]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - ITS/AliITSClusterFinderSDD.cxx
New Fastpoint merger added.
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
index f0085137fb96955294af8f1190fc963bf64c25c0..87762cf8250fe931b8713d16e22c08f5157bfe1d 100644 (file)
  * about the suitability of this software for any purpose. It is          *
  * provided "as is" without express or implied warranty.                  *
  **************************************************************************/
+/*
+  $Id$
+  $Log$
+  Revision 1.24  2002/04/24 22:02:31  nilsen
+  New SDigits and Digits routines, and related changes,  (including new
+  noise values).
 
-#include <iostream.h>
+ */
 
+#include <iostream.h>
 #include <TFile.h>
 #include <TMath.h>
 #include <math.h>
 #include "AliITSRawCluster.h"
 #include "AliITSRecPoint.h"
 #include "AliITSsegmentation.h"
-#include "AliITSresponse.h"
+#include "AliITSresponseSDD.h"
 #include "AliRun.h"
 
-
-
 ClassImp(AliITSClusterFinderSDD)
 
-//----------------------------------------------------------
-AliITSClusterFinderSDD::AliITSClusterFinderSDD
-(AliITSsegmentation *seg, AliITSresponse *response, TClonesArray *digits, TClonesArray *recp)   
-{
-  // constructor
-
-    fSegmentation=seg;
-    fResponse=response;
-    fDigits=digits;
-    fClusters=recp;
-    fNclusters= fClusters->GetEntriesFast();
+//______________________________________________________________________
+AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSsegmentation *seg,
+                                               AliITSresponse *response,
+                                               TClonesArray *digits,
+                                               TClonesArray *recp){
+    // standard constructor
+
+    fSegmentation = seg;
+    fResponse     = response;
+    fDigits       = digits;
+    fClusters     = recp;
+    fNclusters    = fClusters->GetEntriesFast();
     SetCutAmplitude();
     SetDAnode();
     SetDTime();
-    SetMinPeak();
+    SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
+    //    SetMinPeak();
     SetMinNCells();
     SetMaxNCells();
     SetTimeCorr();
     SetMinCharge();
-    fMap=new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
-
+    fMap = new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
 }
-
-//_____________________________________________________________________________
-AliITSClusterFinderSDD::AliITSClusterFinderSDD()
-{
-  // constructor
-    fSegmentation=0;
-    fResponse=0;
-    fDigits=0;
-    fClusters=0;
-    fNclusters=0;
-    fMap=0;
-    SetCutAmplitude();
+//______________________________________________________________________
+AliITSClusterFinderSDD::AliITSClusterFinderSDD(){
+    // default constructor
+
+    fSegmentation = 0;
+    fResponse     = 0;
+    fDigits       = 0;
+    fClusters     = 0;
+    fNclusters    = 0;
+    fMap          = 0;
+    fCutAmplitude = 0;
+    fDAnode = 0;
+    fDTime = 0;
+    fMinPeak = 0;
+    fMinNCells = 0;
+    fMaxNCells = 0;
+    fTimeCorr = 0;
+    fMinCharge = 0;
+    /*
     SetDAnode();
     SetDTime();
-    SetMinPeak();
+    SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
     SetMinNCells();
     SetMaxNCells();
     SetTimeCorr();
     SetMinCharge();
-
+    */
 }
-
-//_____________________________________________________________________________
-AliITSClusterFinderSDD::~AliITSClusterFinderSDD()
-{
+//____________________________________________________________________________
+AliITSClusterFinderSDD::~AliITSClusterFinderSDD(){
     // destructor
 
     if(fMap) delete fMap;
-
 }
-//__________________________________________________________________________
-AliITSClusterFinderSDD::AliITSClusterFinderSDD(const AliITSClusterFinderSDD &source){
-  //     Copy Constructor 
-  if(&source == this) return;
-  this->fClusters = source.fClusters ;
-  this->fNclusters = source.fNclusters ;
-  this->fMap = source.fMap ;
-  this->fCutAmplitude = source.fCutAmplitude ;
-  this->fDAnode = source.fDAnode ;
-  this->fDTime = source.fDTime ;
-  this->fTimeCorr = source.fTimeCorr ;
-  this->fMinPeak = source.fMinPeak ;
-  this->fMinNCells = source.fMinNCells ;
-  this->fMaxNCells = source.fMaxNCells ;
-  return;
-}
-
-//_________________________________________________________________________
-AliITSClusterFinderSDD& 
-  AliITSClusterFinderSDD::operator=(const AliITSClusterFinderSDD &source) {
-  //    Assignment operator
-  if(&source == this) return *this;
-  this->fClusters = source.fClusters ;
-  this->fNclusters = source.fNclusters ;
-  this->fMap = source.fMap ;
-  this->fCutAmplitude = source.fCutAmplitude ;
-  this->fDAnode = source.fDAnode ;
-  this->fDTime = source.fDTime ;
-  this->fTimeCorr = source.fTimeCorr ;
-  this->fMinPeak = source.fMinPeak ;
-  this->fMinNCells = source.fMinNCells ;
-  this->fMaxNCells = source.fMaxNCells ;
-  return *this;
+//______________________________________________________________________
+void AliITSClusterFinderSDD::SetCutAmplitude(Float_t nsigma){
+    // set the signal threshold for cluster finder
+    Float_t baseline,noise,noise_after_el;
+
+    fResponse->GetNoiseParam(noise,baseline);
+    noise_after_el = ((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics();
+    fCutAmplitude = (Int_t)((baseline + nsigma*noise_after_el));
 }
-
-
-//_____________________________________________________________________________
-
-void AliITSClusterFinderSDD::Find1DClusters()
-{
-  // find 1D clusters
-
-  AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
-  
-  // retrieve the parameters 
-  Int_t fNofMaps = fSegmentation->Npz();
-  Int_t fMaxNofSamples = fSegmentation->Npx();
-  Int_t fNofAnodes = fNofMaps/2;
-  Int_t dummy=0;
-  Float_t fTimeStep = fSegmentation->Dpx(dummy);
-  Float_t fSddLength = fSegmentation->Dx();
-  Float_t fDriftSpeed = fResponse->DriftSpeed();
+//______________________________________________________________________
+void AliITSClusterFinderSDD::Find1DClusters(){
+    // find 1D clusters
+    static AliITS *iTS = (AliITS*)gAlice->GetModule("ITS");
   
-  Float_t anodePitch = fSegmentation->Dpz(dummy);
-  // map the signal
-  fMap->SetThreshold(fCutAmplitude);
-
-  fMap->FillMap();
+    // retrieve the parameters 
+    Int_t fNofMaps       = fSegmentation->Npz();
+    Int_t fMaxNofSamples = fSegmentation->Npx();
+    Int_t fNofAnodes     = fNofMaps/2;
+    Int_t dummy          = 0;
+    Float_t fTimeStep    = fSegmentation->Dpx(dummy);
+    Float_t fSddLength   = fSegmentation->Dx();
+    Float_t fDriftSpeed  = fResponse->DriftSpeed();  
+    Float_t anodePitch   = fSegmentation->Dpz(dummy);
+
+    // map the signal
+    fMap->ClearMap();
+    fMap->SetThreshold(fCutAmplitude);
+    fMap->FillMap();
   
-  Float_t noise;
-  Float_t baseline;
-  fResponse->GetNoiseParam(noise,baseline);
-  
-  Int_t nofFoundClusters = 0;
-  Int_t i;
-  Float_t **dfadc = new Float_t*[fNofAnodes];
-  for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
-  Float_t fadc = 0.;
-  Float_t fadc1 = 0.;
-  Float_t fadc2 = 0.;
-  Int_t j,k,idx,l,m;
-  for(j=0;j<2;j++) {
-    for(k=0;k<fNofAnodes;k++) {
-      idx = j*fNofAnodes+k;
-      // signal (fadc) & derivative (dfadc)
-      dfadc[k][255]=0.;
-      for(l=0; l<fMaxNofSamples; l++) {
-       fadc2=(Float_t)fMap->GetSignal(idx,l);
-       if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
-       if(l>0) dfadc[k][l-1] = fadc2-fadc1;
-      } // samples
-    } // anodes
-    
-    for(k=0;k<fNofAnodes;k++) {
-      //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
-      idx = j*fNofAnodes+k;
-      
-      Int_t imax = 0;
-      Int_t imaxd = 0;
-      Int_t it=0;
-      while(it <= fMaxNofSamples-3) {
-       
-       imax = it;
-       imaxd = it;
-       // maximum of signal      
-       
-       Float_t fadcmax = 0.;
-       Float_t dfadcmax = 0.;
-       Int_t lthrmina = 1;
-       Int_t lthrmint = 3;
-       
-       Int_t lthra = 1;
-       Int_t lthrt = 0;
-       
-       for(m=0;m<20;m++) {
-         Int_t id = it+m;
-         if(id>=fMaxNofSamples) break;
-         fadc=(float)fMap->GetSignal(idx,id);
-         if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
-         if(fadc > (float)fCutAmplitude) { 
-           lthrt++; 
-         }
-         
-         if(dfadc[k][id] > dfadcmax) {
-           dfadcmax = dfadc[k][id];
-           imaxd = id;
-         }
-       }
-       it = imaxd;
-       
-       if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
-       
-       // cluster charge
-       Int_t tstart = it-2;
-       if(tstart < 0) tstart = 0;
-       
-       Bool_t ilcl = 0;
-       if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
-
-       if(ilcl) {
-         nofFoundClusters++;
-         
-         Int_t tstop = tstart;
-         Float_t dfadcmin = 10000.;
-         Int_t ij;
-         for(ij=0; ij<20; ij++) {
-           if(tstart+ij > 255) { tstop = 255; break; }
-           fadc=(float)fMap->GetSignal(idx,tstart+ij);
-           if((dfadc[k][tstart+ij] < dfadcmin) && (fadc > fCutAmplitude)) {
-             tstop = tstart+ij+5;
-             if(tstop > 255) tstop = 255;
-             dfadcmin = dfadc[k][it+ij];
-           }
-         }
-         
-         Float_t clusterCharge = 0.;
-         Float_t clusterAnode = k+0.5;
-         Float_t clusterTime = 0.;
-         Float_t clusterMult = 0.;
-         Float_t clusterPeakAmplitude = 0.;
-         Int_t its,peakpos=-1;
-         Float_t n, baseline;
-         fResponse->GetNoiseParam(n,baseline);
-         for(its=tstart; its<=tstop; its++) {
-           fadc=(float)fMap->GetSignal(idx,its);
-           if(fadc>baseline)
-             fadc-=baseline;
-           else
-             fadc=0.;
-           clusterCharge += fadc;
-           // as a matter of fact we should take the peak pos before FFT
-           // to get the list of tracks !!!
-           if(fadc > clusterPeakAmplitude) {
-             clusterPeakAmplitude = fadc;
-             //peakpos=fMap->GetHitIndex(idx,its);
-             Int_t shift=(int)(fTimeCorr/fTimeStep);
-             if(its>shift && its<(fMaxNofSamples-shift)) peakpos=fMap->GetHitIndex(idx,its+shift);
-             else peakpos=fMap->GetHitIndex(idx,its);
-             if(peakpos<0) peakpos=fMap->GetHitIndex(idx,its);
-           }
-           clusterTime += fadc*its;
-           if(fadc > 0) clusterMult++;
-           if(its == tstop) {
-             clusterTime /= (clusterCharge/fTimeStep);   // ns
-             if(clusterTime > fTimeCorr) clusterTime -= fTimeCorr;   // ns
-           }
-         }
-         
-         Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*anodePitch;
-         Float_t clusterDriftPath = clusterTime*fDriftSpeed;
-         clusterDriftPath = fSddLength-clusterDriftPath;
-
-         if(clusterCharge <= 0.) break;
-         AliITSRawClusterSDD clust(j+1,clusterAnode,clusterTime,clusterCharge,clusterPeakAmplitude,peakpos,0.,0.,clusterDriftPath,clusteranodePath,clusterMult,0,0,0,0,0,0,0);
-         iTS->AddCluster(1,&clust);
-         it = tstop;
-       } // ilcl
-       
-       it++;
-       
-      } // while (samples)
-    } // anodes
-  } // detectors (2)
-  
-  //fMap->ClearMap(); 
-  
-  for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
-  delete [] dfadc;
-  
-  return;
+    Float_t noise;
+    Float_t baseline;
+    fResponse->GetNoiseParam(noise,baseline);
   
+    Int_t nofFoundClusters = 0;
+    Int_t i;
+    Float_t **dfadc = new Float_t*[fNofAnodes];
+    for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
+    Float_t fadc  = 0.;
+    Float_t fadc1 = 0.;
+    Float_t fadc2 = 0.;
+    Int_t j,k,idx,l,m;
+    for(j=0;j<2;j++) {
+        for(k=0;k<fNofAnodes;k++) {
+            idx = j*fNofAnodes+k;
+            // signal (fadc) & derivative (dfadc)
+            dfadc[k][255]=0.;
+            for(l=0; l<fMaxNofSamples; l++) {
+                fadc2=(Float_t)fMap->GetSignal(idx,l);
+                if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
+                if(l>0) dfadc[k][l-1] = fadc2-fadc1;
+            } // samples
+        } // anodes
+
+        for(k=0;k<fNofAnodes;k++) {
+        //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
+            idx = j*fNofAnodes+k;
+            Int_t imax  = 0;
+            Int_t imaxd = 0;
+            Int_t it    = 0;
+            while(it <= fMaxNofSamples-3) {
+                imax  = it;
+                imaxd = it;
+                // maximum of signal          
+                Float_t fadcmax  = 0.;
+                Float_t dfadcmax = 0.;
+                Int_t lthrmina   = 1;
+                Int_t lthrmint   = 3;
+                Int_t lthra      = 1;
+                Int_t lthrt      = 0;
+                for(m=0;m<20;m++) {
+                    Int_t id = it+m;
+                    if(id>=fMaxNofSamples) break;
+                    fadc=(float)fMap->GetSignal(idx,id);
+                    if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
+                    if(fadc > (float)fCutAmplitude) { 
+                        lthrt++; 
+                    } // end if
+                    if(dfadc[k][id] > dfadcmax) {
+                        dfadcmax = dfadc[k][id];
+                        imaxd    = id;
+                    } // end if
+                } // end for m
+                it = imaxd;
+                if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
+                // cluster charge
+                Int_t tstart = it-2;
+                if(tstart < 0) tstart = 0;
+                Bool_t ilcl = 0;
+                if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
+                if(ilcl) {
+                    nofFoundClusters++;
+                    Int_t tstop      = tstart;
+                    Float_t dfadcmin = 10000.;
+                    Int_t ij;
+                    for(ij=0; ij<20; ij++) {
+                        if(tstart+ij > 255) { tstop = 255; break; }
+                        fadc=(float)fMap->GetSignal(idx,tstart+ij);
+                        if((dfadc[k][tstart+ij] < dfadcmin) && 
+                           (fadc > fCutAmplitude)) {
+                            tstop = tstart+ij+5;
+                            if(tstop > 255) tstop = 255;
+                            dfadcmin = dfadc[k][it+ij];
+                        } // end if
+                    } // end for ij
+
+                    Float_t clusterCharge = 0.;
+                    Float_t clusterAnode  = k+0.5;
+                    Float_t clusterTime   = 0.;
+                    Int_t   clusterMult   = 0;
+                    Float_t clusterPeakAmplitude = 0.;
+                    Int_t its,peakpos     = -1;
+                    Float_t n, baseline;
+                    fResponse->GetNoiseParam(n,baseline);
+                    for(its=tstart; its<=tstop; its++) {
+                        fadc=(float)fMap->GetSignal(idx,its);
+                        if(fadc>baseline) fadc -= baseline;
+                        else fadc = 0.;
+                        clusterCharge += fadc;
+                        // as a matter of fact we should take the peak
+                        // pos before FFT
+                        // to get the list of tracks !!!
+                        if(fadc > clusterPeakAmplitude) {
+                            clusterPeakAmplitude = fadc;
+                            //peakpos=fMap->GetHitIndex(idx,its);
+                            Int_t shift = (int)(fTimeCorr/fTimeStep);
+                            if(its>shift && its<(fMaxNofSamples-shift))
+                                peakpos  = fMap->GetHitIndex(idx,its+shift);
+                            else peakpos = fMap->GetHitIndex(idx,its);
+                            if(peakpos<0) peakpos =fMap->GetHitIndex(idx,its);
+                        } // end if
+                        clusterTime += fadc*its;
+                        if(fadc > 0) clusterMult++;
+                        if(its == tstop) {
+                            clusterTime /= (clusterCharge/fTimeStep);   // ns
+                            if(clusterTime>fTimeCorr) clusterTime -=fTimeCorr;
+                            //ns
+                        } // end if
+                    } // end for its
+
+                    Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
+                                               anodePitch;
+                    Float_t clusterDriftPath = clusterTime*fDriftSpeed;
+                    clusterDriftPath = fSddLength-clusterDriftPath;
+                    if(clusterCharge <= 0.) break;
+                    AliITSRawClusterSDD clust(j+1,//i
+                                              clusterAnode,clusterTime,//ff
+                                              clusterCharge, //f
+                                              clusterPeakAmplitude, //f
+                                              peakpos, //i
+                                              0.,0.,clusterDriftPath,//fff
+                                              clusteranodePath, //f
+                                              clusterMult, //i
+                                              0,0,0,0,0,0,0);//7*i
+                    iTS->AddCluster(1,&clust);
+                    it = tstop;
+                } // ilcl
+                it++;
+            } // while (samples)
+        } // anodes
+    } // detectors (2)
+
+    for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
+    delete [] dfadc;
+
+    return;
 }
 
-//_____________________________________________________________________________
-
-void AliITSClusterFinderSDD::Find1DClustersE()
-{
-
-       AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
-
-       // retrieve the parameters 
-       Int_t fNofMaps = fSegmentation->Npz();
-       Int_t fMaxNofSamples = fSegmentation->Npx();
-       Int_t fNofAnodes = fNofMaps/2;
-       Int_t dummy=0;
-       Float_t fTimeStep = fSegmentation->Dpx( dummy );
-       Float_t fSddLength = fSegmentation->Dx();
-       Float_t fDriftSpeed = fResponse->DriftSpeed();
-       Float_t anodePitch = fSegmentation->Dpz( dummy );
-       Float_t n, baseline;
-       fResponse->GetNoiseParam( n, baseline );
-
-       // map the signal
-       fMap->SetThreshold( fCutAmplitude );
-       fMap->FillMap();
-       Int_t nClu = 0;
-       
-//     cout << "Search  cluster... "<< endl;
-       for( Int_t j=0; j<2; j++ ) 
-       {
-       for( Int_t k=0; k<fNofAnodes; k++ ) 
-               {
-               Int_t idx = j*fNofAnodes+k;
-                       
-                       Bool_t On = kFALSE;
-                       Int_t start = 0;
-                       Int_t nTsteps = 0;
-                       Float_t fmax = 0.;
-                       Int_t lmax = 0;
-                       Float_t charge = 0.;
-                       Float_t time = 0.;
-                       Float_t anode = k+0.5;
-                       Int_t peakpos = -1;
-
-               for( Int_t l=0; l<fMaxNofSamples; l++ ) 
-                       {
-                               Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
-                               if( fadc > 0.0 )
-                               {
-                                       if( On == kFALSE && l<fMaxNofSamples-4)  // star RawCluster (reset var.)
-                                       { 
-                                               Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
-                                               if( fadc1 < fadc ) continue;
-                                               start = l;
-                                               fmax = 0.;
-                                               lmax = 0;
-                                               time = 0.;
-                                               charge = 0.; 
-                                               On = kTRUE; 
-                                               nTsteps = 0;
-                                       }
-                                       
-                                       nTsteps++ ;
-                                       if( fadc > baseline )
-                                       fadc -= baseline;
-                               else
-                                       fadc=0.;
-
-                               charge += fadc;
-                                       time += fadc*l;
-
-                                       if( fadc > fmax ) 
-                                       { 
-                                               fmax = fadc; 
-                                               lmax = l; 
-                                               Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
-                           if( l > shift && l < (fMaxNofSamples-shift) )  
-                                                       peakpos = fMap->GetHitIndex( idx, l+shift );
-                                       else 
-                                                       peakpos = fMap->GetHitIndex( idx, l );
-                                       if( peakpos < 0 ) peakpos = fMap->GetHitIndex( idx, l );
-                                       }
-                               }
-                               else
-                               {
-                                       if( On == kTRUE )
-                                       {       
-                                               if( nTsteps > 2 ) //  min # of timesteps for a RawCluster
-                                               {
-                                                       // Found a RawCluster...
-                                                       Int_t stop = l-1;
-                                                       time /= (charge/fTimeStep);   // ns
-                               //                      time = lmax*fTimeStep;   // ns
-                                                       if( time > fTimeCorr ) time -= fTimeCorr;   // ns
-                                                       Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
-                                                       Float_t DriftPath = time*fDriftSpeed;
-                                                       DriftPath = fSddLength-DriftPath;
-                                                       AliITSRawClusterSDD clust( j+1, anode, time, charge,
-                                   fmax, peakpos, 0., 0., DriftPath, anodePath, nTsteps
-                                                       , start, stop, start, stop, 1, k, k );
-                                                       iTS->AddCluster( 1, &clust );
-                                               //      clust.PrintInfo();
-                                                       nClu++;
-                                               }
-                                               On = kFALSE;
-                                       }
-                               }
-               } // samples
-       } // anodes
-       } // wings
 
-//     cout << "# Rawclusters " << nClu << endl;       
-       return; 
 
+//______________________________________________________________________
+void AliITSClusterFinderSDD::Find1DClustersE(){
+    // find 1D clusters
+    static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
+    // retrieve the parameters 
+    Int_t fNofMaps = fSegmentation->Npz();
+    Int_t fMaxNofSamples = fSegmentation->Npx();
+    Int_t fNofAnodes = fNofMaps/2;
+    Int_t dummy=0;
+    Float_t fTimeStep = fSegmentation->Dpx( dummy );
+    Float_t fSddLength = fSegmentation->Dx();
+    Float_t fDriftSpeed = fResponse->DriftSpeed();
+    Float_t anodePitch = fSegmentation->Dpz( dummy );
+    Float_t n, baseline;
+    fResponse->GetNoiseParam( n, baseline );
+    // map the signal
+    fMap->ClearMap();
+    fMap->SetThreshold( fCutAmplitude );
+    fMap->FillMap();
+    
+    Int_t nClu = 0;
+    //        cout << "Search  cluster... "<< endl;
+    for( Int_t j=0; j<2; j++ ){
+        for( Int_t k=0; k<fNofAnodes; k++ ){
+            Int_t idx = j*fNofAnodes+k;
+            Bool_t on = kFALSE;
+            Int_t start = 0;
+            Int_t nTsteps = 0;
+            Float_t fmax = 0.;
+            Int_t lmax = 0;
+            Float_t charge = 0.;
+            Float_t time = 0.;
+            Float_t anode = k+0.5;
+            Int_t peakpos = -1;
+            for( Int_t l=0; l<fMaxNofSamples; l++ ){
+                Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
+                if( fadc > 0.0 ){
+                    if( on == kFALSE && l<fMaxNofSamples-4){
+                        // star RawCluster (reset var.)
+                        Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
+                        if( fadc1 < fadc ) continue;
+                        start = l;
+                        fmax = 0.;
+                        lmax = 0;
+                        time = 0.;
+                        charge = 0.; 
+                        on = kTRUE; 
+                        nTsteps = 0;
+                    } // end if on...
+                    nTsteps++ ;
+                    if( fadc > baseline ) fadc -= baseline;
+                    else fadc=0.;
+                    charge += fadc;
+                    time += fadc*l;
+                    if( fadc > fmax ){ 
+                        fmax = fadc; 
+                        lmax = l; 
+                        Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
+                        if( l > shift && l < (fMaxNofSamples-shift) )  
+                            peakpos = fMap->GetHitIndex( idx, l+shift );
+                        else
+                            peakpos = fMap->GetHitIndex( idx, l );
+                        if( peakpos < 0) peakpos = fMap->GetHitIndex( idx, l );
+                    } // end if fadc
+                }else{ // end fadc>0
+                    if( on == kTRUE ){        
+                        if( nTsteps > 2 ){
+                            //  min # of timesteps for a RawCluster
+                            // Found a RawCluster...
+                            Int_t stop = l-1;
+                            time /= (charge/fTimeStep);   // ns
+                                // time = lmax*fTimeStep;   // ns
+                            if( time > fTimeCorr ) time -= fTimeCorr;   // ns
+                            Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
+                            Float_t driftPath = time*fDriftSpeed;
+                            driftPath = fSddLength-driftPath;
+                            AliITSRawClusterSDD clust(j+1,anode,time,charge,
+                                                      fmax, peakpos,0.,0.,
+                                                      driftPath,anodePath,
+                                                      nTsteps,start,stop,
+                                                      start, stop, 1, k, k );
+                            iTS->AddCluster( 1, &clust );
+                            //        clust.PrintInfo();
+                            nClu++;
+                        } // end if nTsteps
+                        on = kFALSE;
+                    } // end if on==kTRUE
+                } // end if fadc>0
+            } // samples
+        } // anodes
+    } // wings
+    //        cout << "# Rawclusters " << nClu << endl;         
+    return; 
 }
-
-//_____________________________________________________________________________
-
-Int_t AliITSClusterFinderSDD::SearchPeak( Float_t *spect, Int_t xdim, Int_t zdim, 
-                                                                                 Int_t *peakX, Int_t *peakZ, Float_t *peakAmp, Float_t minpeak )
-{
-       Int_t npeak = 0;    // # peaks
+//_______________________________________________________________________
+Int_t AliITSClusterFinderSDD::SearchPeak(Float_t *spect,Int_t xdim,Int_t zdim,
+                                         Int_t *peakX, Int_t *peakZ, 
+                                         Float_t *peakAmp, Float_t minpeak ){
+    // search peaks on a 2D cluster
+    Int_t npeak = 0;    // # peaks
     Int_t i,j;
-
-       // search peaks
-       for( Int_t z=1; z<zdim-1; z++ )
-       {
-               for( Int_t x=2; x<xdim-3; x++ )
-               {
-                       Float_t Sxz = spect[x*zdim+z];
-                       Float_t Sxz1 = spect[(x+1)*zdim+z];
-                       Float_t Sxz2 = spect[(x-1)*zdim+z];
-
-                       // search a local max. in s[x,z]
-                       if( Sxz < minpeak || Sxz1 <= 0 || Sxz2 <= 0 ) continue;
-                       if( Sxz >= spect[(x+1)*zdim+z  ] && Sxz >= spect[(x-1)*zdim+z  ] &&
-                               Sxz >= spect[x*zdim    +z+1] && Sxz >= spect[x*zdim    +z-1] &&
-                               Sxz >= spect[(x+1)*zdim+z+1] && Sxz >= spect[(x+1)*zdim+z-1] &&
-                               Sxz >= spect[(x-1)*zdim+z+1] && Sxz >= spect[(x-1)*zdim+z-1] )
-                       {
-                               // peak found
-                               peakX[npeak] = x;
-                               peakZ[npeak] = z;
-                               peakAmp[npeak] = Sxz;
-                               npeak++;
-                       }
-               }
-       }                       
-
-       // search groups of peaks with same amplitude.
-       Int_t *Flag = new Int_t[npeak];
-       for( i=0; i<npeak; i++ ) Flag[i] = 0;
-       for( i=0; i<npeak; i++ )
-       {
-               for( j=0; j<npeak; j++ )
-               {
-                       if( i==j) continue;
-                       if( Flag[j] > 0 ) continue;
-                       if( peakAmp[i] == peakAmp[j] && TMath::Abs(peakX[i]-peakX[j])<=1 && TMath::Abs(peakZ[i]-peakZ[j])<=1 )
-                       {
-                               if( Flag[i] == 0) Flag[i] = i+1;
-                               Flag[j] = Flag[i];
-                       }
-               }
-       }
-
-       // make average of peak groups  
-       for( i=0; i<npeak; i++ )
-       {
-               Int_t nFlag = 1;
-               if( Flag[i] <= 0 ) continue;
-               for( j=0; j<npeak; j++ )
-               {
-                       if( i==j ) continue;
-                       if( Flag[j] != Flag[i] ) continue;
-                       peakX[i] += peakX[j];
-                       peakZ[i] += peakZ[j];
-                       nFlag++;
-                       npeak--;
-                       for( Int_t k=j; k<npeak; k++ )
-                       {
-                               peakX[k] = peakX[k+1];
-                               peakZ[k] = peakZ[k+1];
-                               peakAmp[k] = peakAmp[k+1];
-                               Flag[k] = Flag[k+1];
-                       }       
-                       j--;
-               }
-
-               if( nFlag > 1 )
-               {
-                       peakX[i] /= nFlag;
-                       peakZ[i] /= nFlag;
-               }
-       }
-       
-       delete [] Flag;
-       return( npeak );
+    // search peaks
+    for( Int_t z=1; z<zdim-1; z++ ){
+        for( Int_t x=1; x<xdim-2; x++ ){
+            Float_t sxz = spect[x*zdim+z];
+            Float_t sxz1 = spect[(x+1)*zdim+z];
+            Float_t sxz2 = spect[(x-1)*zdim+z];
+            // search a local max. in s[x,z]
+            if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
+            if( sxz >= spect[(x+1)*zdim+z  ] && sxz >= spect[(x-1)*zdim+z  ] &&
+                sxz >= spect[x*zdim    +z+1] && sxz >= spect[x*zdim    +z-1] &&
+                sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
+                sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
+                // peak found
+                peakX[npeak] = x;
+                peakZ[npeak] = z;
+                peakAmp[npeak] = sxz;
+                npeak++;
+            } // end if ....
+        } // end for x
+    } // end for z
+    // search groups of peaks with same amplitude.
+    Int_t *flag = new Int_t[npeak];
+    for( i=0; i<npeak; i++ ) flag[i] = 0;
+    for( i=0; i<npeak; i++ ){
+        for( j=0; j<npeak; j++ ){
+            if( i==j) continue;
+            if( flag[j] > 0 ) continue;
+            if( peakAmp[i] == peakAmp[j] && 
+                TMath::Abs(peakX[i]-peakX[j])<=1 && 
+                TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
+                if( flag[i] == 0) flag[i] = i+1;
+                flag[j] = flag[i];
+            } // end if ...
+        } // end for j
+    } // end for i
+    // make average of peak groups        
+    for( i=0; i<npeak; i++ ){
+        Int_t nFlag = 1;
+        if( flag[i] <= 0 ) continue;
+        for( j=0; j<npeak; j++ ){
+            if( i==j ) continue;
+            if( flag[j] != flag[i] ) continue;
+            peakX[i] += peakX[j];
+            peakZ[i] += peakZ[j];
+            nFlag++;
+            npeak--;
+            for( Int_t k=j; k<npeak; k++ ){
+                peakX[k] = peakX[k+1];
+                peakZ[k] = peakZ[k+1];
+                peakAmp[k] = peakAmp[k+1];
+                flag[k] = flag[k+1];
+            } // end for k        
+            j--;
+        } // end for j
+        if( nFlag > 1 ){
+            peakX[i] /= nFlag;
+            peakZ[i] /= nFlag;
+        } // end fi nFlag
+    } // end for i
+    delete [] flag;
+    return( npeak );
 }
-
-
-void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par, Float_t *spe, Float_t *Integral) 
-{
-  Int_t Electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
-  Int_t param_peak = 5;
-  // par -> paramiters..
-  // par[0]  number of peaks.
-  // for each peak i=1, ..., par[0]
-  //           par[i] = Ampl.
-  //           par[i+1] = xpos
-  //           par[i+2] = zpos
-  //           par[i+3] = tau
-  //           par[i+4] = sigma.
-  Int_t npeak = (Int_t)par[0];
-  
-  memset( spe, 0, sizeof( Float_t )*zdim*xdim );
-  
-  Int_t k = 1;
-  for( Int_t i=0; i<npeak; i++ )
-    {
-      if( Integral != 0 ) Integral[i] = 0.;
-      Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
-      Float_t T2 = par[k+3];   //PASCAL
-      if(Electronics == 2) { T2 *= T2; T2 *= 2; } // OLA
-      for( Int_t z=0; z<zdim; z++ ) {
-       for( Int_t x=0; x<xdim; x++ ) {
-         Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
-         Float_t x2 = 0.;
-         if(Electronics == 1) // PASCAL
-           x2 = (x-par[k+1]+T2)/T2;
-         else if(Electronics == 2) //OLA
-           x2 = (x-par[k+1])*(x-par[k+1])/T2;
-         else
-           cout << "Wrong Electronics" << endl;
-         // Float_t signal = (x2 > 0.) ? par[k] * x2*x2 * exp( -2*x2+2. - z2 ) : 0.0; // RCCR
-         Float_t signal = 0.;
-          if(Electronics == 1)
-           signal = (x2 > 0.) ? par[k] * x2 * exp( -x2+1. - z2 ) : 0.0;
-         else if(Electronics == 2) //OLA
-           signal = par[k]  * exp( -x2 - z2 );
-         else
-           cout << "Wrong Electronics" << endl;
-         
-         spe[x*zdim+z] += signal;
-         if( Integral != 0 ) Integral[i] += signal; 
-       }
-      }        
-      k += param_peak;
-    }
-  return;
-}
-
-
-/*
-void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par, Float_t *spe, Float_t *Integral=0 ) 
-{
- Int_t param_peak = 5;
-// par -> paramiters..
-// par[0]  number of peaks.
-// for each peak i=1, ..., par[0]
-//             par[i] = Ampl.
-//             par[i+1] = xpos
-//             par[i+2] = zpos
-//             par[i+3] = tau
-//             par[i+4] = sigma.
-       Int_t npeak = (Int_t)par[0];
-
-       memset( spe, 0, sizeof( Float_t )*zdim*xdim );
-       
-       Int_t k = 1;
-       for( Int_t i=0; i<npeak; i++ )
-       {
-               if( Integral != 0 ) Integral[i] = 0.;
-               Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
-               Float_t T2 = par[k+3]*par[k+3]*2.; 
-               for( Int_t z=0; z<zdim; z++ )
-               {
-                       for( Int_t x=0; x<xdim; x++ )
-                       {
-                               Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
-                               Float_t x2 = (x-par[k+1])*(x-par[k+1])/T2;
-                               Float_t signal = par[k]  * exp( -x2 - z2 );
-                               spe[x*zdim+z] += signal;
-                               if( Integral != 0 ) Integral[i] += signal; 
-                       }
-               }       
-               k += param_peak;
-       }
-       return;
+//______________________________________________________________________
+void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par,
+                                       Float_t *spe, Float_t *integral){
+    // function used to fit the clusters
+    // par -> parameters..
+    // par[0]  number of peaks.
+    // for each peak i=1, ..., par[0]
+    //                 par[i] = Ampl.
+    //                 par[i+1] = xpos
+    //                 par[i+2] = zpos
+    //                 par[i+3] = tau
+    //                 par[i+4] = sigma.
+    Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
+    const Int_t knParam = 5;
+    Int_t npeak = (Int_t)par[0];
+
+    memset( spe, 0, sizeof( Float_t )*zdim*xdim );
+
+    Int_t k = 1;
+    for( Int_t i=0; i<npeak; i++ ){
+        if( integral != 0 ) integral[i] = 0.;
+        Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
+        Float_t T2 = par[k+3];   // PASCAL
+        if( electronics == 2 ) { T2 *= T2; T2 *= 2; } // OLA
+        for( Int_t z=0; z<zdim; z++ ){
+            for( Int_t x=0; x<xdim; x++ ){
+                Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
+                Float_t x2 = 0.;
+                Float_t signal = 0.;
+                if( electronics == 1 ){ // PASCAL
+                    x2 = (x-par[k+1]+T2)/T2;
+                    signal = (x2>0.) ? par[k]*x2*exp(-x2+1.-z2) :0.0; // RCCR2
+                //  signal =(x2>0.) ? par[k]*x2*x2*exp(-2*x2+2.-z2 ):0.0;//RCCR
+                }else if( electronics == 2 ) { // OLA
+                    x2 = (x-par[k+1])*(x-par[k+1])/T2;
+                    signal = par[k]  * exp( -x2 - z2 );
+                } else {
+                    cout << "Wrong SDD Electronics =" << electronics << endl;
+                    // exit( 1 );
+                } // end if electronicx
+                spe[x*zdim+z] += signal;
+                if( integral != 0 ) integral[i] += signal;
+            } // end for x
+        } // end for z
+        k += knParam;
+    } // end for i
+    return;
 }
-*/
-
-Float_t AliITSClusterFinderSDD::chisq( Int_t xdim, Int_t zdim, Float_t *spe, Float_t *speFit )
-{
-       // EVALUATES UNNORMALIZED CHI-SQUARED
-       
-       Float_t chi2 = 0.;
-       for( Int_t z=0; z<zdim; z++ )
-       {
-               for( Int_t x=1; x<xdim-1; x++ )
-               {
-                       Int_t index = x*zdim+z;
-                       Float_t tmp = spe[index] - speFit[index];
-                       chi2 += tmp*tmp;
-               }
-       }       
-       return( chi2 );
+//__________________________________________________________________________
+Float_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Float_t *spe,
+                                        Float_t *speFit ){
+    // EVALUATES UNNORMALIZED CHI-SQUARED
+    Float_t chi2 = 0.;
+    for( Int_t z=0; z<zdim; z++ ){
+        for( Int_t x=1; x<xdim-1; x++ ){
+            Int_t index = x*zdim+z;
+            Float_t tmp = spe[index] - speFit[index];
+            chi2 += tmp*tmp;
+        } // end for x
+    } // end for z
+    return( chi2 );
 }
-
-
-void AliITSClusterFinderSDD::minim( Int_t xdim, Int_t zdim, Float_t *param, Float_t *prm0, Float_t *steprm, Float_t *chisqr, 
-               Float_t *spe, Float_t *speFit )
-{
-       Int_t   k, nnn, mmm, i;
-       Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
-       
-       Int_t param_peak = 5;
-       Int_t npeak = (Int_t)param[0];
-       for( k=1; k<(npeak*param_peak+1); k++ ) prm0[k] = param[k];
-
-       for( k=1; k<(npeak*param_peak+1); k++ ) 
-       {
-               p1 = param[k];
-               delta = steprm[k];
-               d1 = delta;
-
-               // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
-               if( fabs( p1 ) > 1.0E-6 ) 
-                       if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
-               else  delta = (Float_t)1.0E-4;
-
-               //  EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
-               PeakFunc( xdim, zdim, param, speFit );
-               chisq1 = chisq( xdim, zdim, spe, speFit );
-
-               p2 = p1+delta;
-               param[k] = p2;
-
-               PeakFunc( xdim, zdim, param, speFit );
-               chisq2 = chisq( xdim, zdim, spe, speFit );
-
-               if( chisq1 < chisq2 ) 
-               {
-       // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
-               delta = -delta;
-               t = p1;
-               p1 = p2;
-               p2 = t;
-               t = chisq1;
-               chisq1 = chisq2;
-               chisq2 = t;
-       }
-
-               i = 1; nnn = 0;
-               do {   // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
-               nnn++;
-                       p3 = p2 + delta;
-               mmm = nnn - (nnn/5)*5;  // multiplo de 5
-               if( mmm == 0 ) 
-                       {
-                       d1 = delta;
-                       // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW 
-                       delta *= 5;
-               }
-               param[k] = p3;
-
-                       // Constrain paramiters
-                       Int_t kpos = (k-1) % param_peak;
-                       switch( kpos ) 
-                       {
-                               case 0 :
-                                       if( param[k] <= 20 ) param[k] = fMinPeak;
-                               case 1 :
-                                       if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
-                               case 2 :
-                                       if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
-                               case 3 :
-                                       if( param[k] < .5 ) param[k] = .5;      
-                               case 4 :
-                                       if( param[k] < .288 ) param[k] = .288;  // 1/sqrt(12) = 0.288
-                       };
-       
-                       PeakFunc( xdim, zdim, param, speFit );
-                       chisq3 = chisq( xdim, zdim, spe, speFit );
-               
-               if( chisq3 < chisq2 && nnn < 50 ) 
-                       {
-                               p1 = p2;
-                       p2 = p3;
-                       chisq1 = chisq2;
-                       chisq2 = chisq3;
-               }
-               else i=0;
-
-       } while( i );
-
-               // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
-               a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
-               b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
-               if( a!=0 ) p0 = (Float_t)(0.5*b/a);
-                 else p0 = 10000;
-
-               //---IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
-               //   ERRONEOUS EVALUATION OF PARABOLA MINIMUM
-               //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
-
-               //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
-               //if( fabs( p2-p0 ) > dp ) p0 = p2;
-               param[k] = p0;
-               
-               // Constrain paramiters
-               Int_t kpos = (k-1) % param_peak;
-               switch( kpos ) 
-               {
-                       case 0 :
-                               if( param[k] <= 20 ) param[k] = fMinPeak;   
-                       case 1 :
-                               if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
-                       case 2 :
-                               if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
-                       case 3 :
-                               if( param[k] < .5 ) param[k] = .5;      
-                       case 4 :
-                               if( param[k] < .288 ) param[k] = .288;  // 1/sqrt(12) = 0.288   
-               };
-       
-               PeakFunc( xdim, zdim, param, speFit );
-               chisqt = chisq( xdim, zdim, spe, speFit );
-
-               // DO NOT ALLOW ERRONEOUS INTERPOLATION
-               if( chisqt <= *chisqr ) 
-                       *chisqr = chisqt;
-               else  
-                       param[k] = prm0[k];
-
-               // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
-               steprm[k] = (param[k]-prm0[k])/5;
-               if( steprm[k] >= d1 ) steprm[k] = d1/5;
-       }
-
-       // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
-       PeakFunc( xdim, zdim, param, speFit );
-       *chisqr = chisq( xdim, zdim, spe, speFit );
-       return;
+//_______________________________________________________________________
+void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Float_t *param,
+                                    Float_t *prm0,Float_t *steprm,
+                                    Float_t *chisqr,Float_t *spe,
+                                    Float_t *speFit ){
+    // 
+    Int_t   k, nnn, mmm, i;
+    Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
+    const Int_t knParam = 5;
+    Int_t npeak = (Int_t)param[0];
+    for( k=1; k<(npeak*knParam+1); k++ ) prm0[k] = param[k];
+    for( k=1; k<(npeak*knParam+1); k++ ){
+        p1 = param[k];
+        delta = steprm[k];
+        d1 = delta;
+        // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
+        if( fabs( p1 ) > 1.0E-6 ) 
+            if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
+            else  delta = (Float_t)1.0E-4;
+        //  EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
+        PeakFunc( xdim, zdim, param, speFit );
+        chisq1 = ChiSqr( xdim, zdim, spe, speFit );
+        p2 = p1+delta;
+        param[k] = p2;
+        PeakFunc( xdim, zdim, param, speFit );
+        chisq2 = ChiSqr( xdim, zdim, spe, speFit );
+        if( chisq1 < chisq2 ){
+            // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
+            delta = -delta;
+            t = p1;
+            p1 = p2;
+            p2 = t;
+            t = chisq1;
+            chisq1 = chisq2;
+            chisq2 = t;
+        } // end if
+        i = 1; nnn = 0;
+        do {   // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
+            nnn++;
+            p3 = p2 + delta;
+            mmm = nnn - (nnn/5)*5;  // multiplo de 5
+            if( mmm == 0 ){
+                d1 = delta;
+                // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW 
+                delta *= 5;
+            } // end if
+            param[k] = p3;
+            // Constrain paramiters
+            Int_t kpos = (k-1) % knParam;
+            switch( kpos ){
+            case 0 :
+                if( param[k] <= 20 ) param[k] = fMinPeak;
+                break;
+            case 1 :
+                if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
+                break;
+            case 2 :
+                if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
+                break;
+            case 3 :
+                if( param[k] < .5 ) param[k] = .5;        
+                break;
+            case 4 :
+                if( param[k] < .288 ) param[k] = .288;        // 1/sqrt(12) = 0.288
+                if( param[k] > zdim*.5 ) param[k] = zdim*.5;
+                break;
+            }; // end switch
+            PeakFunc( xdim, zdim, param, speFit );
+            chisq3 = ChiSqr( xdim, zdim, spe, speFit );
+            if( chisq3 < chisq2 && nnn < 50 ){
+                p1 = p2;
+                p2 = p3;
+                chisq1 = chisq2;
+                chisq2 = chisq3;
+            }else i=0;
+        } while( i );
+        // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
+        a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
+        b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
+        if( a!=0 ) p0 = (Float_t)(0.5*b/a);
+        else p0 = 10000;
+        //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
+        //   ERRONEOUS EVALUATION OF PARABOLA MINIMUM
+        //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
+        //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
+        //if( fabs( p2-p0 ) > dp ) p0 = p2;
+        param[k] = p0;
+        // Constrain paramiters
+        Int_t kpos = (k-1) % knParam;
+        switch( kpos ){
+        case 0 :
+            if( param[k] <= 20 ) param[k] = fMinPeak;   
+            break;
+        case 1 :
+            if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
+            break;
+        case 2 :
+            if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
+            break;
+        case 3 :
+            if( param[k] < .5 ) param[k] = .5;        
+            break;
+        case 4 :
+            if( param[k] < .288 ) param[k] = .288;  // 1/sqrt(12) = 0.288
+            if( param[k] > zdim*.5 ) param[k] = zdim*.5;
+            break;
+        }; // end switch
+        PeakFunc( xdim, zdim, param, speFit );
+        chisqt = ChiSqr( xdim, zdim, spe, speFit );
+        // DO NOT ALLOW ERRONEOUS INTERPOLATION
+        if( chisqt <= *chisqr ) *chisqr = chisqt;
+        else param[k] = prm0[k];
+        // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
+        steprm[k] = (param[k]-prm0[k])/5;
+        if( steprm[k] >= d1 ) steprm[k] = d1/5;
+    } // end for k
+    // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
+    PeakFunc( xdim, zdim, param, speFit );
+    *chisqr = ChiSqr( xdim, zdim, spe, speFit );
+    return;
 }
-
-Int_t AliITSClusterFinderSDD::noLinearFit( Int_t xdim, Int_t zdim, Float_t *param, Float_t *spe, Int_t *niter, Float_t *chir )
-{
-       const Float_t chilmt = 0.01;               //   relative accuracy         
-       const Int_t   nel = 3;                             //   for parabolic minimization  
-       const Int_t   nstop = 50;                          //   Max. iteration number     
-       const Int_t   param_peak = 5;
-
-       Int_t npeak = (Int_t)param[0];
-       
-       // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE 
-       if( (xdim*zdim - npeak*param_peak) <= 0 ) return( -1 );
-       Float_t deg_free = (xdim*zdim - npeak*param_peak)-1;
-
-       Int_t   n, k, iter_num = 0;
-       Float_t *prm0 = new Float_t[npeak*param_peak+1];
-       Float_t *step = new Float_t[npeak*param_peak+1];
-       Float_t *schi = new Float_t[npeak*param_peak+1]; 
-       Float_t *sprm[3];
-       sprm[0] = new Float_t[npeak*param_peak+1];
-       sprm[1] = new Float_t[npeak*param_peak+1];
-       sprm[2] = new Float_t[npeak*param_peak+1];
-       
-       Float_t  chi0, chi1, reldif, a, b, prmin, dp;
-       
-       Float_t *speFit = new Float_t[ xdim*zdim ];
-       PeakFunc( xdim, zdim, param, speFit );
-       chi0 = chisq( xdim, zdim, spe, speFit );
-       chi1 = chi0;
-
-
-       for( k=1; k<(npeak*param_peak+1); k++) prm0[k] = param[k];
-
-       for( k=1 ; k<(npeak*param_peak+1); k+=param_peak ) 
-       {
-       step[k] = param[k] / 20.0 ;             
-       step[k+1] = param[k+1] / 50.0;
-               step[k+2] = param[k+2] / 50.0;           
-       step[k+3] = param[k+3] / 20.0;           
-       step[k+4] = param[k+4] / 20.0;           
-    }
-
-       Int_t out = 0;
-       do 
-       {
-           iter_num++;
-       chi0 = chi1;
-               
-       minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
-       reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
-
-           // EXIT conditions
-               if( reldif < (float) chilmt )   
-               {
-                       *chir  = (chi1>0) ? (float) TMath::Sqrt (chi1/deg_free) :0;
-               *niter = iter_num;
-                       out = 0;
-                       break;
-       }
-
-       if( (reldif < (float)(5*chilmt)) && (iter_num > nstop) ) 
-               {
-               *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/deg_free):0;
-               *niter = iter_num;
-                       out = 0;
-                       break;
-       }
-
-       if( iter_num > 5*nstop ) 
-               {
-               *chir  = (chi1>0) ?(float) TMath::Sqrt (chi1/deg_free):0;
-               *niter = iter_num;
-                       out = 1;
-                       break;
-       }
-
-       if( iter_num <= nel ) continue;
-
-       n = iter_num - (iter_num/nel)*nel; // EXTRAPOLATION LIMIT COUNTER N
-       if( n > 3 || n == 0 ) continue;
-       schi[n-1] = chi1;
-       for( k=1; k<(npeak*param_peak+1); k++ ) sprm[n-1][k] = param[k];
-       if( n != 3 ) continue;
-
-               //   -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
-               //    PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
-
-       for( k=1; k<(npeak*param_peak+1); k++ ) 
-               {
-               Float_t tmp0 = sprm[0][k];
-               Float_t tmp1 = sprm[1][k];
-               Float_t tmp2 = sprm[2][k];
-               a  = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
-               a += (schi[2]*(tmp0-tmp1));
-               b  = schi[0]*(tmp1*tmp1-tmp2*tmp2);
-               b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*(tmp0*tmp0-tmp1*tmp1)));
-               if ((double)a < 1.0E-6) prmin = 0;
-                          else prmin = (float) (0.5*b/a);
-               dp = 5*(tmp2-tmp0);
-
-               if (fabs(prmin-tmp2) > fabs(dp)) prmin = tmp2+dp;
-               param[k] = prmin;
-               step[k]  = dp/10; // OPTIMIZE SEARCH STEP
-       }
-
-       } while( kTRUE );
-
-       delete [] prm0;
-       delete [] step;
-       delete [] schi; 
-       delete [] sprm[0];
-       delete [] sprm[1];
-       delete [] sprm[2];
-       delete [] speFit;
-
-       return( out );
+//_________________________________________________________________________
+Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim, 
+                                           Float_t *param, Float_t *spe, 
+                                           Int_t *niter, Float_t *chir ){
+    // fit method from Comput. Phys. Commun 46(1987) 149
+    const Float_t kchilmt = 0.01;  //        relative accuracy           
+    const Int_t   knel = 3;        //        for parabolic minimization  
+    const Int_t   knstop = 50;     //        Max. iteration number          
+    const Int_t   knParam = 5;
+    Int_t npeak = (Int_t)param[0];
+    // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE 
+    if( (xdim*zdim - npeak*knParam) <= 0 ) return( -1 );
+    Float_t degFree = (xdim*zdim - npeak*knParam)-1;
+    Int_t   n, k, iterNum = 0;
+    Float_t *prm0 = new Float_t[npeak*knParam+1];
+    Float_t *step = new Float_t[npeak*knParam+1];
+    Float_t *schi = new Float_t[npeak*knParam+1]; 
+    Float_t *sprm[3];
+    sprm[0] = new Float_t[npeak*knParam+1];
+    sprm[1] = new Float_t[npeak*knParam+1];
+    sprm[2] = new Float_t[npeak*knParam+1];
+    Float_t  chi0, chi1, reldif, a, b, prmin, dp;
+    Float_t *speFit = new Float_t[ xdim*zdim ];
+    PeakFunc( xdim, zdim, param, speFit );
+    chi0 = ChiSqr( xdim, zdim, spe, speFit );
+    chi1 = chi0;
+    for( k=1; k<(npeak*knParam+1); k++) prm0[k] = param[k];
+        for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
+            step[k] = param[k] / 20.0 ;
+            step[k+1] = param[k+1] / 50.0;
+            step[k+2] = param[k+2] / 50.0;                 
+            step[k+3] = param[k+3] / 20.0;                 
+            step[k+4] = param[k+4] / 20.0;                 
+        } // end for k
+    Int_t out = 0;
+    do{
+        iterNum++;
+            chi0 = chi1;
+            Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
+            reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
+        // EXIT conditions
+        if( reldif < (float) kchilmt ){
+            *chir  = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
+            *niter = iterNum;
+            out = 0;
+            break;
+        } // end if
+        if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
+            *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
+            *niter = iterNum;
+            out = 0;
+            break;
+        } // end if
+        if( iterNum > 5*knstop ){
+            *chir  = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
+            *niter = iterNum;
+            out = 1;
+            break;
+        } // end if
+        if( iterNum <= knel ) continue;
+        n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
+        if( n > 3 || n == 0 ) continue;
+        schi[n-1] = chi1;
+        for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
+        if( n != 3 ) continue;
+        // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
+        //    PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
+        for( k=1; k<(npeak*knParam+1); k++ ){
+            Float_t tmp0 = sprm[0][k];
+            Float_t tmp1 = sprm[1][k];
+            Float_t tmp2 = sprm[2][k];
+            a  = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
+            a += (schi[2]*(tmp0-tmp1));
+            b  = schi[0]*(tmp1*tmp1-tmp2*tmp2);
+            b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
+                                             (tmp0*tmp0-tmp1*tmp1)));
+            if ((double)a < 1.0E-6) prmin = 0;
+            else prmin = (float) (0.5*b/a);
+            dp = 5*(tmp2-tmp0);
+            if( fabs(prmin-tmp2) > fabs(dp) ) prmin = tmp2+dp;
+            param[k] = prmin;
+            step[k]  = dp/10; // OPTIMIZE SEARCH STEP
+        } // end for k
+    } while( kTRUE );
+    delete [] prm0;
+    delete [] step;
+    delete [] schi; 
+    delete [] sprm[0];
+    delete [] sprm[1];
+    delete [] sprm[2];
+    delete [] speFit;
+    return( out );
 }
-//_____________________________________________________________________________
-void AliITSClusterFinderSDD::ResolveClustersE()
-{
-       // The function to resolve clusters if the clusters overlapping exists
-
-  Int_t i;
-
-       AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
-       // get number of clusters for this module
-       Int_t nofClusters = fClusters->GetEntriesFast();
-       nofClusters -= fNclusters;
-
-       Int_t fNofMaps = fSegmentation->Npz();
-       Int_t fNofAnodes = fNofMaps/2;
-       Int_t fMaxNofSamples = fSegmentation->Npx();
-       Int_t dummy=0;
-       Double_t fTimeStep = fSegmentation->Dpx( dummy );
-       Double_t fSddLength = fSegmentation->Dx();
-       Double_t fDriftSpeed = fResponse->DriftSpeed();
-       Double_t anodePitch = fSegmentation->Dpz( dummy );
-       Float_t n, baseline;
-       fResponse->GetNoiseParam( n, baseline );
-       Int_t Electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
-       
-       // fill Map of signals
-       fMap->FillMap(); 
-
-       for( Int_t j=0; j<nofClusters; j++ ) 
-       { 
-               // get cluster information
-               AliITSRawClusterSDD *clusterJ = (AliITSRawClusterSDD*) fClusters->At( j );
-               Int_t astart = clusterJ->Astart();
-               Int_t astop = clusterJ->Astop();
-               Int_t tstart = clusterJ->Tstartf();
-               Int_t tstop = clusterJ->Tstopf();
-               Int_t wing = (Int_t)clusterJ->W();
-               if( wing == 2 ) 
-               {
-                       astart += fNofAnodes; 
-                       astop  += fNofAnodes;
-               } 
-               Int_t xdim = tstop-tstart+3;
-               Int_t zdim = astop-astart+3;
-               Float_t *sp = new Float_t[ xdim*zdim+1 ];
-               memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
-
-               // make a local map from cluster region
-               for( Int_t ianode=astart; ianode<=astop; ianode++ )
-               {
-                       for( Int_t itime=tstart; itime<=tstop; itime++ )
-                       {
-                               Float_t fadc = fMap->GetSignal( ianode, itime );
-                               if( fadc > baseline ) fadc -= (Double_t)baseline;
-                               else fadc = 0.;
-                               Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
-                               sp[index] = fadc;
-                       } // time loop
-               } // anode loop
-               
-               // search peaks on cluster
-               const Int_t np = 150;
-               Int_t peakX1[np];
-               Int_t peakZ1[np];
-               Float_t peakAmp1[np];
-               Int_t npeak = SearchPeak( sp, xdim, zdim, peakX1, peakZ1, peakAmp1, fMinPeak );
-
-               // if multiple peaks, split cluster
-               if( npeak >= 1 )
-               {
-               //      cout << "npeak " << npeak << endl;
-               //      clusterJ->PrintInfo();
-                       
-                       Float_t *par = new Float_t[npeak*5+1];
-                       par[0] = (Float_t)npeak;                
-                       
-                       // Initial paramiters in cell dimentions
-                       Int_t k1 = 1;
-                       for( i=0; i<npeak; i++ ) {
-                         par[k1] = peakAmp1[i];
-                         par[k1+1] = peakX1[i]; // local time pos. [timebin]
-                         par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
-                         if(Electronics == 1) 
-                           par[k1+3] = 2.; // PASCAL
-                         else if(Electronics == 2) 
-                           par[k1+3] = 0.7; // tau [timebin]  OLA 
-                         par[k1+4] = .4;    // sigma   [anodepich]
-                         k1+=5;
-                       }                       
-                       Int_t niter;
-                       Float_t chir;                   
-                       noLinearFit( xdim, zdim, par, sp, &niter, &chir );
-
-                       Float_t peakX[np];
-                       Float_t peakZ[np];
-                       Float_t sigma[np];
-                       Float_t tau[np];
-                       Float_t peakAmp[np];
-                       Float_t Integral[np];
-                       
-                       //get integrals => charge for each peak
-                       PeakFunc( xdim, zdim, par, sp, Integral );
-                       
-                       k1 = 1;
-                       for( i=0; i<npeak; i++ ) 
-                       {
-                               peakAmp[i] = par[k1];
-                               peakX[i] = par[k1+1];
-                               peakZ[i] = par[k1+2];
-                               tau[i] = par[k1+3];
-                               sigma[i] = par[k1+4];
-                               k1+=5;
-                       }
-                       
-                       // calculate paramiter for new clusters
-                       for( i=0; i<npeak; i++ )
-                       {
-                               AliITSRawClusterSDD clusterI( *clusterJ );
-                               Int_t newAnode = peakZ1[i]-1 + astart;
-                               Int_t newiTime = peakX1[i]-1 + tstart;
-
-                               Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
-                               if( newiTime > shift && newiTime < (fMaxNofSamples-shift) )  shift = 0;
-                               Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
-                               clusterI.SetPeakPos( peakpos );
-                               clusterI.SetPeakAmpl( peakAmp1[i] );
 
-                               Float_t newAnodef = peakZ[i] - 0.5 + astart;
-                               Float_t newiTimef = peakX[i] - 1 + tstart;                              
-                               if( wing == 2 ) newAnodef -= fNofAnodes; 
-                               Float_t AnodePath = (newAnodef - fNofAnodes/2)*anodePitch;
-                               newiTimef *= fTimeStep;
-                               if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
-                               if(Electronics == 1) {
-                                 newiTimef *= 0.999438;    // PASCAL
-                                 newiTimef += (6./fDriftSpeed - newiTimef/3000.); 
-                               }
-                               else if(Electronics == 2)
-                                 newiTimef *= 0.99714;    // OLA
-
-                               Float_t DriftPath = fSddLength - newiTimef * fDriftSpeed;
-                               Float_t sign = ( wing == 1 ) ? -1. : 1.;
-                               clusterI.SetX( DriftPath*sign * 0.0001 );       
-                               clusterI.SetZ( AnodePath * 0.0001 );
-                               clusterI.SetAnode( newAnodef );
-                               clusterI.SetTime( newiTimef );
-                               clusterI.SetAsigma( sigma[i]*anodePitch );
-                               clusterI.SetTsigma( tau[i]*fTimeStep );
-                               clusterI.SetQ( Integral[i] );
-                               
-                       //      clusterI.PrintInfo();
-                               iTS->AddCluster( 1, &clusterI );
-                       }
-                       fClusters->RemoveAt( j );
-                       delete [] par;
-               }
-               else cout <<" --- Peak not found!!!!  minpeak=" << fMinPeak<< 
-                           " cluster peak=" << clusterJ->PeakAmpl() << endl << endl;
-               
-               delete [] sp;
-       } // cluster loop
-
-       fClusters->Compress();
-       fMap->ClearMap(); 
+//______________________________________________________________________
+void AliITSClusterFinderSDD::ResolveClustersE(){
+    // The function to resolve clusters if the clusters overlapping exists
+    Int_t i;
+    static AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
+    // get number of clusters for this module
+    Int_t nofClusters = fClusters->GetEntriesFast();
+    nofClusters -= fNclusters;
+    Int_t fNofMaps = fSegmentation->Npz();
+    Int_t fNofAnodes = fNofMaps/2;
+    Int_t fMaxNofSamples = fSegmentation->Npx();
+    Int_t dummy=0;
+    Double_t fTimeStep = fSegmentation->Dpx( dummy );
+    Double_t fSddLength = fSegmentation->Dx();
+    Double_t fDriftSpeed = fResponse->DriftSpeed();
+    Double_t anodePitch = fSegmentation->Dpz( dummy );
+    Float_t n, baseline;
+    fResponse->GetNoiseParam( n, baseline );
+    Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
+
+    for( Int_t j=0; j<nofClusters; j++ ){ 
+        // get cluster information
+        AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
+        Int_t astart = clusterJ->Astart();
+        Int_t astop = clusterJ->Astop();
+        Int_t tstart = clusterJ->Tstartf();
+        Int_t tstop = clusterJ->Tstopf();
+        Int_t wing = (Int_t)clusterJ->W();
+        if( wing == 2 ){
+            astart += fNofAnodes; 
+            astop  += fNofAnodes;
+        } // end if 
+        Int_t xdim = tstop-tstart+3;
+        Int_t zdim = astop-astart+3;
+        if(xdim > 50 || zdim > 30) { cout << "Warning: xdim: " << xdim << ", zdim: " << zdim << endl; continue; }
+        Float_t *sp = new Float_t[ xdim*zdim+1 ];
+        memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
+        
+        // make a local map from cluster region
+        for( Int_t ianode=astart; ianode<=astop; ianode++ ){
+            for( Int_t itime=tstart; itime<=tstop; itime++ ){
+                Float_t fadc = fMap->GetSignal( ianode, itime );
+                if( fadc > baseline ) fadc -= (Double_t)baseline;
+                else fadc = 0.;
+                Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
+                sp[index] = fadc;
+            } // time loop
+        } // anode loop
+        
+        // search peaks on cluster
+        const Int_t kNp = 150;
+        Int_t peakX1[kNp];
+        Int_t peakZ1[kNp];
+        Float_t peakAmp1[kNp];
+        Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
+
+        // if multiple peaks, split cluster
+        if( npeak >= 1 )
+        {
+            //        cout << "npeak " << npeak << endl;
+            //        clusterJ->PrintInfo();
+            Float_t *par = new Float_t[npeak*5+1];
+            par[0] = (Float_t)npeak;                
+            // Initial parameters in cell dimentions
+            Int_t k1 = 1;
+            for( i=0; i<npeak; i++ ){
+                par[k1] = peakAmp1[i];
+                par[k1+1] = peakX1[i]; // local time pos. [timebin]
+                par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
+                if( electronics == 1 ) 
+                    par[k1+3] = 2.; // PASCAL
+                else if( electronics == 2 ) 
+                    par[k1+3] = 0.7; // tau [timebin]  OLA 
+                par[k1+4] = .4;    // sigma        [anodepich]
+                k1+=5;
+            } // end for i                        
+            Int_t niter;
+            Float_t chir;                        
+            NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
+            Float_t peakX[kNp];
+            Float_t peakZ[kNp];
+            Float_t sigma[kNp];
+            Float_t tau[kNp];
+            Float_t peakAmp[kNp];
+            Float_t integral[kNp];
+            //get integrals => charge for each peak
+            PeakFunc( xdim, zdim, par, sp, integral );
+            k1 = 1;
+            for( i=0; i<npeak; i++ ){
+                peakAmp[i] = par[k1];
+                peakX[i] = par[k1+1];
+                peakZ[i] = par[k1+2];
+                tau[i] = par[k1+3];
+                sigma[i] = par[k1+4];
+                k1+=5;
+            } // end for i
+            // calculate parameter for new clusters
+            for( i=0; i<npeak; i++ ){
+                AliITSRawClusterSDD clusterI( *clusterJ );
+                Int_t newAnode = peakZ1[i]-1 + astart;
+                Int_t newiTime = peakX1[i]-1 + tstart;
+                Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
+                if( newiTime > shift && newiTime < (fMaxNofSamples-shift) ) 
+                    shift = 0;
+                Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
+                clusterI.SetPeakPos( peakpos );
+                clusterI.SetPeakAmpl( peakAmp1[i] );
+                Float_t newAnodef = peakZ[i] - 0.5 + astart;
+                Float_t newiTimef = peakX[i] - 1 + tstart;
+                if( wing == 2 ) newAnodef -= fNofAnodes; 
+                Float_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
+                newiTimef *= fTimeStep;
+                if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
+                if( electronics == 1 ){
+                //    newiTimef *= 0.999438;    // PASCAL
+                //    newiTimef += (6./fDriftSpeed - newiTimef/3000.);
+                }else if( electronics == 2 )
+                    newiTimef *= 0.99714;    // OLA
+                Float_t driftPath = fSddLength - newiTimef * fDriftSpeed;
+                Float_t sign = ( wing == 1 ) ? -1. : 1.;
+                clusterI.SetX( driftPath*sign * 0.0001 );        
+                clusterI.SetZ( anodePath * 0.0001 );
+                clusterI.SetAnode( newAnodef );
+                clusterI.SetTime( newiTimef );
+                clusterI.SetAsigma( sigma[i]*anodePitch );
+                clusterI.SetTsigma( tau[i]*fTimeStep );
+                clusterI.SetQ( integral[i] );
+                //    clusterI.PrintInfo();
+                iTS->AddCluster( 1, &clusterI );
+            } // end for i
+            fClusters->RemoveAt( j );
+            delete [] par;
+        } else {  // something odd
+            cout << " --- Peak not found!!!!  minpeak=" << fMinPeak<< 
+                    " cluster peak=" << clusterJ->PeakAmpl() << 
+                    " module=" << fModule << endl; 
+            clusterJ->PrintInfo(); 
+            cout << " xdim=" << xdim-2 << " zdim=" << zdim-2 << endl << endl;
+        }
+        delete [] sp;
+    } // cluster loop
+    fClusters->Compress();
+//    fMap->ClearMap(); 
 }
 
 
-//_____________________________________________________________________________
-void  AliITSClusterFinderSDD::GroupClusters()
-{
-  // group clusters
-  Int_t dummy=0;
-  Float_t fTimeStep = fSegmentation->Dpx(dummy);
-
-
-  // get number of clusters for this module
-  Int_t nofClusters = fClusters->GetEntriesFast();
-  nofClusters -= fNclusters;
-
-  AliITSRawClusterSDD *clusterI;
-  AliITSRawClusterSDD *clusterJ;
-
-  Int_t *label = new Int_t [nofClusters];
-  Int_t i,j;
-  for(i=0; i<nofClusters; i++) label[i] = 0;
-  for(i=0; i<nofClusters; i++) { 
-    if(label[i] != 0) continue;
-    for(j=i+1; j<nofClusters; j++) { 
-      if(label[j] != 0) continue;
-      clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
-      clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
-      // 1.3 good
-      if(clusterI->T() < fTimeStep*60) fDAnode = 4.2;  // TB 3.2  
-      if(clusterI->T() < fTimeStep*10) fDAnode = 1.5;  // TB 1.
-      Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
-      if(!pair) continue;
-      //      clusterI->PrintInfo();
-      //      clusterJ->PrintInfo();
-      clusterI->Add(clusterJ);
-      label[j] = 1;
-      fClusters->RemoveAt(j);
-      j=i; // <- Ernesto
-    } // J clusters  
-    label[i] = 1;
-  } // I clusters
-  fClusters->Compress();
-  
-  delete [] label;
-  return;
-
+//________________________________________________________________________
+void  AliITSClusterFinderSDD::GroupClusters(){
+    // group clusters
+    Int_t dummy=0;
+    Float_t fTimeStep = fSegmentation->Dpx(dummy);
+    // get number of clusters for this module
+    Int_t nofClusters = fClusters->GetEntriesFast();
+    nofClusters -= fNclusters;
+    AliITSRawClusterSDD *clusterI;
+    AliITSRawClusterSDD *clusterJ;
+    Int_t *label = new Int_t [nofClusters];
+    Int_t i,j;
+    for(i=0; i<nofClusters; i++) label[i] = 0;
+    for(i=0; i<nofClusters; i++) { 
+        if(label[i] != 0) continue;
+        for(j=i+1; j<nofClusters; j++) { 
+            if(label[j] != 0) continue;
+            clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
+            clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
+            // 1.3 good
+            if(clusterI->T() < fTimeStep*60) fDAnode = 4.2;  // TB 3.2  
+            if(clusterI->T() < fTimeStep*10) fDAnode = 1.5;  // TB 1.
+            Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
+            if(!pair) continue;
+            //      clusterI->PrintInfo();
+            //      clusterJ->PrintInfo();
+            clusterI->Add(clusterJ);
+            label[j] = 1;
+            fClusters->RemoveAt(j);
+            j=i; // <- Ernesto
+        } // J clusters  
+        label[i] = 1;
+    } // I clusters
+    fClusters->Compress();
+
+    delete [] label;
+    return;
 }
-
-//_____________________________________________________________________________
-
-void AliITSClusterFinderSDD::SelectClusters()
-{
-  // get number of clusters for this module
-  Int_t nofClusters = fClusters->GetEntriesFast();
-  nofClusters -= fNclusters;
-
-  Int_t i;
-  for(i=0; i<nofClusters; i++) { 
-    AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
-    Int_t rmflg = 0;
-    Float_t wy = 0.;
-    if(clusterI->Anodes() != 0.) {
-      wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
-    }
-    Int_t amp = (Int_t) clusterI->PeakAmpl();
-    Int_t cha = (Int_t) clusterI->Q();
-    if(amp < fMinPeak) rmflg = 1;  
-    if(cha < fMinCharge) rmflg = 1;
-    if(wy < fMinNCells) rmflg = 1;
-    //if(wy > fMaxNCells) rmflg = 1;
-    if(rmflg) fClusters->RemoveAt(i);
-  } // I clusters
-  fClusters->Compress();
-  return;
-
+//________________________________________________________________________
+void AliITSClusterFinderSDD::SelectClusters(){
+    // get number of clusters for this module
+    Int_t nofClusters = fClusters->GetEntriesFast();
+
+    nofClusters -= fNclusters;
+    Int_t i;
+    for(i=0; i<nofClusters; i++) { 
+        AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) fClusters->At(i);
+        Int_t rmflg = 0;
+        Float_t wy = 0.;
+        if(clusterI->Anodes() != 0.) {
+            wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
+        } // end if
+        Int_t amp = (Int_t) clusterI->PeakAmpl();
+        Int_t cha = (Int_t) clusterI->Q();
+        if(amp < fMinPeak) rmflg = 1;  
+        if(cha < fMinCharge) rmflg = 1;
+        if(wy < fMinNCells) rmflg = 1;
+        //if(wy > fMaxNCells) rmflg = 1;
+        if(rmflg) fClusters->RemoveAt(i);
+    } // I clusters
+    fClusters->Compress();
+    return;
 }
-
-//_____________________________________________________________________________
-
-void AliITSClusterFinderSDD::ResolveClusters()
-{
-
-// The function to resolve clusters if the clusters overlapping exists
-
-   AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
-
-  // get number of clusters for this module
-   Int_t nofClusters = fClusters->GetEntriesFast();
-   nofClusters -= fNclusters;
-   //   cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","<<fNclusters<<endl;
-
-   Int_t fNofMaps = fSegmentation->Npz();
-   Int_t fNofAnodes = fNofMaps/2;
-   Int_t dummy=0;
-   Double_t fTimeStep = fSegmentation->Dpx(dummy);
-   Double_t fSddLength = fSegmentation->Dx();
-   Double_t fDriftSpeed = fResponse->DriftSpeed();
-   Double_t anodePitch = fSegmentation->Dpz(dummy);
-   Float_t n, baseline;
-   fResponse->GetNoiseParam(n,baseline);
-   Float_t dzz_1A = anodePitch * anodePitch / 12;
-
-  // fill Map of signals
+//__________________________________________________________________________
+void AliITSClusterFinderSDD::ResolveClusters(){
+    // The function to resolve clusters if the clusters overlapping exists
+/*    AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
+    // get number of clusters for this module
+    Int_t nofClusters = fClusters->GetEntriesFast();
+    nofClusters -= fNclusters;
+    //cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","
+    // <<fNclusters<<endl;
+    Int_t fNofMaps = fSegmentation->Npz();
+    Int_t fNofAnodes = fNofMaps/2;
+    Int_t dummy=0;
+    Double_t fTimeStep = fSegmentation->Dpx(dummy);
+    Double_t fSddLength = fSegmentation->Dx();
+    Double_t fDriftSpeed = fResponse->DriftSpeed();
+    Double_t anodePitch = fSegmentation->Dpz(dummy);
+    Float_t n, baseline;
+    fResponse->GetNoiseParam(n,baseline);
+    Float_t dzz_1A = anodePitch * anodePitch / 12;
+    // fill Map of signals
     fMap->FillMap(); 
-
-  Int_t j,i,ii,ianode,anode,itime;
-  Int_t wing,astart,astop,tstart,tstop,nanode;
-  Double_t fadc,ClusterTime;
-  Double_t q[400],x[400],z[400]; // digit charges and coordinates
-
-  for(j=0; j<nofClusters; j++) { 
-
-    AliITSRawClusterSDD *clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
-
-    Int_t ndigits = 0;
-    astart=clusterJ->Astart();
-    astop=clusterJ->Astop();
-    tstart=clusterJ->Tstartf();
-    tstop=clusterJ->Tstopf();
-    nanode=clusterJ->Anodes();  // <- Ernesto
-    wing=(Int_t)clusterJ->W();
-    if(wing == 2) {
-       astart += fNofAnodes; 
-       astop  += fNofAnodes;
-    } 
-
-//         cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","<<tstart<<","<<tstop<<endl;
-
-           // clear the digit arrays
-   for(ii=0; ii<400; ii++) { 
-       q[ii] = 0.; 
-       x[ii] = 0.;
-       z[ii] = 0.;
-   }
-    
-   for(ianode=astart; ianode<=astop; ianode++) { 
-    for(itime=tstart; itime<=tstop; itime++) { 
-         fadc=fMap->GetSignal(ianode,itime);
-         if(fadc>baseline) {
-           fadc-=(Double_t)baseline;
-             q[ndigits] = fadc*(fTimeStep/160);  // KeV
-              anode = ianode;
-              if(wing == 2) anode -= fNofAnodes;
-             z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
-             ClusterTime = itime*fTimeStep;
-             if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr;   // ns
-             x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
-             if(wing == 1) x[ndigits] *= (-1);
-//              cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","<<fadc<<endl;
-//           cout<<"wing,anode,ndigits,charge ="<<wing<<","<<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
-             ndigits++;
-             continue;
-         }
-             fadc=0;
-             //              cout<<"fadc=0, ndigits ="<<ndigits<<endl;
-    } // time loop
-   } // anode loop
-   //     cout<<"for new cluster ndigits ="<<ndigits<<endl;
-
-
-   // Fit cluster to resolve for two separate ones --------------------
-
-   Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
-   Double_t dxx=0., dzz=0., dxz=0.;
-   Double_t scl = 0., tmp, tga, elps = -1.;
-   Double_t xfit[2], zfit[2], qfit[2];
-   Double_t pitchz = anodePitch*1.e-4;             // cm
-   Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4;  // cm
-   Double_t sigma2;
-   Int_t nfhits;
-   Int_t nbins = ndigits;
-   Int_t separate = 0;
-
-   // now, all lengths are in microns
-
-   for (ii=0; ii<nbins; ii++) {
-       qq += q[ii];
-       xm += x[ii]*q[ii];
-       zm += z[ii]*q[ii];
-       xx += x[ii]*x[ii]*q[ii];
-       zz += z[ii]*z[ii]*q[ii];
-       xz += x[ii]*z[ii]*q[ii];
-   }
-
-   xm /= qq;
-   zm /= qq;
-   xx /= qq;
-   zz /= qq;
-   xz /= qq;
-
-   dxx = xx - xm*xm;
-   dzz = zz - zm*zm;
-   dxz = xz - xm*zm;
+    Int_t j,i,ii,ianode,anode,itime;
+    Int_t wing,astart,astop,tstart,tstop,nanode;
+    Double_t fadc,ClusterTime;
+    Double_t q[400],x[400],z[400]; // digit charges and coordinates
+    for(j=0; j<nofClusters; j++) { 
+        AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
+        Int_t ndigits = 0;
+        astart=clusterJ->Astart();
+        astop=clusterJ->Astop();
+        tstart=clusterJ->Tstartf();
+        tstop=clusterJ->Tstopf();
+        nanode=clusterJ->Anodes();  // <- Ernesto
+        wing=(Int_t)clusterJ->W();
+        if(wing == 2) {
+            astart += fNofAnodes; 
+            astop  += fNofAnodes;
+        }  // end if
+        // cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","
+        //      <<tstart<<","<<tstop<<endl;
+        // clear the digit arrays
+        for(ii=0; ii<400; ii++) { 
+            q[ii] = 0.; 
+            x[ii] = 0.;
+            z[ii] = 0.;
+        } // end for ii
+
+        for(ianode=astart; ianode<=astop; ianode++) { 
+            for(itime=tstart; itime<=tstop; itime++) { 
+                fadc=fMap->GetSignal(ianode,itime);
+                if(fadc>baseline) {
+                    fadc-=(Double_t)baseline;
+                    q[ndigits] = fadc*(fTimeStep/160);  // KeV
+                    anode = ianode;
+                    if(wing == 2) anode -= fNofAnodes;
+                    z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
+                    ClusterTime = itime*fTimeStep;
+                    if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr;// ns
+                    x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
+                    if(wing == 1) x[ndigits] *= (-1);
+                    // cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","
+                    //     <<fadc<<endl;
+                    // cout<<"wing,anode,ndigits,charge ="<<wing<<","
+                    //      <<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
+                    ndigits++;
+                    continue;
+                } //  end if
+                fadc=0;
+                //              cout<<"fadc=0, ndigits ="<<ndigits<<endl;
+            } // time loop
+        } // anode loop
+        //     cout<<"for new cluster ndigits ="<<ndigits<<endl;
+        // Fit cluster to resolve for two separate ones --------------------
+        Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
+        Double_t dxx=0., dzz=0., dxz=0.;
+        Double_t scl = 0., tmp, tga, elps = -1.;
+        Double_t xfit[2], zfit[2], qfit[2];
+        Double_t pitchz = anodePitch*1.e-4;             // cm
+        Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4;  // cm
+        Double_t sigma2;
+        Int_t nfhits;
+        Int_t nbins = ndigits;
+        Int_t separate = 0;
+        // now, all lengths are in microns
+        for (ii=0; ii<nbins; ii++) {
+            qq += q[ii];
+            xm += x[ii]*q[ii];
+            zm += z[ii]*q[ii];
+            xx += x[ii]*x[ii]*q[ii];
+            zz += z[ii]*z[ii]*q[ii];
+            xz += x[ii]*z[ii]*q[ii];
+        } // end for ii
+        xm /= qq;
+        zm /= qq;
+        xx /= qq;
+        zz /= qq;
+        xz /= qq;
+        dxx = xx - xm*xm;
+        dzz = zz - zm*zm;
+        dxz = xz - xm*zm;
+
+        // shrink the cluster in the time direction proportionaly to the 
+        // dxx/dzz, which lineary depends from the drift path
+        // new  Ernesto........         
+        if( nanode == 1 ){
+            dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
+            scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
+        } // end if
+        if( nanode == 2 ){
+            scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
+        } // end if
+        if( nanode == 3 ){
+            scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
+        } // end if
+        if( nanode > 3 ){
+            scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
+        } // end if
+        //   cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","
+        //  <<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
+        //  old Boris.........
+        //  tmp=29730. - 585.*fabs(xm/1000.); 
+        //  scl=TMath::Sqrt(tmp/130000.);
    
-   // shrink the cluster in the time direction proportionaly to the 
-   // dxx/dzz, which lineary depends from the drift path
-       // new  Ernesto........  
-   if( nanode == 1 )
-   {
-          dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
-          scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
-   }
-   if( nanode == 2 )
-   {
-          scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
-   }
-   
-   if( nanode == 3 )      
-   {
-          scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
-   }
-
-   if( nanode > 3 )       
-   {
-          scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
-   }
-
-   //   cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","<<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
-
- //  old Boris.........
- //  tmp=29730. - 585.*fabs(xm/1000.); 
- //  scl=TMath::Sqrt(tmp/130000.);
-   
-   xm *= scl;
-   xx *= scl*scl;
-   xz *= scl;
-
-   
-   dxx = xx - xm*xm;
-//   dzz = zz - zm*zm;
-   dxz = xz - xm*zm;
-
-   //   cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","<<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
-
-//   if(dzz < 7200.) dzz = 7200.; // for one anode cluster dzz = anode**2/12
+        xm *= scl;
+        xx *= scl*scl;
+        xz *= scl;
+
+        dxx = xx - xm*xm;
+        //   dzz = zz - zm*zm;
+        dxz = xz - xm*zm;
+        //   cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
+        // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
+        // if(dzz < 7200.) dzz=7200.;//for one anode cluster dzz = anode**2/12
   
-   if (dxx < 0.) dxx=0.;
-
-   // the data if no cluster overlapping (the coordunates are in cm) 
-   nfhits = 1;
-   xfit[0] = xm*1.e-4;
-   zfit[0] = zm*1.e-4;
-   qfit[0] = qq;
-
-//   if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
+        if (dxx < 0.) dxx=0.;
+        // the data if no cluster overlapping (the coordunates are in cm) 
+        nfhits = 1;
+        xfit[0] = xm*1.e-4;
+        zfit[0] = zm*1.e-4;
+        qfit[0] = qq;
+        //   if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
   
-   if (nbins >= 7) {
-      if (dxz==0.) tga=0.;
-      else {
-         tmp=0.5*(dzz-dxx)/dxz;
-         tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) : tmp+TMath::Sqrt(tmp*tmp+1);
-      }
-      elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
-
-      // change from microns to cm
-      xm *= 1.e-4; 
-      zm *= 1.e-4; 
-      zz *= 1.e-8;
-      xx *= 1.e-8;
-      xz *= 1.e-8;
-      dxz *= 1.e-8;
-      dxx *= 1.e-8;
-      dzz *= 1.e-8;
-
-   //   cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","<<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
-
-     for (i=0; i<nbins; i++) {     
-       x[i] = x[i] *= scl;
-       x[i] = x[i] *= 1.e-4;
-       z[i] = z[i] *= 1.e-4;
-     }
-
-     //     cout<<"!!! elps ="<<elps<<endl;
-
-     if (elps < 0.3) { // try to separate hits 
-         separate = 1;
-         tmp=atan(tga);
-         Double_t cosa=cos(tmp),sina=sin(tmp);
-         Double_t a1=0., x1=0., xxx=0.;
-         for (i=0; i<nbins; i++) {
-             tmp=x[i]*cosa + z[i]*sina;
-             if (q[i] > a1) {
-                a1=q[i];
-                x1=tmp;
-             }
-             xxx += tmp*tmp*tmp*q[i];
-         }
-         xxx /= qq;
-         Double_t z12=-sina*xm + cosa*zm;
-         sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
-         xm=cosa*xm + sina*zm;
-         xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
-         Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
-         Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
-         for (i=0; i<33; i++) { // solve a system of equations
-             Double_t x1_old=x1, x2_old=x2, r_old=r;
-             Double_t c11=x1-x2;
-             Double_t c12=r;
-             Double_t c13=1-r;
-             Double_t c21=x1*x1 - x2*x2;
-             Double_t c22=2*r*x1;
-             Double_t c23=2*(1-r)*x2;
-             Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
-             Double_t c32=3*r*(sigma2 + x1*x1);
-             Double_t c33=3*(1-r)*(sigma2 + x2*x2);
-             Double_t f1=-(r*x1 + (1-r)*x2 - xm);
-             Double_t f2=-(r*(sigma2 + x1*x1) + (1-r)*(sigma2 + x2*x2) - xx);
-             Double_t f3=-(r*x1*(3*sigma2+x1*x1) + (1-r)*x2*(3*sigma2+x2*x2)-xxx);
-             Double_t d=c11*c22*c33 + c21*c32*c13 + c12*c23*c31 - c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
-             if (d==0.) {
-                cout<<"*********** d=0 ***********\n";
-                break;
-             }
-             Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
-                       f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
-             Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
-                       c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
-             Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
-                       c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
-             r  += dr/d;
-             x1 += d1/d;
-             x2 += d2/d;
-
-             if (fabs(x1-x1_old) > 0.0001) continue;
-             if (fabs(x2-x2_old) > 0.0001) continue;
-             if (fabs(r-r_old)/5 > 0.001) continue;
-
-             a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
-             Double_t a2=a1*(1-r)/r;
-             qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina + z12*cosa;
-             qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina + z12*cosa;
-             nfhits=2;
-             break; // Ok !
-         }
-         if (i==33) cerr<<"No more iterations ! "<<endl;
-    } // end of attempt to separate overlapped clusters
-   } // end of nbins cut 
-
-   if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
-   if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="<<elps<<","<<nfhits<<endl;
-   if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
-
-   for (i=0; i<nfhits; i++) {
-       xfit[i] *= (1.e+4/scl);
-       if(wing == 1) xfit[i] *= (-1);
-       zfit[i] *= 1.e+4;
-       //       cout<<" ---------  i,xfiti,zfiti,qfiti ="<<i<<","<<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
-   }
-
-    Int_t ncl = nfhits;
-    if(nfhits == 1 && separate == 1) {
-      cout<<"!!!!! no separate"<<endl;
-      ncl = -2;
-    } 
-
-   if(nfhits == 2) {
-     cout << "Split cluster: " << endl;
-     clusterJ->PrintInfo();
-     cout << " in: " << endl;
-     for (i=0; i<nfhits; i++) {
-
-       // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,-1,(Float_t)qfit[i],ncl,0,0,(Float_t)xfit[i],(Float_t)zfit[i],0,0,0,0,tstart,tstop,astart,astop);
-       //      AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,-1,(Float_t)qfit[i],0,0,0,(Float_t)xfit[i],(Float_t)zfit[i],0,0,0,0,tstart,tstop,astart,astop,ncl);
-
-       // ???????????
-       // if(wing == 1) xfit[i] *= (-1);
-             Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
-             Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
-       Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
-       Float_t peakpos = clusterJ->PeakPos();
-
-       Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
-       Float_t clusterDriftPath = Time*fDriftSpeed;
-       clusterDriftPath = fSddLength-clusterDriftPath;
-
-       AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,Time,qfit[i],
-                                   clusterPeakAmplitude,peakpos,0.,0.,clusterDriftPath,clusteranodePath,clusterJ->Samples()/2
-                                   ,tstart,tstop,0,0,0,astart,astop);
-       clust->PrintInfo();
-       iTS->AddCluster(1,clust);
-       //      cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="<<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]<<","<<ncl<<endl;
-       delete clust;
-     }// nfhits loop
-     fClusters->RemoveAt(j);
-
-   } // if nfhits = 2
-  } // cluster loop
-
-  fClusters->Compress();
-  fMap->ClearMap(); 
-           
-  return;
+        if (nbins >= 7) {
+            if (dxz==0.) tga=0.;
+            else {
+                tmp=0.5*(dzz-dxx)/dxz;
+                tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) : 
+                                                   tmp+TMath::Sqrt(tmp*tmp+1);
+            } // end if dxz
+            elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
+            // change from microns to cm
+            xm *= 1.e-4; 
+            zm *= 1.e-4; 
+            zz *= 1.e-8;
+            xx *= 1.e-8;
+            xz *= 1.e-8;
+            dxz *= 1.e-8;
+            dxx *= 1.e-8;
+            dzz *= 1.e-8;
+            //   cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
+            //  <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
+            for (i=0; i<nbins; i++) {     
+                x[i] = x[i] *= scl;
+                x[i] = x[i] *= 1.e-4;
+                z[i] = z[i] *= 1.e-4;
+            } // end for i
+            //     cout<<"!!! elps ="<<elps<<endl;
+            if (elps < 0.3) { // try to separate hits 
+                separate = 1;
+                tmp=atan(tga);
+                Double_t cosa=cos(tmp),sina=sin(tmp);
+                Double_t a1=0., x1=0., xxx=0.;
+                for (i=0; i<nbins; i++) {
+                    tmp=x[i]*cosa + z[i]*sina;
+                    if (q[i] > a1) {
+                        a1=q[i];
+                        x1=tmp;
+                    } // end if
+                    xxx += tmp*tmp*tmp*q[i];
+                } // end for i
+                xxx /= qq;
+                Double_t z12=-sina*xm + cosa*zm;
+                sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
+                xm=cosa*xm + sina*zm;
+                xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
+                Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
+                Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
+                for (i=0; i<33; i++) { // solve a system of equations
+                    Double_t x1_old=x1, x2_old=x2, r_old=r;
+                    Double_t c11=x1-x2;
+                    Double_t c12=r;
+                    Double_t c13=1-r;
+                    Double_t c21=x1*x1 - x2*x2;
+                    Double_t c22=2*r*x1;
+                    Double_t c23=2*(1-r)*x2;
+                    Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
+                    Double_t c32=3*r*(sigma2 + x1*x1);
+                    Double_t c33=3*(1-r)*(sigma2 + x2*x2);
+                    Double_t f1=-(r*x1 + (1-r)*x2 - xm);
+                    Double_t f2=-(r*(sigma2+x1*x1)+(1-r)*(sigma2+x2*x2)- xx);
+                    Double_t f3=-(r*x1*(3*sigma2+x1*x1)+(1-r)*x2*
+                                                         (3*sigma2+x2*x2)-xxx);
+                    Double_t d=c11*c22*c33+c21*c32*c13+c12*c23*c31-
+                                       c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
+                    if (d==0.) {
+                        cout<<"*********** d=0 ***********\n";
+                        break;
+                    } // end if
+                    Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
+                        f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
+                    Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
+                        c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
+                    Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
+                        c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
+                    r  += dr/d;
+                    x1 += d1/d;
+                    x2 += d2/d;
+                    if (fabs(x1-x1_old) > 0.0001) continue;
+                    if (fabs(x2-x2_old) > 0.0001) continue;
+                    if (fabs(r-r_old)/5 > 0.001) continue;
+                    a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
+                    Double_t a2=a1*(1-r)/r;
+                    qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina + 
+                                                                z12*cosa;
+                    qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina + 
+                                                                z12*cosa;
+                    nfhits=2;
+                    break; // Ok !
+                } // end for i
+                if (i==33) cerr<<"No more iterations ! "<<endl;
+            } // end of attempt to separate overlapped clusters
+        } // end of nbins cut 
+        if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
+        if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="
+                                                     <<elps<<","<<nfhits<<endl;
+        if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
+        for (i=0; i<nfhits; i++) {
+            xfit[i] *= (1.e+4/scl);
+            if(wing == 1) xfit[i] *= (-1);
+            zfit[i] *= 1.e+4;
+            //       cout<<" ---------  i,xfiti,zfiti,qfiti ="<<i<<","
+            // <<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
+        } // end for i
+        Int_t ncl = nfhits;
+        if(nfhits == 1 && separate == 1) {
+            cout<<"!!!!! no separate"<<endl;
+            ncl = -2;
+        }  // end if
+        if(nfhits == 2) {
+            cout << "Split cluster: " << endl;
+            clusterJ->PrintInfo();
+            cout << " in: " << endl;
+            for (i=0; i<nfhits; i++) {
+                // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,
+                                               -1,-1,(Float_t)qfit[i],ncl,0,0,
+                                               (Float_t)xfit[i],
+                                               (Float_t)zfit[i],0,0,0,0,
+                                                tstart,tstop,astart,astop);
+            //        AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,
+            //                                 -1,(Float_t)qfit[i],0,0,0,
+            //                                  (Float_t)xfit[i],
+            //                                  (Float_t)zfit[i],0,0,0,0,
+            //                                  tstart,tstop,astart,astop,ncl);
+            // ???????????
+            // if(wing == 1) xfit[i] *= (-1);
+            Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
+            Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
+            Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
+            Float_t peakpos = clusterJ->PeakPos();
+            Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
+            Float_t clusterDriftPath = Time*fDriftSpeed;
+            clusterDriftPath = fSddLength-clusterDriftPath;
+            AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,
+                                                                 Time,qfit[i],
+                                               clusterPeakAmplitude,peakpos,
+                                               0.,0.,clusterDriftPath,
+                                         clusteranodePath,clusterJ->Samples()/2
+                                    ,tstart,tstop,0,0,0,astart,astop);
+            clust->PrintInfo();
+            iTS->AddCluster(1,clust);
+            //        cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="
+            // <<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]
+            // <<","<<ncl<<endl;
+            delete clust;
+        }// nfhits loop
+        fClusters->RemoveAt(j);
+    } // if nfhits = 2
+} // cluster loop
+fClusters->Compress();
+fMap->ClearMap(); 
+*/
+    return;
 }
-
-
-//_____________________________________________________________________________
-
-void AliITSClusterFinderSDD::GetRecPoints()
-{
-  // get rec points
-
-  AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
-
-  // get number of clusters for this module
-  Int_t nofClusters = fClusters->GetEntriesFast();
-  nofClusters -= fNclusters;
-
-  const Float_t kconvGeV = 1.e-6; // GeV -> KeV
-  const Float_t kconv = 1.0e-4; 
-  const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
-  const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
-
-
-  Int_t i;
-  Int_t ix, iz, idx=-1;
-  AliITSdigitSDD *dig=0;
-  Int_t ndigits=fDigits->GetEntriesFast();
-  for(i=0; i<nofClusters; i++) { 
-    AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
-    if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
-    if(clusterI) idx=clusterI->PeakPos();
-    if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
-    // try peak neighbours - to be done 
-    if(idx && idx <= ndigits) dig = (AliITSdigitSDD*)fDigits->UncheckedAt(idx);
-    if(!dig) {
-       // try cog
-       fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
-       dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
-       // if null try neighbours
-       if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix); 
-       if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1); 
-        if (!dig) printf("SDD: cannot assign the track number!\n");
-    }
-
-    AliITSRecPoint rnew;
-    rnew.SetX(clusterI->X());
-    rnew.SetZ(clusterI->Z());
-    rnew.SetQ(clusterI->Q());   // in KeV - should be ADC
-    rnew.SetdEdX(kconvGeV*clusterI->Q());
-    rnew.SetSigmaX2(kRMSx*kRMSx);
-    rnew.SetSigmaZ2(kRMSz*kRMSz);
-    if(dig) rnew.fTracks[0]=dig->fTracks[0];
-    if(dig) rnew.fTracks[1]=dig->fTracks[1];
-    if(dig) rnew.fTracks[2]=dig->fTracks[2];
-    //printf("SDD: i %d track1 track2 track3 %d %d %d x y %f %f\n",i,rnew.fTracks[0],rnew.fTracks[1],rnew.fTracks[2],clusterI->X(),clusterI->Z());
-    iTS->AddRecPoint(rnew);
-  } // I clusters
-
-  fMap->ClearMap();
+//______________________________________________________________________
+void AliITSClusterFinderSDD::GetRecPoints(){
+    // get rec points
+    static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
+    // get number of clusters for this module
+    Int_t nofClusters = fClusters->GetEntriesFast();
+    nofClusters -= fNclusters;
+    const Float_t kconvGeV = 1.e-6; // GeV -> KeV
+    const Float_t kconv = 1.0e-4; 
+    const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
+    const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
+    Int_t i;
+    Int_t ix, iz, idx=-1;
+    AliITSdigitSDD *dig=0;
+    Int_t ndigits=fDigits->GetEntriesFast();
+    for(i=0; i<nofClusters; i++) { 
+        AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
+        if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
+        if(clusterI) idx=clusterI->PeakPos();
+        if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
+        // try peak neighbours - to be done 
+        if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)fDigits->UncheckedAt(idx);
+        if(!dig) {
+            // try cog
+            fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
+            dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
+            // if null try neighbours
+            if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix); 
+            if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1); 
+            if (!dig) printf("SDD: cannot assign the track number!\n");
+        } //  end if !dig
+        AliITSRecPoint rnew;
+        rnew.SetX(clusterI->X());
+        rnew.SetZ(clusterI->Z());
+        rnew.SetQ(clusterI->Q());   // in KeV - should be ADC
+        rnew.SetdEdX(kconvGeV*clusterI->Q());
+        rnew.SetSigmaX2(kRMSx*kRMSx);
+        rnew.SetSigmaZ2(kRMSz*kRMSz);
+        if(dig) rnew.fTracks[0]=dig->fTracks[0];
+        if(dig) rnew.fTracks[1]=dig->fTracks[1];
+        if(dig) rnew.fTracks[2]=dig->fTracks[2];
+        //printf("SDD: i %d track1 track2 track3 %d %d %d x y %f %f\n",
+        //         i,rnew.fTracks[0],rnew.fTracks[1],rnew.fTracks[2],c
+        //         lusterI->X(),clusterI->Z());
+        iTS->AddRecPoint(rnew);
+    } // I clusters
+//    fMap->ClearMap();
 }
-
-//_____________________________________________________________________________
-
-void AliITSClusterFinderSDD::FindRawClusters(Int_t mod)
-{
-  // find raw clusters
+//______________________________________________________________________
+void AliITSClusterFinderSDD::FindRawClusters(Int_t mod){
+    // find raw clusters
+    
+    fModule = mod;
+    
     Find1DClustersE();
     GroupClusters();
     SelectClusters();
     ResolveClustersE();
     GetRecPoints();
 }
-//_____________________________________________________________________________
-
-void AliITSClusterFinderSDD::Print()
-{
-  // Print SDD cluster finder Parameters
-
-   cout << "**************************************************" << endl;
-   cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
-   cout << "**************************************************" << endl;
-   cout << "Number of Clusters: " << fNclusters << endl;
-   cout << "Anode Tolerance: " << fDAnode << endl;
-   cout << "Time  Tolerance: " << fDTime << endl;
-   cout << "Time  correction (electronics): " << fTimeCorr << endl;
-   cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
-   cout << "Minimum Amplitude: " << fMinPeak << endl;
-   cout << "Minimum Charge: " << fMinCharge << endl;
-   cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
-   cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
-   cout << "**************************************************" << endl;
+//_______________________________________________________________________
+void AliITSClusterFinderSDD::Print(){
+    // Print SDD cluster finder Parameters
+
+    cout << "**************************************************" << endl;
+    cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
+    cout << "**************************************************" << endl;
+    cout << "Number of Clusters: " << fNclusters << endl;
+    cout << "Anode Tolerance: " << fDAnode << endl;
+    cout << "Time  Tolerance: " << fDTime << endl;
+    cout << "Time  correction (electronics): " << fTimeCorr << endl;
+    cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
+    cout << "Minimum Amplitude: " << fMinPeak << endl;
+    cout << "Minimum Charge: " << fMinCharge << endl;
+    cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
+    cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
+    cout << "**************************************************" << endl;
 }