]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - TOF/AliTOFSDigitizer.cxx
Production file not written anymore
[u/mrichter/AliRoot.git] / TOF / AliTOFSDigitizer.cxx
index 1f5444d0f5fe927754e7026097315417bb7e1b46..6854b09e34d56f92cd0d46e7aded6ed43bb95044 100644 (file)
@@ -17,7 +17,7 @@
 
 //__________________________________________________________//
 //                                                          //
-//   This is a TTask that constructs SDigits out of Hits    //
+//   This is a class that constructs SDigits out of Hits    //
 //   A Summable Digits is the "sum" of all hits in a pad    //
 //   Detector response has been simulated via the method    //
 //   SimulateDetectorResponse                               //
@@ -41,6 +41,8 @@
 #include "AliRunLoader.h"
 #include "AliRun.h"
 
+#include "AliTOFcalib.h"
+#include "AliTOFRecoParam.h"
 #include "AliTOFGeometry.h"
 #include "AliTOFHitMap.h"
 #include "AliTOFhitT0.h"
@@ -55,7 +57,7 @@ ClassImp(AliTOFSDigitizer)
 
 //____________________________________________________________________________ 
 AliTOFSDigitizer::AliTOFSDigitizer():
-  TTask("TOFSDigitizer",""),
+  TNamed("TOFSDigitizer",""),
   fEvent1(-1),
   fEvent2(-1),
   ftail(0x0),
@@ -64,7 +66,7 @@ AliTOFSDigitizer::AliTOFSDigitizer():
   fTOFLoader(0x0),
   fSelectedSector(-1), 
   fSelectedPlate(-1),
-  fTimeResolution(0),
+  fTimeResolution(100.),
   fpadefficiency(0),
   fEdgeEffect(-1),
   fEdgeTails(-1),
@@ -93,14 +95,16 @@ AliTOFSDigitizer::AliTOFSDigitizer():
   fAverageTimeFlag(-1),
   fAdcBin(0),
   fAdcMean(0),
-  fAdcRms(0)
+  fAdcRms(0),
+  fCalib(new AliTOFcalib())
 {
   // ctor
+
 }
 
 //------------------------------------------------------------------------
 AliTOFSDigitizer::AliTOFSDigitizer(const AliTOFSDigitizer &source):
-  TTask(source),
+  TNamed(source),
   fEvent1(-1),
   fEvent2(-1),
   ftail(0x0),
@@ -109,7 +113,7 @@ AliTOFSDigitizer::AliTOFSDigitizer(const AliTOFSDigitizer &source):
   fTOFLoader(0x0),
   fSelectedSector(-1), 
   fSelectedPlate(-1),
-  fTimeResolution(0),
+  fTimeResolution(100.),
   fpadefficiency(0),
   fEdgeEffect(-1),
   fEdgeTails(-1),
@@ -138,7 +142,8 @@ AliTOFSDigitizer::AliTOFSDigitizer(const AliTOFSDigitizer &source):
   fAverageTimeFlag(-1),
   fAdcBin(0),
   fAdcMean(0),
-  fAdcRms(0)
+  fAdcRms(0),
+  fCalib(new AliTOFcalib())
 {
   // copy constructor
   //this->fTOFGeometry=source.fTOFGeometry;
@@ -155,7 +160,7 @@ AliTOFSDigitizer& AliTOFSDigitizer::operator=(const AliTOFSDigitizer &/*source*/
 
 //____________________________________________________________________________ 
 AliTOFSDigitizer::AliTOFSDigitizer(const char* HeaderFile, Int_t evNumber1, Int_t nEvents):
-  TTask("TOFSDigitizer",""),
+  TNamed("TOFSDigitizer",""),
   fEvent1(-1),
   fEvent2(-1),
   ftail(0x0),
@@ -164,7 +169,7 @@ AliTOFSDigitizer::AliTOFSDigitizer(const char* HeaderFile, Int_t evNumber1, Int_
   fTOFLoader(0x0),
   fSelectedSector(-1), // by default we sdigitize all sectors
   fSelectedPlate(-1),  // by default we sdigitize all plates in all sectors
-  fTimeResolution(0),
+  fTimeResolution(100.),
   fpadefficiency(0),
   fEdgeEffect(-1),
   fEdgeTails(-1),
@@ -193,7 +198,8 @@ AliTOFSDigitizer::AliTOFSDigitizer(const char* HeaderFile, Int_t evNumber1, Int_
   fAverageTimeFlag(-1),
   fAdcBin(0),
   fAdcMean(0),
-  fAdcRms(0)
+  fAdcRms(0),
+  fCalib(new AliTOFcalib())
 {
   //ctor, reading from input file 
   
@@ -259,14 +265,13 @@ AliTOFSDigitizer::AliTOFSDigitizer(const char* HeaderFile, Int_t evNumber1, Int_
       AliFatal("Can not find TOF loader in event. Exiting.");
       return;
     }
-  fTOFLoader->PostSDigitizer(this);
 }
 
 //____________________________________________________________________________ 
 AliTOFSDigitizer::~AliTOFSDigitizer()
 {
   // dtor
-  fTOFLoader->CleanSDigitizer();
+  if (fCalib) delete fCalib;
 
 }
 
@@ -275,18 +280,29 @@ void AliTOFSDigitizer::InitParameters()
 {
   // set parameters for detector simulation
   
-  fTimeResolution = 0.080; //0.120; OLD
-  fpadefficiency  = 0.99 ;
-  fEdgeEffect     = 2   ;
+  fCalib->Init();
+
+  //fTimeResolution = 80.; //120.; OLD
+  AliTOFRecoParam *recoParams = (AliTOFRecoParam*)fCalib->ReadRecParFromCDB("TOF/Calib",fRunLoader->GetRunNumber());
+  fTimeResolution = recoParams->GetTimeResolution(); // now from OCDB
+  if (fTimeResolution==0.) {
+    AliWarning("In OCDB found 0ps for TOF time resolution. It is set to 100ps.");
+    fTimeResolution = 100.;
+  }
+  AliDebug(1,Form(" TOF time resolution read from OCDB = %f ps",fTimeResolution));
+  fpadefficiency  = 0.995 ;
+  //fEdgeEffect   = 2   ; // edge effects according to test beam results
+  fEdgeEffect     = 1   ; // edge effects according to test beam results
+                          // but with fixed time resolution, i.e. fTimeResolution
   fEdgeTails      = 0   ;
   fHparameter     = 0.4 ;
   fH2parameter    = 0.15;
-  fKparameter     = 0.5 ;
-  fK2parameter    = 0.35;
+  fKparameter     = 0.9 ;
+  fK2parameter    = 0.55;
   fEffCenter      = fpadefficiency;
-  fEffBoundary    = 0.65;
-  fEff2Boundary   = 0.90;
-  fEff3Boundary   = 0.08;
+  fEffBoundary    = 0.833;
+  fEff2Boundary   = 0.94;
+  fEff3Boundary   = 0.1;
   fAddTRes        = 68. ; // \sqrt{2x20^2 + 15^2 + 2x10^2 + 30^2 + 50^2} (p-p)
   //fAddTRes      = 48. ; // \sqrt{2x20^2 + 15^2 + 2x10^2 + 30^2 + 15^2} (Pb-Pb)
   // 30^2+20^2+40^2+50^2+50^2+50^2 = 10400 ps^2 (very old value)
@@ -296,7 +312,7 @@ void AliTOFSDigitizer::InitParameters()
   fTimeWalkCenter = 0.  ;
   fTimeWalkBoundary=0.  ;
   fTimeWalkSlope  = 0.  ;
-  fTimeDelayFlag  = 1   ;
+  fTimeDelayFlag  = 0   ;
   fPulseHeightSlope=2.0 ;
   fTimeDelaySlope =0.060;
   // was fMinimumCharge = TMath::Exp(fPulseHeightSlope*fKparameter/2.);
@@ -330,7 +346,7 @@ Double_t TimeWithTail(const Double_t * const x, const Double_t * const par)
 }
 
 //____________________________________________________________________________
-void AliTOFSDigitizer::Exec(Option_t *verboseOption) { 
+void AliTOFSDigitizer::Digitize(Option_t *verboseOption) { 
   //execute TOF sdigitization
   if (strstr(verboseOption,"tim") || strstr(verboseOption,"all"))
     gBenchmark->Start("TOFSDigitizer");
@@ -359,7 +375,7 @@ void AliTOFSDigitizer::Exec(Option_t *verboseOption) {
     AliError("TOF not found");
     return;
   }
-  
+
   fTOFLoader->LoadHits("read");
   fTOFLoader->LoadSDigits("recreate");
 
@@ -453,7 +469,7 @@ void AliTOFSDigitizer::Exec(Option_t *verboseOption) {
          vol[4] = tofHit->GetPadz();
          dxPad = tofHit->GetDx();
          dzPad = tofHit->GetDz();
-         geantTime = tofHit->GetTof(); // unit [s]
+         geantTime = tofHit->GetTof(); // unit [s] // already corrected per event_time smearing
        } else {
          AliTOFhitT0 *tofHit = (AliTOFhitT0 *) tofHitArray->UncheckedAt(hit);
          tracknum = tofHit->GetTrack();
@@ -464,7 +480,7 @@ void AliTOFSDigitizer::Exec(Option_t *verboseOption) {
          vol[4] = tofHit->GetPadz();
          dxPad = tofHit->GetDx();
          dzPad = tofHit->GetDz();
-         geantTime = tofHit->GetTof(); // unit [s]
+         geantTime = tofHit->GetTof(); // unit [s] // already corrected per event_time_smearing
        }
        
        geantTime *= 1.e+09;  // conversion from [s] to [ns]
@@ -511,6 +527,7 @@ void AliTOFSDigitizer::Exec(Option_t *verboseOption) {
            if(nFiredPads) {
              for(Int_t indexOfPad=0; indexOfPad<nActivatedPads; indexOfPad++) {
                if(isFired[indexOfPad]){ // the pad has fired
+
                  Float_t timediff=geantTime-tofAfterSimul[indexOfPad];
 
                  // TOF matching window (~200ns) control
@@ -522,10 +539,10 @@ void AliTOFSDigitizer::Exec(Option_t *verboseOption) {
 
                  if(timediff>=0.2) nlargeTofDiff++; // greater than 200ps
                  
-                 digit[0] = (Int_t) ((tofAfterSimul[indexOfPad]*1.e+03)/AliTOFGeometry::TdcBinWidth()); // TDC bin number (each bin -> 24.4 ps)
+                 digit[0] = TMath::Nint((tofAfterSimul[indexOfPad]*1.e+03)/AliTOFGeometry::TdcBinWidth()); // TDC bin number (each bin -> 24.4 ps)
                  
                  Float_t landauFactor = gRandom->Landau(fAdcMean, fAdcRms); 
-                 digit[1] = (Int_t) (qInduced[indexOfPad] * landauFactor); // ADC bins (each bin -> 0.25 (or 0.03) pC)
+                 digit[1] = TMath::Nint(qInduced[indexOfPad] * landauFactor); // ADC bins (each bin -> 0.25 (or 0.03) pC)
 
                  // recalculate the volume only for neighbouring pads
                  if(indexOfPad){
@@ -705,8 +722,9 @@ void AliTOFSDigitizer::SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t
   nPlace[nActivatedPads-1] = (iz - 1) * AliTOFGeometry::NpadX() + ix;
   qInduced[nActivatedPads-1] = qCenterPad;
   padId[nActivatedPads-1] = 1;
-  
-  if (fEdgeEffect == 0) {
+
+  switch (fEdgeEffect) {
+  case 0:
     eff[nActivatedPads-1] = fEffCenter;
     if (gRandom->Rndm() < eff[nActivatedPads-1]) {
       nFiredPads = 1;
@@ -715,8 +733,207 @@ void AliTOFSDigitizer::SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t
       tofTime[nActivatedPads-1] = gRandom->Gaus(geantTime + fTimeWalkCenter, res[0]);
       averageTime = tofTime[nActivatedPads-1];
     }
-  } else {
-     
+    break;
+
+  case 1:
+    if(z < h) {
+      if(z < h2) {
+       effZ = fEffBoundary + (fEff2Boundary - fEffBoundary) * z / h2;
+      } else {
+       effZ = fEff2Boundary + (fEffCenter - fEff2Boundary) * (z - h2) / (h - h2);
+      }
+      //resZ = fTimeResolution;
+      //timeWalkZ = 0.;
+      nTail[nActivatedPads-1] = 1;
+    } else {
+      effZ = fEffCenter;
+      //resZ = fTimeResolution;
+      //timeWalkZ = 0.;
+    }
+    
+    if(x < h) {
+      if(x < h2) {
+       effX = fEffBoundary + (fEff2Boundary - fEffBoundary) * x / h2;
+      } else {
+       effX = fEff2Boundary + (fEffCenter - fEff2Boundary) * (x - h2) / (h - h2);
+      }
+      //resX = fTimeResolution;
+      //timeWalkX = 0.;
+      nTail[nActivatedPads-1] = 1;
+    } else {
+      effX = fEffCenter;
+      //resX = fTimeResolution;
+      //timeWalkX = 0.;
+    }
+    
+    (effZ<effX) ? eff[nActivatedPads-1] = effZ : eff[nActivatedPads-1] = effX;
+    res[nActivatedPads-1] = 0.001 * fTimeResolution; // ns
+    timeWalk[nActivatedPads-1] = 0.; // ns
+
+
+    ////// Pad B:
+    if(z < k2) {
+      effZ = fEffBoundary - (fEffBoundary - fEff3Boundary) * (z / k2);
+    } else {
+      effZ = fEff3Boundary * (k - z) / (k - k2);
+    }
+    //resZ = fTimeResolution;
+    //timeWalkZ = 0.;
+    
+    if(z < k && z > 0) {
+      if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
+       nActivatedPads++;
+       nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFGeometry::NpadX();
+       eff[nActivatedPads-1] = effZ;
+       res[nActivatedPads-1] = 0.001 * fTimeResolution; // ns 
+       timeWalk[nActivatedPads-1] = 0.; // ns
+       nTail[nActivatedPads-1] = 2;
+       if (fTimeDelayFlag) {
+         qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
+         logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
+         timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+       } else {
+         timeDelay[nActivatedPads-1] = 0.;
+       }
+       padId[nActivatedPads-1] = 2;
+      }
+    }
+
+    
+    ////// Pad C, D, E, F:
+    if(x < k2) {
+      effX = fEffBoundary - (fEffBoundary - fEff3Boundary) * (x / k2);
+    } else {
+      effX = fEff3Boundary * (k - x) / (k - k2);
+    }
+    //resX = fTimeResolution;
+    //timeWalkX = 0.;
+    
+    if(x < k && x > 0) {
+      //   C:
+      if(ix > 1 && dX < 0) {
+       nActivatedPads++;
+       nPlace[nActivatedPads-1] = nPlace[0] - 1;
+       eff[nActivatedPads-1] = effX;
+       res[nActivatedPads-1] = 0.001 * fTimeResolution; // ns 
+       timeWalk[nActivatedPads-1] = 0.; // ns
+       nTail[nActivatedPads-1] = 2;
+       if (fTimeDelayFlag) {
+         qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
+         logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
+         timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+       } else {
+         timeDelay[nActivatedPads-1] = 0.;
+       }
+       padId[nActivatedPads-1] = 3;
+
+       //     D:
+       if(z < k && z > 0) {
+         if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
+           nActivatedPads++;
+           nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFGeometry::NpadX() - 1;
+           eff[nActivatedPads-1] = effX * effZ;
+           res[nActivatedPads-1] = 0.001 * fTimeResolution; // ns
+           timeWalk[nActivatedPads-1] = 0.; // ns
+           
+           nTail[nActivatedPads-1] = 2;
+           if (fTimeDelayFlag) {
+             if (TMath::Abs(x) < TMath::Abs(z)) {
+               qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
+               logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
+             } else {
+               qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
+               logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
+             }
+             timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+           } else {
+             timeDelay[nActivatedPads-1] = 0.;
+           }
+           padId[nActivatedPads-1] = 4;
+         }
+       }  // end D
+      }  // end C
+      
+      //   E:
+      if(ix < AliTOFGeometry::NpadX() && dX > 0) {
+       nActivatedPads++;
+       nPlace[nActivatedPads-1] = nPlace[0] + 1;
+       eff[nActivatedPads-1] = effX;
+       res[nActivatedPads-1] = 0.001 * fTimeResolution; // ns
+       timeWalk[nActivatedPads-1] = 0.; // ns
+       nTail[nActivatedPads-1] = 2;
+       if (fTimeDelayFlag) {
+         qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
+         logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
+         timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+       } else {
+         timeDelay[nActivatedPads-1] = 0.;
+       }
+       padId[nActivatedPads-1] = 5;
+
+
+       //     F:
+       if(z < k && z > 0) {
+         if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
+           nActivatedPads++;
+           nPlace[nActivatedPads - 1] = nPlace[0] + (3 - 2 * iz) * AliTOFGeometry::NpadX() + 1;
+           eff[nActivatedPads - 1] = effX * effZ;
+           res[nActivatedPads-1] = 0.001 * fTimeResolution; // ns
+           timeWalk[nActivatedPads-1] = 0.; // ns
+           nTail[nActivatedPads-1] = 2;
+           if (fTimeDelayFlag) {
+             if (TMath::Abs(x) < TMath::Abs(z)) {
+               qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
+               logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
+             } else {
+               qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
+               logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
+             }
+             timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+           } else {
+             timeDelay[nActivatedPads-1] = 0.;
+           }
+           padId[nActivatedPads-1] = 6;
+         }
+       }  // end F
+      }  // end E
+    } // end if(x < k)
+
+
+    for (Int_t iPad = 0; iPad < nActivatedPads; iPad++) {
+      if(gRandom->Rndm() < eff[iPad]) {
+       isFired[iPad] = kTRUE;
+       nFiredPads++;
+       if(fEdgeTails) {
+         if(nTail[iPad] == 0) {
+           tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
+         } else {
+           ftail->SetParameters(res[iPad], 2. * res[iPad], kSigmaForTail[nTail[iPad]-1]);
+           Double_t timeAB = ftail->GetRandom();
+           tofTime[iPad] = geantTime + timeWalk[iPad] + timeDelay[iPad] + timeAB;
+         }
+       } else {
+         //AliDebug(1,Form(" ----------------- TOF time resolution = %f",res[iPad]));
+         tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
+       }
+       if (fAverageTimeFlag) {
+         averageTime += tofTime[iPad] * qInduced[iPad];
+         weightsSum += qInduced[iPad];
+       } else {
+         averageTime += tofTime[iPad];
+         weightsSum += 1.;
+       }
+
+       AliDebug(1,Form(" Activated pad %d: geantTime=%f, tw=%fns, td=%fns, tofTime=%fns, sigma=%fps",iPad,geantTime,timeWalk[iPad],timeDelay[iPad],tofTime[iPad],1000.*res[iPad]));
+
+      }
+
+    }
+    if (weightsSum!=0) averageTime /= weightsSum;
+    break;
+
+
+  case 2:
     if(z < h) {
       if(z < h2) {
        effZ = fEffBoundary + (fEff2Boundary - fEffBoundary) * z / h2;
@@ -770,8 +987,6 @@ void AliTOFSDigitizer::SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t
        timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ; // ns
        nTail[nActivatedPads-1] = 2;
        if (fTimeDelayFlag) {
-         //      qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
-         //      qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
          qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
          logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
          timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
@@ -801,6 +1016,307 @@ void AliTOFSDigitizer::SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t
        res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resX * resX); // ns 
        timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
        nTail[nActivatedPads-1] = 2;
+       if (fTimeDelayFlag) {
+         qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
+         logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
+         timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+       } else {
+         timeDelay[nActivatedPads-1] = 0.;
+       }
+       padId[nActivatedPads-1] = 3;
+
+       //     D:
+       if(z < k && z > 0) {
+         if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
+           nActivatedPads++;
+           nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFGeometry::NpadX() - 1;
+           eff[nActivatedPads-1] = effX * effZ;
+           (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resZ * resZ); // ns
+           (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
+           
+           nTail[nActivatedPads-1] = 2;
+           if (fTimeDelayFlag) {
+             if (TMath::Abs(x) < TMath::Abs(z)) {
+               qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
+               logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
+             } else {
+               qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
+               logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
+             }
+             timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+           } else {
+             timeDelay[nActivatedPads-1] = 0.;
+           }
+           padId[nActivatedPads-1] = 4;
+         }
+       }  // end D
+      }  // end C
+      
+      //   E:
+      if(ix < AliTOFGeometry::NpadX() && dX > 0) {
+       nActivatedPads++;
+       nPlace[nActivatedPads-1] = nPlace[0] + 1;
+       eff[nActivatedPads-1] = effX;
+       res[nActivatedPads-1] = 0.001 * (TMath::Sqrt(fAddTRes*fAddTRes + resX * resX)); // ns
+       timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
+       nTail[nActivatedPads-1] = 2;
+       if (fTimeDelayFlag) {
+         qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
+         logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
+         timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+       } else {
+         timeDelay[nActivatedPads-1] = 0.;
+       }
+       padId[nActivatedPads-1] = 5;
+
+
+       //     F:
+       if(z < k && z > 0) {
+         if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
+           nActivatedPads++;
+           nPlace[nActivatedPads - 1] = nPlace[0] + (3 - 2 * iz) * AliTOFGeometry::NpadX() + 1;
+           eff[nActivatedPads - 1] = effX * effZ;
+           (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resZ * resZ); // ns
+           (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001*timeWalkX; // ns
+           nTail[nActivatedPads-1] = 2;
+           if (fTimeDelayFlag) {
+             if (TMath::Abs(x) < TMath::Abs(z)) {
+               qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
+               logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
+             } else {
+               qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
+               logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
+             }
+             timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+           } else {
+             timeDelay[nActivatedPads-1] = 0.;
+           }
+           padId[nActivatedPads-1] = 6;
+         }
+       }  // end F
+      }  // end E
+    } // end if(x < k)
+
+
+    for (Int_t iPad = 0; iPad < nActivatedPads; iPad++) {
+      if (res[iPad] < fTimeResolution) res[iPad] = fTimeResolution;
+      if(gRandom->Rndm() < eff[iPad]) {
+       isFired[iPad] = kTRUE;
+       nFiredPads++;
+       if(fEdgeTails) {
+         if(nTail[iPad] == 0) {
+           tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
+         } else {
+           ftail->SetParameters(res[iPad], 2. * res[iPad], kSigmaForTail[nTail[iPad]-1]);
+           Double_t timeAB = ftail->GetRandom();
+           tofTime[iPad] = geantTime + timeWalk[iPad] + timeDelay[iPad] + timeAB;
+         }
+       } else {
+         AliDebug(1,Form(" ----------------- TOF time resolution = %f",res[iPad]));
+         tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
+       }
+       if (fAverageTimeFlag) {
+         averageTime += tofTime[iPad] * qInduced[iPad];
+         weightsSum += qInduced[iPad];
+       } else {
+         averageTime += tofTime[iPad];
+         weightsSum += 1.;
+       }
+      }
+    }
+    if (weightsSum!=0) averageTime /= weightsSum;
+
+  } // switch (fEdgeEffect)
+
+}
+
+//__________________________________________________________________
+void AliTOFSDigitizer::SimulateDetectorResponseOLD(Float_t z0, Float_t x0, Float_t geantTime, Int_t& nActivatedPads, Int_t& nFiredPads, Bool_t* isFired, Int_t* nPlace, Float_t* qInduced, Float_t* tofTime, Float_t& averageTime)
+{
+  // Description:
+  // Input:  z0, x0 - hit position in the strip system (0,0 - center of the strip), cm
+  //         geantTime - time generated by Geant, ns
+  // Output: nActivatedPads - the number of pads activated by the hit (1 || 2 || 4)
+  //         nFiredPads - the number of pads fired (really activated) by the hit (nFiredPads <= nActivatedPads)
+  //         qInduced[iPad]- charge induced on pad, arb. units
+  //                         this array is initialized at zero by the caller
+  //         tofAfterSimul[iPad] - time calculated with edge effect algorithm, ns
+  //                                   this array is initialized at zero by the caller
+  //         averageTime - time given by pad hited by the Geant track taking into account the times (weighted) given by the pads fired for edge effect also.
+  //                       The weight is given by the qInduced[iPad]/qCenterPad
+  //                                   this variable is initialized at zero by the caller
+  //         nPlace[iPad] - the number of the pad place, iPad = 0, 1, 2, 3
+  //                                   this variable is initialized at zero by the caller
+  //
+  // Description of used variables:
+  //         eff[iPad] - efficiency of the pad
+  //         res[iPad] - resolution of the pad, ns
+  //         timeWalk[iPad] - time walk of the pad, ns
+  //         timeDelay[iPad] - time delay for neighbouring pad to hited pad, ns
+  //         PadId[iPad] - Pad Identifier
+  //                    E | F    -->   PadId[iPad] = 5 | 6
+  //                    A | B    -->   PadId[iPad] = 1 | 2
+  //                    C | D    -->   PadId[iPad] = 3 | 4
+  //         nTail[iPad] - the tail number, = 1 for tailA, = 2 for tailB
+  //         qCenterPad - charge extimated for each pad, arb. units
+  //         weightsSum - sum of weights extimated for each pad fired, arb. units
+  
+  const Float_t kSigmaForTail[2] = {AliTOFGeometry::SigmaForTail1(),AliTOFGeometry::SigmaForTail2()}; //for tail                                                   
+  Int_t iz = 0, ix = 0;
+  Float_t dX = 0., dZ = 0., x = 0., z = 0.;
+  Float_t h = fHparameter, h2 = fH2parameter, k = fKparameter, k2 = fK2parameter;
+  Float_t effX = 0., effZ = 0., resX = 0., resZ = 0., timeWalkX = 0., timeWalkZ = 0.;
+  Float_t logOfqInd = 0.;
+  Float_t weightsSum = 0.;
+  Int_t nTail[4]  = {0,0,0,0};
+  Int_t padId[4]  = {0,0,0,0};
+  Float_t eff[4]  = {0.,0.,0.,0.};
+  Float_t res[4]  = {0.,0.,0.,0.};
+  //  Float_t qCenterPad = fMinimumCharge * fMinimumCharge;
+  Float_t qCenterPad = 1.;
+  Float_t timeWalk[4]  = {0.,0.,0.,0.};
+  Float_t timeDelay[4] = {0.,0.,0.,0.};
+  
+  nActivatedPads = 0;
+  nFiredPads = 0;
+  
+  (z0 <= 0) ? iz = 0 : iz = 1;
+  dZ = z0 + (0.5 * AliTOFGeometry::NpadZ() - iz - 0.5) * AliTOFGeometry::ZPad(); // hit position in the pad frame, (0,0) - center of the pad
+  z = 0.5 * AliTOFGeometry::ZPad() - TMath::Abs(dZ);                               // variable for eff., res. and timeWalk. functions
+  iz++;                                                                              // z row: 1, ..., AliTOFGeometry::NpadZ = 2
+  ix = (Int_t)((x0 + 0.5 * AliTOFGeometry::NpadX() * AliTOFGeometry::XPad()) / AliTOFGeometry::XPad());
+  dX = x0 + (0.5 * AliTOFGeometry::NpadX() - ix - 0.5) * AliTOFGeometry::XPad(); // hit position in the pad frame, (0,0) - center of the pad
+  x = 0.5 * AliTOFGeometry::XPad() - TMath::Abs(dX);                               // variable for eff., res. and timeWalk. functions;
+  ix++;                                                                              // x row: 1, ..., AliTOFGeometry::NpadX = 48
+  
+  ////// Pad A:
+  nActivatedPads++;
+  nPlace[nActivatedPads-1] = (iz - 1) * AliTOFGeometry::NpadX() + ix;
+  qInduced[nActivatedPads-1] = qCenterPad;
+  padId[nActivatedPads-1] = 1;
+  
+  if (fEdgeEffect == 0) {
+    eff[nActivatedPads-1] = fEffCenter;
+    if (gRandom->Rndm() < eff[nActivatedPads-1]) {
+      nFiredPads = 1;
+      res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + fResCenter * fResCenter); // ns
+      isFired[nActivatedPads-1] = kTRUE;
+      tofTime[nActivatedPads-1] = gRandom->Gaus(geantTime + fTimeWalkCenter, res[0]);
+      averageTime = tofTime[nActivatedPads-1];
+    }
+  } else { // if (fEdgeEffet!=0)
+
+    if(z < h) {
+      if(z < h2) {
+       effZ = fEffBoundary + (fEff2Boundary - fEffBoundary) * z / h2;
+      } else {
+       effZ = fEff2Boundary + (fEffCenter - fEff2Boundary) * (z - h2) / (h - h2);
+      }
+      if (fEdgeEffect==1)
+       resZ = fTimeResolution;
+      else if (fEdgeEffect==2)
+       resZ = fResBoundary + (fResCenter - fResBoundary) * z / h;
+      timeWalkZ = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * z / h;
+      nTail[nActivatedPads-1] = 1;
+    } else {
+      effZ = fEffCenter;
+      if (fEdgeEffect==1)
+       resZ = fTimeResolution;
+      else if (fEdgeEffect==2)
+       resZ = fResCenter;
+      timeWalkZ = fTimeWalkCenter;
+    }
+    
+    if(x < h) {
+      if(x < h2) {
+       effX = fEffBoundary + (fEff2Boundary - fEffBoundary) * x / h2;
+      } else {
+       effX = fEff2Boundary + (fEffCenter - fEff2Boundary) * (x - h2) / (h - h2);
+      }
+      if (fEdgeEffect==1)
+       resX = fTimeResolution;
+      else if (fEdgeEffect==2)
+       resX = fResBoundary + (fResCenter - fResBoundary) * x / h;
+      timeWalkX = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * x / h;
+      nTail[nActivatedPads-1] = 1;
+    } else {
+      effX = fEffCenter;
+      if (fEdgeEffect==1)
+       resX = fTimeResolution;
+      else if (fEdgeEffect==2)
+       resX = fResCenter;
+      timeWalkX = fTimeWalkCenter;
+    }
+    
+    (effZ<effX) ? eff[nActivatedPads-1] = effZ : eff[nActivatedPads-1] = effX;
+    if (fEdgeEffect==1)
+      (resZ<resX) ? res[nActivatedPads-1] = 0.001 * resX : res[nActivatedPads-1] = 0.001 * resZ; // ns
+    else
+      (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resZ * resZ); // ns
+    (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 *  timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
+
+
+    ////// Pad B:
+    if(z < k2) {
+      effZ = fEffBoundary - (fEffBoundary - fEff3Boundary) * (z / k2);
+    } else {
+      effZ = fEff3Boundary * (k - z) / (k - k2);
+    }
+    if (fEdgeEffect==1)
+      resZ = fTimeResolution;
+    else if (fEdgeEffect==2)
+      resZ = fResBoundary + fResSlope * z / k;
+    timeWalkZ = fTimeWalkBoundary + fTimeWalkSlope * z / k;
+    
+    if(z < k && z > 0) {
+      if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
+       nActivatedPads++;
+       nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFGeometry::NpadX();
+       eff[nActivatedPads-1] = effZ;
+       if (fEdgeEffect==1)
+         res[nActivatedPads-1] = 0.001 * resZ; // ns 
+       else
+         res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resZ * resZ); // ns 
+       timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ; // ns
+       nTail[nActivatedPads-1] = 2;
+       if (fTimeDelayFlag) {
+         //      qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
+         //      qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
+         qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
+         logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
+         timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+       } else {
+         timeDelay[nActivatedPads-1] = 0.;
+       }
+       padId[nActivatedPads-1] = 2;
+      }
+    }
+
+    
+    ////// Pad C, D, E, F:
+    if(x < k2) {
+      effX = fEffBoundary - (fEffBoundary - fEff3Boundary) * (x / k2);
+    } else {
+      effX = fEff3Boundary * (k - x) / (k - k2);
+    }
+    if (fEdgeEffect==1)
+      resX = fTimeResolution;
+    else if (fEdgeEffect==2)
+      resX = fResBoundary + fResSlope*x/k;
+    timeWalkX = fTimeWalkBoundary + fTimeWalkSlope*x/k;
+    
+    if(x < k && x > 0) {
+      //   C:
+      if(ix > 1 && dX < 0) {
+       nActivatedPads++;
+       nPlace[nActivatedPads-1] = nPlace[0] - 1;
+       eff[nActivatedPads-1] = effX;
+       if (fEdgeEffect==1)
+         res[nActivatedPads-1] = 0.001 * resX; // ns 
+       else if (fEdgeEffect==2)
+         res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resX * resX); // ns 
+       timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
+       nTail[nActivatedPads-1] = 2;
        if (fTimeDelayFlag) {
          //      qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
          //      qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
@@ -818,7 +1334,10 @@ void AliTOFSDigitizer::SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t
            nActivatedPads++;
            nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFGeometry::NpadX() - 1;
            eff[nActivatedPads-1] = effX * effZ;
-           (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resZ * resZ); // ns
+           if (fEdgeEffect==1)
+             (resZ<resX) ? res[nActivatedPads-1] = 0.001 * resX : res[nActivatedPads-1] = 0.001 * resZ; // ns
+           else if (fEdgeEffect==2)
+             (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resZ * resZ); // ns
            (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
            
            nTail[nActivatedPads-1] = 2;
@@ -848,7 +1367,10 @@ void AliTOFSDigitizer::SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t
        nActivatedPads++;
        nPlace[nActivatedPads-1] = nPlace[0] + 1;
        eff[nActivatedPads-1] = effX;
-       res[nActivatedPads-1] = 0.001 * (TMath::Sqrt(fAddTRes*fAddTRes + resX * resX)); // ns
+       if (fEdgeEffect==1)
+         res[nActivatedPads-1] = 0.001 * resX; // ns
+       else if (fEdgeEffect==2)
+         res[nActivatedPads-1] = 0.001 * (TMath::Sqrt(fAddTRes*fAddTRes + resX * resX)); // ns
        timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
        nTail[nActivatedPads-1] = 2;
        if (fTimeDelayFlag) {
@@ -869,7 +1391,10 @@ void AliTOFSDigitizer::SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t
            nActivatedPads++;
            nPlace[nActivatedPads - 1] = nPlace[0] + (3 - 2 * iz) * AliTOFGeometry::NpadX() + 1;
            eff[nActivatedPads - 1] = effX * effZ;
-           (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resZ * resZ); // ns
+           if (fEdgeEffect==1)
+             (resZ<resX) ? res[nActivatedPads-1] = 0.001 * resX : res[nActivatedPads-1] = 0.001 * resZ; // ns
+           else if (fEdgeEffect==2)
+             (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resZ * resZ); // ns
            (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001*timeWalkX; // ns
            nTail[nActivatedPads-1] = 2;
            if (fTimeDelayFlag) {
@@ -896,7 +1421,7 @@ void AliTOFSDigitizer::SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t
 
 
     for (Int_t iPad = 0; iPad < nActivatedPads; iPad++) {
-      if (res[iPad] < fTimeResolution) res[iPad] = fTimeResolution;
+      if (fEdgeEffect==2 && res[iPad] < fTimeResolution) res[iPad] = fTimeResolution;
       if(gRandom->Rndm() < eff[iPad]) {
        isFired[iPad] = kTRUE;
        nFiredPads++;
@@ -909,6 +1434,7 @@ void AliTOFSDigitizer::SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t
            tofTime[iPad] = geantTime + timeWalk[iPad] + timeDelay[iPad] + timeAB;
          }
        } else {
+         AliDebug(1,Form(" ----------------- TOF time resolution = %f",res[iPad]));
          tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
        }
        if (fAverageTimeFlag) {
@@ -936,7 +1462,7 @@ void AliTOFSDigitizer::PrintParameters()const
   
   AliInfo(Form(" Number of events:                       %i ", (fEvent2-fEvent1)));
   AliInfo(Form(" from event %i to event %i", fEvent1, (fEvent2-1)));
-  AliInfo(Form(" Time Resolution (ns) %f  Pad Efficiency: %f ", fTimeResolution, fpadefficiency));
+  AliInfo(Form(" Time Resolution (ps) %f  Pad Efficiency: %f ", fTimeResolution, fpadefficiency));
   AliInfo(Form(" Edge Effect option:  %d", fEdgeEffect));
 
   AliInfo(" Boundary Effect Simulation Parameters ");