]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - TOF/AliTOFSDigitizer.cxx
Modifications needed to use PID framework based mass during tracking and
[u/mrichter/AliRoot.git] / TOF / AliTOFSDigitizer.cxx
index ae0f922c2d3be513cbcdf852a251fd274a56c10d..9898ff04e434f209c3afbfaf7b9649036dff33ab 100644 (file)
 
 /* $Id$ */
 
-//_________________________________________________________________________
-// This is a TTask that constructs SDigits out of Hits
-// A Summable Digits is the "sum" of all hits in a pad
-// Detector response has been simulated via the method
-// SimulateDetectorResponse
-//
-//-- Authors: F. Pierella, A. De Caro
-// Use case: see AliTOFhits2sdigits.C macro in the CVS
-//////////////////////////////////////////////////////////////////////////////
-
-
-#include <Riostream.h>
-#include <stdlib.h>
+//__________________________________________________________//
+//                                                          //
+//   This is a class that constructs SDigits out of Hits    //
+//   A Summable Digits is the "sum" of all hits in a pad    //
+//   Detector response has been simulated via the method    //
+//   SimulateDetectorResponse                               //
+//                                                          //
+//  -- Authors: F. Pierella, A. De Caro                     //
+//   Use case: see AliTOFhits2sdigits.C macro in the CVS    //
+//__________________________________________________________//
 
 #include <TBenchmark.h>
+#include <TClonesArray.h>
 #include <TF1.h>
 #include <TFile.h>
-#include <TFolder.h>
-#include <TH1.h>
 #include <TParticle.h>
-#include <TROOT.h>
-#include <TSystem.h>
-#include <TTask.h>
 #include <TTree.h>
+#include <TRandom.h>
+#include <TROOT.h>
 
-#include "AliDetector.h"
 #include "AliLoader.h"
-#include "AliRun.h"
+#include "AliLog.h"
+#include "AliMC.h"
 #include "AliRunLoader.h"
-#include "AliTOF.h"
-#include "AliTOFConstants.h"
+#include "AliRun.h"
+
+#include "AliTOFcalib.h"
+#include "AliTOFRecoParam.h"
+#include "AliTOFGeometry.h"
 #include "AliTOFHitMap.h"
-#include "AliTOFSDigit.h"
-#include "AliTOFSDigitizer.h"
-#include "AliTOFhit.h"
 #include "AliTOFhitT0.h"
-#include "AliTOFv1.h"
-#include "AliTOFv2.h"
-#include "AliTOFv3.h"
-#include "AliTOFv4.h"
+#include "AliTOFhit.h"
+#include "AliTOFSDigitizer.h"
+#include "AliTOFSDigit.h"
+#include "AliTOF.h"
+
+//extern TROOT *gROOT;
 
 ClassImp(AliTOFSDigitizer)
 
 //____________________________________________________________________________ 
-  AliTOFSDigitizer::AliTOFSDigitizer():TTask("AliTOFSDigitizer","") 
+AliTOFSDigitizer::AliTOFSDigitizer():
+  TNamed("TOFSDigitizer",""),
+  fEvent1(-1),
+  fEvent2(-1),
+  ftail(0x0),
+  fHeadersFile(""),
+  fRunLoader(0x0),
+  fTOFLoader(0x0),
+  fSelectedSector(-1), 
+  fSelectedPlate(-1),
+  fTimeResolution(100.),
+  fpadefficiency(0),
+  fEdgeEffect(-1),
+  fEdgeTails(-1),
+  fHparameter(0),
+  fH2parameter(0),
+  fKparameter(0),
+  fK2parameter(0),
+  fEffCenter(0),
+  fEffBoundary(0),
+  fEff2Boundary(0),
+  fEff3Boundary(0),
+  fAddTRes(0),
+  fResCenter(0),
+  fResBoundary(0),
+  fResSlope(0),
+  fTimeWalkCenter(0),
+  fTimeWalkBoundary(0),
+  fTimeWalkSlope(0),
+  fTimeDelayFlag(-1),
+  fPulseHeightSlope(0),
+  fTimeDelaySlope(0),
+  fMinimumCharge(0),
+  fChargeSmearing(0),
+  fLogChargeSmearing(0),
+  fTimeSmearing(0),
+  fAverageTimeFlag(-1),
+  fAdcBin(0),
+  fAdcMean(0),
+  fAdcRms(0),
+  fCalib(new AliTOFcalib())
 {
   // ctor
 
-  fRunLoader     = 0 ;
+}
+
+//------------------------------------------------------------------------
+AliTOFSDigitizer::AliTOFSDigitizer(const AliTOFSDigitizer &source):
+  TNamed(source),
+  fEvent1(-1),
+  fEvent2(-1),
+  ftail(0x0),
+  fHeadersFile(""),
+  fRunLoader(0x0),
+  fTOFLoader(0x0),
+  fSelectedSector(-1), 
+  fSelectedPlate(-1),
+  fTimeResolution(100.),
+  fpadefficiency(0),
+  fEdgeEffect(-1),
+  fEdgeTails(-1),
+  fHparameter(0),
+  fH2parameter(0),
+  fKparameter(0),
+  fK2parameter(0),
+  fEffCenter(0),
+  fEffBoundary(0),
+  fEff2Boundary(0),
+  fEff3Boundary(0),
+  fAddTRes(0),
+  fResCenter(0),
+  fResBoundary(0),
+  fResSlope(0),
+  fTimeWalkCenter(0),
+  fTimeWalkBoundary(0),
+  fTimeWalkSlope(0),
+  fTimeDelayFlag(-1),
+  fPulseHeightSlope(0),
+  fTimeDelaySlope(0),
+  fMinimumCharge(0),
+  fChargeSmearing(0),
+  fLogChargeSmearing(0),
+  fTimeSmearing(0),
+  fAverageTimeFlag(-1),
+  fAdcBin(0),
+  fAdcMean(0),
+  fAdcRms(0),
+  fCalib(new AliTOFcalib())
+{
+  // copy constructor
+  //this->fTOFGeometry=source.fTOFGeometry;
 
-  fEvent1=0;
-  fEvent2=0;
-  ftail    = 0;
-  fSelectedSector=0;
-  fSelectedPlate =0;
 }
-           
+
 //____________________________________________________________________________ 
-  AliTOFSDigitizer::AliTOFSDigitizer(char* HeaderFile, Int_t evNumber1, Int_t nEvents):TTask("AliTOFSDigitizer","") 
+AliTOFSDigitizer& AliTOFSDigitizer::operator=(const AliTOFSDigitizer &/*source*/)
 {
-  fEvent1=evNumber1;
-  fEvent2=fEvent1+nEvents;
-  ftail    = 0;
-  fSelectedSector=0; // by default we sdigitize all sectors
-  fSelectedPlate =0; // by default we sdigitize all plates in all sectors
-
-  fHeadersFile = HeaderFile ; // input filename (with hits)
-  TFile * file = (TFile*) gROOT->GetFile(fHeadersFile.Data() ) ;
-
-  //File was not opened yet
-  // open file and get alirun object
-  if(file == 0){
-      file =    TFile::Open(fHeadersFile.Data(),"update") ;
-      gAlice = (AliRun *) file->Get("gAlice") ;
-  }
+  // ass. op.
+  return *this;
 
-  // init parameters for sdigitization
-  InitParameters();
+}
 
+//____________________________________________________________________________ 
+AliTOFSDigitizer::AliTOFSDigitizer(const char* HeaderFile, Int_t evNumber1, Int_t nEvents):
+  TNamed("TOFSDigitizer",""),
+  fEvent1(-1),
+  fEvent2(-1),
+  ftail(0x0),
+  fHeadersFile(HeaderFile), // input filename (with hits)
+  fRunLoader(0x0),
+  fTOFLoader(0x0),
+  fSelectedSector(-1), // by default we sdigitize all sectors
+  fSelectedPlate(-1),  // by default we sdigitize all plates in all sectors
+  fTimeResolution(100.),
+  fpadefficiency(0),
+  fEdgeEffect(-1),
+  fEdgeTails(-1),
+  fHparameter(0),
+  fH2parameter(0),
+  fKparameter(0),
+  fK2parameter(0),
+  fEffCenter(0),
+  fEffBoundary(0),
+  fEff2Boundary(0),
+  fEff3Boundary(0),
+  fAddTRes(0),
+  fResCenter(0),
+  fResBoundary(0),
+  fResSlope(0),
+  fTimeWalkCenter(0),
+  fTimeWalkBoundary(0),
+  fTimeWalkSlope(0),
+  fTimeDelayFlag(-1),
+  fPulseHeightSlope(0),
+  fTimeDelaySlope(0),
+  fMinimumCharge(0),
+  fChargeSmearing(0),
+  fLogChargeSmearing(0),
+  fTimeSmearing(0),
+  fAverageTimeFlag(-1),
+  fAdcBin(0),
+  fAdcMean(0),
+  fAdcRms(0),
+  fCalib(new AliTOFcalib())
+{
+  //ctor, reading from input file 
+  
+  TFile * file = (TFile*) gROOT->GetFile(fHeadersFile.Data());
+  
+  //File was not opened yet open file and get alirun object
+  if (file == 0) {
+    file   = TFile::Open(fHeadersFile.Data(),"update") ;
+    gAlice = (AliRun *) file->Get("gAlice") ;
+  }
+  
   // add Task to //root/Tasks folder
-  fRunLoader = AliRunLoader::Open(HeaderFile);//open session and mount on default event folder
+  TString evfoldname = AliConfig::GetDefaultEventFolderName();
+  fRunLoader = AliRunLoader::GetRunLoader(evfoldname);
+  if (!fRunLoader)
+    fRunLoader = AliRunLoader::Open(HeaderFile);//open session and mount on default event folder
   if (fRunLoader == 0x0)
-   {
-     Fatal("AliTOFSDigitizer","Event is not loaded. Exiting");
-     return;
-   }
-  AliLoader* gime = fRunLoader->GetLoader("TOFLoader");
-  if (gime == 0x0)
-   {
-     Fatal("AliTOFSDigitizer","Can not find TOF loader in event. Exiting.");
-     return;
-   }
-  gime->PostSDigitizer(this);
+    {
+      AliFatal("Event is not loaded. Exiting");
+      return;
+    }
+
+  /*
+  fRunLoader->CdGAFile();
+  TDirectory *savedir=gDirectory;
+  TFile *in=(TFile*)gFile;
+
+   
+// when fTOFGeometry was needed
+  if (!in->IsOpen()) {
+    AliWarning("Geometry file is not open default TOF geometry will be used");
+    fTOFGeometry = new AliTOFGeometry();
+  }
+  else {
+    in->cd();
+    fTOFGeometry = (AliTOFGeometry*)in->Get("TOFgeometry");
+  }
+  
+  savedir->cd();
+  */
+  if (fRunLoader->TreeE() == 0x0) fRunLoader->LoadHeader();
+  
+  if (evNumber1>=0) fEvent1 = evNumber1;
+  else fEvent1=0;
+  
+  if (nEvents==0) fEvent2 = (Int_t)(fRunLoader->GetNumberOfEvents());
+  else if (nEvents>0) fEvent2 = evNumber1+nEvents;
+  else fEvent2 = 1;
+  
+  if (!(fEvent2>fEvent1)) {
+    AliError(Form("fEvent2 = %d <= fEvent1 = %d", fEvent2, fEvent1));
+    fEvent1 = 0;
+    fEvent2 = 1;
+    AliError(Form("Correction: fEvent2 = %d <= fEvent1 = %d", fEvent2, fEvent1));
+  }
+  
+  // init parameters for sdigitization
+  InitParameters();
+  
+  fTOFLoader = fRunLoader->GetLoader("TOFLoader");
+  if (fTOFLoader == 0x0)
+    {
+      AliFatal("Can not find TOF loader in event. Exiting.");
+      return;
+    }
 }
 
 //____________________________________________________________________________ 
-  AliTOFSDigitizer::~AliTOFSDigitizer()
+AliTOFSDigitizer::~AliTOFSDigitizer()
 {
   // dtor
+  if (fCalib) delete fCalib;
+
 }
 
 //____________________________________________________________________________ 
 void AliTOFSDigitizer::InitParameters()
 {
   // set parameters for detector simulation
-
-  fTimeResolution =0.120;
-  fpadefficiency  =0.99 ;
-  fEdgeEffect     = 2   ;
+  
+  fCalib->Init();
+
+  //fTimeResolution = 80.; //120.; OLD
+  AliTOFRecoParam *recoParams = (AliTOFRecoParam*)fCalib->ReadRecParFromCDB("TOF/Calib",fRunLoader->GetRunNumber());
+  fTimeResolution = recoParams->GetTimeResolution(); // now from OCDB
+  if (fTimeResolution==0.) {
+    AliWarning("In OCDB found 0ps for TOF time resolution. It is set to 100ps.");
+    fTimeResolution = 100.;
+  }
+  AliDebug(1,Form(" TOF time resolution read from OCDB = %f ps",fTimeResolution));
+  fpadefficiency  = 0.995 ;
+  //fEdgeEffect   = 2   ; // edge effects according to test beam results
+  fEdgeEffect     = 1   ; // edge effects according to test beam results
+                          // but with fixed time resolution, i.e. fTimeResolution
   fEdgeTails      = 0   ;
   fHparameter     = 0.4 ;
   fH2parameter    = 0.15;
-  fKparameter     = 0.5 ;
-  fK2parameter    = 0.35;
+  fKparameter     = 0.9 ;
+  fK2parameter    = 0.55;
   fEffCenter      = fpadefficiency;
-  fEffBoundary    = 0.65;
-  fEff2Boundary   = 0.90;
-  fEff3Boundary   = 0.08;
-  fResCenter      = 50. ;
+  fEffBoundary    = 0.833;
+  fEff2Boundary   = 0.94;
+  fEff3Boundary   = 0.1;
+  fAddTRes        = 68. ; // \sqrt{2x20^2 + 15^2 + 2x10^2 + 30^2 + 50^2} (p-p)
+  //fAddTRes      = 48. ; // \sqrt{2x20^2 + 15^2 + 2x10^2 + 30^2 + 15^2} (Pb-Pb)
+  // 30^2+20^2+40^2+50^2+50^2+50^2 = 10400 ps^2 (very old value)
+  fResCenter      = 35. ; //50. ; // OLD
   fResBoundary    = 70. ;
-  fResSlope       = 40. ;
+  fResSlope       = 37. ; //40. ; // OLD
   fTimeWalkCenter = 0.  ;
   fTimeWalkBoundary=0.  ;
   fTimeWalkSlope  = 0.  ;
-  fTimeDelayFlag  = 1   ;
+  fTimeDelayFlag  = 0   ;
   fPulseHeightSlope=2.0 ;
   fTimeDelaySlope =0.060;
   // was fMinimumCharge = TMath::Exp(fPulseHeightSlope*fKparameter/2.);
@@ -148,8 +321,8 @@ void AliTOFSDigitizer::InitParameters()
   fLogChargeSmearing=0.13;
   fTimeSmearing   =0.022;
   fAverageTimeFlag=0    ;
-  fTdcBin   = 50.;      // 1 TDC bin = 50 ps
-  fAdcBin   = 0.25;     // 1 ADC bin = 0.25 pC (or 0.03 pC)
+
+  fAdcBin   = 0.25;    // 1 ADC bin = 0.25 pC (or 0.03 pC)
   fAdcMean  = 50.;     // ADC distribution mpv value for Landau (in bins)
                        // it corresponds to a mean value of ~100 bins
   fAdcRms   = 25.;     // ADC distribution rms value (in bins)
@@ -157,7 +330,7 @@ void AliTOFSDigitizer::InitParameters()
 }
 
 //__________________________________________________________________
-Double_t TimeWithTail(Double_t* x, Double_t* par)
+Double_t TimeWithTail(const Double_t * const x, const Double_t * const par)
 {
   // sigma - par[0], alpha - par[1], part - par[2]
   //  at x<part*sigma - gauss
@@ -172,42 +345,14 @@ Double_t TimeWithTail(Double_t* x, Double_t* par)
   return f;
 }
 
-
 //____________________________________________________________________________
-void AliTOFSDigitizer::Exec(Option_t *verboseOption, Option_t *allEvents) { 
-
-  fRunLoader->LoadgAlice();
-  fRunLoader->LoadHeader();
-  fRunLoader->LoadKinematics();
-  gAlice = fRunLoader->GetAliRun();
-  
-  AliLoader* gime = fRunLoader->GetLoader("TOFLoader");
-  gime->LoadHits("read");
-  gime->LoadSDigits("recreate");
-  if(strstr(verboseOption,"tim") || strstr(verboseOption,"all"))
+void AliTOFSDigitizer::Digitize(Option_t *verboseOption) { 
+  //execute TOF sdigitization
+  if (strstr(verboseOption,"tim") || strstr(verboseOption,"all"))
     gBenchmark->Start("TOFSDigitizer");
 
-  AliTOF *TOF = (AliTOF *) gAlice->GetDetector("TOF");
-
-  if (!TOF) {
-    Error("AliTOFSDigitizer","TOF not found");
-    return;
-  }
-
-  // is pointer to fSDigits non zero after changes?
-  cout<<"TOF fSDigits pointer:"<<TOF->SDigits()<<endl;
-
-  // recreate TClonesArray fSDigits - for backward compatibility
-  if (TOF->SDigits() == 0) {
-    TOF->CreateSDigitsArray();
-  } else {
-    TOF->RecreateSDigitsArray();
-  }
-
-  Int_t version=TOF->IsVersion();
-
   if (fEdgeTails) ftail = new TF1("tail",TimeWithTail,-2,2,3);
-
+  
   Int_t nselectedHits=0;
   Int_t ntotalsdigits=0;
   Int_t ntotalupdates=0;
@@ -217,109 +362,135 @@ void AliTOFSDigitizer::Exec(Option_t *verboseOption, Option_t *allEvents) {
   Int_t nHitsFromSec=0;
   Int_t nlargeTofDiff=0;
 
-  if (strstr(allEvents,"all")){
-    fEvent1=0;
-    fEvent2= (Int_t) gAlice->TreeE()->GetEntries();
+  Bool_t thereIsNotASelection=(fSelectedSector==-1) && (fSelectedPlate==-1);
+
+  if (fRunLoader->GetAliRun() == 0x0) fRunLoader->LoadgAlice();
+  gAlice = fRunLoader->GetAliRun();
+
+  fRunLoader->LoadKinematics();
+  
+  AliTOF *tof = (AliTOF *) gAlice->GetDetector("TOF");
+  
+  if (!tof) {
+    AliError("TOF not found");
+    return;
   }
 
-  Bool_t thereIsNotASelection=(fSelectedSector==0) && (fSelectedPlate==0);
+  fTOFLoader->LoadHits("read");
+  fTOFLoader->LoadSDigits("recreate");
 
-  for (Int_t ievent = fEvent1; ievent < fEvent2; ievent++) {
-    cout << "------------------- "<< GetName() << " -------------" << endl ;
-    cout << "Sdigitizing event " << ievent << endl;
+  Int_t vol[5]={-1,-1,-1,-1,-1}; // location for a digit
+  Int_t digit[2]={0,0};          // TOF digit variables
+  
+  Int_t nselectedHitsinEv=0;
+  Int_t ntotalsdigitsinEv=0;
+  Int_t ntotalupdatesinEv=0;
+  Int_t nnoisesdigitsinEv=0;
+  Int_t nsignalsdigitsinEv=0;
 
-    Int_t nselectedHitsinEv=0;
-    Int_t ntotalsdigitsinEv=0;
-    Int_t ntotalupdatesinEv=0;
-    Int_t nnoisesdigitsinEv=0;
-    Int_t nsignalsdigitsinEv=0;
+  for (Int_t iEvent=fEvent1; iEvent<fEvent2; iEvent++) {
+    //AliInfo(Form("------------------- %s -------------", GetName()));
+    //AliInfo(Form("Sdigitizing event %i", iEvent));
 
-    fRunLoader->GetEvent(ievent);
-    TOF->SetTreeAddress();
-    TTree *TH = gime->TreeH ();
-    if (!TH)
-      return;
-    if (gime->TreeS () == 0)
-      gime->MakeTree ("S");
+    fRunLoader->GetEvent(iEvent);
 
-      
-    //Make branches
-    char branchname[20];
-    sprintf (branchname, "%s", TOF->GetName ());
+    TTree *hitTree = fTOFLoader->TreeH();
+    if (!hitTree) return;
+
+    if (fTOFLoader->TreeS () == 0) fTOFLoader->MakeTree ("S");
+    
     //Make branch for digits
-    TOF->MakeBranch("S");
+    tof->MakeBranch("S");
     
-    //Now made SDigits from hits
+    // recreate TClonesArray fSDigits - for backward compatibility
+    if (tof->SDigits() == 0) {
+      tof->CreateSDigitsArray();
+    } else {
+      tof->RecreateSDigitsArray();
+    }
 
+    tof->SetTreeAddress();
+
+    Int_t version=tof->IsVersion();
+
+    nselectedHitsinEv=0;
+    ntotalsdigitsinEv=0;
+    ntotalupdatesinEv=0;
+    nnoisesdigitsinEv=0;
+    nsignalsdigitsinEv=0;
 
     TParticle *particle;
     //AliTOFhit *tofHit;
-    TClonesArray *TOFhits = TOF->Hits();
+    TClonesArray *tofHitArray = tof->Hits();
 
     // create hit map
-    AliTOFHitMap *hitMap = new AliTOFHitMap(TOF->SDigits());
+    //AliTOFHitMap *hitMap = new AliTOFHitMap(tof->SDigits(), fTOFGeometry);
+    AliTOFHitMap *hitMap = new AliTOFHitMap(tof->SDigits());
 
-    // increase performances in terms of CPU time
-    //PH     TH->SetBranchStatus("*",0); // switch off all branches
-    //PH     TH->SetBranchStatus("TOF*",1); // switch on only TOF
+    TBranch * tofHitsBranch = hitTree->GetBranch("TOF");
 
-    TBranch * tofHitsBranch = TH->GetBranch("TOF");
-
-    Int_t ntracks = static_cast<Int_t>(TH->GetEntries());
+    Int_t ntracks = static_cast<Int_t>(hitTree->GetEntries());
     for (Int_t track = 0; track < ntracks; track++)
     {
-      gAlice->ResetHits();
-      //PH      TH->GetEvent(track);
+      gAlice->GetMCApp()->ResetHits();
       tofHitsBranch->GetEvent(track);
-      particle = gAlice->Particle(track);
-      Int_t nhits = TOFhits->GetEntriesFast();
+
+      AliMC *mcApplication = (AliMC*)gAlice->GetMCApp();
+
+      particle = (TParticle*)mcApplication->Particle(track);
+      Int_t nhits = tofHitArray->GetEntriesFast();
       // cleaning all hits of the same track in the same pad volume
       // it is a rare event, however it happens
 
-      Int_t previousTrack =0;
-      Int_t previousSector=0;
-      Int_t previousPlate =0;
-      Int_t previousStrip =0;
-      Int_t previousPadX  =0;
-      Int_t previousPadZ  =0;
-
-      for (Int_t hit = 0; hit < nhits; hit++)
-      {
-       Int_t    vol[5];       // location for a digit
-       Float_t  digit[2];     // TOF digit variables
-       Int_t tracknum;
-       Float_t Xpad;
-       Float_t Zpad;
+      Int_t previousTrack =-1;
+      Int_t previousSector=-1;
+      Int_t previousPlate =-1;
+      Int_t previousStrip =-1;
+      Int_t previousPadX  =-1;
+      Int_t previousPadZ  =-1;
+
+      for (Int_t hit = 0; hit < nhits; hit++) {
+       for (Int_t aa=0; aa<5;aa++) vol[aa]=-1;  // location for a digit
+       for (Int_t aa=0; aa<2;aa++) digit[aa]=0; // TOF digit variables
+       Int_t   tracknum;
+       Float_t dxPad;
+       Float_t dzPad;
        Float_t geantTime;
 
        // fp: really sorry for this, it is a temporary trick to have
        // track length too
-       if(version!=6){
-         AliTOFhit *tofHit = (AliTOFhit *) TOFhits->UncheckedAt(hit);
+       if (version<6) { //(version!=6 && version!=7)
+         AliTOFhit *tofHit = (AliTOFhit *) tofHitArray->UncheckedAt(hit);
          tracknum = tofHit->GetTrack();
          vol[0] = tofHit->GetSector();
          vol[1] = tofHit->GetPlate();
          vol[2] = tofHit->GetStrip();
          vol[3] = tofHit->GetPadx();
          vol[4] = tofHit->GetPadz();
-         Xpad = tofHit->GetDx();
-         Zpad = tofHit->GetDz();
-         geantTime = tofHit->GetTof(); // unit [s]
+         dxPad = tofHit->GetDx();
+         dzPad = tofHit->GetDz();
+         geantTime = tofHit->GetTof(); // unit [s] // already corrected per event_time smearing
        } else {
-         AliTOFhitT0 *tofHit = (AliTOFhitT0 *) TOFhits->UncheckedAt(hit);
+         AliTOFhitT0 *tofHit = (AliTOFhitT0 *) tofHitArray->UncheckedAt(hit);
          tracknum = tofHit->GetTrack();
          vol[0] = tofHit->GetSector();
          vol[1] = tofHit->GetPlate();
          vol[2] = tofHit->GetStrip();
          vol[3] = tofHit->GetPadx();
          vol[4] = tofHit->GetPadz();
-         Xpad = tofHit->GetDx();
-         Zpad = tofHit->GetDz();
-         geantTime = tofHit->GetTof(); // unit [s]
+         dxPad = tofHit->GetDx();
+         dzPad = tofHit->GetDz();
+         geantTime = tofHit->GetTof(); // unit [s] // already corrected per event_time_smearing
        }
-
+       
        geantTime *= 1.e+09;  // conversion from [s] to [ns]
-           
+       // TOF matching window (~200ns) control
+       if (geantTime>=AliTOFGeometry::MatchingWindow()*1E-3) {
+         AliDebug(2,Form("Time measurement (%f) greater than the matching window (%f)",
+                         geantTime, AliTOFGeometry::MatchingWindow()*1E-3));
+         continue;
+       }
+
        // selection case for sdigitizing only hits in a given plate of a given sector
        if(thereIsNotASelection || (vol[0]==fSelectedSector && vol[1]==fSelectedPlate)){
          
@@ -341,14 +512,11 @@ void AliTOFSDigitizer::Exec(Option_t *verboseOption, Option_t *allEvents) {
            
            nselectedHits++;
            nselectedHitsinEv++;
-           if (particle->GetFirstMother() < 0){
-             nHitsFromPrim++;
-           } // counts hits due to primary particles
+           if (particle->GetFirstMother() < 0) nHitsFromPrim++; // counts hits due to primary particles
            
-           Float_t xStrip=AliTOFConstants::fgkXPad*(vol[3]-0.5-0.5*AliTOFConstants::fgkNpadX)+Xpad;
-           Float_t zStrip=AliTOFConstants::fgkZPad*(vol[4]-0.5-0.5*AliTOFConstants::fgkNpadZ)+Zpad;
+           Float_t xStrip=AliTOFGeometry::XPad()*(vol[3]+0.5-0.5*AliTOFGeometry::NpadX())+dxPad;
+           Float_t zStrip=AliTOFGeometry::ZPad()*(vol[4]+0.5-0.5*AliTOFGeometry::NpadZ())+dzPad;
 
-           //cout << "geantTime " << geantTime << " [ns]" << endl;
            Int_t nActivatedPads = 0, nFiredPads = 0;
            Bool_t isFired[4] = {kFALSE, kFALSE, kFALSE, kFALSE};
            Float_t tofAfterSimul[4] = {0., 0., 0., 0.};
@@ -359,33 +527,40 @@ void AliTOFSDigitizer::Exec(Option_t *verboseOption, Option_t *allEvents) {
            if(nFiredPads) {
              for(Int_t indexOfPad=0; indexOfPad<nActivatedPads; indexOfPad++) {
                if(isFired[indexOfPad]){ // the pad has fired
+
                  Float_t timediff=geantTime-tofAfterSimul[indexOfPad];
+
+                 // TOF matching window (~200ns) control
+                 if (tofAfterSimul[indexOfPad]>=AliTOFGeometry::MatchingWindow()*1E-3) {
+                   AliDebug(2,Form("Time measurement (%f) greater than the matching window (%f)",
+                                   tofAfterSimul[indexOfPad], AliTOFGeometry::MatchingWindow()*1E-3));
+                   continue;
+                 }
+
+                 if(timediff>=0.2) nlargeTofDiff++; // greater than 200ps
                  
-                 if(timediff>=0.2) nlargeTofDiff++;
-                 
-                 digit[0] = (Int_t) ((tofAfterSimul[indexOfPad]*1.e+03)/fTdcBin); // TDC bin number (each bin -> 50. ps)
+                 digit[0] = TMath::Nint((tofAfterSimul[indexOfPad]*1.e+03)/AliTOFGeometry::TdcBinWidth()); // TDC bin number (each bin -> 24.4 ps)
                  
                  Float_t landauFactor = gRandom->Landau(fAdcMean, fAdcRms); 
-                 digit[1] = (Int_t) (qInduced[indexOfPad] * landauFactor); // ADC bins (each bin -> 0.25 (or 0.03) pC)
-                 
+                 digit[1] = TMath::Nint(qInduced[indexOfPad] * landauFactor); // ADC bins (each bin -> 0.25 (or 0.03) pC)
+
                  // recalculate the volume only for neighbouring pads
                  if(indexOfPad){
-                   (nPlace[indexOfPad]<=AliTOFConstants::fgkNpadX) ? vol[4] = 1 : vol[4] = 2;
-                   (nPlace[indexOfPad]<=AliTOFConstants::fgkNpadX) ? vol[3] = nPlace[indexOfPad] : vol[3] = nPlace[indexOfPad] - AliTOFConstants::fgkNpadX;
+                   (nPlace[indexOfPad]<=AliTOFGeometry::NpadX()) ? vol[4] = 0 : vol[4] = 1;
+                   (nPlace[indexOfPad]<=AliTOFGeometry::NpadX()) ? vol[3] = nPlace[indexOfPad] - 1 : vol[3] = nPlace[indexOfPad] - AliTOFGeometry::NpadX() - 1;
                  }
-                 
-                 // check if two sdigit are on the same pad; in that case we sum
-                 // the two or more sdigits
+                 // check if two sdigit are on the same pad;
+                 // in that case we sum the two or more sdigits
                  if (hitMap->TestHit(vol) != kEmpty) {
                    AliTOFSDigit *sdig = static_cast<AliTOFSDigit*>(hitMap->GetHit(vol));
                    Int_t tdctime = (Int_t) digit[0];
                    Int_t adccharge = (Int_t) digit[1];
-                   sdig->Update(fTdcBin,tdctime,adccharge,tracknum);
+                   sdig->Update(AliTOFGeometry::TdcBinWidth(),tdctime,adccharge,tracknum);
                    ntotalupdatesinEv++;
                    ntotalupdates++;
                  } else {
                    
-                   TOF->AddSDigit(tracknum, vol, digit);
+                   tof->AddSDigit(tracknum, vol, digit);
                    
                    if(indexOfPad){
                      nnoisesdigits++;
@@ -407,25 +582,30 @@ void AliTOFSDigitizer::Exec(Option_t *verboseOption, Option_t *allEvents) {
     } // end loop on ntracks
     
     delete hitMap;
-      
-    gime->TreeS()->Reset();
-    gime->TreeS()->Fill();
-    //gAlice->TreeS()->Write(0,TObject::kOverwrite) ;
-    gime->WriteSDigits("OVERWRITE");
-
-    if(strstr(verboseOption,"all")){
-      cout << "----------------------------------------" << endl;
-      cout << "       <AliTOFSDigitizer>     " << endl;
-      cout << "After sdigitizing " << nselectedHitsinEv << " hits" << " in event " << ievent << endl;
+    
+    fTOFLoader->TreeS()->Reset();
+    fTOFLoader->TreeS()->Fill();
+    fTOFLoader->WriteSDigits("OVERWRITE");
+    
+    if (tof->SDigits()) tof->ResetSDigits();
+    
+    if (strstr(verboseOption,"all") || strstr(verboseOption,"partial")) {
+      AliDebug(2,"----------------------------------------");
+      AliDebug(2,Form("After sdigitizing %d hits in event %d", nselectedHitsinEv, iEvent));
       //" (" << nHitsFromPrim << " from primaries and " << nHitsFromSec << " from secondaries) TOF hits, " 
-      cout << ntotalsdigitsinEv << " digits have been created " << endl;
-      cout << "(" << nsignalsdigitsinEv << " due to signals and " <<  nnoisesdigitsinEv << " due to border effect)" << endl;
-      cout << ntotalupdatesinEv << " total updates of the hit map have been performed in current event" << endl;
-      cout << "----------------------------------------" << endl;
+      AliDebug(1,Form("%d sdigits have been created", ntotalsdigitsinEv));
+      AliDebug(2,Form("(%d due to signals and %d due to border effect)", nsignalsdigitsinEv, nnoisesdigitsinEv));
+      AliDebug(2,Form("%d total updates of the hit map have been performed in current event", ntotalupdatesinEv));
+      AliDebug(2,"----------------------------------------");
     }
 
   } //event loop on events
 
+    fTOFLoader->UnloadSDigits();
+    fTOFLoader->UnloadHits();
+    fRunLoader->UnloadKinematics();
+    //fRunLoader->UnloadgAlice();
+
   // free used memory
   if (ftail){
     delete ftail;
@@ -433,52 +613,48 @@ void AliTOFSDigitizer::Exec(Option_t *verboseOption, Option_t *allEvents) {
   }
   
   nHitsFromSec=nselectedHits-nHitsFromPrim;
-  if(strstr(verboseOption,"all")){
-    cout << "----------------------------------------" << endl;
-    cout << "----------------------------------------" << endl;
-    cout << "-----------SDigitization Summary--------" << endl;
-    cout << "       <AliTOFSDigitizer>     " << endl;
-    cout << "After sdigitizing " << nselectedHits << " hits" << endl;
-    cout << "in " << (fEvent2-fEvent1) << " events" << endl;
-//" (" << nHitsFromPrim << " from primaries and " << nHitsFromSec << " from secondaries) TOF hits, " 
-    cout << ntotalsdigits << " sdigits have been created " << endl;
-    cout << "(" << nsignalsdigits << " due to signals and " <<  nnoisesdigits << " due to border effect)" << endl;
-    cout << ntotalupdates << " total updates of the hit map have been performed" << endl;
-    cout << "in " << nlargeTofDiff << " cases the time of flight difference is greater than 200 ps" << endl;
+  if (strstr(verboseOption,"all") || strstr(verboseOption,"partial")) {
+    AliDebug(2,"----------------------------------------");
+    AliDebug(2,Form("After sdigitizing %d hits in %d events ", nselectedHits, fEvent2-fEvent1));
+    //" (" << nHitsFromPrim << " from primaries and " << nHitsFromSec << " from secondaries) TOF hits, " 
+    AliDebug(2,Form("%d sdigits have been created", ntotalsdigits));
+    AliDebug(2,Form("(%d due to signals and %d due to border effect)", nsignalsdigits, nnoisesdigits));
+    AliDebug(2,Form("%d total updates of the hit map have been performed", ntotalupdates));
+    AliDebug(2,Form("in %d cases the time of flight difference is greater than 200 ps", nlargeTofDiff));
+    AliDebug(2,"----------------------------------------");
   }
 
 
   if(strstr(verboseOption,"tim") || strstr(verboseOption,"all")){
     gBenchmark->Stop("TOFSDigitizer");
-    cout << "AliTOFSDigitizer:" << endl ;
-    cout << "   took " << gBenchmark->GetCpuTime("TOFSDigitizer") << " seconds in order to make sdigits " 
-        <<  gBenchmark->GetCpuTime("TOFSDigitizer")/(fEvent2-fEvent1) << " seconds per event " << endl ;
-    cout << endl ;
+    AliInfo("AliTOFSDigitizer:");
+    AliInfo(Form("   took %f seconds in order to make sdigits " 
+        "%f seconds per event", gBenchmark->GetCpuTime("TOFSDigitizer"), gBenchmark->GetCpuTime("TOFSDigitizer")/(fEvent2-fEvent1)));
+    AliInfo(" +++++++++++++++++++++++++++++++++++++++++++++++++++ ");
   }
 
-  Print("");
 }
 
 //__________________________________________________________________
-void AliTOFSDigitizer::Print(Option_t* opt)const
+void AliTOFSDigitizer::Print(Option_t* /*opt*/)const
 {
-  cout << "------------------- "<< GetName() << " -------------" << endl ;
-
+  AliInfo(Form(" ------------------- %s ------------- ", GetName()));
 }
 
 //__________________________________________________________________
 void AliTOFSDigitizer::SelectSectorAndPlate(Int_t sector, Int_t plate)
 {
-  Bool_t isaWrongSelection=(sector < 1) || (sector > AliTOFConstants::fgkNSectors) || (plate < 1) || (plate > AliTOFConstants::fgkNPlates);
+  //Select sector and plate
+  Bool_t isaWrongSelection=(sector < 0) || (sector >= AliTOFGeometry::NSectors()) || (plate < 0) || (plate >= AliTOFGeometry::NPlates());
   if(isaWrongSelection){
-    cout << "You have selected an invalid value for sector or plate " << endl;
-    cout << "The correct range for sector is [1,"<< AliTOFConstants::fgkNSectors <<"]" << endl;
-    cout << "The correct range for plate  is [1,"<< AliTOFConstants::fgkNPlates  <<"]" << endl;
-    cout << "By default we continue sdigitizing all hits in all plates of all sectors" << endl;
+    AliError("You have selected an invalid value for sector or plate ");
+    AliError(Form("The correct range for sector is [0,%d]", AliTOFGeometry::NSectors()-1));
+    AliError(Form("The correct range for plate  is [0,%d]",  AliTOFGeometry::NPlates()-1));
+    AliError("By default we continue sdigitizing all hits in all plates of all sectors");
   } else {
     fSelectedSector=sector;
     fSelectedPlate =plate;
-    cout << "SDigitizing only hits in plate " << fSelectedPlate << " of the sector " << fSelectedSector << endl;
+    AliInfo(Form("SDigitizing only hits in plate %d of the sector %d", fSelectedPlate, fSelectedSector));
   }
 }
 
@@ -513,7 +689,7 @@ void AliTOFSDigitizer::SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t
   //         qCenterPad - charge extimated for each pad, arb. units
   //         weightsSum - sum of weights extimated for each pad fired, arb. units
   
-  const Float_t kSigmaForTail[2] = {AliTOFConstants::fgkSigmaForTail1,AliTOFConstants::fgkSigmaForTail2}; //for tail                                                   
+  const Float_t kSigmaForTail[2] = {AliTOFGeometry::SigmaForTail1(),AliTOFGeometry::SigmaForTail2()}; //for tail                                                   
   Int_t iz = 0, ix = 0;
   Float_t dX = 0., dZ = 0., x = 0., z = 0.;
   Float_t h = fHparameter, h2 = fH2parameter, k = fKparameter, k2 = fK2parameter;
@@ -533,44 +709,46 @@ void AliTOFSDigitizer::SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t
   nFiredPads = 0;
   
   (z0 <= 0) ? iz = 0 : iz = 1;
-  dZ = z0 + (0.5 * AliTOFConstants::fgkNpadZ - iz - 0.5) * AliTOFConstants::fgkZPad; // hit position in the pad frame, (0,0) - center of the pad
-  z = 0.5 * AliTOFConstants::fgkZPad - TMath::Abs(dZ);                               // variable for eff., res. and timeWalk. functions
-  iz++;                                                                              // z row: 1, ..., AliTOFConstants::fgkNpadZ = 2
-  ix = (Int_t)((x0 + 0.5 * AliTOFConstants::fgkNpadX * AliTOFConstants::fgkXPad) / AliTOFConstants::fgkXPad);
-  dX = x0 + (0.5 * AliTOFConstants::fgkNpadX - ix - 0.5) * AliTOFConstants::fgkXPad; // hit position in the pad frame, (0,0) - center of the pad
-  x = 0.5 * AliTOFConstants::fgkXPad - TMath::Abs(dX);                               // variable for eff., res. and timeWalk. functions;
-  ix++;                                                                              // x row: 1, ..., AliTOFConstants::fgkNpadX = 48
+  dZ = z0 + (0.5 * AliTOFGeometry::NpadZ() - iz - 0.5) * AliTOFGeometry::ZPad(); // hit position in the pad frame, (0,0) - center of the pad
+  z = 0.5 * AliTOFGeometry::ZPad() - TMath::Abs(dZ);                               // variable for eff., res. and timeWalk. functions
+  iz++;                                                                              // z row: 1, ..., AliTOFGeometry::NpadZ = 2
+  ix = (Int_t)((x0 + 0.5 * AliTOFGeometry::NpadX() * AliTOFGeometry::XPad()) / AliTOFGeometry::XPad());
+  dX = x0 + (0.5 * AliTOFGeometry::NpadX() - ix - 0.5) * AliTOFGeometry::XPad(); // hit position in the pad frame, (0,0) - center of the pad
+  x = 0.5 * AliTOFGeometry::XPad() - TMath::Abs(dX);                               // variable for eff., res. and timeWalk. functions;
+  ix++;                                                                              // x row: 1, ..., AliTOFGeometry::NpadX = 48
   
   ////// Pad A:
   nActivatedPads++;
-  nPlace[nActivatedPads-1] = (iz - 1) * AliTOFConstants::fgkNpadX + ix;
+  nPlace[nActivatedPads-1] = (iz - 1) * AliTOFGeometry::NpadX() + ix;
   qInduced[nActivatedPads-1] = qCenterPad;
   padId[nActivatedPads-1] = 1;
-  
-  if (fEdgeEffect == 0) {
+
+  switch (fEdgeEffect) {
+  case 0:
     eff[nActivatedPads-1] = fEffCenter;
     if (gRandom->Rndm() < eff[nActivatedPads-1]) {
       nFiredPads = 1;
-      res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + fResCenter * fResCenter); // 10400=30^2+20^2+40^2+50^2+50^2+50^2  ns;
+      res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + fResCenter * fResCenter); // ns
       isFired[nActivatedPads-1] = kTRUE;
       tofTime[nActivatedPads-1] = gRandom->Gaus(geantTime + fTimeWalkCenter, res[0]);
       averageTime = tofTime[nActivatedPads-1];
     }
-  } else {
-     
+    break;
+
+  case 1:
     if(z < h) {
       if(z < h2) {
        effZ = fEffBoundary + (fEff2Boundary - fEffBoundary) * z / h2;
       } else {
        effZ = fEff2Boundary + (fEffCenter - fEff2Boundary) * (z - h2) / (h - h2);
       }
-      resZ = fResBoundary + (fResCenter - fResBoundary) * z / h;
-      timeWalkZ = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * z / h;
+      //resZ = fTimeResolution;
+      //timeWalkZ = 0.;
       nTail[nActivatedPads-1] = 1;
     } else {
       effZ = fEffCenter;
-      resZ = fResCenter;
-      timeWalkZ = fTimeWalkCenter;
+      //resZ = fTimeResolution;
+      //timeWalkZ = 0.;
     }
     
     if(x < h) {
@@ -579,18 +757,18 @@ void AliTOFSDigitizer::SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t
       } else {
        effX = fEff2Boundary + (fEffCenter - fEff2Boundary) * (x - h2) / (h - h2);
       }
-      resX = fResBoundary + (fResCenter - fResBoundary) * x / h;
-      timeWalkX = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * x / h;
+      //resX = fTimeResolution;
+      //timeWalkX = 0.;
       nTail[nActivatedPads-1] = 1;
     } else {
       effX = fEffCenter;
-      resX = fResCenter;
-      timeWalkX = fTimeWalkCenter;
+      //resX = fTimeResolution;
+      //timeWalkX = 0.;
     }
     
     (effZ<effX) ? eff[nActivatedPads-1] = effZ : eff[nActivatedPads-1] = effX;
-    (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2  ns
-    (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 *  timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
+    res[nActivatedPads-1] = 0.001 * fTimeResolution; // ns
+    timeWalk[nActivatedPads-1] = 0.; // ns
 
 
     ////// Pad B:
@@ -599,20 +777,18 @@ void AliTOFSDigitizer::SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t
     } else {
       effZ = fEff3Boundary * (k - z) / (k - k2);
     }
-    resZ = fResBoundary + fResSlope * z / k;
-    timeWalkZ = fTimeWalkBoundary + fTimeWalkSlope * z / k;
+    //resZ = fTimeResolution;
+    //timeWalkZ = 0.;
     
     if(z < k && z > 0) {
       if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
        nActivatedPads++;
-       nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX;
+       nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFGeometry::NpadX();
        eff[nActivatedPads-1] = effZ;
-       res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns 
-       timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ; // ns
+       res[nActivatedPads-1] = 0.001 * fTimeResolution; // ns 
+       timeWalk[nActivatedPads-1] = 0.; // ns
        nTail[nActivatedPads-1] = 2;
        if (fTimeDelayFlag) {
-         //      qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
-         //      qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
          qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
          logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
          timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
@@ -630,8 +806,8 @@ void AliTOFSDigitizer::SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t
     } else {
       effX = fEff3Boundary * (k - x) / (k - k2);
     }
-    resX = fResBoundary + fResSlope*x/k;
-    timeWalkX = fTimeWalkBoundary + fTimeWalkSlope*x/k;
+    //resX = fTimeResolution;
+    //timeWalkX = 0.;
     
     if(x < k && x > 0) {
       //   C:
@@ -639,12 +815,10 @@ void AliTOFSDigitizer::SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t
        nActivatedPads++;
        nPlace[nActivatedPads-1] = nPlace[0] - 1;
        eff[nActivatedPads-1] = effX;
-       res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns 
-       timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
+       res[nActivatedPads-1] = 0.001 * fTimeResolution; // ns 
+       timeWalk[nActivatedPads-1] = 0.; // ns
        nTail[nActivatedPads-1] = 2;
        if (fTimeDelayFlag) {
-         //      qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
-         //      qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
          qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
          logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
          timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
@@ -657,21 +831,17 @@ void AliTOFSDigitizer::SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t
        if(z < k && z > 0) {
          if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
            nActivatedPads++;
-           nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX - 1;
+           nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFGeometry::NpadX() - 1;
            eff[nActivatedPads-1] = effX * effZ;
-           (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
-           (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
+           res[nActivatedPads-1] = 0.001 * fTimeResolution; // ns
+           timeWalk[nActivatedPads-1] = 0.; // ns
            
            nTail[nActivatedPads-1] = 2;
            if (fTimeDelayFlag) {
              if (TMath::Abs(x) < TMath::Abs(z)) {
-               //              qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
-               //              qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
                qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
                logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
              } else {
-               //              qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
-               //              qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
                qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
                logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
              }
@@ -685,16 +855,14 @@ void AliTOFSDigitizer::SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t
       }  // end C
       
       //   E:
-      if(ix < AliTOFConstants::fgkNpadX && dX > 0) {
+      if(ix < AliTOFGeometry::NpadX() && dX > 0) {
        nActivatedPads++;
        nPlace[nActivatedPads-1] = nPlace[0] + 1;
        eff[nActivatedPads-1] = effX;
-       res[nActivatedPads-1] = 0.001 * (TMath::Sqrt(10400 + resX * resX)); // ns
-       timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
+       res[nActivatedPads-1] = 0.001 * fTimeResolution; // ns
+       timeWalk[nActivatedPads-1] = 0.; // ns
        nTail[nActivatedPads-1] = 2;
        if (fTimeDelayFlag) {
-         //      qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
-         //      qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
          qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
          logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
          timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
@@ -708,20 +876,16 @@ void AliTOFSDigitizer::SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t
        if(z < k && z > 0) {
          if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
            nActivatedPads++;
-           nPlace[nActivatedPads - 1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX + 1;
+           nPlace[nActivatedPads - 1] = nPlace[0] + (3 - 2 * iz) * AliTOFGeometry::NpadX() + 1;
            eff[nActivatedPads - 1] = effX * effZ;
-           (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
-           (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001*timeWalkX; // ns
+           res[nActivatedPads-1] = 0.001 * fTimeResolution; // ns
+           timeWalk[nActivatedPads-1] = 0.; // ns
            nTail[nActivatedPads-1] = 2;
            if (fTimeDelayFlag) {
              if (TMath::Abs(x) < TMath::Abs(z)) {
-               //              qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
-               //              qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
                qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
                logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
              } else {
-               //              qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
-               //              qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
                qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
                logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
              }
@@ -737,7 +901,6 @@ void AliTOFSDigitizer::SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t
 
 
     for (Int_t iPad = 0; iPad < nActivatedPads; iPad++) {
-      if (res[iPad] < fTimeResolution) res[iPad] = fTimeResolution;
       if(gRandom->Rndm() < eff[iPad]) {
        isFired[iPad] = kTRUE;
        nFiredPads++;
@@ -750,6 +913,528 @@ void AliTOFSDigitizer::SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t
            tofTime[iPad] = geantTime + timeWalk[iPad] + timeDelay[iPad] + timeAB;
          }
        } else {
+         //AliDebug(1,Form(" ----------------- TOF time resolution = %f",res[iPad]));
+         tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
+       }
+       if (fAverageTimeFlag) {
+         averageTime += tofTime[iPad] * qInduced[iPad];
+         weightsSum += qInduced[iPad];
+       } else {
+         averageTime += tofTime[iPad];
+         weightsSum += 1.;
+       }
+
+       AliDebug(1,Form(" Activated pad %d: geantTime=%f, tw=%fns, td=%fns, tofTime=%fns, sigma=%fps",iPad,geantTime,timeWalk[iPad],timeDelay[iPad],tofTime[iPad],1000.*res[iPad]));
+
+      }
+
+    }
+    if (weightsSum!=0) averageTime /= weightsSum;
+    break;
+
+
+  case 2:
+    if(z < h) {
+      if(z < h2) {
+       effZ = fEffBoundary + (fEff2Boundary - fEffBoundary) * z / h2;
+      } else {
+       effZ = fEff2Boundary + (fEffCenter - fEff2Boundary) * (z - h2) / (h - h2);
+      }
+      resZ = fResBoundary + (fResCenter - fResBoundary) * z / h;
+      timeWalkZ = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * z / h;
+      nTail[nActivatedPads-1] = 1;
+    } else {
+      effZ = fEffCenter;
+      resZ = fResCenter;
+      timeWalkZ = fTimeWalkCenter;
+    }
+    
+    if(x < h) {
+      if(x < h2) {
+       effX = fEffBoundary + (fEff2Boundary - fEffBoundary) * x / h2;
+      } else {
+       effX = fEff2Boundary + (fEffCenter - fEff2Boundary) * (x - h2) / (h - h2);
+      }
+      resX = fResBoundary + (fResCenter - fResBoundary) * x / h;
+      timeWalkX = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * x / h;
+      nTail[nActivatedPads-1] = 1;
+    } else {
+      effX = fEffCenter;
+      resX = fResCenter;
+      timeWalkX = fTimeWalkCenter;
+    }
+    
+    (effZ<effX) ? eff[nActivatedPads-1] = effZ : eff[nActivatedPads-1] = effX;
+    (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resZ * resZ); // ns
+    (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 *  timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
+
+
+    ////// Pad B:
+    if(z < k2) {
+      effZ = fEffBoundary - (fEffBoundary - fEff3Boundary) * (z / k2);
+    } else {
+      effZ = fEff3Boundary * (k - z) / (k - k2);
+    }
+    resZ = fResBoundary + fResSlope * z / k;
+    timeWalkZ = fTimeWalkBoundary + fTimeWalkSlope * z / k;
+    
+    if(z < k && z > 0) {
+      if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
+       nActivatedPads++;
+       nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFGeometry::NpadX();
+       eff[nActivatedPads-1] = effZ;
+       res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resZ * resZ); // ns 
+       timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ; // ns
+       nTail[nActivatedPads-1] = 2;
+       if (fTimeDelayFlag) {
+         qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
+         logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
+         timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+       } else {
+         timeDelay[nActivatedPads-1] = 0.;
+       }
+       padId[nActivatedPads-1] = 2;
+      }
+    }
+
+    
+    ////// Pad C, D, E, F:
+    if(x < k2) {
+      effX = fEffBoundary - (fEffBoundary - fEff3Boundary) * (x / k2);
+    } else {
+      effX = fEff3Boundary * (k - x) / (k - k2);
+    }
+    resX = fResBoundary + fResSlope*x/k;
+    timeWalkX = fTimeWalkBoundary + fTimeWalkSlope*x/k;
+    
+    if(x < k && x > 0) {
+      //   C:
+      if(ix > 1 && dX < 0) {
+       nActivatedPads++;
+       nPlace[nActivatedPads-1] = nPlace[0] - 1;
+       eff[nActivatedPads-1] = effX;
+       res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resX * resX); // ns 
+       timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
+       nTail[nActivatedPads-1] = 2;
+       if (fTimeDelayFlag) {
+         qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
+         logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
+         timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+       } else {
+         timeDelay[nActivatedPads-1] = 0.;
+       }
+       padId[nActivatedPads-1] = 3;
+
+       //     D:
+       if(z < k && z > 0) {
+         if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
+           nActivatedPads++;
+           nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFGeometry::NpadX() - 1;
+           eff[nActivatedPads-1] = effX * effZ;
+           (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resZ * resZ); // ns
+           (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
+           
+           nTail[nActivatedPads-1] = 2;
+           if (fTimeDelayFlag) {
+             if (TMath::Abs(x) < TMath::Abs(z)) {
+               qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
+               logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
+             } else {
+               qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
+               logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
+             }
+             timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+           } else {
+             timeDelay[nActivatedPads-1] = 0.;
+           }
+           padId[nActivatedPads-1] = 4;
+         }
+       }  // end D
+      }  // end C
+      
+      //   E:
+      if(ix < AliTOFGeometry::NpadX() && dX > 0) {
+       nActivatedPads++;
+       nPlace[nActivatedPads-1] = nPlace[0] + 1;
+       eff[nActivatedPads-1] = effX;
+       res[nActivatedPads-1] = 0.001 * (TMath::Sqrt(fAddTRes*fAddTRes + resX * resX)); // ns
+       timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
+       nTail[nActivatedPads-1] = 2;
+       if (fTimeDelayFlag) {
+         qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
+         logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
+         timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+       } else {
+         timeDelay[nActivatedPads-1] = 0.;
+       }
+       padId[nActivatedPads-1] = 5;
+
+
+       //     F:
+       if(z < k && z > 0) {
+         if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
+           nActivatedPads++;
+           nPlace[nActivatedPads - 1] = nPlace[0] + (3 - 2 * iz) * AliTOFGeometry::NpadX() + 1;
+           eff[nActivatedPads - 1] = effX * effZ;
+           (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resZ * resZ); // ns
+           (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001*timeWalkX; // ns
+           nTail[nActivatedPads-1] = 2;
+           if (fTimeDelayFlag) {
+             if (TMath::Abs(x) < TMath::Abs(z)) {
+               qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
+               logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
+             } else {
+               qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
+               logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
+             }
+             timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+           } else {
+             timeDelay[nActivatedPads-1] = 0.;
+           }
+           padId[nActivatedPads-1] = 6;
+         }
+       }  // end F
+      }  // end E
+    } // end if(x < k)
+
+
+    for (Int_t iPad = 0; iPad < nActivatedPads; iPad++) {
+      if (res[iPad] < fTimeResolution) res[iPad] = fTimeResolution;
+      if(gRandom->Rndm() < eff[iPad]) {
+       isFired[iPad] = kTRUE;
+       nFiredPads++;
+       if(fEdgeTails) {
+         if(nTail[iPad] == 0) {
+           tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
+         } else {
+           ftail->SetParameters(res[iPad], 2. * res[iPad], kSigmaForTail[nTail[iPad]-1]);
+           Double_t timeAB = ftail->GetRandom();
+           tofTime[iPad] = geantTime + timeWalk[iPad] + timeDelay[iPad] + timeAB;
+         }
+       } else {
+         AliDebug(1,Form(" ----------------- TOF time resolution = %f",res[iPad]));
+         tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
+       }
+       if (fAverageTimeFlag) {
+         averageTime += tofTime[iPad] * qInduced[iPad];
+         weightsSum += qInduced[iPad];
+       } else {
+         averageTime += tofTime[iPad];
+         weightsSum += 1.;
+       }
+      }
+    }
+    if (weightsSum!=0) averageTime /= weightsSum;
+
+  } // switch (fEdgeEffect)
+
+}
+
+//__________________________________________________________________
+void AliTOFSDigitizer::SimulateDetectorResponseOLD(Float_t z0, Float_t x0, Float_t geantTime, Int_t& nActivatedPads, Int_t& nFiredPads, Bool_t* isFired, Int_t* nPlace, Float_t* qInduced, Float_t* tofTime, Float_t& averageTime)
+{
+  // Description:
+  // Input:  z0, x0 - hit position in the strip system (0,0 - center of the strip), cm
+  //         geantTime - time generated by Geant, ns
+  // Output: nActivatedPads - the number of pads activated by the hit (1 || 2 || 4)
+  //         nFiredPads - the number of pads fired (really activated) by the hit (nFiredPads <= nActivatedPads)
+  //         qInduced[iPad]- charge induced on pad, arb. units
+  //                         this array is initialized at zero by the caller
+  //         tofAfterSimul[iPad] - time calculated with edge effect algorithm, ns
+  //                                   this array is initialized at zero by the caller
+  //         averageTime - time given by pad hited by the Geant track taking into account the times (weighted) given by the pads fired for edge effect also.
+  //                       The weight is given by the qInduced[iPad]/qCenterPad
+  //                                   this variable is initialized at zero by the caller
+  //         nPlace[iPad] - the number of the pad place, iPad = 0, 1, 2, 3
+  //                                   this variable is initialized at zero by the caller
+  //
+  // Description of used variables:
+  //         eff[iPad] - efficiency of the pad
+  //         res[iPad] - resolution of the pad, ns
+  //         timeWalk[iPad] - time walk of the pad, ns
+  //         timeDelay[iPad] - time delay for neighbouring pad to hited pad, ns
+  //         PadId[iPad] - Pad Identifier
+  //                    E | F    -->   PadId[iPad] = 5 | 6
+  //                    A | B    -->   PadId[iPad] = 1 | 2
+  //                    C | D    -->   PadId[iPad] = 3 | 4
+  //         nTail[iPad] - the tail number, = 1 for tailA, = 2 for tailB
+  //         qCenterPad - charge extimated for each pad, arb. units
+  //         weightsSum - sum of weights extimated for each pad fired, arb. units
+  
+  const Float_t kSigmaForTail[2] = {AliTOFGeometry::SigmaForTail1(),AliTOFGeometry::SigmaForTail2()}; //for tail                                                   
+  Int_t iz = 0, ix = 0;
+  Float_t dX = 0., dZ = 0., x = 0., z = 0.;
+  Float_t h = fHparameter, h2 = fH2parameter, k = fKparameter, k2 = fK2parameter;
+  Float_t effX = 0., effZ = 0., resX = 0., resZ = 0., timeWalkX = 0., timeWalkZ = 0.;
+  Float_t logOfqInd = 0.;
+  Float_t weightsSum = 0.;
+  Int_t nTail[4]  = {0,0,0,0};
+  Int_t padId[4]  = {0,0,0,0};
+  Float_t eff[4]  = {0.,0.,0.,0.};
+  Float_t res[4]  = {0.,0.,0.,0.};
+  //  Float_t qCenterPad = fMinimumCharge * fMinimumCharge;
+  Float_t qCenterPad = 1.;
+  Float_t timeWalk[4]  = {0.,0.,0.,0.};
+  Float_t timeDelay[4] = {0.,0.,0.,0.};
+  
+  nActivatedPads = 0;
+  nFiredPads = 0;
+  
+  (z0 <= 0) ? iz = 0 : iz = 1;
+  dZ = z0 + (0.5 * AliTOFGeometry::NpadZ() - iz - 0.5) * AliTOFGeometry::ZPad(); // hit position in the pad frame, (0,0) - center of the pad
+  z = 0.5 * AliTOFGeometry::ZPad() - TMath::Abs(dZ);                               // variable for eff., res. and timeWalk. functions
+  iz++;                                                                              // z row: 1, ..., AliTOFGeometry::NpadZ = 2
+  ix = (Int_t)((x0 + 0.5 * AliTOFGeometry::NpadX() * AliTOFGeometry::XPad()) / AliTOFGeometry::XPad());
+  dX = x0 + (0.5 * AliTOFGeometry::NpadX() - ix - 0.5) * AliTOFGeometry::XPad(); // hit position in the pad frame, (0,0) - center of the pad
+  x = 0.5 * AliTOFGeometry::XPad() - TMath::Abs(dX);                               // variable for eff., res. and timeWalk. functions;
+  ix++;                                                                              // x row: 1, ..., AliTOFGeometry::NpadX = 48
+  
+  ////// Pad A:
+  nActivatedPads++;
+  nPlace[nActivatedPads-1] = (iz - 1) * AliTOFGeometry::NpadX() + ix;
+  qInduced[nActivatedPads-1] = qCenterPad;
+  padId[nActivatedPads-1] = 1;
+  
+  if (fEdgeEffect == 0) {
+    eff[nActivatedPads-1] = fEffCenter;
+    if (gRandom->Rndm() < eff[nActivatedPads-1]) {
+      nFiredPads = 1;
+      res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + fResCenter * fResCenter); // ns
+      isFired[nActivatedPads-1] = kTRUE;
+      tofTime[nActivatedPads-1] = gRandom->Gaus(geantTime + fTimeWalkCenter, res[0]);
+      averageTime = tofTime[nActivatedPads-1];
+    }
+  } else { // if (fEdgeEffet!=0)
+
+    if(z < h) {
+      if(z < h2) {
+       effZ = fEffBoundary + (fEff2Boundary - fEffBoundary) * z / h2;
+      } else {
+       effZ = fEff2Boundary + (fEffCenter - fEff2Boundary) * (z - h2) / (h - h2);
+      }
+      if (fEdgeEffect==1)
+       resZ = fTimeResolution;
+      else if (fEdgeEffect==2)
+       resZ = fResBoundary + (fResCenter - fResBoundary) * z / h;
+      timeWalkZ = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * z / h;
+      nTail[nActivatedPads-1] = 1;
+    } else {
+      effZ = fEffCenter;
+      if (fEdgeEffect==1)
+       resZ = fTimeResolution;
+      else if (fEdgeEffect==2)
+       resZ = fResCenter;
+      timeWalkZ = fTimeWalkCenter;
+    }
+    
+    if(x < h) {
+      if(x < h2) {
+       effX = fEffBoundary + (fEff2Boundary - fEffBoundary) * x / h2;
+      } else {
+       effX = fEff2Boundary + (fEffCenter - fEff2Boundary) * (x - h2) / (h - h2);
+      }
+      if (fEdgeEffect==1)
+       resX = fTimeResolution;
+      else if (fEdgeEffect==2)
+       resX = fResBoundary + (fResCenter - fResBoundary) * x / h;
+      timeWalkX = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * x / h;
+      nTail[nActivatedPads-1] = 1;
+    } else {
+      effX = fEffCenter;
+      if (fEdgeEffect==1)
+       resX = fTimeResolution;
+      else if (fEdgeEffect==2)
+       resX = fResCenter;
+      timeWalkX = fTimeWalkCenter;
+    }
+    
+    (effZ<effX) ? eff[nActivatedPads-1] = effZ : eff[nActivatedPads-1] = effX;
+    if (fEdgeEffect==1)
+      (resZ<resX) ? res[nActivatedPads-1] = 0.001 * resX : res[nActivatedPads-1] = 0.001 * resZ; // ns
+    else
+      (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resZ * resZ); // ns
+    (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 *  timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
+
+
+    ////// Pad B:
+    if(z < k2) {
+      effZ = fEffBoundary - (fEffBoundary - fEff3Boundary) * (z / k2);
+    } else {
+      effZ = fEff3Boundary * (k - z) / (k - k2);
+    }
+    if (fEdgeEffect==1)
+      resZ = fTimeResolution;
+    else if (fEdgeEffect==2)
+      resZ = fResBoundary + fResSlope * z / k;
+    timeWalkZ = fTimeWalkBoundary + fTimeWalkSlope * z / k;
+    
+    if(z < k && z > 0) {
+      if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
+       nActivatedPads++;
+       nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFGeometry::NpadX();
+       eff[nActivatedPads-1] = effZ;
+       if (fEdgeEffect==1)
+         res[nActivatedPads-1] = 0.001 * resZ; // ns 
+       else
+         res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resZ * resZ); // ns 
+       timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ; // ns
+       nTail[nActivatedPads-1] = 2;
+       if (fTimeDelayFlag) {
+         //      qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
+         //      qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
+         qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
+         logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
+         timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+       } else {
+         timeDelay[nActivatedPads-1] = 0.;
+       }
+       padId[nActivatedPads-1] = 2;
+      }
+    }
+
+    
+    ////// Pad C, D, E, F:
+    if(x < k2) {
+      effX = fEffBoundary - (fEffBoundary - fEff3Boundary) * (x / k2);
+    } else {
+      effX = fEff3Boundary * (k - x) / (k - k2);
+    }
+    if (fEdgeEffect==1)
+      resX = fTimeResolution;
+    else if (fEdgeEffect==2)
+      resX = fResBoundary + fResSlope*x/k;
+    timeWalkX = fTimeWalkBoundary + fTimeWalkSlope*x/k;
+    
+    if(x < k && x > 0) {
+      //   C:
+      if(ix > 1 && dX < 0) {
+       nActivatedPads++;
+       nPlace[nActivatedPads-1] = nPlace[0] - 1;
+       eff[nActivatedPads-1] = effX;
+       if (fEdgeEffect==1)
+         res[nActivatedPads-1] = 0.001 * resX; // ns 
+       else if (fEdgeEffect==2)
+         res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resX * resX); // ns 
+       timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
+       nTail[nActivatedPads-1] = 2;
+       if (fTimeDelayFlag) {
+         //      qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
+         //      qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
+         qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
+         logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
+         timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+       } else {
+         timeDelay[nActivatedPads-1] = 0.;
+       }
+       padId[nActivatedPads-1] = 3;
+
+       //     D:
+       if(z < k && z > 0) {
+         if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
+           nActivatedPads++;
+           nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFGeometry::NpadX() - 1;
+           eff[nActivatedPads-1] = effX * effZ;
+           if (fEdgeEffect==1)
+             (resZ<resX) ? res[nActivatedPads-1] = 0.001 * resX : res[nActivatedPads-1] = 0.001 * resZ; // ns
+           else if (fEdgeEffect==2)
+             (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resZ * resZ); // ns
+           (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
+           
+           nTail[nActivatedPads-1] = 2;
+           if (fTimeDelayFlag) {
+             if (TMath::Abs(x) < TMath::Abs(z)) {
+               //              qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
+               //              qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
+               qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
+               logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
+             } else {
+               //              qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
+               //              qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
+               qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
+               logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
+             }
+             timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+           } else {
+             timeDelay[nActivatedPads-1] = 0.;
+           }
+           padId[nActivatedPads-1] = 4;
+         }
+       }  // end D
+      }  // end C
+      
+      //   E:
+      if(ix < AliTOFGeometry::NpadX() && dX > 0) {
+       nActivatedPads++;
+       nPlace[nActivatedPads-1] = nPlace[0] + 1;
+       eff[nActivatedPads-1] = effX;
+       if (fEdgeEffect==1)
+         res[nActivatedPads-1] = 0.001 * resX; // ns
+       else if (fEdgeEffect==2)
+         res[nActivatedPads-1] = 0.001 * (TMath::Sqrt(fAddTRes*fAddTRes + resX * resX)); // ns
+       timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
+       nTail[nActivatedPads-1] = 2;
+       if (fTimeDelayFlag) {
+         //      qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
+         //      qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
+         qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
+         logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
+         timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+       } else {
+         timeDelay[nActivatedPads-1] = 0.;
+       }
+       padId[nActivatedPads-1] = 5;
+
+
+       //     F:
+       if(z < k && z > 0) {
+         if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
+           nActivatedPads++;
+           nPlace[nActivatedPads - 1] = nPlace[0] + (3 - 2 * iz) * AliTOFGeometry::NpadX() + 1;
+           eff[nActivatedPads - 1] = effX * effZ;
+           if (fEdgeEffect==1)
+             (resZ<resX) ? res[nActivatedPads-1] = 0.001 * resX : res[nActivatedPads-1] = 0.001 * resZ; // ns
+           else if (fEdgeEffect==2)
+             (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(fAddTRes*fAddTRes + resZ * resZ); // ns
+           (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001*timeWalkX; // ns
+           nTail[nActivatedPads-1] = 2;
+           if (fTimeDelayFlag) {
+             if (TMath::Abs(x) < TMath::Abs(z)) {
+               //              qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
+               //              qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
+               qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
+               logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
+             } else {
+               //              qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
+               //              qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
+               qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
+               logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
+             }
+             timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
+           } else {
+             timeDelay[nActivatedPads-1] = 0.;
+           }
+           padId[nActivatedPads-1] = 6;
+         }
+       }  // end F
+      }  // end E
+    } // end if(x < k)
+
+
+    for (Int_t iPad = 0; iPad < nActivatedPads; iPad++) {
+      if (fEdgeEffect==2 && res[iPad] < fTimeResolution) res[iPad] = fTimeResolution;
+      if(gRandom->Rndm() < eff[iPad]) {
+       isFired[iPad] = kTRUE;
+       nFiredPads++;
+       if(fEdgeTails) {
+         if(nTail[iPad] == 0) {
+           tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
+         } else {
+           ftail->SetParameters(res[iPad], 2. * res[iPad], kSigmaForTail[nTail[iPad]-1]);
+           Double_t timeAB = ftail->GetRandom();
+           tofTime[iPad] = geantTime + timeWalk[iPad] + timeDelay[iPad] + timeAB;
+         }
+       } else {
+         AliDebug(1,Form(" ----------------- TOF time resolution = %f",res[iPad]));
          tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
        }
        if (fAverageTimeFlag) {
@@ -771,36 +1456,36 @@ void AliTOFSDigitizer::PrintParameters()const
   //
   // Print parameters used for sdigitization
   //
-  cout << " ------------------- "<< GetName() << " -------------" << endl ;
-  cout << " Parameters used for TOF SDigitization " << endl ;
+  AliInfo(Form(" ------------------- %s -------------", GetName()));
+  AliInfo(" Parameters used for TOF SDigitization ");
   //  Printing the parameters
   
-  cout << " Number of events:                        " << (fEvent2-fEvent1) << endl; 
-  cout << " from event " << fEvent1 << " to event " << (fEvent2-1) << endl; 
-  cout << " Time Resolution (ns) "<< fTimeResolution <<" Pad Efficiency: "<< fpadefficiency << endl;
-  cout << " Edge Effect option:  "<<  fEdgeEffect<< endl;
-
-  cout << " Boundary Effect Simulation Parameters " << endl;
-  cout << " Hparameter: "<< fHparameter<<"  H2parameter:"<< fH2parameter <<"  Kparameter:"<< fKparameter<<"  K2parameter: "<< fK2parameter << endl;
-  cout << " Efficiency in the central region of the pad: "<< fEffCenter << endl;
-  cout << " Efficiency at the boundary region of the pad: "<< fEffBoundary << endl;
-  cout << " Efficiency value at H2parameter "<< fEff2Boundary << endl;
-  cout << " Efficiency value at K2parameter "<< fEff3Boundary << endl;
-  cout << " Resolution (ps) in the central region of the pad: "<< fResCenter << endl;
-  cout << " Resolution (ps) at the boundary of the pad      : "<< fResBoundary << endl;
-  cout << " Slope (ps/K) for neighbouring pad               : "<< fResSlope <<endl;
-  cout << " Time walk (ps) in the central region of the pad : "<< fTimeWalkCenter << endl;
-  cout << " Time walk (ps) at the boundary of the pad       : "<< fTimeWalkBoundary<< endl;
-  cout << " Slope (ps/K) for neighbouring pad               : "<< fTimeWalkSlope<<endl;
-  cout << " Pulse Heigth Simulation Parameters " << endl;
-  cout << " Flag for delay due to the PulseHeightEffect: "<< fTimeDelayFlag <<endl;
-  cout << " Pulse Height Slope                           : "<< fPulseHeightSlope<<endl;
-  cout << " Time Delay Slope                             : "<< fTimeDelaySlope<<endl;
-  cout << " Minimum charge amount which could be induced : "<< fMinimumCharge<<endl;
-  cout << " Smearing in charge in (q1/q2) vs x plot      : "<< fChargeSmearing<<endl;
-  cout << " Smearing in log of charge ratio              : "<< fLogChargeSmearing<<endl;
-  cout << " Smearing in time in time vs log(q1/q2) plot  : "<< fTimeSmearing<<endl;
-  cout << " Flag for average time                        : "<< fAverageTimeFlag<<endl;
-  cout << " Edge tails option                            : "<< fEdgeTails << endl;
+  AliInfo(Form(" Number of events:                       %i ", (fEvent2-fEvent1)));
+  AliInfo(Form(" from event %i to event %i", fEvent1, (fEvent2-1)));
+  AliInfo(Form(" Time Resolution (ps) %f  Pad Efficiency: %f ", fTimeResolution, fpadefficiency));
+  AliInfo(Form(" Edge Effect option:  %d", fEdgeEffect));
+
+  AliInfo(" Boundary Effect Simulation Parameters ");
+  AliInfo(Form(" Hparameter: %f  H2parameter: %f  Kparameter: %f  K2parameter: %f", fHparameter, fH2parameter, fKparameter, fK2parameter));
+  AliInfo(Form(" Efficiency in the central region of the pad: %f", fEffCenter));
+  AliInfo(Form(" Efficiency at the boundary region of the pad: %f", fEffBoundary));
+  AliInfo(Form(" Efficiency value at H2parameter %f", fEff2Boundary));
+  AliInfo(Form(" Efficiency value at K2parameter %f", fEff3Boundary));
+  AliInfo(Form(" Resolution (ps) in the central region of the pad: %f", fResCenter));
+  AliInfo(Form(" Resolution (ps) at the boundary of the pad      : %f", fResBoundary));
+  AliInfo(Form(" Slope (ps/K) for neighbouring pad               : %f", fResSlope));
+  AliInfo(Form(" Time walk (ps) in the central region of the pad : %f", fTimeWalkCenter));
+  AliInfo(Form(" Time walk (ps) at the boundary of the pad       : %f", fTimeWalkBoundary));
+  AliInfo(Form(" Slope (ps/K) for neighbouring pad               : %f", fTimeWalkSlope));
+  AliInfo(" Pulse Heigth Simulation Parameters ");
+  AliInfo(Form(" Flag for delay due to the PulseHeightEffect  : %d", fTimeDelayFlag));
+  AliInfo(Form(" Pulse Height Slope                           : %f", fPulseHeightSlope));
+  AliInfo(Form(" Time Delay Slope                             : %f", fTimeDelaySlope));
+  AliInfo(Form(" Minimum charge amount which could be induced : %f", fMinimumCharge));
+  AliInfo(Form(" Smearing in charge in (q1/q2) vs x plot      : %f", fChargeSmearing));
+  AliInfo(Form(" Smearing in log of charge ratio              : %f", fLogChargeSmearing));
+  AliInfo(Form(" Smearing in time in time vs log(q1/q2) plot  : %f", fTimeSmearing));
+  AliInfo(Form(" Flag for average time                        : %d", fAverageTimeFlag));
+  AliInfo(Form(" Edge tails option                            : %d", fEdgeTails));
   
 }