]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - HMPID/AliHMPIDDigit.h
The AliDCSSensor classes were recently upgraded to include start and end time entries...
[u/mrichter/AliRoot.git] / HMPID / AliHMPIDDigit.h
index bf89f760bdcab1ae8cc725a0f9da6004cd31a1ee..5d1397c770d214ff871ccd92a9cab63dae841cc5 100644 (file)
 /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
  * See cxx source for full Copyright notice                               */
 
+// Class of HMPID to manage digits ---> pads
+//.
+//.
+//.
+
 #include <AliDigit.h>      //base class  
-#include <TMath.h>         //Mathieson()
-#include <TRandom.h>       //IsOverTh()  
+#include <AliRawReader.h>
+#include <AliLog.h>
+#include "TMath.h"         //Mathieson()
 #include <AliBitPacking.h> //Raw()
 
-class AliHMPIDHit;          //Hit2Sdi()
+
 class TClonesArray;        //Hit2Sdi()
+  
 class AliHMPIDDigit :public AliDigit //TObject-AliDigit-AliHMPIDDigit
 {
 public:
-  enum EAbsPad {kChAbs=100000000,kPcAbs=1000000,kPadAbsX=1000,kPadAbsY=1};       //absolute pad number structure
-  enum ERawData{kDilX=8,kDilY=6,kNdil=10,kNrow=24,kNddls=14};                    //RAW data structure
-  enum EPadData{kPcX=2,kPcY=3,kPad1=0,kPadPcX=80,kPadPcY=48,kPadAllX=kPadPcX*kPcX,kPadAllY=kPadPcY*kPcY,kPcAll=kPcX*kPcY,kPadAll=kPadAllX*kPadAllY};   //Segmentation structure 
-  enum EPadShif{kC=0,kU=1,kUR=2,kR=3,kDR=4,kD=5,kDL=6,kL=7,kUL=8};                 
+  enum EChamberData{kMinCh=0,kMaxCh=6,kMinPc=0,kMaxPc=5};      //Segmenation     
+  enum EPadxData{kPadPcX=80,kMinPx=0,kMaxPx=79,kMaxPcx=159};   //Segmentation structure along x
+  enum EPadyData{kPadPcY=48,kMinPy=0,kMaxPy=47,kMaxPcy=143};   //Segmentation structure along y
 //ctor&dtor    
-           AliHMPIDDigit(                                                     ):AliDigit( ),fPad(Abs(-1,-1,-1,-1)),fQ(-1)  {}                //default ctor
-           AliHMPIDDigit(Int_t pad,Int_t q,Int_t *t                           ):AliDigit(t),fPad(pad             ),fQ(q )  {}                //digit ctor 
-  inline   AliHMPIDDigit(Int_t c,Float_t q,Int_t t,Float_t x,Float_t y,Int_t f=0);                                                               //sdigit ctor 
-  virtual ~AliHMPIDDigit()                                {} //dtor
+  AliHMPIDDigit(                          ):AliDigit( ),fPad(Abs(-1,-1,-1,-1)),fQ(-1)  {}                         //default ctor
+  AliHMPIDDigit(Int_t pad,Int_t q,Int_t *t):AliDigit(t),fPad(pad             ),fQ(q )  {}                         //digit ctor
+  AliHMPIDDigit(const AliHMPIDDigit &d    ):AliDigit(d),fPad(d.fPad),fQ(d.fQ)          {}                         //copy ctor
+  virtual ~AliHMPIDDigit()                                                             {}                         //dtor   
 //framework part    
          Bool_t  IsSortable  (                               )const{return kTRUE;}                                                     //provision to use TObject::Sort() 
   inline Int_t   Compare     (const TObject *pObj            )const;                                                                   //provision to use TObject::Sort()
+         void    Draw        (Option_t *opt=""               );                                                                        //TObject::Draw() overloaded
          void    Print       (Option_t *opt=""               )const;                                                                   //TObject::Print() overloaded
 //private part  
-  static Int_t   Abs         (Int_t c,Int_t s,Int_t x,Int_t y)     {return c*kChAbs+s*kPcAbs+x*kPadAbsX+y*kPadAbsY; }                  //(ch,pc,padx,pady)-> abs pad
-  static Int_t   A2C         (Int_t pad                      )     {return pad/kChAbs;                              }                  //abs pad -> chamber
-  static Int_t   A2P         (Int_t pad                      )     {return pad%kChAbs/kPcAbs;                       }                  //abs pad -> pc
-  static Int_t   A2X         (Int_t pad                      )     {return pad%kPcAbs/kPadAbsX;                     }                  //abs pad -> pad X 
-  static Int_t   A2Y         (Int_t pad                      )     {return pad%kPadAbsX;                            }                  //abs pad -> pad Y 
-         Int_t   Addr        (                               )const{Int_t mapY2A[kDilY]={5,3,1,0,2,4}; return mapY2A[A2Y(fPad)%kDilY]+kDilY*(A2X(fPad)%kDilX);}//raw a=0..47
-         void    AddTidOffset(Int_t offset                   )     {for (Int_t i=0; i<3; i++) if (fTracks[i]>0) fTracks[i]+=offset;};  //needed for merging
-         Int_t   Ch          (                               )const{return A2C(fPad);                               }                  //chamber number
-         Int_t   Dilogic     (                               )const{return 10-PadX()/kDilX;                         }                  //raw d=1..10
-  static void    DrawPc      (Bool_t isFill=kTRUE            );                                                                        //draw PCs
-         Int_t   Ddl         (                               )const{return (PadX()<kPadPcX) ? 2*Ch() : 2*Ch()+1;    }                  //DDL number 0..13
-  static Float_t Hit2Sdi     (AliHMPIDHit *pHit,TClonesArray *);                                                                        //hit -> 9 sdigits, returns total QDC   
-  static Bool_t  IsOverTh    (Float_t q                      )     {return q > 6;                                                  }   //is digit over threshold????
-  static Bool_t  IsInside    (Float_t x,Float_t y            )     {return x>0&&y>0&&x<SizeAllX()&&y<SizeAllY();                   }   //is point inside pc boundary?
-  inline static Bool_t  IsInDead    (Float_t x,Float_t y            );                                                                 //is point in dead area?
-         Float_t LorsX       (                               )const{return (PadX()+0.5)*SizePadX()+(Pc()%2)*(SizePcX()+SizeDead());}   //center of the pad x, [cm]
-         Float_t LorsY       (                               )const{return (PadY()+0.5)*SizePadY()+(Pc()/2)*(SizePcY()+SizeDead());}   //center of the pad y, [cm]
-  inline Float_t Mathieson   (Float_t x,Float_t y            )const;                                                                   //Mathieson distribution 
-         Int_t   PadX        (                               )const{return A2X(fPad);}                                                 //x position of the pad
-         Int_t   PadY        (                               )const{return A2Y(fPad);}                                                 //y postion of the pad     
+  static Int_t   Abs         (Int_t ch,Int_t pc,Int_t x,Int_t y)   {return ch*100000000+pc*1000000+x*1000+y;                         } //(ch,pc,padx,pady)-> abs pad
+  static Int_t   A2C         (Int_t pad                      )     {return pad/100000000;                                            } //abs pad -> chamber
+  static Int_t   A2P         (Int_t pad                      )     {return pad%100000000/1000000;                                    } //abs pad -> pc
+  static Int_t   A2X         (Int_t pad                      )     {return pad%1000000/1000;                                         } //abs pad -> pad X 
+  static Int_t   A2Y         (Int_t pad                      )     {return pad%1000;                                                 } //abs pad -> pad Y 
+         void    AddTidOffset(Int_t offset                   )     {for (Int_t i=0; i<3; i++) if (fTracks[i]>0) fTracks[i]+=offset;  } //needed for merging
+         Int_t   Ch          (                               )const{return A2C(fPad);                                                } //chamber number
+  static Bool_t  IsOverTh    (Float_t q                      )     {return q >= fgSigmas;                                            } //is digit over threshold?
+  inline static Bool_t IsInDead(Float_t x,Float_t y        );                                                                          //is point in dead area?
+  static Bool_t  IsInside    (Float_t x,Float_t y,Float_t d=0)     {return x>-d&&y>-d&&x<fgkMaxPcX[kMaxPc]+d&&y<fgkMaxPcY[kMaxPc]+d; } //is point inside chamber boundary?
+         Float_t LorsX       (                               )const{return LorsX(A2P(fPad),A2X(fPad));                               } //center of the pad x, [cm]
+  static Float_t LorsX       (Int_t pc,Int_t padx            )     {return (padx    +0.5)*SizePadX()+fgkMinPcX[pc];                  } //center of the pad x, [cm]
+         Float_t LorsY       (                               )const{return LorsY(A2P(fPad),A2Y(fPad));                               } //center of the pad y, [cm]
+  static Float_t LorsY       (Int_t pc,Int_t pady            )     {return (pady    +0.5)*SizePadY()+fgkMinPcY[pc];                  } //center of the pad y, [cm]
+  inline Float_t IntMathieson(Float_t x,Float_t y            )const;                                                                   //Mathieson distribution 
+         Int_t   PadPcX      (                               )const{return A2X(fPad);}                                                 //pad pc x # 0..79
+         Int_t   PadPcY      (                               )const{return A2Y(fPad);}                                                 //pad pc y # 0..47
+         Int_t   PadChX      (                               )const{return (Pc()%2)*kPadPcX+PadPcX();}                                 //pad ch x # 0..159
+         Int_t   PadChY      (                               )const{return (Pc()/2)*kPadPcY+PadPcY();}                                 //pad ch y # 0..143
          Int_t   Pad         (                               )const{return fPad;}                                                      //absolute id of this pad
-         Float_t Q           (                               )const{return fQ;}                                                        //charge, [QDC]
          Int_t   Pc          (                               )const{return A2P(fPad);}                                                 //PC position number
-  static void    PrintSize   (                               );                                                                        //print all segmentation sizes      
-  inline Int_t   Raw         (UInt_t &w32                    )const;                                                                   //raw
-         Int_t   Row         (                               )const{Int_t r=1+Pc()/2*8+PadY()/kDilY; return (Pc()%2)?kNrow-r+1:r;}     //row r=1..24
-         void    Set         (Int_t c,Int_t s,Int_t x,Int_t y)     {fPad=Abs(c,s,x,y);}                                                //set new digit
-         void    ReadRaw     (Int_t ddl,Int_t r,Int_t d,Int_t a){Int_t mapA2Y[kDilY]={3,2,4,1,5,0};fPad=Abs(ddl/2,ddl%7,d*kDilX+a/kDilY,r*kDilY+mapA2Y[a%kDilY]);} //from raw
-  inline void    ReadRaw     (Int_t ddl,UInt_t w32           );                                                                        //read raw word
+         Float_t Q           (                               )const{return fQ;}                                                        //charge, [QDC]
+  inline void    Raw         (UInt_t &w32,Int_t &ddl,Int_t &r,Int_t &d,Int_t &a)const;                                                 //digit->(w32,ddl,r,d,a)
+  inline Bool_t  Raw         (UInt_t  w32,Int_t  ddl,AliRawReader *pRR);                                                               //(w32,ddl)->digit
+  inline void    Raw         (Int_t ddl,Int_t r,Int_t d,Int_t a);                                                                      //raw->abs pad number
+  inline Bool_t  Set         (Int_t c,Int_t p,Int_t x,Int_t y,Int_t tid=0);                                                            //manual creation 
+         void    SetQ        (Float_t q                      )     {fQ=q;}                                                             //manual creation 
+         void    SetNsig     (Int_t sigmas                   )     {fgSigmas=sigmas;}                                                  //set n sigmas 
+  static void    WriteRaw    (TObjArray *pDigLst             );                                                                        //write as raw stream     
   
-  static Float_t SizeAllX    (                               )     {return SizePadX()*kPadAllX+SizeDead();}                            //all PCs size x, [cm]        
-  static Float_t SizeAllY    (                               )     {return SizePadY()*kPadAllY+2*SizeDead();}                          //all PCs size y, [cm]    
-  static Float_t SizeArea    (                               )     {return SizePcX()*SizePcY()*kPcAll;}                                //sence area, [cm^2]  
-  static Float_t SizeDead    (                               )     {return 2.6;}                                                       //dead zone size x, [cm]         
-  static Float_t SizeGap     (                               )     {return 8;  }
+  static Float_t MaxPcX      (Int_t iPc                      )     {return fgkMaxPcX[iPc];}                                            // PC limits
+  static Float_t MaxPcY      (Int_t iPc                      )     {return fgkMaxPcY[iPc];}                                            // PC limits
+  static Float_t MinPcX      (Int_t iPc                      )     {return fgkMinPcX[iPc];}                                            // PC limits
+  static Float_t MinPcY      (Int_t iPc                      )     {return fgkMinPcY[iPc];}                                            // PC limits
+  static Int_t   Nsig        (                               )     {return fgSigmas;}                                                  //Getter n. sigmas for noise
+  static Float_t SizeAllX    (                               )     {return fgkMaxPcX[5];}                                              //all PCs size x, [cm]        
+  static Float_t SizeAllY    (                               )     {return fgkMaxPcY[5];}                                              //all PCs size y, [cm]    
   static Float_t SizePadX    (                               )     {return 0.8;}                                                       //pad size x, [cm]  
   static Float_t SizePadY    (                               )     {return 0.84;}                                                      //pad size y, [cm]  
-  static Float_t SizePcX     (                               )     {return SizePadX()*kPadPcX;}                                        //PC size x, [cm]        
-  static Float_t SizePcY     (                               )     {return SizePadY()*kPadPcY;}                                        //PC size y, [cm]    
-  static Float_t SizeWin     (                               )     {return 0.5;}
-  static Float_t SizeRad     (                               )     {return 1.5;}     
-  static void    TestSeg     (                               );                                                                        //test segmentation
-         void    Zoom        (                               ); 
-protected:                  //AliDigit has fTracks[3]
-  Int_t   fPad;             //absolute pad number is chamber*kCham
-  Float_t fQ;               //QDC value, fractions are permitted for summable procedure  
-  ClassDef(AliHMPIDDigit,4) //HMPID digit class       
-};//class AliHMPIDDigitN
+  inline static void   Lors2Pad(Float_t x,Float_t y,Int_t &pc,Int_t &px,Int_t &py);                                                    //(x,y)->(pc,px,py) 
+  enum EHMPIDRawError {
+    kInvalidRawDataWord = 1
+  };
+protected:                                                                   //AliDigit has fTracks[3]
+  static Int_t fgSigmas;                                                                                                               //n. sigma to cut on charge 
+  static const Float_t fgkMinPcX[6];                                                                                                   //limits PC
+  static const Float_t fgkMinPcY[6];                                                                                                   //limits PC
+  static const Float_t fgkMaxPcX[6];                                                                                                   //limits PC
+  static const Float_t fgkMaxPcY[6];                                                                                                   //limits PC
+  Int_t    fPad;                                                                                                                       //absolute pad number
+  Float_t  fQ;                                                               //QDC value, fractions are permitted for summable procedure  
+  ClassDef(AliHMPIDDigit,4)                                                  //HMPID digit class       
+};//class AliHMPIDDigit
+
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-AliHMPIDDigit::AliHMPIDDigit(Int_t c,Float_t q,Int_t t,Float_t x,Float_t y,Int_t flag):AliDigit(),fPad(Abs(-1,-1,-1,-1)),fQ(-1)  
+void AliHMPIDDigit::Lors2Pad(Float_t x,Float_t y,Int_t &pc,Int_t &px,Int_t &py)
 {
-// Creation of sdigit  
-// Arguments: c- chamber 
-//            q- total QDC
-//            t -TID
-//            x,y - hit position, LORS        
-//   Returns: none    
-  Int_t pc,padx,pady;
-  if     (x>=          0          && x<=  SizePcX()            ) {pc=0; padx=Int_t( x                           / SizePadX());}//PC 0 or 2 or 4
-  else if(x>=SizePcX()+SizeDead() && x<=  SizeAllX()           ) {pc=1; padx=Int_t((x-  SizePcX()-  SizeDead()) / SizePadX());}//PC 2 or 4 or 6
+// Check the pad of given position
+// Arguments: x,y- position [cm] in LORS; pc,px,py- pad where to store the result
+//   Returns: none
+  pc=px=py=-1;
+  if     (x>fgkMinPcX[0] && x<fgkMaxPcX[0]) {pc=0; px=Int_t( x               / SizePadX());}//PC 0 or 2 or 4
+  else if(x>fgkMinPcX[1] && x<fgkMaxPcX[1]) {pc=1; px=Int_t((x-fgkMinPcX[1]) / SizePadX());}//PC 1 or 3 or 5
   else return;
-  if     (y>=          0          && y<=  SizePcY()            ) {      pady=Int_t( y                           / SizePadY());}//PC 0 or 1
-  else if(y>=SizePcY()+SizeDead() && y<=2*SizePcY()+SizeDead() ) {pc+=2;pady=Int_t((y-  SizePcY()-  SizeDead()) / SizePadY());}//PC 2 or 3
-  else if(y>=SizeAllY()-SizePcY() && y<=  SizeAllY()           ) {pc+=4;pady=Int_t((y-2*SizePcY()-2*SizeDead()) / SizePadY());}//PC 4 or 5
+  if     (y>fgkMinPcY[0] && y<fgkMaxPcY[0]) {      py=Int_t( y               / SizePadY());}//PC 0 or 1
+  else if(y>fgkMinPcY[2] && y<fgkMaxPcY[2]) {pc+=2;py=Int_t((y-fgkMinPcY[2]) / SizePadY());}//PC 2 or 3
+  else if(y>fgkMinPcY[4] && y<fgkMaxPcY[4]) {pc+=4;py=Int_t((y-fgkMinPcY[4]) / SizePadY());}//PC 4 or 5
   else return;
-  
-  switch(flag){
-    case kUL:padx--;pady++;break;    case kU:pady++;break;     case kUR:padx++; pady++;break;
-                                              
-    case kL: padx--;       break;    case kC:       break;     case kR:padx++;         break;
-                                                 
-    case kDL:padx--;pady--;break;    case kD:pady--;break;     case kDR:padx++; pady--;break;                                            
-  }
-  if(padx<0 || padx>=kPadPcX) return;
-  if(pady<0 || pady>=kPadPcY) return;
-  fPad=Abs(c,pc,padx,pady);
-  fQ=q*Mathieson(x,y);
-  fTracks[0]=t; 
-}    
+}
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 Int_t AliHMPIDDigit::Compare(const TObject *pObj) const
 {
@@ -116,7 +112,7 @@ Int_t AliHMPIDDigit::Compare(const TObject *pObj) const
 //   Retunrs: -1 if AbsPad less then in pObj, 1 if more and 0 if they are the same      
   if     (fPad==((AliHMPIDDigit*)pObj)->Pad()) return  0;
   else if(fPad >((AliHMPIDDigit*)pObj)->Pad()) return  1;
-  else                                        return -1;
+  else                                         return -1;
 }
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 Bool_t AliHMPIDDigit::IsInDead(Float_t x,Float_t y)
@@ -124,53 +120,89 @@ Bool_t AliHMPIDDigit::IsInDead(Float_t x,Float_t y)
 // Check is the current point is outside of sensitive area or in dead zones
 // Arguments: x,y -position
 //   Returns: 1 if not in sensitive zone           
-  if(x<0 || x>SizeAllX() || y<0 || y>SizeAllY()) return kTRUE; //out of pc 
-  
-  if(x>SizePcX()  && x<SizePcX()+SizeDead())   return kTRUE; //in dead zone along x  
+  for(Int_t iPc=0;iPc<=6;iPc++)
+    if(x>fgkMinPcX[iPc] && x<fgkMaxPcX[iPc] && y>fgkMinPcY[iPc] && y<fgkMaxPcY [iPc]) return kFALSE; //in current pc
   
-  if(y>SizePcY()                       && y<SizePcY()+SizeDead())      return kTRUE; //in first dead zone along y   
-  if(y>SizeAllY()-SizePcY()-SizeDead() && y<SizeAllY()-SizePcY())      return kTRUE; //in second dead zone along y   
-  return kFALSE;
+  return kTRUE;
 }
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-Float_t AliHMPIDDigit::Mathieson(Float_t x,Float_t y)const
+Float_t AliHMPIDDigit::IntMathieson(Float_t x,Float_t y)const
 {
+// Integration of Mathieson.
 // This is the answer to electrostatic problem of charge distrubution in MWPC described elsewhere. (NIM A370(1988)602-603)
 // Arguments: x,y- position of the center of Mathieson distribution
 //  Returns: a charge fraction [0-1] imposed into the pad
-  const Float_t kSqrtK3=0.77459667,k2=0.962,k4=0.379;
+  Float_t  kK2=0.96242952, kSqrtK3 =0.77459667, kK4=0.37932926;
 
-  Float_t ux1=kSqrtK3*TMath::TanH(k2*(x-LorsX()+0.5*SizePadX())/0.425);
-  Float_t ux2=kSqrtK3*TMath::TanH(k2*(x-LorsX()-0.5*SizePadX())/0.425);
-  Float_t uy1=kSqrtK3*TMath::TanH(k2*(y-LorsY()+0.5*SizePadY())/0.425);
-  Float_t uy2=kSqrtK3*TMath::TanH(k2*(y-LorsY()-0.5*SizePadY())/0.425);
-  return 4*k4*(TMath::ATan(ux2)-TMath::ATan(ux1))*k4*(TMath::ATan(uy2)-TMath::ATan(uy1));
+  Float_t ux1=kSqrtK3*TMath::TanH(kK2*(x-LorsX()+0.5*SizePadX())/0.445);
+  Float_t ux2=kSqrtK3*TMath::TanH(kK2*(x-LorsX()-0.5*SizePadX())/0.445);
+  Float_t uy1=kSqrtK3*TMath::TanH(kK2*(y-LorsY()+0.5*SizePadY())/0.445);
+  Float_t uy2=kSqrtK3*TMath::TanH(kK2*(y-LorsY()-0.5*SizePadY())/0.445);
+  return 4*kK4*(TMath::ATan(ux2)-TMath::ATan(ux1))*kK4*(TMath::ATan(uy2)-TMath::ATan(uy1));
 }
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-Int_t AliHMPIDDigit::Raw(UInt_t &w32)const
+void AliHMPIDDigit::Raw(UInt_t &w32,Int_t &ddl,Int_t &r,Int_t &d,Int_t &a)const
 {
 // Convert digit structure to raw word format
-// Arguments: 32 bits raw word to fill
-//   Returns: DDL ID where to write this digit
-  w32=0;
-  AliBitPacking::PackWord((UInt_t)fQ        ,w32, 0,11);  // 0000 0rrr rrdd ddaa aaaa qqqq qqqq qqqq        Qdc               bits (00..11) counts (0..4095)
-  AliBitPacking::PackWord(         Addr()   ,w32,12,17);  // 3322 2222 2222 1111 1111 1000 0000 0000        DILOGIC address   bits (12..17) counts (0..47)
-  AliBitPacking::PackWord(         Dilogic(),w32,18,21);  // 1098 7654 3210 9876 5432 1098 7654 3210        DILOGIC number    bits (18..21) counts (1..10)
-  AliBitPacking::PackWord(         Row()    ,w32,22,26);  //                                                Row number        bits (22..26) counts (1..24)  
-  return Ddl(); //ddl 0..13 where to write this digit 
+// Arguments: w32,ddl,r,d,a where to write the results
+//   Returns: none
+  Int_t y2a[6]={5,3,1,0,2,4};
+
+                                  ddl=2*Ch()+Pc()%2;                     //DDL# 0..13
+  Int_t tmp=1+Pc()/2*8+PadPcY()/6;  r=(Pc()%2)? 25-tmp:tmp;              //row r=1..24
+                                    d=1+PadPcX()/8;                      //DILOGIC# 1..10
+                                    a=y2a[PadPcY()%6]+6*(PadPcX()%8);    //ADDRESS 0..47        
+      
+  w32=0;    
+  AliBitPacking::PackWord((UInt_t)fQ,w32, 0,11);  // 0000 0rrr rrdd ddaa aaaa qqqq qqqq qqqq        Qdc               bits (00..11) counts (0..4095)
+  AliBitPacking::PackWord(        a ,w32,12,17);  // 3322 2222 2222 1111 1111 1000 0000 0000        DILOGIC address   bits (12..17) counts (0..47)
+  AliBitPacking::PackWord(        d ,w32,18,21);  // 1098 7654 3210 9876 5432 1098 7654 3210        DILOGIC number    bits (18..21) counts (1..10)
+  AliBitPacking::PackWord(        r ,w32,22,26);  //                                                Row number        bits (22..26) counts (1..24)  
 }
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-void AliHMPIDDigit::ReadRaw(Int_t ddl,UInt_t w32)
+Bool_t AliHMPIDDigit::Raw(UInt_t w32,Int_t ddl, AliRawReader *pRR)
 {
 // Converts a given raw data word to a digit
 // Arguments: w32 - 32 bits raw data word
 //            ddl - DDL idx  0 1 2 3 4 ... 13
 //   Returns: none
-        fQ = AliBitPacking::UnpackWord(w32, 0,11);  // 0000 0rrr rrdd ddaa aaaa qqqq qqqq qqqq         Qdc               bits (00..11) counts (0..4095)   
-  UInt_t a = AliBitPacking::UnpackWord(w32,12,17);  // 3322 2222 2222 1111 1111 1000 0000 0000         DILOGIC address   bits (12..17) counts (0..47)
-  UInt_t d = AliBitPacking::UnpackWord(w32,18,21);  // 1098 7654 3210 9876 5432 1098 7654 3210         DILOGIC number    bits (18..21) counts (1..10)
-  UInt_t r = AliBitPacking::UnpackWord(w32,22,26);  //                                                 Row number        bits (22..26) counts (1..24)    
-  ReadRaw(ddl,r,d,a);    
+  Int_t r = AliBitPacking::UnpackWord(w32,22,26); assert(1<=r&&r<=24);   //                                         Row number      (1..24)    
+  Int_t d = AliBitPacking::UnpackWord(w32,18,21); assert(1<=d&&d<=10);   // 3322 2222 2222 1111 1111 1000 0000 0000 DILOGIC number  (1..10)
+  Int_t a = AliBitPacking::UnpackWord(w32,12,17); assert(0<=a&&a<=47);   // 1098 7654 3210 9876 5432 1098 7654 3210 DILOGIC address (0..47)  
+  Int_t q = AliBitPacking::UnpackWord(w32, 0,11); assert(0<=q&&q<=4095); // 0000 0rrr rrdd ddaa aaaa qqqq qqqq qqqq Qdc             (0..4095) 
+  if (r<1 || r>24 || d<1 || d>10 || a<0 || a>47 || q<0 || q>4095) {
+    AliWarning(Form("Invalid raw data word %x",w32));
+    pRR->AddMajorErrorLog(kInvalidRawDataWord,Form("w=%x",w32));
+    return kFALSE;
+  }
+  Raw(ddl,r,d,a);
+  fQ=q;
+  return kTRUE;
+}
+//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+void AliHMPIDDigit::Raw(Int_t ddl,Int_t r,Int_t d,Int_t a)
+{
+  assert(0<=ddl&&ddl<=13); assert(1<=r&&r<=24); assert(1<=d&&d<=10);   assert(0<=a&&a<=47);  
+  Int_t a2y[6]={3,2,4,1,5,0};//pady for a given address (for single DILOGIC chip)
+                                  Int_t ch=ddl/2;
+  Int_t tmp=(r-1)/8;              Int_t pc=(ddl%2)? 5-2*tmp:2*tmp; 
+                                  Int_t px=(d-1)*8+a/6;
+        tmp=(ddl%2)?(24-r):r-1;   Int_t py=6*(tmp%8)+a2y[a%6];
+  fPad=Abs(ch,pc,px,py);
 }
+
+
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+Bool_t AliHMPIDDigit::Set(Int_t ch,Int_t pc,Int_t px,Int_t py,Int_t tid)
+{
+// Manual creation of digit
+// Arguments: ch,pc,px,py,qdc,tid  
+//   Returns: kTRUE if wrong digit
+  if(px<kMinPx || px>kMaxPx) return kTRUE;
+  if(py<kMinPy || py>kMaxPy) return kTRUE;
+
+  fPad=Abs(ch,pc,px,py);fTracks[0]=tid;
+  fQ=0;
+  return kFALSE;
+}
 #endif