]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - TRD/AliTRDclusterizerV1.cxx
Reconstruction of RAW data. Introduction of cluster finder (A. de Caro)
[u/mrichter/AliRoot.git] / TRD / AliTRDclusterizerV1.cxx
index afb19bba02bee660ff7eb93f2ef1872970bccc0f..c5fff1f5e931a23ddb8536e8a19077d93ee39ac7 100644 (file)
@@ -13,9 +13,7 @@
  * provided "as is" without express or implied warranty.                  *
  **************************************************************************/
 
-/*
-$Log$
-*/
+/* $Id$ */
 
 ///////////////////////////////////////////////////////////////////////////////
 //                                                                           //
@@ -24,13 +22,22 @@ $Log$
 ///////////////////////////////////////////////////////////////////////////////
 
 #include <TF1.h>
+#include <TTree.h>
+#include <TH1.h>
+#include <TFile.h>
+
+#include "AliRun.h"
+#include "AliRunLoader.h"
+#include "AliLoader.h"
 
 #include "AliTRDclusterizerV1.h"
 #include "AliTRDmatrix.h"
 #include "AliTRDgeometry.h"
-#include "AliTRDdigitizer.h"
-#include "AliTRDrecPoint.h"
-#include "AliTRDdataArray.h"
+#include "AliTRDdataArrayF.h"
+#include "AliTRDdataArrayI.h"
+#include "AliTRDdigitsManager.h"
+#include "AliTRDparameter.h"
+#include "AliTRDpadPlane.h"
 
 ClassImp(AliTRDclusterizerV1)
 
@@ -41,7 +48,7 @@ AliTRDclusterizerV1::AliTRDclusterizerV1():AliTRDclusterizer()
   // AliTRDclusterizerV1 default constructor
   //
 
-  fDigitsArray = NULL;
+  fDigitsManager = 0;
 
 }
 
@@ -53,34 +60,59 @@ AliTRDclusterizerV1::AliTRDclusterizerV1(const Text_t* name, const Text_t* title
   // AliTRDclusterizerV1 default constructor
   //
 
-  fDigitsArray = NULL;
+  fDigitsManager = new AliTRDdigitsManager();
+  fDigitsManager->CreateArrays();
+
+}
+
+//_____________________________________________________________________________
+AliTRDclusterizerV1::AliTRDclusterizerV1(const AliTRDclusterizerV1 &c)
+:AliTRDclusterizer(c)
+{
+  //
+  // AliTRDclusterizerV1 copy constructor
+  //
 
-  Init();
+  ((AliTRDclusterizerV1 &) c).Copy(*this);
 
 }
 
 //_____________________________________________________________________________
 AliTRDclusterizerV1::~AliTRDclusterizerV1()
 {
+  //
+  // AliTRDclusterizerV1 destructor
+  //
 
-  if (fDigitsArray) {
-    fDigitsArray->Delete();
-    delete fDigitsArray;
+  if (fDigitsManager) {
+    delete fDigitsManager;
+    fDigitsManager = NULL;
   }
 
 }
 
 //_____________________________________________________________________________
-void AliTRDclusterizerV1::Init()
+AliTRDclusterizerV1 &AliTRDclusterizerV1::operator=(const AliTRDclusterizerV1 &c)
 {
   //
-  // Initializes the cluster finder
+  // Assignment operator
   //
 
-  // The default parameter for the clustering
-  fClusMaxThresh = 5.0;
-  fClusSigThresh = 2.0;
-  fClusMethod    = 1;
+  if (this != &c) ((AliTRDclusterizerV1 &) c).Copy(*this);
+  return *this;
+
+}
+
+//_____________________________________________________________________________
+void AliTRDclusterizerV1::Copy(TObject &c) const
+{
+  //
+  // Copy function
+  //
+
+  ((AliTRDclusterizerV1 &) c).fDigitsManager = 0;
+
+  AliTRDclusterizer::Copy(c);
 
 }
 
@@ -91,22 +123,21 @@ Bool_t AliTRDclusterizerV1::ReadDigits()
   // Reads the digits arrays from the input aliroot file
   //
 
-  if (!fInputFile) {
-    printf("AliTRDclusterizerV1::ReadDigits -- ");
+  if (!fRunLoader) {
+    printf("<AliTRDclusterizerV1::ReadDigits> ");
     printf("No input file open\n");
     return kFALSE;
   }
-
-  // Create a new segment array for the digits 
-  fDigitsArray = new AliTRDsegmentArray(kNsect*kNplan*kNcham);
+  AliLoader* loader = fRunLoader->GetLoader("TRDLoader");
+  if (!loader->TreeD()) loader->LoadDigits();
 
   // Read in the digit arrays
-  return (fDigitsArray->LoadArray("TRDdigits"));  
+  return (fDigitsManager->ReadDigits(loader->TreeD()));
 
 }
 
 //_____________________________________________________________________________
-Bool_t AliTRDclusterizerV1::MakeCluster()
+Bool_t AliTRDclusterizerV1::MakeClusters()
 {
   //
   // Generates the cluster.
@@ -114,236 +145,351 @@ Bool_t AliTRDclusterizerV1::MakeCluster()
 
   Int_t row, col, time;
 
-  // Get the pointer to the detector class and check for version 1
-  AliTRD *TRD = (AliTRD*) gAlice->GetDetector("TRD");
-  if (TRD->IsVersion() != 1) {
-    printf("AliTRDclusterizerV1::MakeCluster -- ");
+  /*
+  if (fTRD->IsVersion() != 1) {
+    printf("<AliTRDclusterizerV1::MakeCluster> ");
     printf("TRD must be version 1 (slow simulator).\n");
     return kFALSE; 
   }
+  */
 
   // Get the geometry
-  AliTRDgeometry *Geo = TRD->GetGeometry();
-
-  printf("AliTRDclusterizerV1::MakeCluster -- ");
-  printf("Start creating clusters.\n");
-
-  AliTRDdataArray *Digits;
-
-  // Parameters
-  Float_t maxThresh        = fClusMaxThresh;   // threshold value for maximum
-  Float_t signalThresh     = fClusSigThresh;   // threshold value for digit signal
-  Int_t   clusteringMethod = fClusMethod;      // clustering method option (for testing)
+  AliTRDgeometry *geo = AliTRDgeometry::GetGeometry(fRunLoader);
 
+  // Create a default parameter class if none is defined
+  if (!fPar) {
+    fPar = new AliTRDparameter("TRDparameter","Standard TRD parameter");
+    printf("<AliTRDclusterizerV1::MakeCluster> ");
+    printf("Create the default parameter object.\n");
+  }
+  fPar->Init();
+
+  //Float_t timeBinSize = fPar->GetDriftVelocity()
+  //                    / fPar->GetSamplingFrequency();
+  // Half of ampl.region
+  //  const Float_t kAmWidth = AliTRDgeometry::AmThick()/2.; 
+
+  Float_t omegaTau = fPar->GetOmegaTau();
+  if (fVerbose > 0) {
+    printf("<AliTRDclusterizerV1::MakeCluster> ");
+    printf("OmegaTau = %f \n",omegaTau);
+    printf("<AliTRDclusterizerV1::MakeCluster> ");
+    printf("Start creating clusters.\n");
+  } 
+
+  AliTRDdataArrayI *digits;
+  AliTRDdataArrayI *track0;
+  AliTRDdataArrayI *track1;
+  AliTRDdataArrayI *track2; 
+
+  // Threshold value for the maximum
+  Int_t maxThresh = fPar->GetClusMaxThresh();   
+  // Threshold value for the digit signal
+  Int_t sigThresh = fPar->GetClusSigThresh();   
   // Iteration limit for unfolding procedure
-  const Float_t epsilon = 0.01;             
+  const Float_t kEpsilon = 0.01;             
 
-  const Int_t   nClus   = 3;  
-  const Int_t   nSig    = 5;
+  const Int_t   kNclus   = 3;  
+  const Int_t   kNsig    = 5;
+  const Int_t   kNtrack  = 3 * kNclus;
 
-  Int_t chamBeg = 0;
-  Int_t chamEnd = kNcham;
-  if (TRD->GetSensChamber() >= 0) {
-    chamBeg = TRD->GetSensChamber();
-    chamEnd = chamEnd + 1;
-  }
-  Int_t planBeg = 0;
-  Int_t planEnd = kNplan;
-  if (TRD->GetSensPlane()   >= 0) {
-    planBeg = TRD->GetSensPlane();
-    planEnd = planBeg + 1;
-  }
-  Int_t sectBeg = 0;
-  Int_t sectEnd = kNsect;
-  if (TRD->GetSensSector()  >= 0) {
-    sectBeg = TRD->GetSensSector();
-    sectEnd = sectBeg + 1;
-  }
+  Int_t    iType         = 0;
+  Int_t    iUnfold       = 0;  
+  Double_t ratioLeft     = 1.0;
+  Double_t ratioRight    = 1.0;
 
-  // *** Start clustering *** in every chamber
+  //
+  Double_t padSignal[kNsig];   
+  Double_t clusterSignal[kNclus];
+  Double_t clusterPads[kNclus];   
+  Int_t    clusterDigit[kNclus];
+  Int_t    clusterTracks[kNtrack];   
+
+  Int_t    chamBeg = 0;
+  Int_t    chamEnd = AliTRDgeometry::Ncham();
+  Int_t    planBeg = 0;
+  Int_t    planEnd = AliTRDgeometry::Nplan();
+  Int_t    sectBeg = 0;
+  Int_t    sectEnd = AliTRDgeometry::Nsect();
+
+  // Start clustering in every chamber
   for (Int_t icham = chamBeg; icham < chamEnd; icham++) {
     for (Int_t iplan = planBeg; iplan < planEnd; iplan++) {
       for (Int_t isect = sectBeg; isect < sectEnd; isect++) {
 
-        Int_t idet = Geo->GetDetector(iplan,icham,isect);
-
-        Int_t nClusters = 0;
-        printf("AliTRDclusterizerV1::MakeCluster -- ");
-        printf("Analyzing chamber %d, plane %d, sector %d.\n"
-               ,icham,iplan,isect);
-
-        Int_t   nRowMax  = Geo->GetRowMax(iplan,icham,isect);
-        Int_t   nColMax  = Geo->GetColMax(iplan);
-        Int_t   nTimeMax = Geo->GetTimeMax();
-
-        // Create a detector matrix to keep maxima
-        AliTRDmatrix *digitMatrix  = new AliTRDmatrix(nRowMax,nColMax,nTimeMax
-                                                     ,isect,icham,iplan);
-        // Create a matrix to contain maximum flags
-        AliTRDmatrix *maximaMatrix = new AliTRDmatrix(nRowMax,nColMax,nTimeMax
-                                                     ,isect,icham,iplan);
-
-        // Read in the digits
-        Digits = (AliTRDdataArray *) fDigitsArray->At(idet);
-
-        // Loop through the detector pixel
-        for (time = 0; time < nTimeMax; time++) {
-          for ( col = 0;  col <  nColMax;  col++) {
-            for ( row = 0;  row <  nRowMax;  row++) {
-
-              Int_t signal = Digits->GetData(row,col,time);
-              Int_t index  = Digits->GetIndex(row,col,time);
-
-              // Fill the detector matrix
-              if (signal > signalThresh) {
-               // Store the signal amplitude
-                digitMatrix->SetSignal(row,col,time,signal);
-               // Store the digits number
-                digitMatrix->AddTrack(row,col,time,index);
-              }
+        Int_t idet = geo->GetDetector(iplan,icham,isect);
 
-           }
-         }
-       }
+        Int_t nClusters      = 0;
+        Int_t nClusters2pad  = 0;
+        Int_t nClusters3pad  = 0;
+        Int_t nClusters4pad  = 0;
+        Int_t nClusters5pad  = 0;
+        Int_t nClustersLarge = 0;
 
-        // Loop chamber and find maxima in digitMatrix
-        for ( row = 0;  row <  nRowMax;  row++) {
-          for ( col = 1;  col <  nColMax;  col++) {
-            for (time = 0; time < nTimeMax; time++) {
-
-              if (digitMatrix->GetSignal(row,col,time) 
-                  < digitMatrix->GetSignal(row,col - 1,time)) {
-                // really maximum?
-                if (col > 1) {
-                  if (digitMatrix->GetSignal(row,col - 2,time)
-                      < digitMatrix->GetSignal(row,col - 1,time)) {
-                    // yes, so set maximum flag
-                    maximaMatrix->SetSignal(row,col - 1,time,1);
-                  }
-                  else maximaMatrix->SetSignal(row,col - 1,time,0);
-                }
-              }
+        if (fVerbose > 0) {
+          printf("<AliTRDclusterizerV1::MakeCluster> ");
+          printf("Analyzing chamber %d, plane %d, sector %d.\n"
+                ,icham,iplan,isect);
+       }
 
-            }   // time
-          }     // col
-        }       // row
-
-        // now check maxima and calculate cluster position
-        for ( row = 0;  row <  nRowMax;  row++) {
-          for ( col = 1;  col <  nColMax;  col++) {
-            for (time = 0; time < nTimeMax; time++) {
-
-              if ((maximaMatrix->GetSignal(row,col,time) > 0)
-                  && (digitMatrix->GetSignal(row,col,time) > maxThresh)) {
-
-                // Ratio resulting from unfolding
-                Float_t ratio                =  0;    
-                // Signals on max and neighbouring pads
-                Float_t padSignal[nSig]      = {0};   
-                // Signals from cluster
-                Float_t clusterSignal[nClus] = {0};
-                // Cluster pad info
-                Float_t clusterPads[nClus]   = {0};   
-                // Cluster digit info
-                Int_t   clusterDigit[nClus]  = {0};
-
-                for (Int_t iPad = 0; iPad < nClus; iPad++) {
-                  clusterSignal[iPad] = digitMatrix->GetSignal(row,col-1+iPad,time);
-                  clusterDigit[iPad]  = digitMatrix->GetTrack(row,col-1+iPad,time,0);
+        Int_t    nRowMax     = fPar->GetRowMax(iplan,icham,isect);
+        Int_t    nColMax     = fPar->GetColMax(iplan);
+        Int_t    nTimeBefore = fPar->GetTimeBefore();
+        Int_t    nTimeTotal  = fPar->GetTimeTotal();  
+
+        AliTRDpadPlane *padPlane = fPar->GetPadPlane(iplan,icham);
+
+        // Get the digits
+        digits = fDigitsManager->GetDigits(idet);
+        digits->Expand();
+        track0 = fDigitsManager->GetDictionary(idet,0);
+        track0->Expand();
+        track1 = fDigitsManager->GetDictionary(idet,1);
+        track1->Expand();
+        track2 = fDigitsManager->GetDictionary(idet,2); 
+        track2->Expand();
+
+        // Loop through the chamber and find the maxima 
+        for ( row = 0;  row <  nRowMax;    row++) {
+         for ( col = 2;  col <  nColMax;    col++) {
+           //for ( col = 4;  col <  nColMax-2;    col++) {
+            for (time = 0; time < nTimeTotal; time++) {
+
+              Int_t signalL = TMath::Abs(digits->GetDataUnchecked(row,col  ,time));
+              Int_t signalM = TMath::Abs(digits->GetDataUnchecked(row,col-1,time));
+              Int_t signalR = TMath::Abs(digits->GetDataUnchecked(row,col-2,time));
+//           // Look for the maximum
+//               if (signalM >= maxThresh) {
+//                 if (((signalL >= sigThresh) &&
+//                      (signalL <  signalM))  ||
+//                     ((signalR >= sigThresh) &&
+//                      (signalR <  signalM))) {
+//                   // Maximum found, mark the position by a negative signal
+//                   digits->SetDataUnchecked(row,col-1,time,-signalM);
+//             }
+//           }
+             // Look for the maximum
+              if (signalM >= maxThresh) {
+                if ( (TMath::Abs(signalL)<=signalM) && (TMath::Abs(signalR)<=signalM) && 
+                    (TMath::Abs(signalL)+TMath::Abs(signalR))>sigThresh ) {
+                  // Maximum found, mark the position by a negative signal
+                  digits->SetDataUnchecked(row,col-1,time,-signalM);
+               }
+             }
+
+            }  
+          }    
+        }      
+
+        // Now check the maxima and calculate the cluster position
+        for ( row = 0;  row <  nRowMax  ;  row++) {
+          for (time = 0; time < nTimeTotal; time++) {
+            for ( col = 1;  col <  nColMax-1;  col++) {
+
+              // Maximum found ?             
+              if (digits->GetDataUnchecked(row,col,time) < 0) {
+
+                Int_t iPad;
+                for (iPad = 0; iPad < kNclus; iPad++) {
+                  Int_t iPadCol = col - 1 + iPad;
+                  clusterSignal[iPad]     = TMath::Abs(digits->GetDataUnchecked(row
+                                                                               ,iPadCol
+                                                                               ,time));
+                  clusterDigit[iPad]      = digits->GetIndexUnchecked(row,iPadCol,time);
+                  clusterTracks[3*iPad  ] = track0->GetDataUnchecked(row,iPadCol,time) - 1;
+                 clusterTracks[3*iPad+1] = track1->GetDataUnchecked(row,iPadCol,time) - 1;
+                 clusterTracks[3*iPad+2] = track2->GetDataUnchecked(row,iPadCol,time) - 1;
                 }
 
-                // neighbouring maximum on right side?
-                if (col < nColMax - 2) {
-                  if (maximaMatrix->GetSignal(row,col + 2,time) > 0) {
-
-                    for (Int_t iPad = 0; iPad < 5; iPad++) {
-                      padSignal[iPad] = digitMatrix->GetSignal(row,col-1+iPad,time);
-                    }
-
-                    // unfold:
-                    ratio = Unfold(epsilon, padSignal);
-
-                    // set signal on overlapping pad to ratio
-                    clusterSignal[2] *= ratio;
-
-                  }
-                }
-                
-               // Calculate the position of the cluster
-                switch (clusteringMethod) {
-                case 1:
-                  // method 1: simply center of mass
-                  clusterPads[0] = row + 0.5;
-                  clusterPads[1] = col - 0.5 + (clusterSignal[2] - clusterSignal[0]) /
-                                   (clusterSignal[1] + clusterSignal[2] + clusterSignal[3]);
-                  clusterPads[2] = time + 0.5;
-
-                  nClusters++;
-                  break;
+               // Count the number of pads in the cluster
+                Int_t nPadCount = 0;
+                Int_t ii        = 0;
+                while (TMath::Abs(digits->GetDataUnchecked(row,col-ii  ,time))
+                                                                  >= sigThresh) {
+                  nPadCount++;
+                  ii++;
+                  if (col-ii   <        0) break;
+               }
+                ii = 0;
+                while (TMath::Abs(digits->GetDataUnchecked(row,col+ii+1,time))
+                                                                  >= sigThresh) {
+                  nPadCount++;
+                  ii++;
+                  if (col+ii+1 >= nColMax) break;
+               }
+
+                nClusters++;
+                switch (nPadCount) {
                 case 2:
-                  // method 2: integral gauss fit on 3 pads
-                  TH1F *hPadCharges = new TH1F("hPadCharges", "Charges on center 3 pads"
-                                                           , 5, -1.5, 3.5);
-                  for (Int_t iCol = -1; iCol <= 3; iCol++) {
-                    if (clusterSignal[iCol] < 1) clusterSignal[iCol] = 1;
-                    hPadCharges->Fill(iCol, clusterSignal[iCol]);
-                  }
-                  hPadCharges->Fit("gaus", "IQ", "SAME", -0.5, 2.5);
-                  TF1     *fPadChargeFit = hPadCharges->GetFunction("gaus");
-                  Double_t  colMean = fPadChargeFit->GetParameter(1);
-
-                  clusterPads[0] = row + 0.5;
-                  clusterPads[1] = col - 1.5 + colMean;
-                  clusterPads[2] = time + 0.5;
-
-                  delete hPadCharges;
-
-                  nClusters++;
+                  iType = 0;
+                  nClusters2pad++;
                   break;
+                case 3:
+                  iType = 1;
+                  nClusters3pad++;
+                  break;
+                case 4:
+                  iType = 2;
+                  nClusters4pad++;
+                  break;
+                case 5:
+                  iType = 3;
+                  nClusters5pad++;
+                  break;
+                default:
+                  iType = 4;
+                  nClustersLarge++;
+                  break;
+               };
+
+                // Look for 5 pad cluster with minimum in the middle
+                Bool_t fivePadCluster = kFALSE;
+                if (col < nColMax-3) {
+                  if (digits->GetDataUnchecked(row,col+2,time) < 0) {
+                    fivePadCluster = kTRUE;
+                 }
+                  if ((fivePadCluster) && (col < nColMax-5)) {
+                    if (digits->GetDataUnchecked(row,col+4,time) >= sigThresh) {
+                      fivePadCluster = kFALSE;
+                   }
+                 }
+                  if ((fivePadCluster) && (col >         1)) {
+                    if (digits->GetDataUnchecked(row,col-2,time) >= sigThresh) {
+                      fivePadCluster = kFALSE;
+                   }
+                 }
+               }
+
+               // 5 pad cluster
+                // Modify the signal of the overlapping pad for the left part 
+               // of the cluster which remains from a previous unfolding
+                if (iUnfold) {
+                  clusterSignal[0] *= ratioLeft;
+                  iType   = 5;
+                  iUnfold = 0;
+               }
+
+               // Unfold the 5 pad cluster
+                if (fivePadCluster) {
+                  for (iPad = 0; iPad < kNsig; iPad++) {
+                    padSignal[iPad] = TMath::Abs(digits->GetDataUnchecked(row
+                                                                         ,col-1+iPad
+                                                                         ,time));
+                  }
+                  // Unfold the two maxima and set the signal on 
+                  // the overlapping pad to the ratio
+                  ratioRight        = Unfold(kEpsilon,iplan,padSignal);
+                  ratioLeft         = 1.0 - ratioRight; 
+                  clusterSignal[2] *= ratioRight;
+                  iType   = 5;
+                  iUnfold = 1;
                 }
 
-                Float_t clusterCharge =   clusterSignal[0]
-                                        + clusterSignal[1]
-                                        + clusterSignal[2];
 
+                Double_t clusterCharge = clusterSignal[0]
+                                       + clusterSignal[1]
+                                       + clusterSignal[2];
+                
+               // The position of the cluster
+                clusterPads[0] = row + 0.5;
+               // Take the shift of the additional time bins into account
+                clusterPads[2] = time - nTimeBefore + 0.5;
+
+                if (fPar->LUTOn()) {
+                 // Calculate the position of the cluster by using the
+                 // lookup table method
+                  clusterPads[1] =
+                                  fPar->LUTposition(iplan,clusterSignal[0]
+                                                          ,clusterSignal[1]
+                                                         ,clusterSignal[2]);
+               }
+               else {
+                 // Calculate the position of the cluster by using the
+                 // center of gravity method
+                 for (Int_t i=0;i<5;i++) padSignal[i]=0;
+                 padSignal[2] = TMath::Abs(digits->GetDataUnchecked(row,col,time));   // central  pad
+                 padSignal[1] = TMath::Abs(digits->GetDataUnchecked(row,col-1,time)); // left     pad
+                 padSignal[3] = TMath::Abs(digits->GetDataUnchecked(row,col+1,time)); // right    pad
+                 if (col>2 &&TMath::Abs(digits->GetDataUnchecked(row,col-2,time)<padSignal[1])){
+                   padSignal[0] = TMath::Abs(digits->GetDataUnchecked(row,col-2,time));
+                 }
+                 if (col<nColMax-3 &&TMath::Abs(digits->GetDataUnchecked(row,col+2,time)<padSignal[3])){
+                   padSignal[4] = TMath::Abs(digits->GetDataUnchecked(row,col+2,time));
+                 }               
+                 clusterPads[1] =  GetCOG(padSignal);
+                 Double_t check = fPar->LUTposition(iplan,clusterSignal[0]
+                                                          ,clusterSignal[1]
+                                                         ,clusterSignal[2]);
+                 //              Float_t diff = clusterPads[1] -  check;
+
+               }
+
+                Double_t q0 = clusterSignal[0];
+               Double_t q1 = clusterSignal[1];
+                Double_t q2 = clusterSignal[2];
+                Double_t clusterSigmaY2 = (q1*(q0+q2)+4*q0*q2) /
+                                          (clusterCharge*clusterCharge);
+
+               // Calculate the position and the error
+                Double_t colSize = padPlane->GetColSize(col);
+                Double_t rowSize = padPlane->GetRowSize(row);
+                Double_t clusterPos[3];
+               clusterPos[0] = padPlane->GetColPos(col) + (clusterPads[1]-0.5)*colSize;  // MI change
+               clusterPos[1] = padPlane->GetRowPos(row) -0.5*rowSize; //MI change
+                clusterPos[2] = clusterPads[2];
+                Double_t clusterSig[2];
+                clusterSig[0] = (clusterSigmaY2 + 1./12.) * colSize*colSize;
+                clusterSig[1] = rowSize * rowSize / 12.;                                       
                 // Add the cluster to the output array 
-                TRD->AddRecPoint(clusterPads,clusterDigit,idet,clusterCharge);
+                AddCluster(clusterPos
+                         ,idet
+                         ,clusterCharge
+                         ,clusterTracks
+                         ,clusterSig
+                          ,iType,clusterPads[1]);
 
               }
-            }  // time
-          }    // col
-        }      // row
-
-        printf("AliTRDclusterizerV1::MakeCluster -- ");
-        printf("Number of clusters found: %d\n",nClusters);
-
-        delete digitMatrix;
-        delete maximaMatrix;
-
-      }          // isect
-    }            // iplan
-  }              // icham
+            } 
+          }   
+        }     
+
+       // Compress the arrays
+        digits->Compress(1,0);
+        track0->Compress(1,0);
+       track1->Compress(1,0);
+        track2->Compress(1,0);
+
+        // Write the cluster and reset the array
+       WriteClusters(idet);
+       ResetRecPoints();
+      }    
+    }      
+  }        
+
+  if (fVerbose > 0) {
+    printf("<AliTRDclusterizerV1::MakeCluster> ");
+    printf("Done.\n");
+  }
 
-  printf("AliTRDclusterizerV1::MakeCluster -- ");
-  printf("Total number of points found: %d\n"
-        ,TRD->RecPoints()->GetEntries());
+  return kTRUE;
 
-  // Get the pointer to the cluster branch
-  TTree *ClusterTree = gAlice->TreeR(); 
+}
 
-  // Fill the cluster-branch
-  printf("AliTRDclusterizerV1::MakeCluster -- ");
-  printf("Fill the cluster tree.\n");
-  ClusterTree->Fill();
-  printf("AliTRDclusterizerV1::MakeCluster -- ");
-  printf("Done.\n");
+Double_t AliTRDclusterizerV1::GetCOG(Double_t signal[5])
+{
+  //
+  // get COG position
+  // used for clusters with more than 3 pads - where LUT not applicable
+  Double_t sum = signal[0]+signal[1]+signal[2]+signal[3]+signal[4];
+  Double_t res = (0.0*(-signal[0]+signal[4])+(-signal[1]+signal[3]))/sum;
+  return res;            
+}
 
-  return kTRUE;
 
-}
 
 //_____________________________________________________________________________
-Float_t AliTRDclusterizerV1::Unfold(Float_t eps, Float_t* padSignal)
+Double_t AliTRDclusterizerV1::Unfold(Double_t eps, Int_t plane, Double_t* padSignal)
 {
   //
   // Method to unfold neighbouring maxima.
@@ -352,41 +498,41 @@ Float_t AliTRDclusterizerV1::Unfold(Float_t eps, Float_t* padSignal)
   // The resulting ratio is then returned to the calling method.
   //
 
-  Int_t   itStep            = 0;      // count iteration steps
+  Int_t   irc                = 0;
+  Int_t   itStep             = 0;      // Count iteration steps
 
-  Float_t ratio             = 0.5;    // start value for ratio
-  Float_t prevRatio         = 0;      // store previous ratio
+  Double_t ratio             = 0.5;    // Start value for ratio
+  Double_t prevRatio         = 0;      // Store previous ratio
 
-  Float_t newLeftSignal[3]  = {0};    // array to store left cluster signal
-  Float_t newRightSignal[3] = {0};    // array to store right cluster signal
+  Double_t newLeftSignal[3]  = {0};    // Array to store left cluster signal
+  Double_t newRightSignal[3] = {0};    // Array to store right cluster signal
+  Double_t newSignal[3]      = {0};
 
-  // start iteration:
+  // Start the iteration
   while ((TMath::Abs(prevRatio - ratio) > eps) && (itStep < 10)) {
 
     itStep++;
     prevRatio = ratio;
 
-    // cluster position according to charge ratio
-    Float_t maxLeft  = (ratio*padSignal[2] - padSignal[0]) /
-                       (padSignal[0] + padSignal[1] + ratio*padSignal[2]);
-    Float_t maxRight = (padSignal[4] - (1-ratio)*padSignal[2]) /
-                       ((1-ratio)*padSignal[2] + padSignal[3] + padSignal[4]);
-
-    // set cluster charge ratio
-    Float_t ampLeft  = padSignal[1];
-    Float_t ampRight = padSignal[3];
+    // Cluster position according to charge ratio
+    Double_t maxLeft  = (ratio*padSignal[2] - padSignal[0]) 
+                      / (padSignal[0] + padSignal[1] + ratio*padSignal[2]);
+    Double_t maxRight = (padSignal[4] - (1-ratio)*padSignal[2]) 
+                      / ((1-ratio)*padSignal[2] + padSignal[3] + padSignal[4]);
 
-    // apply pad response to parameters
-    newLeftSignal[0] = ampLeft*PadResponse(-1 - maxLeft);
-    newLeftSignal[1] = ampLeft*PadResponse( 0 - maxLeft);
-    newLeftSignal[2] = ampLeft*PadResponse( 1 - maxLeft);
+    // Set cluster charge ratio
+    irc = fPar->PadResponse(1.0,maxLeft ,plane,newSignal);
+    Double_t ampLeft  = padSignal[1] / newSignal[1];
+    irc = fPar->PadResponse(1.0,maxRight,plane,newSignal);
+    Double_t ampRight = padSignal[3] / newSignal[1];
 
-    newRightSignal[0] = ampRight*PadResponse(-1 - maxRight);
-    newRightSignal[1] = ampRight*PadResponse( 0 - maxRight);
-    newRightSignal[2] = ampRight*PadResponse( 1 - maxRight);
+    // Apply pad response to parameters
+    irc = fPar->PadResponse(ampLeft ,maxLeft ,plane,newLeftSignal );
+    irc = fPar->PadResponse(ampRight,maxRight,plane,newRightSignal);
 
-    // calculate new overlapping ratio
-    ratio = newLeftSignal[2]/(newLeftSignal[2] + newRightSignal[0]);
+    // Calculate new overlapping ratio
+    ratio = TMath::Min((Double_t)1.0,newLeftSignal[2] / 
+                          (newLeftSignal[2] + newRightSignal[0]));
 
   }
 
@@ -394,23 +540,3 @@ Float_t AliTRDclusterizerV1::Unfold(Float_t eps, Float_t* padSignal)
 
 }
 
-//_____________________________________________________________________________
-Float_t AliTRDclusterizerV1::PadResponse(Float_t x)
-{
-  //
-  // The pad response for the chevron pads. 
-  // We use a simple Gaussian approximation which should be good
-  // enough for our purpose.
-  //
-
-  // The parameters for the response function
-  const Float_t aa  =  0.8872;
-  const Float_t bb  = -0.00573;
-  const Float_t cc  =  0.454;
-  const Float_t cc2 =  cc*cc;
-
-  Float_t pr = aa * (bb + TMath::Exp(-x*x / (2. * cc2)));
-
-  return (pr);
-
-}