]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - TPC/AliTPCClusterParam.cxx
Disable Evchar if no TR read.
[u/mrichter/AliRoot.git] / TPC / AliTPCClusterParam.cxx
index 56367f337fe7ad370f4bb47c9c9e1a50f5471a2a..61bd5911bb447460f54717d91a3f1f3c2709a100 100644 (file)
 
 ///////////////////////////////////////////////////////////////////////////////
 //                                                                           //
-//  TPC cluster error and shape parameterization                             //
-//                                                                           //
-//                                                                           //
+//  TPC cluster error, shape and charge parameterization as function
+//  of drift length, and inclination angle                                   //
+//
+//  Following notation is used in following
+//  Int_t dim 0 - y direction
+//            1 - z direction
+//
+//  Int_t type 0 - short pads 
+//             1 - medium pads
+//             2 - long pads
+//  Float_t z    - drift length
+// 
+//  Float_t angle - tangent of inclination angle at given dimension 
+//
+//  Implemented parameterization
+//
+//
+//  1. Resolution as function of drift length and inclination angle
+//     1.a) GetError0(Int_t dim, Int_t type, Float_t z, Float_t angle)
+//          Simple error parameterization as derived from analytical formula
+//          only linear term in drift length and angle^2
+//          The formula is valid only with precission +-5%
+//          Separate parameterization for differnt pad geometry
+//     1.b) GetError0Par
+//          Parabolic term correction - better precision
+//
+//     1.c) GetError1 - JUST FOR Study
+//          Similar to GetError1
+//          The angular and diffusion effect is scaling with pad length
+//          common parameterization for different pad length
+//
+//  2. Error parameterization using charge 
+//     2.a) GetErrorQ
+//          GetError0+
+//          adding 1/Q component to diffusion and angluar part
+//     2.b) GetErrorQPar
+//          GetError0Par+
+//          adding 1/Q component to diffusion and angluar part
+//     2.c) GetErrorQParScaled - Just for study
+//          One parameterization for all pad shapes
+//          Smaller precission as previous one
+//
+//
+//  Example how to retrieve the paramterization:
+/*    
+      AliCDBManager::Instance()->SetDefaultStorage("local://$ALICE_ROOT/OCDB");
+      AliCDBManager::Instance()->SetRun(0) 
+      AliTPCClusterParam * param = AliTPCcalibDB::Instance()->GetClusterParam();
+
+      //
+      //
+      AliTPCClusterParam::SetInstance(param);
+      TF1 f1("f1","AliTPCClusterParam::SGetError0Par(1,0,x,0)",0,250);
+*/      
+
+// EXAMPLE hot to create parameterization
+/*
+// Note resol is the resolution tree created by AliTPCcalibTracks
+//
+AliTPCClusterParam  *param = new AliTPCClusterParam;
+param->FitData(Resol);
+AliTPCClusterParam::SetInstance(param);
+*/
+
+//
+//                                                                     //
 ///////////////////////////////////////////////////////////////////////////////
 #include "AliTPCClusterParam.h"
 #include "TMath.h"
 #include <TVectorF.h>
 #include <TLinearFitter.h>
 #include <TH1F.h>
+#include <TH3F.h>
 #include <TProfile2D.h>
 #include <TVectorD.h>
 #include <TObjArray.h>
+#include "AliTPCcalibDB.h"
+#include "AliTPCParam.h"
 
 ClassImp(AliTPCClusterParam)
 
@@ -77,6 +144,124 @@ AliTPCClusterParam* AliTPCClusterParam::Instance()
 }
 
 
+AliTPCClusterParam::AliTPCClusterParam():
+  TObject(),
+  fRatio(0),
+  fQNorm(0),
+  fQNormCorr(0),
+  fQNormHis(0),
+  fQpadTnorm(0),           // q pad normalization - Total charge
+  fQpadMnorm(0)            // q pad normalization - Max charge
+  //
+{
+  //
+  // Default constructor
+  //
+  fPosQTnorm[0] = 0;   fPosQTnorm[1] = 0;   fPosQTnorm[2] = 0; 
+  fPosQMnorm[0] = 0;   fPosQMnorm[1] = 0;   fPosQMnorm[2] = 0; 
+  //
+  fPosYcor[0]   = 0;   fPosYcor[1]   = 0;   fPosYcor[2]   = 0; 
+  fPosZcor[0]   = 0;   fPosZcor[1]   = 0;   fPosZcor[2]   = 0; 
+}
+
+AliTPCClusterParam::AliTPCClusterParam(const AliTPCClusterParam& param):
+  TObject(param),
+  fRatio(0),
+  fQNorm(0),
+  fQNormCorr(0),
+  fQNormHis(0),
+  fQpadTnorm(new TVectorD(*(param.fQpadTnorm))),           // q pad normalization - Total charge
+  fQpadMnorm(new TVectorD(*(param.fQpadMnorm)))            // q pad normalization - Max charge
+
+{
+  //
+  // copy constructor
+  //
+  memcpy(this, &param,sizeof(AliTPCClusterParam));
+  if (param.fQNorm) fQNorm = (TObjArray*) param.fQNorm->Clone();
+  if (param.fQNormHis) fQNormHis = (TObjArray*) param.fQNormHis->Clone();
+  //
+  if (param.fPosQTnorm[0]){
+    fPosQTnorm[0] = new TVectorD(*(param.fPosQTnorm[0]));
+    fPosQTnorm[1] = new TVectorD(*(param.fPosQTnorm[1]));
+    fPosQTnorm[2] = new TVectorD(*(param.fPosQTnorm[2]));
+    //
+    fPosQMnorm[0] = new TVectorD(*(param.fPosQMnorm[0]));
+    fPosQMnorm[1] = new TVectorD(*(param.fPosQMnorm[1]));
+    fPosQMnorm[2] = new TVectorD(*(param.fPosQMnorm[2]));
+  }
+  if (param.fPosYcor[0]){
+    fPosYcor[0] = new TVectorD(*(param.fPosYcor[0]));
+    fPosYcor[1] = new TVectorD(*(param.fPosYcor[1]));
+    fPosYcor[2] = new TVectorD(*(param.fPosYcor[2]));
+    //
+    fPosZcor[0] = new TVectorD(*(param.fPosZcor[0]));
+    fPosZcor[1] = new TVectorD(*(param.fPosZcor[1]));
+    fPosZcor[2] = new TVectorD(*(param.fPosZcor[2]));
+  }
+  
+}
+
+
+AliTPCClusterParam & AliTPCClusterParam::operator=(const AliTPCClusterParam& param){
+  //
+  // Assignment operator
+  //
+  if (this != &param) {
+    memcpy(this, &param,sizeof(AliTPCClusterParam));
+    if (param.fQNorm) fQNorm = (TObjArray*) param.fQNorm->Clone();
+    if (param.fQNormHis) fQNormHis = (TObjArray*) param.fQNormHis->Clone();
+    if (param.fPosQTnorm[0]){
+      fPosQTnorm[0] = new TVectorD(*(param.fPosQTnorm[0]));
+      fPosQTnorm[1] = new TVectorD(*(param.fPosQTnorm[1]));
+      fPosQTnorm[2] = new TVectorD(*(param.fPosQTnorm[2]));
+      //
+      fPosQMnorm[0] = new TVectorD(*(param.fPosQMnorm[0]));
+      fPosQMnorm[1] = new TVectorD(*(param.fPosQMnorm[1]));
+      fPosQMnorm[2] = new TVectorD(*(param.fPosQMnorm[2]));
+    }
+    if (param.fPosYcor[0]){
+      fPosYcor[0] = new TVectorD(*(param.fPosYcor[0]));
+      fPosYcor[1] = new TVectorD(*(param.fPosYcor[1]));
+      fPosYcor[2] = new TVectorD(*(param.fPosYcor[2]));
+      //
+      fPosZcor[0] = new TVectorD(*(param.fPosZcor[0]));
+      fPosZcor[1] = new TVectorD(*(param.fPosZcor[1]));
+      fPosZcor[2] = new TVectorD(*(param.fPosZcor[2]));
+    }
+  }
+  return *this;
+}
+
+
+AliTPCClusterParam::~AliTPCClusterParam(){
+  //
+  // destructor
+  //
+  if (fQNorm) fQNorm->Delete();
+  if (fQNormCorr) delete fQNormCorr;
+  if (fQNormHis) fQNormHis->Delete();
+  delete fQNorm;
+  delete fQNormHis;
+  if (fPosQTnorm[0]){
+    delete fPosQTnorm[0];
+    delete fPosQTnorm[1];
+    delete fPosQTnorm[2];
+    //
+    delete fPosQMnorm[0];
+    delete fPosQMnorm[1];
+    delete fPosQMnorm[2];
+  }
+  if (fPosYcor[0]){
+    delete fPosYcor[0];
+    delete fPosYcor[1];
+    delete fPosYcor[2];
+    //
+    delete fPosZcor[0];
+    delete fPosZcor[1];
+    delete fPosZcor[2];
+  }
+}
 
 
 void AliTPCClusterParam::FitResol0(TTree * tree, Int_t dim, Int_t type, Float_t *param0, Float_t *error){
@@ -596,7 +781,7 @@ void AliTPCClusterParam::FitRMSSigma(TTree * tree, Int_t dim, Int_t type, Float_
     Float_t err = fRatio*px[ipoint];
     Double_t x[4];
     x[0] = px[ipoint];
-    fitter.AddPoint(x,val,err);
+    if (err>0) fitter.AddPoint(x,val,err);
   }
   fitter.Eval();
   param0[0]= fitter.GetParameter(0);
@@ -781,7 +966,7 @@ Float_t  AliTPCClusterParam::GetShapeFactor(Int_t dim, Int_t type, Float_t z, Fl
       value+= rmsL*rmsL-rmsMeanQ*rmsMeanQ;
     }
   }
-  return TMath::Sqrt(value);
+  return TMath::Sqrt(TMath::Abs(value));
 }
 
 
@@ -1027,17 +1212,17 @@ void AliTPCClusterParam::Print(Option_t* /*option*/) const{
   //
   printf("\nResolution Scaled factors\n");
   printf("Dir\tPad\tP0\t\tP1\t\tP2\t\tchi2\n");
-  printf("Y\tall\t%f\t%f\t%f\t%f\n", TMath::Sqrt(TMath::Abs(fParamS1[0][0])),TMath::Sqrt(fParamS1[0][1]),
-        TMath::Sqrt(fParamS1[0][2]),TMath::Sqrt(fParamS1[0][3]));
+  printf("Y\tall\t%f\t%f\t%f\t%f\n", TMath::Sqrt(TMath::Abs(fParamS1[0][0])),TMath::Sqrt(TMath::Abs(fParamS1[0][1])),
+        TMath::Sqrt(TMath::Abs(fParamS1[0][2])),TMath::Sqrt(TMath::Abs(fParamS1[0][3])));
   for (Int_t ipad=0; ipad<3; ipad++){
     Float_t length=0.75;
     if (ipad==1) length=1;
     if (ipad==2) length=1.5;    
     printf("\t%d\t%f\t%f\t%f\t%f\n", ipad, 
           TMath::Sqrt(TMath::Abs(fParamS0[0][ipad][0])),
-          TMath::Sqrt(fParamS0[0][ipad][1]*length),
-          TMath::Sqrt(fParamS0[0][ipad][2]/length),
-          TMath::Sqrt(fParamS0[0][ipad][3]));
+          TMath::Sqrt(TMath::Abs(fParamS0[0][ipad][1]*length)),
+          TMath::Sqrt(TMath::Abs(fParamS0[0][ipad][2]/length)),
+          TMath::Sqrt(TMath::Abs(fParamS0[0][ipad][3])));
   }
   for (Int_t ipad=0; ipad<3; ipad++){
     Float_t length=0.75;
@@ -1045,9 +1230,9 @@ void AliTPCClusterParam::Print(Option_t* /*option*/) const{
     if (ipad==2) length=1.5;
     printf("\t%dPar\t%f\t%f\t%f\t%f\n", ipad, 
           TMath::Sqrt(TMath::Abs(fParamS0Par[0][ipad][0])),
-          TMath::Sqrt(fParamS0Par[0][ipad][1]*length),
-          TMath::Sqrt(fParamS0Par[0][ipad][2]/length),
-          TMath::Sqrt(fParamS0Par[0][ipad][6]));
+          TMath::Sqrt(TMath::Abs(fParamS0Par[0][ipad][1]*length)),
+          TMath::Sqrt(TMath::Abs(fParamS0Par[0][ipad][2]/length)),
+          TMath::Sqrt(TMath::Abs(fParamS0Par[0][ipad][6])));
   }
   printf("Z\tall\t%f\t%f\t%f\t%f\n", TMath::Sqrt(TMath::Abs(fParamS1[1][0])),TMath::Sqrt(fParamS1[1][1]),
         TMath::Sqrt(fParamS1[1][2]), TMath::Sqrt(fParamS1[1][3]));
@@ -1058,19 +1243,19 @@ void AliTPCClusterParam::Print(Option_t* /*option*/) const{
     if (ipad==2) length=1.5;    
     printf("\t%d\t%f\t%f\t%f\t%f\n", ipad, 
           TMath::Sqrt(TMath::Abs(fParamS0[1][ipad][0])),
-          TMath::Sqrt(fParamS0[1][ipad][1]*length),
-          TMath::Sqrt(fParamS0[1][ipad][2]/length),
-          TMath::Sqrt(fParamS0[1][ipad][3]));
+          TMath::Sqrt(TMath::Abs(fParamS0[1][ipad][1]*length)),
+          TMath::Sqrt(TMath::Abs(fParamS0[1][ipad][2]/length)),
+          TMath::Sqrt(TMath::Abs(fParamS0[1][ipad][3])));
   }
   for (Int_t ipad=0; ipad<3; ipad++){
     Float_t length=0.75;
     if (ipad==1) length=1;
     if (ipad==2) length=1.5;        
     printf("\t%dPar\t%f\t%f\t%f\t%f\n", ipad, 
-          TMath::Sqrt(TMath::Abs(fParamS0Par[1][ipad][0])),
-          TMath::Sqrt(fParamS0Par[1][ipad][1]*length),
-          TMath::Sqrt(fParamS0Par[1][ipad][2]/length),
-          TMath::Sqrt(fParamS0Par[1][ipad][6]));
+          TMath::Sqrt(TMath::Abs(TMath::Abs(fParamS0Par[1][ipad][0]))),
+          TMath::Sqrt(TMath::Abs(fParamS0Par[1][ipad][1]*length)),
+          TMath::Sqrt(TMath::Abs(fParamS0Par[1][ipad][2]/length)),
+          TMath::Sqrt(TMath::Abs(fParamS0Par[1][ipad][6])));
   }
   
   //
@@ -1079,8 +1264,12 @@ void AliTPCClusterParam::Print(Option_t* /*option*/) const{
   printf("\n");
   printf("\nRMS Scaled factors\n");
   printf("Dir\tPad\tP00\t\tP01\t\tP1\t\tP2\t\tchi2\n");
-  printf("Y\tall\t%f\t%f\t%f\t%f\t%f\n", TMath::Sqrt(TMath::Abs(fParamRMS1[0][0])),TMath::Sqrt(fParamRMS1[0][1]),
-        TMath::Sqrt(fParamRMS1[0][2]),TMath::Sqrt(fParamRMS1[0][3]),TMath::Sqrt(fParamRMS1[0][4]));
+  printf("Y\tall\t%f\t%f\t%f\t%f\t%f\n", 
+        TMath::Sqrt(TMath::Abs(fParamRMS1[0][0])),
+        TMath::Sqrt(TMath::Abs(fParamRMS1[0][1])),
+        TMath::Sqrt(TMath::Abs(fParamRMS1[0][2])),
+        TMath::Sqrt(TMath::Abs(fParamRMS1[0][3])),
+        TMath::Sqrt(TMath::Abs(fParamRMS1[0][4])));
   for (Int_t ipad=0; ipad<3; ipad++){
     Float_t length=0.75;
     if (ipad==1) length=1;
@@ -1089,21 +1278,25 @@ void AliTPCClusterParam::Print(Option_t* /*option*/) const{
       printf("\t%d\t%f\t%f\t%f\t%f\t%f\n", ipad, 
             TMath::Sqrt(TMath::Abs(fParamRMS0[0][ipad][0])),
             0.,
-            TMath::Sqrt(fParamRMS0[0][ipad][1]),
-            TMath::Sqrt(fParamRMS0[0][ipad][2]/(length*length)),
-            TMath::Sqrt(fParamRMS0[0][ipad][3]));
+            TMath::Sqrt(TMath::Abs(fParamRMS0[0][ipad][1])),
+            TMath::Sqrt(TMath::Abs(fParamRMS0[0][ipad][2]/(length*length))),
+            TMath::Sqrt(TMath::Abs(fParamRMS0[0][ipad][3])));
     }else{
       printf("\t%d\t%f\t%f\t%f\t%f\t%f\n", ipad, 
             0.,
             TMath::Sqrt(TMath::Abs(fParamRMS0[0][ipad][0])),
-            TMath::Sqrt(fParamRMS0[0][ipad][1]),
-            TMath::Sqrt(fParamRMS0[0][ipad][2]/(length*length)),
-            TMath::Sqrt(fParamRMS0[0][ipad][3]));      
+            TMath::Sqrt(TMath::Abs(fParamRMS0[0][ipad][1])),
+            TMath::Sqrt(TMath::Abs(fParamRMS0[0][ipad][2]/(length*length))),
+            TMath::Sqrt(TMath::Abs(fParamRMS0[0][ipad][3])));  
     }
   }
   printf("\n");
-  printf("Z\tall\t%f\t%f\t%f\t%f\t%f\n", TMath::Sqrt(TMath::Abs(fParamRMS1[1][0])),TMath::Sqrt(fParamRMS1[1][1]),
-        TMath::Sqrt(fParamRMS1[1][2]),TMath::Sqrt(fParamRMS1[1][3]),TMath::Sqrt(fParamRMS1[1][4]));
+  printf("Z\tall\t%f\t%f\t%f\t%f\t%f\n", 
+        TMath::Sqrt(TMath::Abs(fParamRMS1[1][0])),
+        TMath::Sqrt(TMath::Abs(fParamRMS1[1][1])),
+        TMath::Sqrt(TMath::Abs(fParamRMS1[1][2])),
+        TMath::Sqrt(TMath::Abs(fParamRMS1[1][3])),
+        TMath::Sqrt(TMath::Abs(fParamRMS1[1][4])));
   for (Int_t ipad=0; ipad<3; ipad++){
     Float_t length=0.75;
     if (ipad==1) length=1;
@@ -1112,16 +1305,16 @@ void AliTPCClusterParam::Print(Option_t* /*option*/) const{
       printf("\t%d\t%f\t%f\t%f\t%f\t%f\n", ipad, 
             TMath::Sqrt(TMath::Abs(fParamRMS0[1][ipad][0])),
             0.,
-            TMath::Sqrt(fParamRMS0[1][ipad][1]),
-            TMath::Sqrt(fParamRMS0[1][ipad][2]/(length*length)),
-            TMath::Sqrt(fParamRMS0[1][ipad][3]));
+            TMath::Sqrt(TMath::Abs(fParamRMS0[1][ipad][1])),
+            TMath::Sqrt(TMath::Abs(fParamRMS0[1][ipad][2]/(length*length))),
+            TMath::Sqrt(TMath::Abs(fParamRMS0[1][ipad][3])));
     }else{
       printf("\t%d\t%f\t%f\t%f\t%f\t%f\n", ipad, 
             0.,
             TMath::Sqrt(TMath::Abs(fParamRMS0[1][ipad][0])),
-            TMath::Sqrt(fParamRMS0[1][ipad][1]),
-            TMath::Sqrt(fParamRMS0[1][ipad][2]/(length*length)),
-            TMath::Sqrt(fParamRMS0[1][ipad][3]));      
+            TMath::Sqrt(TMath::Abs(fParamRMS0[1][ipad][1])),
+            TMath::Sqrt(TMath::Abs(fParamRMS0[1][ipad][2]/(length*length))),
+            TMath::Sqrt(TMath::Abs(fParamRMS0[1][ipad][3])));  
     }
   }
 }
@@ -1135,14 +1328,50 @@ Float_t AliTPCClusterParam::Qnorm(Int_t ipad, Int_t itype, Float_t dr, Float_t t
   // type - 0 Qtot 1 Qmax
   // ipad - 0 (0.75 cm) ,1 (1 cm), 2 (1.5 cm)
   //
-  //
-  //formula= dr++tz++ty++dr*tz++dr*ty++ty*tz++dr**2++ty**2++tz**2
-  if (!fQNorm) return 0;
+  //expession formula - TString *strq0 = toolkit.FitPlane(chain,"dedxQ.fElements[2]","dr++ty++tz++dr*ty++dr*tz++++dr*dr++ty*tz++ty^2++tz^2","IPad==0",chi2,npoints,param,covar,0,100000);
+
+  if (fQNorm==0) return 0;
   TVectorD * norm = (TVectorD*)fQNorm->At(3*itype+ipad);
   if (!norm) return 0;
-  TVectorD &no = *norm;
-  Float_t res= no[0]+no[1]*dr+no[2]*tz+no[3]*ty+no[4]*dr*tz+no[5]*dr*ty+no[6]*ty*tz
-    +no[7]*dr*dr+no[8]*ty*ty+no[9]*tz*tz;
+  TVectorD &no  = *norm;
+  Float_t   res = 
+    no[0]+
+    no[1]*dr+
+    no[2]*ty+
+    no[3]*tz+
+    no[4]*dr*ty+
+    no[5]*dr*tz+
+    no[6]*ty*tz+
+    no[7]*dr*dr+
+    no[8]*ty*ty+
+    no[9]*tz*tz;
+  res/=no[0];
+  return res;
+}
+
+
+
+Float_t AliTPCClusterParam::QnormHis(Int_t ipad, Int_t itype, Float_t dr, Float_t p2, Float_t p3){
+  // get Q normalization
+  // type - 0 Qtot 1 Qmax
+  // ipad - 0 (0.75 cm) ,1 (1 cm), 2 (1.5 cm)
+  //
+
+  if (fQNormHis==0) return 0;
+  TH3F * norm = (TH3F*)fQNormHis->At(4*itype+ipad);
+  if (!norm) return 1;
+  p2=TMath::Abs(p2);
+  dr=TMath::Min(dr,Float_t(norm->GetXaxis()->GetXmax()-norm->GetXaxis()->GetBinWidth(0)));
+  dr=TMath::Max(dr,Float_t(norm->GetXaxis()->GetXmin()+norm->GetXaxis()->GetBinWidth(0)));
+  //
+  p2=TMath::Min(p2,Float_t(norm->GetYaxis()->GetXmax()-norm->GetYaxis()->GetBinWidth(0)));
+  p2=TMath::Max(p2,Float_t(norm->GetYaxis()->GetXmin()+norm->GetYaxis()->GetBinWidth(0)));
+  //
+  p3=TMath::Min(p3,Float_t(norm->GetZaxis()->GetXmax()-norm->GetZaxis()->GetBinWidth(0)));
+  p3=TMath::Max(p3,Float_t(norm->GetZaxis()->GetXmin()+norm->GetZaxis()->GetBinWidth(0)));
+  //
+  Double_t res = norm->GetBinContent(norm->FindBin(dr,p2,p3));
+  if (res==0) res = norm->GetBinContent(norm->FindBin(0.5,0.5,0.5));  // This is just hack - to be fixed entries without 
 
   return res;
 }
@@ -1160,3 +1389,407 @@ void AliTPCClusterParam::SetQnorm(Int_t ipad, Int_t itype, TVectorD * norm){
   if (fQNorm==0) fQNorm = new TObjArray(6);
   fQNorm->AddAt(new TVectorD(*norm), itype*3+ipad);
 }
+
+void AliTPCClusterParam::ResetQnormCorr(){
+  //
+  //
+  //
+  if (!fQNormCorr) fQNormCorr= new TMatrixD(12,6);
+  for (Int_t irow=0;irow<12; irow++)
+    for (Int_t icol=0;icol<6; icol++){
+      (*fQNormCorr)(irow,icol)=1.;             // default - no correction
+      if (irow>5) (*fQNormCorr)(irow,icol)=0.; // default - no correction
+    } 
+}
+
+void AliTPCClusterParam::SetQnormCorr(Int_t ipad, Int_t itype, Int_t corrType, Float_t val){
+  //
+  // ipad        - pad type
+  // itype       - 0- qtot 1-qmax
+  // corrType    - 0 - s0y corr     - eff. PRF corr
+  //             - 1 - s0z corr     - eff. TRF corr
+  //             - 2 - d0y          - eff. diffusion correction y
+  //             - 3 - d0z          - eff. diffusion correction
+  //             - 4 - eff length   - eff.length - wire pitch + x diffsion
+  //             - 5 - pad type normalization
+  if (!fQNormCorr) {
+    ResetQnormCorr();
+  }
+  //
+  // eff shap parameterization matrix
+  //
+  // rows
+  // itype*3+ipad  - itype=0 qtot itype=1 qmax ipad=0
+  // 
+  if (itype<2) (*fQNormCorr)(itype*3+ipad, corrType) *= val;  // multiplicative correction
+  if (itype>=2) (*fQNormCorr)(itype*3+ipad, corrType)+= val;  // additive       correction  
+}
+
+Double_t  AliTPCClusterParam::GetQnormCorr(Int_t ipad, Int_t itype, Int_t corrType) const{
+  //
+  // see AliTPCClusterParam::SetQnormCorr
+  //
+  if (!fQNormCorr) return 0;
+  return  (*fQNormCorr)(itype*3+ipad, corrType);
+}
+
+
+Float_t AliTPCClusterParam::QnormPos(Int_t ipad,Bool_t isMax, Float_t pad, Float_t time, Float_t z, Float_t sy2, Float_t sz2, Float_t qm, Float_t qt){
+  //
+  // Make Q normalization as function of following parameters
+  // Fit parameters to be used in corresponding correction function extracted in the AliTPCclaibTracksGain - Taylor expansion
+  // 1 - dp   - relative pad position 
+  // 2 - dt   - relative time position
+  // 3 - di   - drift length (norm to 1);
+  // 4 - dq0  - Tot/Max charge
+  // 5 - dq1  - Max/Tot charge
+  // 6 - sy   - sigma y - shape
+  // 7 - sz   - sigma z - shape
+  //  
+  
+  //The results can be visualized using the debug streamer information of the AliTPCcalibTracksGain - 
+  // Following variable used - correspondance to the our variable conventions  
+  //chain0->SetAlias("dp","((Cl.fPad-int(Cl.fPad)-0.5)/0.5)");
+  Double_t dp = ((pad-int(pad)-0.5)*2.);
+  //chain0->SetAlias("dt","((Cl.fTimeBin-int(Cl.fTimeBin)-0.5)/0.5)");
+  Double_t dt = ((time-int(time)-0.5)*2.);
+  //chain0->SetAlias("di","(sqrt(1.-abs(Cl.fZ)/250.))");
+  Double_t di = TMath::Sqrt(1-TMath::Abs(z)/250.);
+  //chain0->SetAlias("dq0","(0.2*(Cl.fQ+2)/(Cl.fMax+2))");
+  Double_t dq0 = 0.2*(qt+2.)/(qm+2.);
+  //chain0->SetAlias("dq1","(5*(Cl.fMax+2)/(Cl.fQ+2))");
+  Double_t dq1 = 5.*(qm+2.)/(qt+2.);
+  //chain0->SetAlias("sy","(0.32/sqrt(0.01^2+Cl.fSigmaY2))");
+  Double_t sy  = 0.32/TMath::Sqrt(0.01*0.01+sy2);
+  //chain0->SetAlias("sz","(0.32/sqrt(0.01^2+Cl.fSigmaZ2))");
+  Double_t sz  = 0.32/TMath::Sqrt(0.01*0.01+sz2);
+  //
+  //
+  //
+  TVectorD * pvec = 0;
+  if (isMax){
+    pvec = fPosQMnorm[ipad];
+  }else{
+    pvec = fPosQTnorm[ipad];    
+  }
+  TVectorD &param = *pvec;
+  //
+  // Eval part  - in correspondance with fit part from debug streamer
+  // 
+  Double_t result=param[0];
+  Int_t index =1;
+  //
+  result+=dp*param[index++];                               //1
+  result+=dt*param[index++];                               //2
+  result+=dp*dp*param[index++];                             //3
+  result+=dt*dt*param[index++];                             //4
+  result+=dt*dt*dt*param[index++];                             //5
+  result+=dp*dt*param[index++];                            //6
+  result+=dp*dt*dt*param[index++];                          //7
+  result+=(dq0)*param[index++];                            //8
+  result+=(dq1)*param[index++];                            //9
+  //
+  //
+  result+=dp*dp*(di)*param[index++];                        //10
+  result+=dt*dt*(di)*param[index++];                        //11
+  result+=dp*dp*sy*param[index++];                          //12
+  result+=dt*sz*param[index++];                          //13
+  result+=dt*dt*sz*param[index++];                          //14
+  result+=dt*dt*dt*sz*param[index++];                          //15
+  //
+  result+=dp*dp*1*sy*sz*param[index++];                     //16
+  result+=dt*sy*sz*param[index++];                       //17
+  result+=dt*dt*sy*sz*param[index++];                       //18
+  result+=dt*dt*dt*sy*sz*param[index++];                       //19
+  //
+  result+=dp*dp*(dq0)*param[index++];                       //20
+  result+=dt*1*(dq0)*param[index++];                       //21
+  result+=dt*dt*(dq0)*param[index++];                       //22
+  result+=dt*dt*dt*(dq0)*param[index++];                       //23
+  //
+  result+=dp*dp*(dq1)*param[index++];                       //24
+  result+=dt*(dq1)*param[index++];                       //25
+  result+=dt*dt*(dq1)*param[index++];                       //26
+  result+=dt*dt*dt*(dq1)*param[index++];                       //27
+
+  if (result<0.75) result=0.75;
+  if (result>1.25) result=1.25;
+
+  return result;
+  
+}
+
+
+
+
+
+Float_t AliTPCClusterParam::PosCorrection(Int_t type, Int_t ipad,  Float_t pad, Float_t time, Float_t z, Float_t /*sy2*/, Float_t /*sz2*/, Float_t /*qm*/){
+
+  //
+  // Make postion correction
+  // type - 0 - y correction
+  //        1 - z correction
+  // ipad - 0, 1, 2 - short, medium long pads 
+  // pad  - float pad number          
+  // time - float time bin number
+  //    z - z of the cluster
+  
+  //
+  //chainres->SetAlias("dp","(-1+(Cl.fZ>0)*2)*((Cl.fPad-int(Cl.fPad))-0.5)");
+  //chainres->SetAlias("dt","(-1+(Cl.fZ>0)*2)*((Cl.fTimeBin-0.66-int(Cl.fTimeBin-0.66))-0.5)");
+  //chainres->SetAlias("sp","(sin(dp*pi)-dp*pi)");
+  //chainres->SetAlias("st","(sin(dt)-dt)");
+  //
+  //chainres->SetAlias("di","sqrt(1.-abs(Cl.fZ/250.))");
+
+  //
+  // Derived variables
+  //
+  Double_t dp = (-1+(z>0)*2)*((pad-int(pad))-0.5);
+  Double_t dt = (-1+(z>0)*2)*((time-0.66-int(time-0.66))-0.5);
+  Double_t sp = (TMath::Sin(dp*TMath::Pi())-dp*TMath::Pi());
+  Double_t st = (TMath::Sin(dt)-dt);
+  //
+  Double_t di = TMath::Sqrt(TMath::Abs(1.-TMath::Abs(z/250.)));
+  //
+  //
+  //
+  TVectorD * pvec = 0;
+  if (type==0){
+    pvec = fPosYcor[ipad];
+  }else{
+    pvec = fPosZcor[ipad];    
+  }
+  TVectorD &param = *pvec;
+  //
+  Double_t result=0;
+  Int_t index =1;
+
+  if (type==0){
+    // y corr
+    result+=(dp)*param[index++];             //1
+    result+=(dp)*di*param[index++];          //2
+    //
+    result+=(sp)*param[index++];             //3
+    result+=(sp)*di*param[index++];          //4
+  }
+  if (type==1){
+    result+=(dt)*param[index++];             //1
+    result+=(dt)*di*param[index++];          //2
+    //
+    result+=(st)*param[index++];             //3
+    result+=(st)*di*param[index++];          //4
+  }
+  if (TMath::Abs(result)>0.05) return 0;
+  return result;
+}
+
+
+
+Double_t  AliTPCClusterParam::GaussConvolution(Double_t x0, Double_t x1, Double_t k0, Double_t k1, Double_t s0, Double_t s1){
+  //
+  // 2 D gaus convoluted with angular effect
+  // See in mathematica: 
+  //Simplify[Integrate[Exp[-(x0-k0*xd)*(x0-k0*xd)/(2*s0*s0)-(x1-k1*xd)*(x1-k1*xd)/(2*s1*s1)]/(s0*s1),{xd,-1/2,1/2}]]
+  // 
+  //TF1 f1("f1","AliTPCClusterParam::GaussConvolution(x,0,1,0,0.1,0.1)",-2,2)
+  //TF2 f2("f2","AliTPCClusterParam::GaussConvolution(x,y,1,1,0.1,0.1)",-2,2,-2,2)
+  //
+  const Float_t kEpsilon = 0.0001;
+  if ((TMath::Abs(k0)+TMath::Abs(k1))<kEpsilon*(s0+s1)){
+    // small angular effect
+    Double_t val = (TMath::Gaus(x0,0,s0)*TMath::Gaus(x1,0,s1))/(s0*s1*2.*TMath::Pi());
+    return val;
+  }
+  Double_t sigma2 = k1*k1*s0*s0+k0*k0*s1*s1;
+  Double_t exp0 = TMath::Exp(-(k1*x0-k0*x1)*(k1*x0-k0*x1)/(2*sigma2));
+  //
+  Double_t sigmaErf =  2*s0*s1*TMath::Sqrt(2*sigma2);                       
+  Double_t erf0 = TMath::Erf( (k0*s1*s1*(k0-2*x0)+k1*s0*s0*(k1-2*x1))/sigmaErf);
+  Double_t erf1 = TMath::Erf( (k0*s1*s1*(k0+2*x0)+k1*s0*s0*(k1+2*x1))/sigmaErf);
+  Double_t norm = 1./TMath::Sqrt(sigma2);
+  norm/=2.*TMath::Sqrt(2.*TMath::Pi());
+  Double_t val  = norm*exp0*(erf0+erf1);
+  return val;
+}
+
+
+Double_t  AliTPCClusterParam::GaussConvolutionTail(Double_t x0, Double_t x1, Double_t k0, Double_t k1, Double_t s0, Double_t s1, Double_t tau){
+  //
+  // 2 D gaus convoluted with angular effect and exponential tail in z-direction
+  // tail integrated numerically 
+  // Integral normalized to one
+  // Mean at 0
+  // 
+  // TF1 f1t("f1t","AliTPCClusterParam::GaussConvolutionTail(0,x,0,0,0.5,0.5,0.9)",-5,5)
+  Double_t sum =1, mean=0;
+  // the COG of exponent
+  for (Float_t iexp=0;iexp<5;iexp+=0.2){
+    mean+=iexp*TMath::Exp(-iexp/tau);
+    sum +=TMath::Exp(-iexp/tau);
+  }
+  mean/=sum;
+  //
+  sum = 1;
+  Double_t val = GaussConvolution(x0,x1+mean, k0, k1 , s0,s1);
+  for (Float_t iexp=0;iexp<5;iexp+=0.2){
+    val+=GaussConvolution(x0,x1+mean-iexp, k0, k1 , s0,s1)*TMath::Exp(-iexp/tau);
+    sum+=TMath::Exp(-iexp/tau);
+  }
+  return val/sum;
+}
+
+Double_t  AliTPCClusterParam::GaussConvolutionGamma4(Double_t x0, Double_t x1, Double_t k0, Double_t k1, Double_t s0, Double_t s1, Double_t tau){
+  //
+  // 2 D gaus convoluted with angular effect and exponential tail in z-direction
+  // tail integrated numerically 
+  // Integral normalized to one
+  // Mean at 0
+  // 
+  // TF1 f1g4("f1g4","AliTPCClusterParam::GaussConvolutionGamma4(0,x,0,0,0.5,0.2,1.6)",-5,5)
+  // TF2 f2g4("f2g4","AliTPCClusterParam::GaussConvolutionGamma4(y,x,0,0,0.5,0.2,1.6)",-5,5,-5,5)
+  Double_t sum =0, mean=0;
+  // the COG of G4
+  for (Float_t iexp=0;iexp<5;iexp+=0.2){
+    Double_t g4 = TMath::Exp(-4.*iexp/tau)*TMath::Power(iexp/tau,4.);
+    mean+=iexp*g4;
+    sum +=g4;
+  }
+  mean/=sum;
+  //
+  sum = 0;
+  Double_t val = 0;
+  for (Float_t iexp=0;iexp<5;iexp+=0.2){ 
+    Double_t g4 = TMath::Exp(-4.*iexp/tau)*TMath::Power(iexp/tau,4.);
+    val+=GaussConvolution(x0,x1+mean-iexp, k0, k1 , s0,s1)*g4;
+    sum+=g4;
+  }
+  return val/sum;
+}
+
+Double_t  AliTPCClusterParam::QmaxCorrection(Int_t sector, Int_t row, Float_t cpad, Float_t ctime, Float_t ky, Float_t kz, Float_t rmsy0, Float_t rmsz0, Float_t effPad, Float_t effDiff){
+  //
+  //
+  // cpad      - pad (y) coordinate
+  // ctime     - time(z) coordinate
+  // ky        - dy/dx
+  // kz        - dz/dx
+  // rmsy0     - RF width in pad units
+  // rmsz0     - RF width in time bin  units
+  // effLength - contibution of PRF and diffusion
+  // effDiff   - overwrite diffusion
+
+  // Response function aproximated by convolution of gaussian with angular effect (integral=1)
+  //  
+  // Gaus width sy and sz is determined by RF width and diffusion 
+  // Integral of Q is equal 1
+  // Q max is calculated at position cpad, ctime
+  // Example function:         
+  //  TF1 f1("f1", "AliTPCClusterParam::QmaxCorrection(0,0.5,x,0,0,0.5,0.6)",0,1000) 
+  //
+  AliTPCParam * param   = AliTPCcalibDB::Instance()->GetParameters(); 
+  Double_t padLength= param->GetPadPitchLength(sector,row);
+  Double_t padWidth = param->GetPadPitchWidth(sector);
+  Double_t zwidth   = param->GetZWidth();
+  Double_t effLength= padLength+(param->GetWWPitch(0)+TMath::Sqrt(ctime*zwidth)*param->GetDiffT())*effPad;
+
+  // diffusion in pad, time bin  units
+  Double_t diffT=TMath::Sqrt(ctime*zwidth)*param->GetDiffT()/padWidth;
+  Double_t diffL=TMath::Sqrt(ctime*zwidth)*param->GetDiffL()/zwidth;
+  diffT*=effDiff;  //
+  diffL*=effDiff;  //
+  //
+  // transform angular effect to pad units
+  //
+  Double_t pky   = ky*effLength/padWidth;
+  Double_t pkz   = kz*effLength/zwidth;
+  // position in pad unit
+  Double_t py = (cpad+0.5)-TMath::Nint(cpad+0.5);
+  Double_t pz = (ctime+0.5)-TMath::Nint(ctime+0.5);
+  //
+  //
+  Double_t sy = TMath::Sqrt(rmsy0*rmsy0+diffT*diffT);
+  Double_t sz = TMath::Sqrt(rmsz0*rmsz0+diffL*diffL); 
+  //return GaussConvolutionGamma4(py,pz, pky,pkz,sy,sz,tau);
+  Double_t length = padLength*TMath::Sqrt(1+ky*ky+kz*kz);
+  return GaussConvolution(py,pz, pky,pkz,sy,sz)*length;
+}
+
+Double_t  AliTPCClusterParam::QtotCorrection(Int_t sector, Int_t row, Float_t cpad, Float_t ctime, Float_t ky, Float_t kz, Float_t rmsy0, Float_t rmsz0,  Float_t qtot, Float_t thr, Float_t effPad, Float_t effDiff){
+  //
+  //
+  // cpad      - pad (y) coordinate
+  // ctime     - time(z) coordinate
+  // ky        - dy/dx
+  // kz        - dz/dx
+  // rmsy0     - RF width in pad units
+  // rmsz0     - RF width in time bin  units
+  // qtot      - the sum of signal in cluster - without thr correction
+  // thr       - threshold
+  // effLength - contibution of PRF and diffusion
+  // effDiff   - overwrite diffusion
+
+  // Response function aproximated by convolution of gaussian with angular effect (integral=1)
+  //  
+  // Gaus width sy and sz is determined by RF width and diffusion 
+  // Integral of Q is equal 1
+  // Q max is calculated at position cpad, ctime
+  //          
+  //  
+  //
+  AliTPCParam * param   = AliTPCcalibDB::Instance()->GetParameters(); 
+  Double_t padLength= param->GetPadPitchLength(sector,row);
+  Double_t padWidth = param->GetPadPitchWidth(sector);
+  Double_t zwidth   = param->GetZWidth();
+  Double_t effLength= padLength+(param->GetWWPitch(0)+TMath::Sqrt(ctime*zwidth)*param->GetDiffT())*effPad;
+  //
+  // diffusion in pad units
+  Double_t diffT=TMath::Sqrt(ctime*zwidth)*param->GetDiffT()/padWidth;
+  Double_t diffL=TMath::Sqrt(ctime*zwidth)*param->GetDiffL()/zwidth;
+  diffT*=effDiff;  //
+  diffL*=effDiff;  //
+  //
+  // transform angular effect to pad units 
+  Double_t pky   = ky*effLength/padWidth;
+  Double_t pkz   = kz*effLength/zwidth;
+  // position in pad unit
+  //  
+  Double_t py = (cpad+0.5)-TMath::Nint(cpad+0.5);
+  Double_t pz = (ctime+0.5)-TMath::Nint(ctime+0.5);
+  //
+  Double_t sy = TMath::Sqrt(rmsy0*rmsy0+diffT*diffT);
+  Double_t sz = TMath::Sqrt(rmsz0*rmsz0+diffL*diffL); 
+  //
+  //
+  //
+  Double_t sumAll=0,sumThr=0;
+  //
+  Double_t corr =1;
+  Double_t qnorm=qtot;
+  for (Float_t iy=-3;iy<=3;iy+=1.)
+    for (Float_t iz=-4;iz<=4;iz+=1.){
+      //      Double_t val = GaussConvolutionGamma4(py-iy,pz-iz, pky,pkz, sy,sz,tau);      
+      Double_t val = GaussConvolution(py-iy,pz-iz, pky,pkz, sy,sz);      
+      Double_t qlocal =qnorm*val;
+      if (TMath::Abs(iy)<1.5&&TMath::Abs(iz)<1.5){
+       sumThr+=qlocal;   // Virtual charge used in cluster finder
+      }
+      else{
+       if (qlocal>thr && TMath::Abs(iz)<2.5&&TMath::Abs(iy)<2.5) sumThr+=qlocal;
+      }
+      sumAll+=qlocal;
+    }
+  if (sumAll>0&&sumThr>0) {
+    corr=(sumThr)/sumAll;
+  }
+  //
+  Double_t length = padLength*TMath::Sqrt(1+ky*ky+kz*kz);
+  return corr*length;
+}
+
+
+
+
+
+
+