]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - RICH/AliRICHChamber.h
Integration of the material budget (M.Ivanov)
[u/mrichter/AliRoot.git] / RICH / AliRICHChamber.h
index 814e3603cd6d508b84e5e123589908a9d666ff7f..006bb8bd98cb383466436a5020beba99452d7603 100644 (file)
 /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
  * See cxx source for full Copyright notice                               */
 
-/* $Id$ */
-
-#include <iostream.h>
-
-#include <TRotMatrix.h>
 #include <TVector3.h>
 #include <TMath.h>
+#include <TRotation.h>
+#include <TLorentzVector.h>
+#include "AliRICHParam.h"
+class TRotMatrix;
 
-#include "AliRICHTresholdMap.h"
-#include "AliSegmentation.h"
-#include "AliRICHGeometry.h"
-#include "AliRICHResponse.h"
-
-class AliRICHClusterFinder;
 
-typedef enum {kMip, kCerenkov} ResponseType;
-
-class AliRICHChamber : public TObject
+class AliRICHChamber : public TNamed
 {
 public:
-    
-   Int_t                fIndexMap[50];   //indeces of tresholds
-   AliRICHTresholdMap*  fTresh;          //map of tresholds
-
-public:
-// ctor & dtor      
-   AliRICHChamber();                                  // default ctor
-   AliRICHChamber(const AliRICHChamber & Chamber){}   // copy ctor 
-   ~AliRICHChamber(){}                                // dtor
-// The following staff is defined in AliRICHChamber.cxx:
-   void LocaltoGlobal(Float_t pos[3],Float_t Localpos[3]);//Transformation from local to global coordinates, chamber-dependant
-   void GlobaltoLocal(Float_t pos[3],Float_t localpos[3]);//Transformation from Global to local coordinates, chamber-dependant 
-   void GenerateTresholds();                              //Generate pad dependent tresholds
-   void DisIntegration(Float_t eloss, Float_t xhit, Float_t yhit, Int_t&x, Float_t newclust[6][500], ResponseType res);// Cluster formation method
-// Inline methods:   
-   void    Init(Int_t id)           {fSegmentation->Init(id);} // Recalculates all the values after some of them have been changed
-   
-   void    SetGid(Int_t id)         {fGid=id;}           // Set and get GEANT id  
-   Int_t   GetGid()            const{return fGid;}       // Get GEANT id  
+           AliRICHChamber():TNamed(),fpRotMatrix(0)                      {;}
+           AliRICHChamber(Int_t iChamberN);
+           AliRICHChamber(const AliRICHChamber &chamber):TNamed(chamber) {;}
+  virtual ~AliRICHChamber()                                              {;}
+           AliRICHChamber& operator=(const AliRICHChamber&)              {return *this;}
 
-   void SetRInner(Float_t rmin)     {frMin=rmin;}        // Set inner radius of sensitive volume   
-   Float_t RInner()            const{return frMin;}      // Return inner radius of sensitive volume 
-   
-   void SetROuter(Float_t rmax)     {frMax=rmax;}        // Set outer radius of sensitive volum  
-   Float_t ROuter()            const{return frMax;}      // Return outer radius of sensitive volum  
+  static Double_t AlphaFeedback(Int_t )      {return 0.02;}  //determines number of feedback photons updated to 9/11/04 by Di Mauro
  
-   void    SetZPOS(Float_t p1)      {fzPos=p1;}
-   Float_t ZPosition()         const{return fzPos;}
-    
-   void         SetChamberTransform(Float_t x,Float_t y,Float_t z,TRotMatrix *pRotMatrix) {fX=x; fY=y; fZ=z; fpRotMatrix=pRotMatrix;}
-   TRotMatrix * GetRotMatrix()                                                    const   {return fpRotMatrix;}
-   Float_t      GetX()                                                            const   {return fX;}
-   Float_t      GetY()                                                            const   {return fY;}
-   Float_t      GetZ()                                                            const   {return fZ;}    
-   Float_t      GetOffset()                                                       const   {return TMath::Sqrt(fX*fX+fY*fY+fZ*fZ);}    
-    
-   void              SetGeometryModel(AliRICHGeometry* pRICHGeometry)           {fGeometry=pRICHGeometry;}        
-   AliRICHGeometry*  GetGeometryModel()                                    const{return fGeometry;}
-   
-   void              SetResponseModel(AliRICHResponse* pRICHResponse)            {fResponse=pRICHResponse;}
-   AliRICHResponse*  GetResponseModel()                                     const{return fResponse;}
-   
-   void              SetSegmentationModel(AliSegmentation* pRICHSegmentation)   {fSegmentation=pRICHSegmentation;}
-   AliSegmentation*  GetSegmentationModel(Int_t i=0)                       const{return fSegmentation;}
-   
-   void                  SetReconstructionModel(AliRICHClusterFinder *pRICHReconstruction)    {fReconstruction=pRICHReconstruction;}
-   AliRICHClusterFinder* &GetReconstructionModel()                                            {return fReconstruction;}
-
-   void   SigGenInit(Float_t x, Float_t y, Float_t z)   {fSegmentation->SigGenInit(x, y, z) ;}
-   Int_t  SigGenCond(Float_t x, Float_t y, Float_t z)  {return fSegmentation->SigGenCond(x, y, z);}
-   Int_t  Sector(Float_t x, Float_t y)                  {return fSegmentation->Sector(x, y);} // Returns number of sector containing (x,y) position    
-   void   SetPadSize(Float_t p1, Float_t p2)            {fSegmentation->SetPadSize(p1,p2);}
-   
-   Float_t IntPH(Float_t eloss, Float_t yhit)                        {return fResponse->IntPH(eloss,yhit);}
-   Float_t IntPH(Float_t yhit)                                       {return fResponse->IntPH(yhit);}
-   void   SetSigmaIntegration(Float_t p)                             {fResponse->SetSigmaIntegration(p);}
-   void   SetChargeSlope(Float_t p)                                  {fResponse->SetChargeSlope(p);}
-   void   SetChargeSpread(Float_t p1, Float_t p2)                    {fResponse->SetChargeSpread(p1,p2);}
-   void   SetMaxAdc(Float_t p)                                       {fResponse->SetMaxAdc(p);}
-   void   SetSqrtKx3(Float_t p)                                      {fResponse->SetSqrtKx3(p);}
-   void   SetKx2(Float_t p)                                          {fResponse->SetKx2(p);}
-   void   SetKx4(Float_t p)                                          {fResponse->SetKx4(p);}
-   void   SetSqrtKy3(Float_t p)                                      {fResponse->SetSqrtKy3(p);}
-   void   SetKy2(Float_t p)                                          {fResponse->SetKy2(p);}
-   void   SetKy4(Float_t p)                                          {fResponse->SetKy4(p);}    
-   void   SetPitch(Float_t p)                                        {fResponse->SetPitch(p);}
-   void   SetWireSag(Int_t p)                                        {fResponse->SetWireSag(p);}
-   void   SetVoltage(Int_t p)                                        {fResponse->SetVoltage(p);}    
-   
-   void   SetGapThickness(Float_t thickness)                         {fGeometry->SetGapThickness(thickness);} 
-   void   SetProximityGapThickness(Float_t thickness)                {fGeometry->SetProximityGapThickness(thickness);}
-   void   SetQuartzLength(Float_t length)                            {fGeometry->SetQuartzLength(length);}
-   void   SetQuartzWidth(Float_t width)                              {fGeometry->SetQuartzWidth(width);}
-   void   SetQuartzThickness(Float_t thickness)                      {fGeometry->SetQuartzThickness(thickness);}
-   void   SetOuterFreonLength(Float_t length)                        {fGeometry->SetOuterFreonLength(length);}
-   void   SetOuterFreonWidth(Float_t width)                          {fGeometry->SetOuterFreonWidth(width);}
-   void   SetInnerFreonLength(Float_t length)                        {fGeometry->SetInnerFreonLength(length);}
-   void   SetInnerFreonWidth(Float_t width)                          {fGeometry->SetInnerFreonWidth(width);}
-   void   SetFreonThickness(Float_t thickness)                       {fGeometry->SetFreonThickness(thickness);}
-   
-   AliRICHChamber& operator=(const AliRICHChamber& rhs){return *this;}
-   
-   inline virtual void Print(Option_t *sOption)const;   
-
-private:
-   Float_t frMin;                                         // Minimum Chamber size
-   Float_t frMax;                                         // Maximum Chamber size 
-   Int_t   fGid;                                          // Id tag 
-   Float_t fzPos;                                         // z-position of this chamber
+  TRotMatrix* RotMatrix()          const{return fpRotMatrix;}
+  TString     RotMatrixName()      const{return "rot"+fName;}
+  TRotation   Rot()                const{return fRot;}
+  Double_t    Rho()                const{return fCenter.Mag();}                                //gives  distance to chamber center in MRS
+  Double_t    ThetaD()             const{return fCenter.Theta()*TMath::RadToDeg();}            //gives polar angle of chamber center in MRS
+  Double_t    PhiD()               const{return fCenter.Phi()  *TMath::RadToDeg();}            //gives azimuthal angle of chamber center in MRS
+  Double_t    ThetaXd()            const{return fRot.ThetaX()  *TMath::RadToDeg();}    
+  Double_t    PhiXd()              const{return fRot.PhiX()    *TMath::RadToDeg();}    
+  Double_t    ThetaYd()            const{return fRot.ThetaY()  *TMath::RadToDeg();}    
+  Double_t    PhiYd()              const{return fRot.PhiY()    *TMath::RadToDeg();}    
+  Double_t    ThetaZd()            const{return fRot.ThetaZ()  *TMath::RadToDeg();}    
+  Double_t    PhiZd()              const{return fRot.PhiZ()    *TMath::RadToDeg();}    
+  void        RotX(Double_t a)       {a*=TMath::DegToRad();fRot.RotateX(a);fRad.RotateX(a);fCenter.RotateX(a);fAnod.RotateX(a);fPc.RotateX(a);}//degrees around X
+  void        RotY(Double_t a)       {a*=TMath::DegToRad();fRot.RotateY(a);fRad.RotateY(a);fCenter.RotateY(a);fAnod.RotateY(a);fPc.RotateY(a);}//degrees around Y
+  void        RotZ(Double_t a)       {a*=TMath::DegToRad();fRot.RotateZ(a);fRad.RotateZ(a);fCenter.RotateZ(a);fAnod.RotateZ(a);fPc.RotateZ(a);}//degrees around Z
+  TVector3    Rad()               const{return fRad;}         //provides center of radiator position in MRS, cm   
+  TVector3    Anod()              const{return fAnod;}        //provides center of anod wires plane in MRS, cm   
+  TVector3    Pc()                const{return fPc;}          //provides center of photocathode position in MRS, cm
+  TVector3    Center()            const{return fCenter;}      //provides center of chamber position (exit from quartz window) in MRS, cm
+  void        Print(Option_t *sOption)const;                    
+  TVector3    PMrs2Loc(TVector3 p3)const{TVector3 ploc=Rot().Invert()*p3;ploc.SetXYZ(-ploc.Px(),ploc.Py(),ploc.Pz()); return ploc;} //momentum MARS-local 
+//Transformations for radiator plane  
+  TVector2    Mrs2Rad(TVector3 x3)const{x3-=fRad;x3.Transform(fRot.Inverse());return TVector2(-x3.X()+0.5*AliRICHParam::PcSizeX(),x3.Y()+0.5*AliRICHParam::PcSizeY());}
+  TVector3    Rad2Mrs(TVector2 x2)const{TVector3 x3(-x2.X()+0.5*AliRICHParam::PcSizeX(),x2.Y()-0.5*AliRICHParam::PcSizeY(),0);x3.Transform(fRot); x3+=fRad;return x3;}  
+//Transformations for anod wires plane  
+  TVector2    Mrs2Anod(TVector3 x3)const{x3-=fAnod;x3.Transform(fRot.Inverse());return TVector2(-x3.X()+0.5*AliRICHParam::PcSizeX(),x3.Y()+0.5*AliRICHParam::PcSizeY());}
+  TVector3    Anod2Mrs(TVector2 x2)const{TVector3 x3(-x2.X()+0.5*AliRICHParam::PcSizeX(),x2.Y()-0.5*AliRICHParam::PcSizeY(),0);x3.Transform(fRot); x3+=fAnod;return x3;}  
+//Transformations for photcathode plane  
+  TVector2    Mrs2Pc(TVector3 x3)const{x3-=fPc;x3.Transform(fRot.Inverse());return TVector2(-x3.X()+0.5*AliRICHParam::PcSizeX(),x3.Y()+0.5*AliRICHParam::PcSizeY());}
+  TVector3    Pc2Mrs(TVector2 x2)const{TVector3 x3(-x2.X()+0.5*AliRICHParam::PcSizeX(),x2.Y()-0.5*AliRICHParam::PcSizeY(),0);x3.Transform(fRot); x3+=fPc;return x3;}  
+  TVector2    Mrs2Pc(TLorentzVector x4)            const{return Mrs2Pc(x4.Vect());}
+protected:
+  TVector3      fRad;             //radiator entrance center position in MRS (cm)
+  TVector3      fCenter;          //chamber center position (quartz window exit) in MRS (cm) 
+  TVector3      fAnod;            //anod wires plane center position in MRS (cm)
+  TVector3      fPc;              //PC center position in MRS (cm)
+  TRotation     fRot;             //chamber rotation in MRS
+  TRotMatrix   *fpRotMatrix;      //rotation matrix of the chamber with respect to MRS 
+  ClassDef(AliRICHChamber,8)      //single RICH chamber description
+};//class AliRICHChamber
 
-   TRotMatrix *fpRotMatrix;                               // Rotation matrix of the chamber with respect to MRS 
-   Float_t fX,fY,fZ;                                      // Position of the center of the chamber in MRS (cm)
-
-   AliSegmentation               *fSegmentation;          // Segmentation model for each chamber
-   AliRICHResponse               *fResponse;              // Response model for each chamber
-   AliRICHGeometry               *fGeometry;              // Geometry model for each chamber
-   AliRICHClusterFinder          *fReconstruction;        // Reconstruction model for each chamber
-   ClassDef(AliRICHChamber,1)                             // A single RICH chamber desription
-};
-    
-inline void AliRICHChamber::Print(Option_t *sOption)const
-{
-   TObject::Print(sOption);
-   cout<<"X="<<fX<<endl;   
-   cout<<"Y="<<fY<<endl;
-   cout<<"Z="<<fZ<<endl;
-   TVector3 vector3(fX,fY,fZ);
-   cout<<"Offset="<<vector3.Mag()<<endl;
-   cout<<"Polar angle="<<vector3.Theta()/TMath::Pi()*180<<endl;
-   cout<<"Azimithal angle="<<vector3.Phi()/TMath::Pi()*180<<endl;
-}// inline void AliRICHChamber::Print(Option_t *sOPtion)
-     
 #endif //AliRICHChamber_h