*c)->IsUsed() || IsKink()){
355 (*c)->SetShared();
356 continue;
357 }
358 }
359 (*c)->Use();
360 }
361}
362
363
364
365//____________________________________________________________________
366void AliTRDseedV1::CookdEdx(Int_t nslices)
367{
368// Calculates average dE/dx for all slices and store them in the internal array fdEdx.
369//
370// Parameters:
371// nslices : number of slices for which dE/dx should be calculated
372// Output:
373// store results in the internal array fdEdx. This can be accessed with the method
374// AliTRDseedV1::GetdEdx()
375//
376// Detailed description
377// Calculates average dE/dx for all slices. Depending on the PID methode
378// the number of slices can be 3 (LQ) or 8(NN).
379// The calculation of dQ/dl are done using the tracklet fit results (see AliTRDseedV1::GetdQdl(Int_t))
380//
381// The following effects are included in the calculation:
382// 1. calibration values for t0 and vdrift (using x coordinate to calculate slice)
383// 2. cluster sharing (optional see AliTRDrecoParam::SetClusterSharing())
384// 3. cluster size
385//
386
387 Int_t nclusters[kNslices];
388 memset(nclusters, 0, kNslices*sizeof(Int_t));
389 memset(fdEdx, 0, kNslices*sizeof(Float_t));
390
391 const Double_t kDriftLength = (.5 * AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick());
392
393 AliTRDcluster *c = 0x0;
394 for(int ic=0; ic<AliTRDtrackerV1::GetNTimeBins(); ic++){
395 if(!(c = fClusters[ic]) && !(c = fClusters[ic+kNtb])) continue;
396 Float_t dx = TMath::Abs(fX0 - c->GetX());
397
398 // Filter clusters for dE/dx calculation
399
400 // 1.consider calibration effects for slice determination
401 Int_t slice;
402 if(dx<kDriftLength){ // TODO should be replaced by c->IsInChamber()
403 slice = Int_t(dx * nslices / kDriftLength);
404 } else slice = c->GetX() < fX0 ? nslices-1 : 0;
405
406
407 // 2. take sharing into account
408 Float_t w = /*c->IsShared() ? .5 :*/ 1.;
409
410 // 3. take into account large clusters TODO
411 //w *= c->GetNPads() > 3 ? .8 : 1.;
412
413 //CHECK !!!
414 fdEdx[slice] += w * GetdQdl(ic); //fdQdl[ic];
415 nclusters[slice]++;
416 } // End of loop over clusters
417
418 //if(fReconstructor->GetPIDMethod() == AliTRDReconstructor::kLQPID){
419 if(nslices == AliTRDpidUtil::kLQslices){
420 // calculate mean charge per slice (only LQ PID)
421 for(int is=0; is<nslices; is++){
422 if(nclusters[is]) fdEdx[is] /= nclusters[is];
423 }
424 }
425}
426
427//_____________________________________________________________________________
428void AliTRDseedV1::CookLabels()
429{
430 //
431 // Cook 2 labels for seed
432 //
433
434 Int_t labels[200];
435 Int_t out[200];
436 Int_t nlab = 0;
437 for (Int_t i = 0; i < kNclusters; i++) {
438 if (!fClusters[i]) continue;
439 for (Int_t ilab = 0; ilab < 3; ilab++) {
440 if (fClusters[i]->GetLabel(ilab) >= 0) {
441 labels[nlab] = fClusters[i]->GetLabel(ilab);
442 nlab++;
443 }
444 }
445 }
446
447 fLabels[2] = AliMathBase::Freq(nlab,labels,out,kTRUE);
448 fLabels[0] = out[0];
449 if ((fLabels[2] > 1) && (out[3] > 1)) fLabels[1] = out[2];
450}
451
452
453//____________________________________________________________________
454Float_t AliTRDseedV1::GetdQdl(Int_t ic, Float_t *dl) const
455{
456// Using the linear approximation of the track inside one TRD chamber (TRD tracklet)
457// the charge per unit length can be written as:
458// BEGIN_LATEX
459// #frac{dq}{dl} = #frac{q_{c}}{dx * #sqrt{1 + #(){#frac{dy}{dx}}^{2}_{fit} + #(){#frac{dz}{dx}}^{2}_{ref}}}
460// END_LATEX
461// where qc is the total charge collected in the current time bin and dx is the length
462// of the time bin.
463// The following correction are applied :
464// - charge : pad row cross corrections
465// [diffusion and TRF assymetry] TODO
466// - dx : anisochronity, track inclination - see Fit and AliTRDcluster::GetXloc()
467// and AliTRDcluster::GetYloc() for the effects taken into account
468//
469//Begin_Html
470//<img src="TRD/trackletDQDT.gif">
471//End_Html
472// In the picture the energy loss measured on the tracklet as a function of drift time [left] and respectively
473// drift length [right] for different particle species is displayed.
474// Author : Alex Bercuci <A.Bercuci@gsi.de>
475//
476 Float_t dq = 0.;
477 if(fClusters[ic]){
478 if(!fClusters[ic]->IsInChamber()) return 0.;
479 dq += TMath::Abs(fClusters[ic]->GetQ());
480 }
481 if(fClusters[ic+kNtb]) dq += TMath::Abs(fClusters[ic+kNtb]->GetQ());
482 if(dq<1.e-3) return 0.;
483
484
485 Double_t dx = fdX;
486 if(ic-1>=0 && ic+1<kNtb){
487 Float_t x2(0.), x1(0.);
488 // try to estimate upper radial position
489 if(fClusters[ic-1]) x2 = fClusters[ic-1]->GetX();
490 else if(fClusters[ic-1+kNtb]) x2 = fClusters[ic-1+kNtb]->GetX();
491 else if(fClusters[ic]) x2 = fClusters[ic]->GetX()+fdX;
492 else x2 = fClusters[ic+kNtb]->GetX()+fdX;
493 // try to estimate lower radial position
494 if(fClusters[ic+1]) x1 = fClusters[ic+1]->GetX();
495 else if(fClusters[ic+1+kNtb]) x1 = fClusters[ic+1+kNtb]->GetX();
496 else if(fClusters[ic]) x1 = fClusters[ic]->GetX()-fdX;
497 else x1 = fClusters[ic+kNtb]->GetX()-fdX;
498
499 dx = .5*(x2 - x1);
500 }
501 dx *= TMath::Sqrt(1. + fYfit[1]*fYfit[1] + fZref[1]*fZref[1]);
502
503 if(dl) (*dl) = dx;
504 return dq/dx;
505}
506
507//____________________________________________________________
508Float_t AliTRDseedV1::GetMomentum(Float_t *err) const
509{
510// Returns momentum of the track after update with the current tracklet as:
511// BEGIN_LATEX
512// p=#frac{1}{1/p_{t}} #sqrt{1+tgl^{2}}
513// END_LATEX
514// and optionally the momentum error (if err is not null).
515// The estimated variance of the momentum is given by:
516// BEGIN_LATEX
517// #sigma_{p}^{2} = (#frac{dp}{dp_{t}})^{2} #sigma_{p_{t}}^{2}+(#frac{dp}{dtgl})^{2} #sigma_{tgl}^{2}+2#frac{dp}{dp_{t}}#frac{dp}{dtgl} cov(tgl,1/p_{t})
518// END_LATEX
519// which can be simplified to
520// BEGIN_LATEX
521// #sigma_{p}^{2} = p^{2}p_{t}^{4}tgl^{2}#sigma_{tgl}^{2}-2p^{2}p_{t}^{3}tgl cov(tgl,1/p_{t})+p^{2}p_{t}^{2}#sigma_{1/p_{t}}^{2}
522// END_LATEX
523//
524
525 Double_t p = fPt*TMath::Sqrt(1.+fZref[1]*fZref[1]);
526 Double_t p2 = p*p;
527 Double_t tgl2 = fZref[1]*fZref[1];
528 Double_t pt2 = fPt*fPt;
529 if(err){
530 Double_t s2 =
531 p2*tgl2*pt2*pt2*fRefCov[4]
532 -2.*p2*fZref[1]*fPt*pt2*fRefCov[5]
533 +p2*pt2*fRefCov[6];
534 (*err) = TMath::Sqrt(s2);
535 }
536 return p;
537}
538
539
540//____________________________________________________________________
541Float_t* AliTRDseedV1::GetProbability(Bool_t force)
542{
543 if(!force) return &fProb[0];
544 if(!CookPID()) return 0x0;
545 return &fProb[0];
546}
547
548//____________________________________________________________
549Bool_t AliTRDseedV1::CookPID()
550{
551// Fill probability array for tracklet from the DB.
552//
553// Parameters
554//
555// Output
556// returns pointer to the probability array and 0x0 if missing DB access
557//
558// Detailed description
559
560
561 // retrive calibration db
562 AliTRDcalibDB *calibration = AliTRDcalibDB::Instance();
563 if (!calibration) {
564 AliError("No access to calibration data");
565 return kFALSE;
566 }
567
568 if (!fReconstructor) {
569 AliError("Reconstructor not set.");
570 return kFALSE;
571 }
572
573 // Retrieve the CDB container class with the parametric detector response
574 const AliTRDCalPID *pd = calibration->GetPIDObject(fReconstructor->GetPIDMethod());
575 if (!pd) {
576 AliError("No access to AliTRDCalPID object");
577 return kFALSE;
578 }
579 //AliInfo(Form("Method[%d] : %s", fReconstructor->GetRecoParam() ->GetPIDMethod(), pd->IsA()->GetName()));
580
581 // calculate tracklet length TO DO
582 Float_t length = (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick());
583 /// TMath::Sqrt((1.0 - fSnp[iPlane]*fSnp[iPlane]) / (1.0 + fTgl[iPlane]*fTgl[iPlane]));
584
585 //calculate dE/dx
586 CookdEdx(fReconstructor->GetNdEdxSlices());
587
588 // Sets the a priori probabilities
589 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++) {
590 fProb[ispec] = pd->GetProbability(ispec, GetMomentum(), &fdEdx[0], length, GetPlane());
591 }
592
593 return kTRUE;
594}
595
596//____________________________________________________________________
597Float_t AliTRDseedV1::GetQuality(Bool_t kZcorr) const
598{
599 //
600 // Returns a quality measurement of the current seed
601 //
602
603 Float_t zcorr = kZcorr ? GetTilt() * (fZfit[0] - fZref[0]) : 0.;
604 return
605 .5 * TMath::Abs(18.0 - GetN())
606 + 10.* TMath::Abs(fYfit[1] - fYref[1])
607 + 5. * TMath::Abs(fYfit[0] - fYref[0] + zcorr)
608 + 2. * TMath::Abs(fZfit[0] - fZref[0]) / GetPadLength();
609}
610
611//____________________________________________________________________
612void AliTRDseedV1::GetCovAt(Double_t x, Double_t *cov) const
613{
614// Computes covariance in the y-z plane at radial point x (in tracking coordinates)
615// and returns the results in the preallocated array cov[3] as :
616// cov[0] = Var(y)
617// cov[1] = Cov(yz)
618// cov[2] = Var(z)
619//
620// Details
621//
622// For the linear transformation
623// BEGIN_LATEX
624// Y = T_{x} X^{T}
625// END_LATEX
626// The error propagation has the general form
627// BEGIN_LATEX
628// C_{Y} = T_{x} C_{X} T_{x}^{T}
629// END_LATEX
630// We apply this formula 2 times. First to calculate the covariance of the tracklet
631// at point x we consider:
632// BEGIN_LATEX
633// T_{x} = (1 x); X=(y0 dy/dx); C_{X}=#(){#splitline{Var(y0) Cov(y0, dy/dx)}{Cov(y0, dy/dx) Var(dy/dx)}}
634// END_LATEX
635// and secondly to take into account the tilt angle
636// BEGIN_LATEX
637// T_{#alpha} = #(){#splitline{cos(#alpha) __ sin(#alpha)}{-sin(#alpha) __ cos(#alpha)}}; X=(y z); C_{X}=#(){#splitline{Var(y) 0}{0 Var(z)}}
638// END_LATEX
639//
640// using simple trigonometrics one can write for this last case
641// BEGIN_LATEX
642// C_{Y}=#frac{1}{1+tg^{2}#alpha} #(){#splitline{(#sigma_{y}^{2}+tg^{2}#alpha#sigma_{z}^{2}) __ tg#alpha(#sigma_{z}^{2}-#sigma_{y}^{2})}{tg#alpha(#sigma_{z}^{2}-#sigma_{y}^{2}) __ (#sigma_{z}^{2}+tg^{2}#alpha#sigma_{y}^{2})}}
643// END_LATEX
644// which can be aproximated for small alphas (2 deg) with
645// BEGIN_LATEX
646// C_{Y}=#(){#splitline{#sigma_{y}^{2} __ (#sigma_{z}^{2}-#sigma_{y}^{2})tg#alpha}{((#sigma_{z}^{2}-#sigma_{y}^{2})tg#alpha __ #sigma_{z}^{2}}}
647// END_LATEX
648//
649// before applying the tilt rotation we also apply systematic uncertainties to the tracklet
650// position which can be tunned from outside via the AliTRDrecoParam::SetSysCovMatrix(). They might
651// account for extra misalignment/miscalibration uncertainties.
652//
653// Author :
654// Alex Bercuci <A.Bercuci@gsi.de>
655// Date : Jan 8th 2009
656//
657
658
659 Double_t xr = fX0-x;
660 Double_t sy2 = fCov[0] +2.*xr*fCov[1] + xr*xr*fCov[2];
661 Double_t sz2 = fS2Z;
662 //GetPadLength()*GetPadLength()/12.;
663
664 // insert systematic uncertainties
665 if(fReconstructor){
666 Double_t sys[15]; memset(sys, 0, 15*sizeof(Double_t));
667 fReconstructor->GetRecoParam()->GetSysCovMatrix(sys);
668 sy2 += sys[0];
669 sz2 += sys[1];
670 }
671 // rotate covariance matrix
672 Double_t t2 = GetTilt()*GetTilt();
673 Double_t correction = 1./(1. + t2);
674 cov[0] = (sy2+t2*sz2)*correction;
675 cov[1] = GetTilt()*(sz2 - sy2)*correction;
676 cov[2] = (t2*sy2+sz2)*correction;
677
678 //printf("C(%6.1f %+6.3f %6.1f) [%s]\n", 1.e4*TMath::Sqrt(cov[0]), cov[1], 1.e4*TMath::Sqrt(cov[2]), IsRowCross()?" RC ":"-");
679}
680
681//____________________________________________________________
682Double_t AliTRDseedV1::GetCovSqrt(Double_t *c, Double_t *d)
683{
684// Helper function to calculate the square root of the covariance matrix.
685// The input matrix is stored in the vector c and the result in the vector d.
686// Both arrays have to be initialized by the user with at least 3 elements. Return negative in case of failure.
687//
688// For calculating the square root of the symmetric matrix c
689// the following relation is used:
690// BEGIN_LATEX
691// C^{1/2} = VD^{1/2}V^{-1}
692// END_LATEX
693// with V being the matrix with the n eigenvectors as columns.
694// In case C is symmetric the followings are true:
695// - matrix D is diagonal with the diagonal given by the eigenvalues of C
696// - V = V^{-1}
697//
698// Author A.Bercuci <A.Bercuci@gsi.de>
699// Date Mar 19 2009
700
701 Double_t L[2], // eigenvalues
702 V[3]; // eigenvectors
703 // the secular equation and its solution :
704 // (c[0]-L)(c[2]-L)-c[1]^2 = 0
705 // L^2 - L*Tr(c)+DET(c) = 0
706 // L12 = [Tr(c) +- sqrt(Tr(c)^2-4*DET(c))]/2
707 Double_t Tr = c[0]+c[2], // trace
708 DET = c[0]*c[2]-c[1]*c[1]; // determinant
709 if(TMath::Abs(DET)<1.e-20) return -1.;
710 Double_t DD = TMath::Sqrt(Tr*Tr - 4*DET);
711 L[0] = .5*(Tr + DD);
712 L[1] = .5*(Tr - DD);
713 if(L[0]<0. || L[1]<0.) return -1.;
714
715 // the sym V matrix
716 // | v00 v10|
717 // | v10 v11|
718 Double_t tmp = (L[0]-c[0])/c[1];
719 V[0] = TMath::Sqrt(1./(tmp*tmp+1));
720 V[1] = tmp*V[0];
721 V[2] = V[1]*c[1]/(L[1]-c[2]);
722 // the VD^{1/2}V is:
723 L[0] = TMath::Sqrt(L[0]); L[1] = TMath::Sqrt(L[1]);
724 d[0] = V[0]*V[0]*L[0]+V[1]*V[1]*L[1];
725 d[1] = V[0]*V[1]*L[0]+V[1]*V[2]*L[1];
726 d[2] = V[1]*V[1]*L[0]+V[2]*V[2]*L[1];
727
728 return 1.;
729}
730
731//____________________________________________________________
732Double_t AliTRDseedV1::GetCovInv(Double_t *c, Double_t *d)
733{
734// Helper function to calculate the inverse of the covariance matrix.
735// The input matrix is stored in the vector c and the result in the vector d.
736// Both arrays have to be initialized by the user with at least 3 elements
737// The return value is the determinant or 0 in case of singularity.
738//
739// Author A.Bercuci <A.Bercuci@gsi.de>
740// Date Mar 19 2009
741
742 Double_t Det = c[0]*c[2] - c[1]*c[1];
743 if(TMath::Abs(Det)<1.e-20) return 0.;
744 Double_t InvDet = 1./Det;
745 d[0] = c[2]*InvDet;
746 d[1] =-c[1]*InvDet;
747 d[2] = c[0]*InvDet;
748 return Det;
749}
750
751//____________________________________________________________________
752UShort_t AliTRDseedV1::GetVolumeId() const
753{
754 Int_t ic=0;
755 while(ic<kNclusters && !fClusters[ic]) ic++;
756 return fClusters[ic] ? fClusters[ic]->GetVolumeId() : 0;
757}
758
759
760//____________________________________________________________________
761void AliTRDseedV1::Calibrate()
762{
763// Retrieve calibration and position parameters from OCDB.
764// The following information are used
765// - detector index
766// - column and row position of first attached cluster. If no clusters are attached
767// to the tracklet a random central chamber position (c=70, r=7) will be used.
768//
769// The following information is cached in the tracklet
770// t0 (trigger delay)
771// drift velocity
772// PRF width
773// omega*tau = tg(a_L)
774// diffusion coefficients (longitudinal and transversal)
775//
776// Author :
777// Alex Bercuci <A.Bercuci@gsi.de>
778// Date : Jan 8th 2009
779//
780
781 AliCDBManager *cdb = AliCDBManager::Instance();
782 if(cdb->GetRun() < 0){
783 AliError("OCDB manager not properly initialized");
784 return;
785 }
786
787 AliTRDcalibDB *calib = AliTRDcalibDB::Instance();
788 AliTRDCalROC *vdROC = calib->GetVdriftROC(fDet),
789 *t0ROC = calib->GetT0ROC(fDet);;
790 const AliTRDCalDet *vdDet = calib->GetVdriftDet();
791 const AliTRDCalDet *t0Det = calib->GetT0Det();
792
793 Int_t col = 70, row = 7;
794 AliTRDcluster **c = &fClusters[0];
795 if(GetN()){
796 Int_t ic = 0;
797 while (ic<kNclusters && !(*c)){ic++; c++;}
798 if(*c){
799 col = (*c)->GetPadCol();
800 row = (*c)->GetPadRow();
801 }
802 }
803
804 fT0 = t0Det->GetValue(fDet) + t0ROC->GetValue(col,row);
805 fVD = vdDet->GetValue(fDet) * vdROC->GetValue(col, row);
806 fS2PRF = calib->GetPRFWidth(fDet, col, row); fS2PRF *= fS2PRF;
807 fExB = AliTRDCommonParam::Instance()->GetOmegaTau(fVD);
808 AliTRDCommonParam::Instance()->GetDiffCoeff(fDiffL,
809 fDiffT, fVD);
810 SetBit(kCalib, kTRUE);
811}
812
813//____________________________________________________________________
814void AliTRDseedV1::SetOwner()
815{
816 //AliInfo(Form("own [%s] fOwner[%s]", own?"YES":"NO", fOwner?"YES":"NO"));
817
818 if(TestBit(kOwner)) return;
819 for(int ic=0; ic<kNclusters; ic++){
820 if(!fClusters[ic]) continue;
821 fClusters[ic] = new AliTRDcluster(*fClusters[ic]);
822 }
823 SetBit(kOwner);
824}
825
826//____________________________________________________________
827void AliTRDseedV1::SetPadPlane(AliTRDpadPlane *p)
828{
829// Shortcut method to initialize pad geometry.
830 if(!p) return;
831 SetTilt(TMath::Tan(TMath::DegToRad()*p->GetTiltingAngle()));
832 SetPadLength(p->GetLengthIPad());
833 SetPadWidth(p->GetWidthIPad());
834}
835
836
837//____________________________________________________________________
838Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *chamber, Bool_t tilt)
839{
840//
841// Projective algorithm to attach clusters to seeding tracklets. The following steps are performed :
842// 1. Collapse x coordinate for the full detector plane
843// 2. truncated mean on y (r-phi) direction
844// 3. purge clusters
845// 4. truncated mean on z direction
846// 5. purge clusters
847//
848// Parameters
849// - chamber : pointer to tracking chamber container used to search the tracklet
850// - tilt : switch for tilt correction during road building [default true]
851// Output
852// - true : if tracklet found successfully. Failure can happend because of the following:
853// -
854// Detailed description
855//
856// We start up by defining the track direction in the xy plane and roads. The roads are calculated based
857// on tracking information (variance in the r-phi direction) and estimated variance of the standard
858// clusters (see AliTRDcluster::SetSigmaY2()) corrected for tilt (see GetCovAt()). From this the road is
859// BEGIN_LATEX
860// r_{y} = 3*#sqrt{12*(#sigma^{2}_{Trk}(y) + #frac{#sigma^{2}_{cl}(y) + tg^{2}(#alpha_{L})#sigma^{2}_{cl}(z)}{1+tg^{2}(#alpha_{L})})}
861// r_{z} = 1.5*L_{pad}
862// END_LATEX
863//
864// Author Alexandru Bercuci <A.Bercuci@gsi.de>
865
866 Bool_t kPRINT = kFALSE;
867 if(!fReconstructor->GetRecoParam() ){
868 AliError("Seed can not be used without a valid RecoParam.");
869 return kFALSE;
870 }
871 // Initialize reco params for this tracklet
872 // 1. first time bin in the drift region
873 Int_t t0 = 14;
874 Int_t kClmin = Int_t(fReconstructor->GetRecoParam() ->GetFindableClusters()*AliTRDtrackerV1::GetNTimeBins());
875
876 Double_t s2yTrk= fRefCov[0],
877 s2yCl = 0.,
878 s2zCl = GetPadLength()*GetPadLength()/12.,
879 syRef = TMath::Sqrt(s2yTrk),
880 t2 = GetTilt()*GetTilt();
881 //define roads
882 Double_t kroady = 1., //fReconstructor->GetRecoParam() ->GetRoad1y();
883 kroadz = GetPadLength() * 1.5 + 1.;
884 // define probing cluster (the perfect cluster) and default calibration
885 Short_t sig[] = {0, 0, 10, 30, 10, 0,0};
886 AliTRDcluster cp(fDet, 6, 75, 0, sig, 0);
887 Calibrate();
888
889 if(kPRINT) printf("AttachClusters() sy[%f] road[%f]\n", syRef, kroady);
890
891 // working variables
892 const Int_t kNrows = 16;
893 AliTRDcluster *clst[kNrows][kNclusters];
894 Double_t cond[4], dx, dy, yt, zt,
895 yres[kNrows][kNclusters];
896 Int_t idxs[kNrows][kNclusters], ncl[kNrows], ncls = 0;
897 memset(ncl, 0, kNrows*sizeof(Int_t));
898 memset(clst, 0, kNrows*kNclusters*sizeof(AliTRDcluster*));
899
900 // Do cluster projection
901 AliTRDcluster *c = 0x0;
902 AliTRDchamberTimeBin *layer = 0x0;
903 Bool_t kBUFFER = kFALSE;
904 for (Int_t it = 0; it < AliTRDtrackerV1::GetNTimeBins(); it++) {
905 if(!(layer = chamber->GetTB(it))) continue;
906 if(!Int_t(*layer)) continue;
907 // get track projection at layers position
908 dx = fX0 - layer->GetX();
909 yt = fYref[0] - fYref[1] * dx;
910 zt = fZref[0] - fZref[1] * dx;
911 // get standard cluster error corrected for tilt
912 cp.SetLocalTimeBin(it);
913 cp.SetSigmaY2(0.02, fDiffT, fExB, dx, -1./*zt*/, fYref[1]);
914 s2yCl = (cp.GetSigmaY2() + t2*s2zCl)/(1.+t2);
915 // get estimated road
916 kroady = 3.*TMath::Sqrt(12.*(s2yTrk + s2yCl));
917
918 if(kPRINT) printf(" %2d dx[%f] yt[%f] zt[%f] sT[um]=%6.2f sy[um]=%6.2f syTilt[um]=%6.2f yRoad[mm]=%f\n", it, dx, yt, zt, 1.e4*TMath::Sqrt(s2yTrk), 1.e4*TMath::Sqrt(cp.GetSigmaY2()), 1.e4*TMath::Sqrt(s2yCl), 1.e1*kroady);
919
920 // select clusters
921 cond[0] = yt; cond[2] = kroady;
922 cond[1] = zt; cond[3] = kroadz;
923 Int_t n=0, idx[6];
924 layer->GetClusters(cond, idx, n, 6);
925 for(Int_t ic = n; ic--;){
926 c = (*layer)[idx[ic]];
927 dy = yt - c->GetY();
928 dy += tilt ? GetTilt() * (c->GetZ() - zt) : 0.;
929 // select clusters on a 3 sigmaKalman level
930/* if(tilt && TMath::Abs(dy) > 3.*syRef){
931 printf("too large !!!\n");
932 continue;
933 }*/
934 Int_t r = c->GetPadRow();
935 if(kPRINT) printf("\t\t%d dy[%f] yc[%f] r[%d]\n", ic, TMath::Abs(dy), c->GetY(), r);
936 clst[r][ncl[r]] = c;
937 idxs[r][ncl[r]] = idx[ic];
938 yres[r][ncl[r]] = dy;
939 ncl[r]++; ncls++;
940
941 if(ncl[r] >= kNclusters) {
942 AliWarning(Form("Cluster candidates reached limit %d. Some may be lost.", kNclusters));
943 kBUFFER = kTRUE;
944 break;
945 }
946 }
947 if(kBUFFER) break;
948 }
949 if(kPRINT) printf("Found %d clusters\n", ncls);
950 if(ncls<kClmin) return kFALSE;
951
952 // analyze each row individualy
953 Double_t mean, syDis;
954 Int_t nrow[] = {0, 0, 0}, nr = 0, lr=-1;
955 for(Int_t ir=kNrows; ir--;){
956 if(!(ncl[ir])) continue;
957 if(lr>0 && lr-ir != 1){
958 if(kPRINT) printf("W - gap in rows attached !!\n");
959 }
960 if(kPRINT) printf("\tir[%d] lr[%d] n[%d]\n", ir, lr, ncl[ir]);
961 // Evaluate truncated mean on the y direction
962 if(ncl[ir] > 3) AliMathBase::EvaluateUni(ncl[ir], yres[ir], mean, syDis, Int_t(ncl[ir]*.8));
963 else {
964 mean = 0.; syDis = 0.;
965 continue;
966 }
967
968 // TODO check mean and sigma agains cluster resolution !!
969 if(kPRINT) printf("\tr[%2d] m[%f %5.3fsigma] s[%f]\n", ir, mean, TMath::Abs(mean/syDis), syDis);
970 // select clusters on a 3 sigmaDistr level
971 Bool_t kFOUND = kFALSE;
972 for(Int_t ic = ncl[ir]; ic--;){
973 if(yres[ir][ic] - mean > 3. * syDis){
974 clst[ir][ic] = 0x0; continue;
975 }
976 nrow[nr]++; kFOUND = kTRUE;
977 }
978 // exit loop
979 if(kFOUND) nr++;
980 lr = ir; if(nr>=3) break;
981 }
982 if(kPRINT) printf("lr[%d] nr[%d] nrow[0]=%d nrow[1]=%d nrow[2]=%d\n", lr, nr, nrow[0], nrow[1], nrow[2]);
983
984 // classify cluster rows
985 Int_t row = -1;
986 switch(nr){
987 case 1:
988 row = lr;
989 break;
990 case 2:
991 SetBit(kRowCross, kTRUE); // mark pad row crossing
992 if(nrow[0] > nrow[1]){ row = lr+1; lr = -1;}
993 else{
994 row = lr; lr = 1;
995 nrow[2] = nrow[1];
996 nrow[1] = nrow[0];
997 nrow[0] = nrow[2];
998 }
999 break;
1000 case 3:
1001 SetBit(kRowCross, kTRUE); // mark pad row crossing
1002 break;
1003 }
1004 if(kPRINT) printf("\trow[%d] n[%d]\n\n", row, nrow[0]);
1005 if(row<0) return kFALSE;
1006
1007 // Select and store clusters
1008 // We should consider here :
1009 // 1. How far is the chamber boundary
1010 // 2. How big is the mean
1011 Int_t n = 0;
1012 for (Int_t ir = 0; ir < nr; ir++) {
1013 Int_t jr = row + ir*lr;
1014 if(kPRINT) printf("\tattach %d clusters for row %d\n", ncl[jr], jr);
1015 for (Int_t ic = 0; ic < ncl[jr]; ic++) {
1016 if(!(c = clst[jr][ic])) continue;
1017 Int_t it = c->GetPadTime();
1018 // TODO proper indexing of clusters !!
1019 fIndexes[it+kNtb*ir] = chamber->GetTB(it)->GetGlobalIndex(idxs[jr][ic]);
1020 fClusters[it+kNtb*ir] = c;
1021
1022 //printf("\tid[%2d] it[%d] idx[%d]\n", ic, it, fIndexes[it]);
1023
1024 n++;
1025 }
1026 }
1027
1028 // number of minimum numbers of clusters expected for the tracklet
1029 if (n < kClmin){
1030 //AliWarning(Form("Not enough clusters to fit the tracklet %d [%d].", n, kClmin));
1031 return kFALSE;
1032 }
1033 SetN(n);
1034
1035 // Load calibration parameters for this tracklet
1036 Calibrate();
1037
1038 // calculate dx for time bins in the drift region (calibration aware)
1039 Float_t x[2] = {0.,0.}; Int_t tb[2]={0,0};
1040 for (Int_t it = t0, irp=0; irp<2 && it < AliTRDtrackerV1::GetNTimeBins(); it++) {
1041 if(!fClusters[it]) continue;
1042 x[irp] = fClusters[it]->GetX();
1043 tb[irp] = fClusters[it]->GetLocalTimeBin();
1044 irp++;
1045 }
1046 Int_t dtb = tb[1] - tb[0];
1047 fdX = dtb ? (x[0] - x[1]) / dtb : 0.15;
1048 return kTRUE;
1049}
1050
1051//____________________________________________________________
1052void AliTRDseedV1::Bootstrap(const AliTRDReconstructor *rec)
1053{
1054// Fill in all derived information. It has to be called after recovery from file or HLT.
1055// The primitive data are
1056// - list of clusters
1057// - detector (as the detector will be removed from clusters)
1058// - position of anode wire (fX0) - temporary
1059// - track reference position and direction
1060// - momentum of the track
1061// - time bin length [cm]
1062//
1063// A.Bercuci <A.Bercuci@gsi.de> Oct 30th 2008
1064//
1065 fReconstructor = rec;
1066 AliTRDgeometry g;
1067 AliTRDpadPlane *pp = g.GetPadPlane(fDet);
1068 fPad[0] = pp->GetLengthIPad();
1069 fPad[1] = pp->GetWidthIPad();
1070 fPad[3] = TMath::Tan(TMath::DegToRad()*pp->GetTiltingAngle());
1071 //fSnp = fYref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]);
1072 //fTgl = fZref[1];
1073 Int_t n = 0, nshare = 0, nused = 0;
1074 AliTRDcluster **cit = &fClusters[0];
1075 for(Int_t ic = kNclusters; ic--; cit++){
1076 if(!(*cit)) return;
1077 n++;
1078 if((*cit)->IsShared()) nshare++;
1079 if((*cit)->IsUsed()) nused++;
1080 }
1081 SetN(n); SetNUsed(nused); SetNShared(nshare);
1082 Fit();
1083 CookLabels();
1084 GetProbability();
1085}
1086
1087
1088//____________________________________________________________________
1089Bool_t AliTRDseedV1::Fit(Bool_t tilt, Bool_t zcorr)
1090{
1091//
1092// Linear fit of the clusters attached to the tracklet
1093//
1094// Parameters :
1095// - tilt : switch for tilt pad correction of cluster y position based on
1096// the z, dzdx info from outside [default false].
1097// - zcorr : switch for using z information to correct for anisochronity
1098// and a finner error parameterization estimation [default false]
1099// Output :
1100// True if successful
1101//
1102// Detailed description
1103//
1104// Fit in the xy plane
1105//
1106// The fit is performed to estimate the y position of the tracklet and the track
1107// angle in the bending plane. The clusters are represented in the chamber coordinate
1108// system (with respect to the anode wire - see AliTRDtrackerV1::FollowBackProlongation()
1109// on how this is set). The x and y position of the cluster and also their variances
1110// are known from clusterizer level (see AliTRDcluster::GetXloc(), AliTRDcluster::GetYloc(),
1111// AliTRDcluster::GetSX() and AliTRDcluster::GetSY()).
1112// If gaussian approximation is used to calculate y coordinate of the cluster the position
1113// is recalculated taking into account the track angle. The general formula to calculate the
1114// error of cluster position in the gaussian approximation taking into account diffusion and track
1115// inclination is given for TRD by:
1116// BEGIN_LATEX
1117// #sigma^{2}_{y} = #sigma^{2}_{PRF} + #frac{x#delta_{t}^{2}}{(1+tg(#alpha_{L}))^{2}} + #frac{x^{2}tg^{2}(#phi-#alpha_{L})tg^{2}(#alpha_{L})}{12}
1118// END_LATEX
1119//
1120// Since errors are calculated only in the y directions, radial errors (x direction) are mapped to y
1121// by projection i.e.
1122// BEGIN_LATEX
1123// #sigma_{x|y} = tg(#phi) #sigma_{x}
1124// END_LATEX
1125// and also by the lorentz angle correction
1126//
1127// Fit in the xz plane
1128//
1129// The "fit" is performed to estimate the radial position (x direction) where pad row cross happens.
1130// If no pad row crossing the z position is taken from geometry and radial position is taken from the xy
1131// fit (see below).
1132//
1133// There are two methods to estimate the radial position of the pad row cross:
1134// 1. leading cluster radial position : Here the lower part of the tracklet is considered and the last
1135// cluster registered (at radial x0) on this segment is chosen to mark the pad row crossing. The error
1136// of the z estimate is given by :
1137// BEGIN_LATEX
1138// #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12
1139// END_LATEX
1140// The systematic errors for this estimation are generated by the following sources:
1141// - no charge sharing between pad rows is considered (sharp cross)
1142// - missing cluster at row cross (noise peak-up, under-threshold signal etc.).
1143//
1144// 2. charge fit over the crossing point : Here the full energy deposit along the tracklet is considered
1145// to estimate the position of the crossing by a fit in the qx plane. The errors in the q directions are
1146// parameterized as s_q = q^2. The systematic errors for this estimation are generated by the following sources:
1147// - no general model for the qx dependence
1148// - physical fluctuations of the charge deposit
1149// - gain calibration dependence
1150//
1151// Estimation of the radial position of the tracklet
1152//
1153// For pad row cross the radial position is taken from the xz fit (see above). Otherwise it is taken as the
1154// interpolation point of the tracklet i.e. the point where the error in y of the fit is minimum. The error
1155// in the y direction of the tracklet is (see AliTRDseedV1::GetCovAt()):
1156// BEGIN_LATEX
1157// #sigma_{y} = #sigma^{2}_{y_{0}} + 2xcov(y_{0}, dy/dx) + #sigma^{2}_{dy/dx}
1158// END_LATEX
1159// and thus the radial position is:
1160// BEGIN_LATEX
1161// x = - cov(y_{0}, dy/dx)/#sigma^{2}_{dy/dx}
1162// END_LATEX
1163//
1164// Estimation of tracklet position error
1165//
1166// The error in y direction is the error of the linear fit at the radial position of the tracklet while in the z
1167// direction is given by the cluster error or pad row cross error. In case of no pad row cross this is given by:
1168// BEGIN_LATEX
1169// #sigma_{y} = #sigma^{2}_{y_{0}} - 2cov^{2}(y_{0}, dy/dx)/#sigma^{2}_{dy/dx} + #sigma^{2}_{dy/dx}
1170// #sigma_{z} = Pad_{length}/12
1171// END_LATEX
1172// For pad row cross the full error is calculated at the radial position of the crossing (see above) and the error
1173// in z by the width of the crossing region - being a matter of parameterization.
1174// BEGIN_LATEX
1175// #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12
1176// END_LATEX
1177// In case of no tilt correction (default in the barrel tracking) the tilt is taken into account by the rotation of
1178// the covariance matrix. See AliTRDseedV1::GetCovAt() for details.
1179//
1180// Author
1181// A.Bercuci <A.Bercuci@gsi.de>
1182
1183 if(!IsCalibrated()) Calibrate();
1184
1185 const Int_t kClmin = 8;
1186
1187 // get track direction
1188 Double_t y0 = fYref[0];
1189 Double_t dydx = fYref[1];
1190 Double_t z0 = fZref[0];
1191 Double_t dzdx = fZref[1];
1192 Double_t yt, zt;
1193
1194 //AliTRDtrackerV1::AliTRDLeastSquare fitterZ;
1195 TLinearFitter fitterY(1, "pol1");
1196 TLinearFitter fitterZ(1, "pol1");
1197
1198 // book cluster information
1199 Double_t qc[kNclusters], xc[kNclusters], yc[kNclusters], zc[kNclusters], sy[kNclusters];
1200
1201 Int_t n = 0;
1202 AliTRDcluster *c=0x0, **jc = &fClusters[0];
1203 for (Int_t ic=0; ic<kNtb; ic++, ++jc) {
1204 xc[ic] = -1.;
1205 yc[ic] = 999.;
1206 zc[ic] = 999.;
1207 sy[ic] = 0.;
1208 if(!(c = (*jc))) continue;
1209 if(!c->IsInChamber()) continue;
1210
1211 Float_t w = 1.;
1212 if(c->GetNPads()>4) w = .5;
1213 if(c->GetNPads()>5) w = .2;
1214
1215 // cluster charge
1216 qc[n] = TMath::Abs(c->GetQ());
1217 // pad row of leading
1218
1219 // Radial cluster position
1220 //Int_t jc = TMath::Max(fN-3, 0);
1221 //xc[fN] = c->GetXloc(fT0, fVD, &qc[jc], &xc[jc]/*, z0 - c->GetX()*dzdx*/);
1222 xc[n] = fX0 - c->GetX();
1223
1224 // extrapolated track to cluster position
1225 yt = y0 - xc[n]*dydx;
1226 zt = z0 - xc[n]*dzdx;
1227
1228 // Recalculate cluster error based on tracking information
1229 c->SetSigmaY2(fS2PRF, fDiffT, fExB, xc[n], zcorr?zt:-1., dydx);
1230 sy[n] = TMath::Sqrt(c->GetSigmaY2());
1231
1232 yc[n] = fReconstructor->UseGAUS() ?
1233 c->GetYloc(y0, sy[n], GetPadWidth()): c->GetY();
1234 zc[n] = c->GetZ();
1235 //optional tilt correction
1236 if(tilt) yc[n] -= (GetTilt()*(zc[n] - zt));
1237
1238 fitterY.AddPoint(&xc[n], yc[n], TMath::Sqrt(sy[n]));
1239 fitterZ.AddPoint(&xc[n], qc[n], 1.);
1240 n++;
1241 }
1242 // to few clusters
1243 if (n < kClmin) return kFALSE;
1244
1245 // fit XY
1246 fitterY.Eval();
1247 fYfit[0] = fitterY.GetParameter(0);
1248 fYfit[1] = -fitterY.GetParameter(1);
1249 // store covariance
1250 Double_t *p = fitterY.GetCovarianceMatrix();
1251 fCov[0] = p[0]; // variance of y0
1252 fCov[1] = p[1]; // covariance of y0, dydx
1253 fCov[2] = p[3]; // variance of dydx
1254 // the ref radial position is set at the minimum of
1255 // the y variance of the tracklet
1256 fX = -fCov[1]/fCov[2];
1257
1258 // fit XZ
1259 if(IsRowCross()){
1260/* // THE LEADING CLUSTER METHOD
1261 Float_t xMin = fX0;
1262 Int_t ic=n=kNclusters-1; jc = &fClusters[ic];
1263 AliTRDcluster *c0 =0x0, **kc = &fClusters[kNtb-1];
1264 for(; ic>kNtb; ic--, --jc, --kc){
1265 if((c0 = (*kc)) && c0->IsInChamber() && (xMin>c0->GetX())) xMin = c0->GetX();
1266 if(!(c = (*jc))) continue;
1267 if(!c->IsInChamber()) continue;
1268 zc[kNclusters-1] = c->GetZ();
1269 fX = fX0 - c->GetX();
1270 }
1271 fZfit[0] = .5*(zc[0]+zc[kNclusters-1]); fZfit[1] = 0.;
1272 // Error parameterization
1273 fS2Z = fdX*fZref[1];
1274 fS2Z *= fS2Z; fS2Z *= 0.2887; // 1/sqrt(12)*/
1275
1276 // THE FIT X-Q PLANE METHOD
1277 Int_t ic=n=kNclusters-1; jc = &fClusters[ic];
1278 for(; ic>kNtb; ic--, --jc){
1279 if(!(c = (*jc))) continue;
1280 if(!c->IsInChamber()) continue;
1281 qc[n] = TMath::Abs(c->GetQ());
1282 xc[n] = fX0 - c->GetX();
1283 zc[n] = c->GetZ();
1284 fitterZ.AddPoint(&xc[n], -qc[n], 1.);
1285 n--;
1286 }
1287 // fit XZ
1288 fitterZ.Eval();
1289 if(fitterZ.GetParameter(1)!=0.){
1290 fX = -fitterZ.GetParameter(0)/fitterZ.GetParameter(1);
1291 fX=(fX<0.)?0.:fX;
1292 Float_t dl = .5*AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght();
1293 fX=(fX> dl)?dl:fX;
1294 fX-=.055; // TODO to be understood
1295 }
1296
1297 fZfit[0] = .5*(zc[0]+zc[kNclusters-1]); fZfit[1] = 0.;
1298 // temporary external error parameterization
1299 fS2Z = 0.05+0.4*TMath::Abs(fZref[1]); fS2Z *= fS2Z;
1300 // TODO correct formula
1301 //fS2Z = sigma_x*TMath::Abs(fZref[1]);
1302 } else {
1303 fZfit[0] = zc[0]; fZfit[1] = 0.;
1304 fS2Z = GetPadLength()*GetPadLength()/12.;
1305 }
1306 fS2Y = fCov[0] +2.*fX*fCov[1] + fX*fX*fCov[2];
1307 return kTRUE;
1308}
1309
1310
1311/*
1312//_____________________________________________________________________________
1313void AliTRDseedV1::FitMI()
1314{
1315//
1316// Fit the seed.
1317// Marian Ivanov's version
1318//
1319// linear fit on the y direction with respect to the reference direction.
1320// The residuals for each x (x = xc - x0) are deduced from:
1321// dy = y - yt (1)
1322// the tilting correction is written :
1323// y = yc + h*(zc-zt) (2)
1324// yt = y0+dy/dx*x (3)
1325// zt = z0+dz/dx*x (4)
1326// from (1),(2),(3) and (4)
1327// dy = yc - y0 - (dy/dx + h*dz/dx)*x + h*(zc-z0)
1328// the last term introduces the correction on y direction due to tilting pads. There are 2 ways to account for this:
1329// 1. use tilting correction for calculating the y
1330// 2. neglect tilting correction here and account for it in the error parametrization of the tracklet.
1331 const Float_t kRatio = 0.8;
1332 const Int_t kClmin = 5;
1333 const Float_t kmaxtan = 2;
1334
1335 if (TMath::Abs(fYref[1]) > kmaxtan){
1336 //printf("Exit: Abs(fYref[1]) = %3.3f, kmaxtan = %3.3f\n", TMath::Abs(fYref[1]), kmaxtan);
1337 return; // Track inclined too much
1338 }
1339
1340 Float_t sigmaexp = 0.05 + TMath::Abs(fYref[1] * 0.25); // Expected r.m.s in y direction
1341 Float_t ycrosscor = GetPadLength() * GetTilt() * 0.5; // Y correction for crossing
1342 Int_t fNChange = 0;
1343
1344 Double_t sumw;
1345 Double_t sumwx;
1346 Double_t sumwx2;
1347 Double_t sumwy;
1348 Double_t sumwxy;
1349 Double_t sumwz;
1350 Double_t sumwxz;
1351
1352 // Buffering: Leave it constant fot Performance issues
1353 Int_t zints[kNtb]; // Histograming of the z coordinate
1354 // Get 1 and second max probable coodinates in z
1355 Int_t zouts[2*kNtb];
1356 Float_t allowedz[kNtb]; // Allowed z for given time bin
1357 Float_t yres[kNtb]; // Residuals from reference
1358 //Float_t anglecor = GetTilt() * fZref[1]; // Correction to the angle
1359
1360 Float_t pos[3*kNtb]; memset(pos, 0, 3*kNtb*sizeof(Float_t));
1361 Float_t *fX = &pos[0], *fY = &pos[kNtb], *fZ = &pos[2*kNtb];
1362
1363 Int_t fN = 0; AliTRDcluster *c = 0x0;
1364 fN2 = 0;
1365 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) {
1366 yres[i] = 10000.0;
1367 if (!(c = fClusters[i])) continue;
1368 if(!c->IsInChamber()) continue;
1369 // Residual y
1370 //yres[i] = fY[i] - fYref[0] - (fYref[1] + anglecor) * fX[i] + GetTilt()*(fZ[i] - fZref[0]);
1371 fX[i] = fX0 - c->GetX();
1372 fY[i] = c->GetY();
1373 fZ[i] = c->GetZ();
1374 yres[i] = fY[i] - GetTilt()*(fZ[i] - (fZref[0] - fX[i]*fZref[1]));
1375 zints[fN] = Int_t(fZ[i]);
1376 fN++;
1377 }
1378
1379 if (fN < kClmin){
1380 //printf("Exit fN < kClmin: fN = %d\n", fN);
1381 return;
1382 }
1383 Int_t nz = AliTRDtrackerV1::Freq(fN, zints, zouts, kFALSE);
1384 Float_t fZProb = zouts[0];
1385 if (nz <= 1) zouts[3] = 0;
1386 if (zouts[1] + zouts[3] < kClmin) {
1387 //printf("Exit zouts[1] = %d, zouts[3] = %d\n",zouts[1],zouts[3]);
1388 return;
1389 }
1390
1391 // Z distance bigger than pad - length
1392 if (TMath::Abs(zouts[0]-zouts[2]) > 12.0) zouts[3] = 0;
1393
1394 Int_t breaktime = -1;
1395 Bool_t mbefore = kFALSE;
1396 Int_t cumul[kNtb][2];
1397 Int_t counts[2] = { 0, 0 };
1398
1399 if (zouts[3] >= 3) {
1400
1401 //
1402 // Find the break time allowing one chage on pad-rows
1403 // with maximal number of accepted clusters
1404 //
1405 fNChange = 1;
1406 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) {
1407 cumul[i][0] = counts[0];
1408 cumul[i][1] = counts[1];
1409 if (TMath::Abs(fZ[i]-zouts[0]) < 2) counts[0]++;
1410 if (TMath::Abs(fZ[i]-zouts[2]) < 2) counts[1]++;
1411 }
1412 Int_t maxcount = 0;
1413 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) {
1414 Int_t after = cumul[AliTRDtrackerV1::GetNTimeBins()][0] - cumul[i][0];
1415 Int_t before = cumul[i][1];
1416 if (after + before > maxcount) {
1417 maxcount = after + before;
1418 breaktime = i;
1419 mbefore = kFALSE;
1420 }
1421 after = cumul[AliTRDtrackerV1::GetNTimeBins()-1][1] - cumul[i][1];
1422 before = cumul[i][0];
1423 if (after + before > maxcount) {
1424 maxcount = after + before;
1425 breaktime = i;
1426 mbefore = kTRUE;
1427 }
1428 }
1429 breaktime -= 1;
1430 }
1431
1432 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1433 if (i > breaktime) allowedz[i] = mbefore ? zouts[2] : zouts[0];
1434 if (i <= breaktime) allowedz[i] = (!mbefore) ? zouts[2] : zouts[0];
1435 }
1436
1437 if (((allowedz[0] > allowedz[AliTRDtrackerV1::GetNTimeBins()]) && (fZref[1] < 0)) ||
1438 ((allowedz[0] < allowedz[AliTRDtrackerV1::GetNTimeBins()]) && (fZref[1] > 0))) {
1439 //
1440 // Tracklet z-direction not in correspondance with track z direction
1441 //
1442 fNChange = 0;
1443 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1444 allowedz[i] = zouts[0]; // Only longest taken
1445 }
1446 }
1447
1448 if (fNChange > 0) {
1449 //
1450 // Cross pad -row tracklet - take the step change into account
1451 //
1452 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1453 if (!fClusters[i]) continue;
1454 if(!fClusters[i]->IsInChamber()) continue;
1455 if (TMath::Abs(fZ[i] - allowedz[i]) > 2) continue;
1456 // Residual y
1457 //yres[i] = fY[i] - fYref[0] - (fYref[1] + anglecor) * fX[i] + GetTilt()*(fZ[i] - fZref[0]);
1458 yres[i] = fY[i] - GetTilt()*(fZ[i] - (fZref[0] - fX[i]*fZref[1]));
1459// if (TMath::Abs(fZ[i] - fZProb) > 2) {
1460// if (fZ[i] > fZProb) yres[i] += GetTilt() * GetPadLength();
1461// if (fZ[i] < fZProb) yres[i] -= GetTilt() * GetPadLength();
1462 }
1463 }
1464 }
1465
1466 Double_t yres2[kNtb];
1467 Double_t mean;
1468 Double_t sigma;
1469 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1470 if (!fClusters[i]) continue;
1471 if(!fClusters[i]->IsInChamber()) continue;
1472 if (TMath::Abs(fZ[i] - allowedz[i]) > 2) continue;
1473 yres2[fN2] = yres[i];
1474 fN2++;
1475 }
1476 if (fN2 < kClmin) {
1477 //printf("Exit fN2 < kClmin: fN2 = %d\n", fN2);
1478 fN2 = 0;
1479 return;
1480 }
1481 AliMathBase::EvaluateUni(fN2,yres2,mean,sigma, Int_t(fN2*kRatio-2.));
1482 if (sigma < sigmaexp * 0.8) {
1483 sigma = sigmaexp;
1484 }
1485 //Float_t fSigmaY = sigma;
1486
1487 // Reset sums
1488 sumw = 0;
1489 sumwx = 0;
1490 sumwx2 = 0;
1491 sumwy = 0;
1492 sumwxy = 0;
1493 sumwz = 0;
1494 sumwxz = 0;
1495
1496 fN2 = 0;
1497 Float_t fMeanz = 0;
1498 Float_t fMPads = 0;
1499 fUsable = 0;
1500 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1501 if (!fClusters[i]) continue;
1502 if (!fClusters[i]->IsInChamber()) continue;
1503 if (TMath::Abs(fZ[i] - allowedz[i]) > 2){fClusters[i] = 0x0; continue;}
1504 if (TMath::Abs(yres[i] - mean) > 4.0 * sigma){fClusters[i] = 0x0; continue;}
1505 SETBIT(fUsable,i);
1506 fN2++;
1507 fMPads += fClusters[i]->GetNPads();
1508 Float_t weight = 1.0;
1509 if (fClusters[i]->GetNPads() > 4) weight = 0.5;
1510 if (fClusters[i]->GetNPads() > 5) weight = 0.2;
1511
1512
1513 Double_t x = fX[i];
1514 //printf("x = %7.3f dy = %7.3f fit %7.3f\n", x, yres[i], fY[i]-yres[i]);
1515
1516 sumw += weight;
1517 sumwx += x * weight;
1518 sumwx2 += x*x * weight;
1519 sumwy += weight * yres[i];
1520 sumwxy += weight * (yres[i]) * x;
1521 sumwz += weight * fZ[i];
1522 sumwxz += weight * fZ[i] * x;
1523
1524 }
1525
1526 if (fN2 < kClmin){
1527 //printf("Exit fN2 < kClmin(2): fN2 = %d\n",fN2);
1528 fN2 = 0;
1529 return;
1530 }
1531 fMeanz = sumwz / sumw;
1532 Float_t correction = 0;
1533 if (fNChange > 0) {
1534 // Tracklet on boundary
1535 if (fMeanz < fZProb) correction = ycrosscor;
1536 if (fMeanz > fZProb) correction = -ycrosscor;
1537 }
1538
1539 Double_t det = sumw * sumwx2 - sumwx * sumwx;
1540 fYfit[0] = (sumwx2 * sumwy - sumwx * sumwxy) / det;
1541 fYfit[1] = (sumw * sumwxy - sumwx * sumwy) / det;
1542
1543 fS2Y = 0;
1544 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1545 if (!TESTBIT(fUsable,i)) continue;
1546 Float_t delta = yres[i] - fYfit[0] - fYfit[1] * fX[i];
1547 fS2Y += delta*delta;
1548 }
1549 fS2Y = TMath::Sqrt(fS2Y / Float_t(fN2-2));
1550 // TEMPORARY UNTIL covariance properly calculated
1551 fS2Y = TMath::Max(fS2Y, Float_t(.1));
1552
1553 fZfit[0] = (sumwx2 * sumwz - sumwx * sumwxz) / det;
1554 fZfit[1] = (sumw * sumwxz - sumwx * sumwz) / det;
1555// fYfitR[0] += fYref[0] + correction;
1556// fYfitR[1] += fYref[1];
1557// fYfit[0] = fYfitR[0];
1558 fYfit[1] = -fYfit[1];
1559
1560 UpdateUsed();
1561}*/
1562
1563//___________________________________________________________________
1564void AliTRDseedV1::Print(Option_t *o) const
1565{
1566 //
1567 // Printing the seedstatus
1568 //
1569
1570 AliInfo(Form("Det[%3d] X0[%7.2f] Pad{L[%5.2f] W[%5.2f] Tilt[%+6.2f]}", fDet, fX0, GetPadLength(), GetPadWidth(), GetTilt()));
1571 AliInfo(Form("N[%2d] Nused[%2d] Nshared[%2d] [%d]", GetN(), GetNUsed(), GetNShared(), fN));
1572 AliInfo(Form("FLAGS : RC[%c] Kink[%c] SA[%c]", IsRowCross()?'y':'n', IsKink()?'y':'n', IsStandAlone()?'y':'n'));
1573
1574 Double_t cov[3], x=GetX();
1575 GetCovAt(x, cov);
1576 AliInfo(" | x[cm] | y[cm] | z[cm] | dydx | dzdx |");
1577 AliInfo(Form("Fit | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | ----- |", x, GetY(), TMath::Sqrt(cov[0]), GetZ(), TMath::Sqrt(cov[2]), fYfit[1]));
1578 AliInfo(Form("Ref | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | %5.2f |", x, fYref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[0]), fZref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[2]), fYref[1], fZref[1]))
1579
1580
1581 if(strcmp(o, "a")!=0) return;
1582
1583 AliTRDcluster* const* jc = &fClusters[0];
1584 for(int ic=0; ic<kNclusters; ic++, jc++) {
1585 if(!(*jc)) continue;
1586 (*jc)->Print(o);
1587 }
1588}
1589
1590
1591//___________________________________________________________________
1592Bool_t AliTRDseedV1::IsEqual(const TObject *o) const
1593{
1594 // Checks if current instance of the class has the same essential members
1595 // as the given one
1596
1597 if(!o) return kFALSE;
1598 const AliTRDseedV1 *inTracklet = dynamic_cast<const AliTRDseedV1*>(o);
1599 if(!inTracklet) return kFALSE;
1600
1601 for (Int_t i = 0; i < 2; i++){
1602 if ( fYref[i] != inTracklet->fYref[i] ) return kFALSE;
1603 if ( fZref[i] != inTracklet->fZref[i] ) return kFALSE;
1604 }
1605
1606 if ( fS2Y != inTracklet->fS2Y ) return kFALSE;
1607 if ( GetTilt() != inTracklet->GetTilt() ) return kFALSE;
1608 if ( GetPadLength() != inTracklet->GetPadLength() ) return kFALSE;
1609
1610 for (Int_t i = 0; i < kNclusters; i++){
1611// if ( fX[i] != inTracklet->GetX(i) ) return kFALSE;
1612// if ( fY[i] != inTracklet->GetY(i) ) return kFALSE;
1613// if ( fZ[i] != inTracklet->GetZ(i) ) return kFALSE;
1614 if ( fIndexes[i] != inTracklet->fIndexes[i] ) return kFALSE;
1615 }
1616// if ( fUsable != inTracklet->fUsable ) return kFALSE;
1617
1618 for (Int_t i=0; i < 2; i++){
1619 if ( fYfit[i] != inTracklet->fYfit[i] ) return kFALSE;
1620 if ( fZfit[i] != inTracklet->fZfit[i] ) return kFALSE;
1621 if ( fLabels[i] != inTracklet->fLabels[i] ) return kFALSE;
1622 }
1623
1624/* if ( fMeanz != inTracklet->GetMeanz() ) return kFALSE;
1625 if ( fZProb != inTracklet->GetZProb() ) return kFALSE;*/
1626 if ( fN != inTracklet->fN ) return kFALSE;
1627 //if ( fNUsed != inTracklet->fNUsed ) return kFALSE;
1628 //if ( fFreq != inTracklet->GetFreq() ) return kFALSE;
1629 //if ( fNChange != inTracklet->GetNChange() ) return kFALSE;
1630
1631 if ( fC != inTracklet->fC ) return kFALSE;
1632 //if ( fCC != inTracklet->GetCC() ) return kFALSE;
1633 if ( fChi2 != inTracklet->fChi2 ) return kFALSE;
1634 // if ( fChi2Z != inTracklet->GetChi2Z() ) return kFALSE;
1635
1636 if ( fDet != inTracklet->fDet ) return kFALSE;
1637 if ( fPt != inTracklet->fPt ) return kFALSE;
1638 if ( fdX != inTracklet->fdX ) return kFALSE;
1639
1640 for (Int_t iCluster = 0; iCluster < kNclusters; iCluster++){
1641 AliTRDcluster *curCluster = fClusters[iCluster];
1642 AliTRDcluster *inCluster = inTracklet->fClusters[iCluster];
1643 if (curCluster && inCluster){
1644 if (! curCluster->IsEqual(inCluster) ) {
1645 curCluster->Print();
1646 inCluster->Print();
1647 return kFALSE;
1648 }
1649 } else {
1650 // if one cluster exists, and corresponding
1651 // in other tracklet doesn't - return kFALSE
1652 if(curCluster || inCluster) return kFALSE;
1653 }
1654 }
1655 return kTRUE;
1656}