]> git.uio.no Git - u/mrichter/AliRoot.git/blob - TRD/AliTRDclusterizerV1.cxx
459342e48cf1f364444802f7581dc8e2eff98893
[u/mrichter/AliRoot.git] / TRD / AliTRDclusterizerV1.cxx
1
2 /**************************************************************************
3  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4  *                                                                        *
5  * Author: The ALICE Off-line Project.                                    *
6  * Contributors are mentioned in the code where appropriate.              *
7  *                                                                        *
8  * Permission to use, copy, modify and distribute this software and its   *
9  * documentation strictly for non-commercial purposes is hereby granted   *
10  * without fee, provided that the above copyright notice appears in all   *
11  * copies and that both the copyright notice and this permission notice   *
12  * appear in the supporting documentation. The authors make no claims     *
13  * about the suitability of this software for any purpose. It is          *
14  * provided "as is" without express or implied warranty.                  *
15  **************************************************************************/
16
17 /* $Id$ */
18
19 ///////////////////////////////////////////////////////////////////////////////
20 //                                                                           //
21 // TRD cluster finder                                                        //
22 //                                                                           //
23 ///////////////////////////////////////////////////////////////////////////////
24
25 #include <TF1.h>
26 #include <TTree.h>
27 #include <TH1.h>
28 #include <TFile.h>
29
30 #include "AliRunLoader.h"
31 #include "AliLoader.h"
32 #include "AliRawReader.h"
33 #include "AliLog.h"
34
35 #include "AliTRDclusterizerV1.h"
36 #include "AliTRDgeometry.h"
37 #include "AliTRDdataArrayF.h"
38 #include "AliTRDdataArrayI.h"
39 #include "AliTRDdigitsManager.h"
40 #include "AliTRDpadPlane.h"
41 #include "AliTRDrawData.h"
42 #include "AliTRDcalibDB.h"
43 #include "AliTRDSimParam.h"
44 #include "AliTRDRecParam.h"
45 #include "AliTRDCommonParam.h"
46 #include "AliTRDcluster.h"
47
48 #include "Cal/AliTRDCalROC.h"
49 #include "Cal/AliTRDCalDet.h"
50
51 ClassImp(AliTRDclusterizerV1)
52
53 //_____________________________________________________________________________
54 AliTRDclusterizerV1::AliTRDclusterizerV1()
55   :AliTRDclusterizer()
56   ,fDigitsManager(NULL)
57 {
58   //
59   // AliTRDclusterizerV1 default constructor
60   //
61
62 }
63
64 //_____________________________________________________________________________
65 AliTRDclusterizerV1::AliTRDclusterizerV1(const Text_t *name, const Text_t *title)
66   :AliTRDclusterizer(name,title)
67   ,fDigitsManager(new AliTRDdigitsManager())
68 {
69   //
70   // AliTRDclusterizerV1 constructor
71   //
72
73   fDigitsManager->CreateArrays();
74
75 }
76
77 //_____________________________________________________________________________
78 AliTRDclusterizerV1::AliTRDclusterizerV1(const AliTRDclusterizerV1 &c)
79   :AliTRDclusterizer(c)
80   ,fDigitsManager(NULL)
81 {
82   //
83   // AliTRDclusterizerV1 copy constructor
84   //
85
86 }
87
88 //_____________________________________________________________________________
89 AliTRDclusterizerV1::~AliTRDclusterizerV1()
90 {
91   //
92   // AliTRDclusterizerV1 destructor
93   //
94
95   if (fDigitsManager) {
96     delete fDigitsManager;
97     fDigitsManager = NULL;
98   }
99
100 }
101
102 //_____________________________________________________________________________
103 AliTRDclusterizerV1 &AliTRDclusterizerV1::operator=(const AliTRDclusterizerV1 &c)
104 {
105   //
106   // Assignment operator
107   //
108
109   if (this != &c) ((AliTRDclusterizerV1 &) c).Copy(*this);
110   return *this;
111
112 }
113
114 //_____________________________________________________________________________
115 void AliTRDclusterizerV1::Copy(TObject &c) const
116 {
117   //
118   // Copy function
119   //
120
121   ((AliTRDclusterizerV1 &) c).fDigitsManager = 0;
122
123   AliTRDclusterizer::Copy(c);
124
125 }
126
127 //_____________________________________________________________________________
128 Bool_t AliTRDclusterizerV1::ReadDigits()
129 {
130   //
131   // Reads the digits arrays from the input aliroot file
132   //
133
134   if (!fRunLoader) {
135     AliError("No run loader available");
136     return kFALSE;
137   }
138
139   AliLoader* loader = fRunLoader->GetLoader("TRDLoader");
140   if (!loader->TreeD()) {
141     loader->LoadDigits();
142   }
143
144   // Read in the digit arrays
145   return (fDigitsManager->ReadDigits(loader->TreeD()));
146
147 }
148
149 //_____________________________________________________________________________
150 Bool_t AliTRDclusterizerV1::ReadDigits(AliRawReader *rawReader)
151 {
152   //
153   // Reads the digits arrays from the ddl file
154   //
155
156   AliTRDrawData raw;
157   fDigitsManager = raw.Raw2Digits(rawReader);
158
159   return kTRUE;
160
161 }
162
163 //_____________________________________________________________________________
164 Bool_t AliTRDclusterizerV1::MakeClusters()
165 {
166   //
167   // Generates the cluster.
168   //
169
170   Int_t row   = 0;
171   Int_t col   = 0;
172   Int_t time  = 0;
173   Int_t icham = 0;
174   Int_t iplan = 0;
175   Int_t isect = 0;
176   Int_t iPad  = 0;
177     
178   AliTRDdataArrayI *digitsIn;
179   AliTRDdataArrayI *tracksIn;
180
181   // Get the geometry
182   AliTRDgeometry *geo            = AliTRDgeometry::GetGeometry(fRunLoader);  
183   if (!geo) {
184     AliWarning("Loading default TRD geometry!");
185     geo = new AliTRDgeometry();
186   }
187
188   AliTRDcalibDB  *calibration    = AliTRDcalibDB::Instance();
189   if (!calibration) {
190     AliFatal("No AliTRDcalibDB instance available\n");
191     return kFALSE;  
192   }
193   
194   AliTRDSimParam *simParam       = AliTRDSimParam::Instance();
195   if (!simParam) {
196     AliError("No AliTRDSimParam instance available\n");
197     return kFALSE;  
198   }
199   
200   AliTRDRecParam *recParam       = AliTRDRecParam::Instance();
201   if (!recParam) {
202     AliError("No AliTRDRecParam instance available\n");
203     return kFALSE;  
204   }
205   
206   AliTRDCommonParam *commonParam = AliTRDCommonParam::Instance();
207   if (!commonParam) {
208     AliError("Could not get common parameters\n");
209     return kFALSE;
210   }
211
212   // ADC thresholds
213   Float_t ADCthreshold   = simParam->GetADCthreshold();
214   // Threshold value for the maximum
215   Float_t maxThresh      = recParam->GetClusMaxThresh();
216   // Threshold value for the digit signal
217   Float_t sigThresh      = recParam->GetClusSigThresh();
218
219   // Detector wise calibration object for t0
220   const AliTRDCalDet *calT0Det         = calibration->GetT0Det();
221   // Detector wise calibration object for the gain factors
222   const AliTRDCalDet *calGainFactorDet = calibration->GetGainFactorDet();
223
224   // Iteration limit for unfolding procedure
225   const Float_t kEpsilon = 0.01;             
226   const Int_t   kNclus   = 3;  
227   const Int_t   kNsig    = 5;
228   const Int_t   kNdict   = AliTRDdigitsManager::kNDict;
229   const Int_t   kNtrack  = kNdict * kNclus;
230
231   Int_t    iType         = 0;
232   Int_t    iUnfold       = 0;  
233   Double_t ratioLeft     = 1.0;
234   Double_t ratioRight    = 1.0;
235
236   Int_t    iClusterROC   = 0;
237
238   Double_t padSignal[kNsig];   
239   Double_t clusterSignal[kNclus];
240   Double_t clusterPads[kNclus];   
241
242   Int_t    chamBeg    = 0;
243   Int_t    chamEnd    = AliTRDgeometry::Ncham();
244   Int_t    planBeg    = 0;
245   Int_t    planEnd    = AliTRDgeometry::Nplan();
246   Int_t    sectBeg    = 0;
247   Int_t    sectEnd    = AliTRDgeometry::Nsect();
248   Int_t    nTimeTotal = calibration->GetNumberOfTimeBins();
249
250   Int_t    dummy[9]   = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
251
252   AliDebug(1,Form("Number of Time Bins = %d.\n",nTimeTotal));
253
254   // Start clustering in every chamber
255   for (icham = chamBeg; icham < chamEnd; icham++) {
256     for (iplan = planBeg; iplan < planEnd; iplan++) {
257       for (isect = sectBeg; isect < sectEnd; isect++) {
258
259         Int_t idet = geo->GetDetector(iplan,icham,isect);
260
261         // Get the digits
262         digitsIn = fDigitsManager->GetDigits(idet);
263         // This is to take care of switched off super modules
264         if (digitsIn->GetNtime() == 0) {
265           continue;
266         }
267         digitsIn->Expand();
268         AliTRDdataArrayI *tracksTmp = fDigitsManager->GetDictionary(idet,0);
269         tracksTmp->Expand();
270
271         Int_t nRowMax = commonParam->GetRowMax(iplan,icham,isect);
272         Int_t nColMax = commonParam->GetColMax(iplan);
273
274         AliTRDpadPlane *padPlane = commonParam->GetPadPlane(iplan,icham);
275
276         // Calibration object with pad wise values for t0
277         AliTRDCalROC *calT0ROC              = calibration->GetT0ROC(idet);
278         // Calibration object with pad wise values for the gain factors
279         AliTRDCalROC *calGainFactorROC      = calibration->GetGainFactorROC(idet);
280         // Calibration value for chamber wise t0
281         Float_t       calT0DetValue         = calT0Det->GetValue(idet);
282         // Calibration value for chamber wise gain factor
283         Float_t       calGainFactorDetValue = calGainFactorDet->GetValue(idet);
284
285         Int_t nClusters      = 0;
286         Int_t nClusters2pad  = 0;
287         Int_t nClusters3pad  = 0;
288         Int_t nClusters4pad  = 0;
289         Int_t nClusters5pad  = 0;
290         Int_t nClustersLarge = 0;
291
292         // Apply the gain and the tail cancelation via digital filter
293         AliTRDdataArrayF *digitsOut = new AliTRDdataArrayF(digitsIn->GetNrow()
294                                                           ,digitsIn->GetNcol()
295                                                           ,digitsIn->GetNtime()); 
296         Transform(digitsIn
297                  ,digitsOut
298                  ,nRowMax,nColMax,nTimeTotal
299                  ,ADCthreshold
300                  ,calGainFactorROC
301                  ,calGainFactorDetValue);
302
303         // Input digits are not needed any more
304         digitsIn->Compress(1,0);
305
306         // Loop through the chamber and find the maxima 
307         for ( row = 0;  row <  nRowMax;    row++) {
308           for ( col = 2;  col <  nColMax;    col++) {
309             for (time = 0; time < nTimeTotal; time++) {
310
311               Float_t signalM = TMath::Abs(digitsOut->GetDataUnchecked(row,col-1,time));
312  
313               // Look for the maximum
314               if (signalM >= maxThresh) {
315
316                 Float_t signalL = TMath::Abs(digitsOut->GetDataUnchecked(row,col  ,time));
317                 Float_t signalR = TMath::Abs(digitsOut->GetDataUnchecked(row,col-2,time));
318
319                 if ((TMath::Abs(signalL) <= signalM) && 
320                     (TMath::Abs(signalR) <  signalM)) {
321                   if ((TMath::Abs(signalL) >= sigThresh) ||
322                       (TMath::Abs(signalR) >= sigThresh)) {
323                     // Maximum found, mark the position by a negative signal
324                     digitsOut->SetDataUnchecked(row,col-1,time,-signalM);
325                   }
326                 }
327
328               }
329
330             }
331           }
332         }
333         tracksTmp->Compress(1,0);
334
335         // The index to the first cluster of a given ROC
336         Int_t firstClusterROC = -1;
337         // The number of cluster in a given ROC
338         Int_t nClusterROC     =  0;
339
340         // Now check the maxima and calculate the cluster position
341         for ( row = 0;  row <  nRowMax  ;  row++) {
342           for (time = 0; time < nTimeTotal; time++) {
343             for ( col = 1;  col <  nColMax-1;  col++) {
344
345               // Maximum found ?             
346               if (digitsOut->GetDataUnchecked(row,col,time) < 0.0) {
347
348                 for (iPad = 0; iPad < kNclus; iPad++) {
349                   Int_t iPadCol = col - 1 + iPad;
350                   clusterSignal[iPad] = 
351                     TMath::Abs(digitsOut->GetDataUnchecked(row,iPadCol,time));
352                 }
353
354                 // Count the number of pads in the cluster
355                 Int_t nPadCount = 0;
356                 Int_t ii;
357                 // Look to the left
358                 ii = 0;
359                 while (TMath::Abs(digitsOut->GetDataUnchecked(row,col-ii  ,time)) >= sigThresh) {
360                   nPadCount++;
361                   ii++;
362                   if (col-ii   <        0) break;
363                 }
364                 // Look to the right
365                 ii = 0;
366                 while (TMath::Abs(digitsOut->GetDataUnchecked(row,col+ii+1,time)) >= sigThresh) {
367                   nPadCount++;
368                   ii++;
369                   if (col+ii+1 >= nColMax) break;
370                 }
371                 nClusters++;
372                 switch (nPadCount) {
373                 case 2:
374                   iType = 0;
375                   nClusters2pad++;
376                   break;
377                 case 3:
378                   iType = 1;
379                   nClusters3pad++;
380                   break;
381                 case 4:
382                   iType = 2;
383                   nClusters4pad++;
384                   break;
385                 case 5:
386                   iType = 3;
387                   nClusters5pad++;
388                   break;
389                 default:
390                   iType = 4;
391                   nClustersLarge++;
392                   break;
393                 };
394
395                 // Look for 5 pad cluster with minimum in the middle
396                 Bool_t fivePadCluster = kFALSE;
397                 if (col < (nColMax - 3)) {
398                   if (digitsOut->GetDataUnchecked(row,col+2,time) < 0) {
399                     fivePadCluster = kTRUE;
400                   }
401                   if ((fivePadCluster) && (col < (nColMax - 5))) {
402                     if (digitsOut->GetDataUnchecked(row,col+4,time) >= sigThresh) {
403                       fivePadCluster = kFALSE;
404                     }
405                   }
406                   if ((fivePadCluster) && (col >             1)) {
407                     if (digitsOut->GetDataUnchecked(row,col-2,time) >= sigThresh) {
408                       fivePadCluster = kFALSE;
409                     }
410                   }
411                 }
412
413                 // 5 pad cluster
414                 // Modify the signal of the overlapping pad for the left part 
415                 // of the cluster which remains from a previous unfolding
416                 if (iUnfold) {
417                   clusterSignal[0] *= ratioLeft;
418                   iType   = 5;
419                   iUnfold = 0;
420                 }
421
422                 // Unfold the 5 pad cluster
423                 if (fivePadCluster) {
424                   for (iPad = 0; iPad < kNsig; iPad++) {
425                     padSignal[iPad] = TMath::Abs(digitsOut->GetDataUnchecked(row
426                                                                             ,col-1+iPad
427                                                                             ,time));
428                   }
429                   // Unfold the two maxima and set the signal on 
430                   // the overlapping pad to the ratio
431                   ratioRight        = Unfold(kEpsilon,iplan,padSignal);
432                   ratioLeft         = 1.0 - ratioRight; 
433                   clusterSignal[2] *= ratioRight;
434                   iType   = 5;
435                   iUnfold = 1;
436                 }
437
438                 Double_t clusterCharge = clusterSignal[0]
439                                        + clusterSignal[1]
440                                        + clusterSignal[2];
441                 
442                 // The position of the cluster
443                 clusterPads[0] =  row + 0.5;
444                 // Take the shift of the additional time bins into account
445                 clusterPads[2] = time + 0.5;
446
447                 if (recParam->LUTOn()) {
448                   // Calculate the position of the cluster by using the
449                   // lookup table method
450                   clusterPads[1] = recParam->LUTposition(iplan,clusterSignal[0]
451                                                               ,clusterSignal[1]
452                                                               ,clusterSignal[2]);
453                 }
454                 else {
455                   // Calculate the position of the cluster by using the
456                   // center of gravity method
457                   for (Int_t i = 0; i < kNsig; i++) {
458                     padSignal[i] = 0.0;
459                   }
460                   padSignal[2] = TMath::Abs(digitsOut->GetDataUnchecked(row,col  ,time)); // Central pad
461                   padSignal[1] = TMath::Abs(digitsOut->GetDataUnchecked(row,col-1,time)); // Left    pad
462                   padSignal[3] = TMath::Abs(digitsOut->GetDataUnchecked(row,col+1,time)); // Right   pad
463                   if ((col >           2) && 
464                       (TMath::Abs(digitsOut->GetDataUnchecked(row,col-2,time)) < padSignal[1])) {
465                     padSignal[0] = TMath::Abs(digitsOut->GetDataUnchecked(row,col-2,time));
466                   }
467                   if ((col < nColMax - 3) &&
468                       (TMath::Abs(digitsOut->GetDataUnchecked(row,col+2,time)) < padSignal[3])) {
469                     padSignal[4] = TMath::Abs(digitsOut->GetDataUnchecked(row,col+2,time));
470                   }               
471                   clusterPads[1] = GetCOG(padSignal);
472                 }
473
474                 Double_t q0 = clusterSignal[0];
475                 Double_t q1 = clusterSignal[1];
476                 Double_t q2 = clusterSignal[2];
477                 Double_t clusterSigmaY2 = (q1 * (q0 + q2) + 4.0 * q0 * q2)
478                                         / (clusterCharge*clusterCharge);
479
480                 //
481                 // Calculate the position and the error
482                 //              
483
484                 // Correct for t0 (sum of chamber and pad wise values !!!)
485                 Float_t  calT0ROCValue  = calT0ROC->GetValue(col,row);
486                 Int_t    clusterTimeBin = TMath::Nint(time - (calT0DetValue + calT0ROCValue));
487                 Double_t colSize        = padPlane->GetColSize(col);
488                 Double_t rowSize        = padPlane->GetRowSize(row);
489
490                 Double_t clusterPos[3];
491                 clusterPos[0] = padPlane->GetColPos(col) - (clusterPads[1] + 0.5) * colSize;
492                 clusterPos[1] = padPlane->GetRowPos(row) - 0.5                    * rowSize;
493                 clusterPos[2] = CalcXposFromTimebin(clusterPads[2],idet,col,row);
494                 Double_t clusterSig[2];
495                 clusterSig[0] = (clusterSigmaY2 + 1.0/12.0) * colSize*colSize;
496                 clusterSig[1] = rowSize * rowSize / 12.0;                                       
497                 
498                 // Add the cluster to the output array
499                 // The track indices will be stored later 
500                 AliTRDcluster *cluster = AddCluster(clusterPos
501                                                    ,clusterTimeBin
502                                                    ,idet
503                                                    ,clusterCharge
504                                                    ,dummy
505                                                    ,clusterSig
506                                                    ,iType
507                                                    ,clusterPads[1]);
508
509                 // Store the amplitudes of the pads in the cluster for later analysis
510                 Short_t signals[7] = { 0, 0, 0, 0, 0, 0, 0 };
511                 for (Int_t jPad = col-3; jPad <= col+3; jPad++) {
512                   if ((jPad <          0) || 
513                       (jPad >= nColMax-1)) {
514                     continue;
515                   }
516                   signals[jPad-col+3] = TMath::Nint(TMath::Abs(digitsOut->GetDataUnchecked(row,jPad,time)));
517                 }
518                 cluster->SetSignals(signals);
519
520                 // Temporarily store the row, column and time bin of the center pad
521                 // Used to later on assign the track indices
522                 cluster->SetLabel( row,0);
523                 cluster->SetLabel( col,1);
524                 cluster->SetLabel(time,2);
525
526                 // Store the index of the first cluster in the current ROC
527                 if (firstClusterROC < 0) {
528                   firstClusterROC = RecPoints()->GetEntriesFast() - 1;
529                 }
530                 // Count the number of cluster in the current ROC
531                 nClusterROC++;
532
533               } // if: Maximum found ?
534
535             } // loop: pad columns
536           } // loop: time bins
537         } // loop: pad rows
538
539         delete digitsOut;
540
541         //
542         // Add the track indices to the found clusters
543         //
544
545         // Temporary array to collect the track indices
546         Int_t *idxTracks = new Int_t[kNtrack*nClusterROC];
547
548         // Loop through the dictionary arrays one-by-one
549         // to keep memory consumption low
550         for (Int_t iDict = 0; iDict < kNdict; iDict++) {
551
552           tracksIn = fDigitsManager->GetDictionary(idet,iDict);
553           tracksIn->Expand();
554
555           // Loop though the clusters found in this ROC
556           for (iClusterROC = 0; iClusterROC < nClusterROC; iClusterROC++) {
557  
558             AliTRDcluster *cluster = (AliTRDcluster *)
559                                      RecPoints()->UncheckedAt(firstClusterROC+iClusterROC);
560             row  = cluster->GetLabel(0);
561             col  = cluster->GetLabel(1);
562             time = cluster->GetLabel(2);
563
564             for (iPad = 0; iPad < kNclus; iPad++) {
565               Int_t iPadCol = col - 1 + iPad;
566               Int_t index   = tracksIn->GetDataUnchecked(row,iPadCol,time) - 1;
567               idxTracks[3*iPad+iDict + iClusterROC*kNtrack] = index;     
568             }
569
570           }
571
572           // Compress the arrays
573           tracksIn->Compress(1,0);
574
575         }
576
577         // Copy the track indices into the cluster
578         // Loop though the clusters found in this ROC
579         for (iClusterROC = 0; iClusterROC < nClusterROC; iClusterROC++) {
580  
581           AliTRDcluster *cluster = (AliTRDcluster *)
582                                    RecPoints()->UncheckedAt(firstClusterROC+iClusterROC);
583           cluster->SetLabel(-9999,0);
584           cluster->SetLabel(-9999,1);
585           cluster->SetLabel(-9999,2);
586   
587           cluster->AddTrackIndex(&idxTracks[iClusterROC*kNtrack]);
588
589         }
590
591         delete [] idxTracks;
592
593         // Write the cluster and reset the array
594         WriteClusters(idet);
595         ResetRecPoints();
596
597       } // loop: Sectors
598     } // loop: Planes
599   } // loop: Chambers
600
601   return kTRUE;
602
603 }
604
605 //_____________________________________________________________________________
606 Double_t AliTRDclusterizerV1::GetCOG(Double_t signal[5])
607 {
608   //
609   // Get COG position
610   // Used for clusters with more than 3 pads - where LUT not applicable
611   //
612
613   Double_t sum = signal[0]
614                + signal[1]
615                + signal[2] 
616                + signal[3]
617                + signal[4];
618
619   Double_t res = (0.0 * (-signal[0] + signal[4])
620                       + (-signal[1] + signal[3])) / sum;
621
622   return res;             
623
624 }
625
626 //_____________________________________________________________________________
627 Double_t AliTRDclusterizerV1::Unfold(Double_t eps, Int_t plane, Double_t *padSignal)
628 {
629   //
630   // Method to unfold neighbouring maxima.
631   // The charge ratio on the overlapping pad is calculated
632   // until there is no more change within the range given by eps.
633   // The resulting ratio is then returned to the calling method.
634   //
635
636   AliTRDcalibDB *calibration = AliTRDcalibDB::Instance();
637   if (!calibration) {
638     AliError("No AliTRDcalibDB instance available\n");
639     return kFALSE;  
640   }
641   
642   Int_t   irc                = 0;
643   Int_t   itStep             = 0;                 // Count iteration steps
644
645   Double_t ratio             = 0.5;               // Start value for ratio
646   Double_t prevRatio         = 0.0;               // Store previous ratio
647
648   Double_t newLeftSignal[3]  = { 0.0, 0.0, 0.0 }; // Array to store left cluster signal
649   Double_t newRightSignal[3] = { 0.0, 0.0, 0.0 }; // Array to store right cluster signal
650   Double_t newSignal[3]      = { 0.0, 0.0, 0.0 };
651
652   // Start the iteration
653   while ((TMath::Abs(prevRatio - ratio) > eps) && (itStep < 10)) {
654
655     itStep++;
656     prevRatio = ratio;
657
658     // Cluster position according to charge ratio
659     Double_t maxLeft  = (ratio*padSignal[2] - padSignal[0]) 
660                       / (padSignal[0] + padSignal[1] + ratio*padSignal[2]);
661     Double_t maxRight = (padSignal[4] - (1-ratio)*padSignal[2]) 
662                       / ((1.0 - ratio)*padSignal[2] + padSignal[3] + padSignal[4]);
663
664     // Set cluster charge ratio
665     irc = calibration->PadResponse(1.0,maxLeft ,plane,newSignal);
666     Double_t ampLeft  = padSignal[1] / newSignal[1];
667     irc = calibration->PadResponse(1.0,maxRight,plane,newSignal);
668     Double_t ampRight = padSignal[3] / newSignal[1];
669
670     // Apply pad response to parameters
671     irc = calibration->PadResponse(ampLeft ,maxLeft ,plane,newLeftSignal );
672     irc = calibration->PadResponse(ampRight,maxRight,plane,newRightSignal);
673
674     // Calculate new overlapping ratio
675     ratio = TMath::Min((Double_t)1.0,newLeftSignal[2] / 
676                                     (newLeftSignal[2] + newRightSignal[0]));
677
678   }
679
680   return ratio;
681
682 }
683
684 //_____________________________________________________________________________
685 void AliTRDclusterizerV1::Transform(AliTRDdataArrayI *digitsIn
686                                   , AliTRDdataArrayF *digitsOut
687                                   , Int_t nRowMax, Int_t nColMax, Int_t nTimeTotal
688                                   , Float_t ADCthreshold
689                                   , AliTRDCalROC *calGainFactorROC
690                                   , Float_t calGainFactorDetValue)
691 {
692   //
693   // Apply gain factor
694   // Apply tail cancelation: Transform digitsIn to digitsOut
695   //
696
697   Int_t iRow  = 0;
698   Int_t iCol  = 0;
699   Int_t iTime = 0;
700
701   AliTRDRecParam *recParam = AliTRDRecParam::Instance();
702   if (!recParam) {
703     AliError("No AliTRDRecParam instance available\n");
704     return;
705   }
706
707   Double_t *inADC  = new Double_t[nTimeTotal];  // ADC data before tail cancellation
708   Double_t *outADC = new Double_t[nTimeTotal];  // ADC data after tail cancellation
709
710   for (iRow  = 0; iRow  <  nRowMax;   iRow++ ) {
711     for (iCol  = 0; iCol  <  nColMax;   iCol++ ) {
712
713       Float_t  calGainFactorROCValue = calGainFactorROC->GetValue(iCol,iRow);
714       Double_t gain                  = calGainFactorDetValue 
715                                      * calGainFactorROCValue;
716
717       for (iTime = 0; iTime < nTimeTotal; iTime++) {
718
719         //
720         // Add gain
721         //
722         inADC[iTime]   = digitsIn->GetDataUnchecked(iRow,iCol,iTime);
723         inADC[iTime]  /= gain;
724         outADC[iTime]  = inADC[iTime];
725
726       }
727
728       // Apply the tail cancelation via the digital filter
729       if (recParam->TCOn()) {
730         DeConvExp(inADC,outADC,nTimeTotal,recParam->GetTCnexp());
731       }
732
733       for (iTime = 0; iTime < nTimeTotal; iTime++) {
734
735         // Store the amplitude of the digit if above threshold
736         if (outADC[iTime] > ADCthreshold) {
737           digitsOut->SetDataUnchecked(iRow,iCol,iTime,outADC[iTime]);
738         }
739
740       }
741
742     }
743   }
744
745   delete [] inADC;
746   delete [] outADC;
747
748   return;
749
750 }
751
752 //_____________________________________________________________________________
753 void AliTRDclusterizerV1::DeConvExp(Double_t *source, Double_t *target
754                                   , Int_t n, Int_t nexp) 
755 {
756   //
757   // Tail cancellation by deconvolution for PASA v4 TRF
758   //
759
760   Double_t rates[2];
761   Double_t coefficients[2];
762
763   // Initialization (coefficient = alpha, rates = lambda)
764   Double_t R1 = 1.0;
765   Double_t R2 = 1.0;
766   Double_t C1 = 0.5;
767   Double_t C2 = 0.5;
768
769   if (nexp == 1) {   // 1 Exponentials
770     R1 = 1.156;
771     R2 = 0.130;
772     C1 = 0.066;
773     C2 = 0.000;
774   }
775   if (nexp == 2) {   // 2 Exponentials
776     R1 = 1.156;
777     R2 = 0.130;
778     C1 = 0.114;
779     C2 = 0.624;
780   }
781
782   coefficients[0] = C1;
783   coefficients[1] = C2;
784
785   Double_t Dt = 0.1;
786
787   rates[0] = TMath::Exp(-Dt/(R1));
788   rates[1] = TMath::Exp(-Dt/(R2));
789   
790   Int_t i = 0;
791   Int_t k = 0;
792
793   Double_t reminder[2];
794   Double_t correction;
795   Double_t result;
796
797   // Attention: computation order is important
798   correction = 0.0;
799   for (k = 0; k < nexp; k++) {
800     reminder[k] = 0.0;
801   }
802   for (i = 0; i < n; i++) {
803     result    = (source[i] - correction);    // No rescaling
804     target[i] = result;
805
806     for (k = 0; k < nexp; k++) {
807       reminder[k] = rates[k] * (reminder[k] + coefficients[k] * result);
808     }
809     correction = 0.0;
810     for (k = 0; k < nexp; k++) {
811       correction += reminder[k];
812     }
813   }
814
815 }