]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - TRD/AliTRDclusterizerV1.cxx
Field conversion factor added.
[u/mrichter/AliRoot.git] / TRD / AliTRDclusterizerV1.cxx
index 8d515119274525963de03fbe136c72a28760eb61..daa920d18a565472b2913d8389ff9e2293769d3c 100644 (file)
 
 /*
 $Log$
+Revision 1.15.6.2  2002/07/24 10:09:30  alibrary
+Updating VirtualMC
+
+Revision 1.17  2002/06/12 09:54:35  cblume
+Update of tracking code provided by Sergei
+
+Revision 1.16  2002/03/25 20:01:30  cblume
+Introduce parameter class
+
+Revision 1.15  2001/11/14 12:09:11  cblume
+Use correct name for digitizer
+
+Revision 1.14  2001/11/14 10:50:45  cblume
+Changes in digits IO. Add merging of summable digits
+
+Revision 1.13  2001/05/28 17:07:58  hristov
+Last minute changes; ExB correction in AliTRDclusterizerV1; taking into account of material in G10 TEC frames and material between TEC planes (C.Blume,S.Sedykh)
+
+Revision 1.12  2001/05/21 17:42:58  hristov
+Constant casted to avoid the ambiguity
+
+Revision 1.11  2001/05/21 16:45:47  hristov
+Last minute changes (C.Blume)
+
+Revision 1.10  2001/05/07 08:06:44  cblume
+Speedup of the code. Create only AliTRDcluster
+
+Revision 1.9  2000/11/01 14:53:20  cblume
+Merge with TRD-develop
+
+Revision 1.1.4.5  2000/10/15 23:40:01  cblume
+Remove AliTRDconst
+
+Revision 1.1.4.4  2000/10/06 16:49:46  cblume
+Made Getters const
+
+Revision 1.1.4.3  2000/10/04 16:34:58  cblume
+Replace include files by forward declarations
+
+Revision 1.1.4.2  2000/09/22 14:49:49  cblume
+Adapted to tracking code
+
+Revision 1.8  2000/10/02 21:28:19  fca
+Removal of useless dependecies via forward declarations
+
+Revision 1.7  2000/06/27 13:08:50  cblume
+Changed to Copy(TObject &A) to appease the HP-compiler
+
+Revision 1.6  2000/06/09 11:10:07  cblume
+Compiler warnings and coding conventions, next round
+
+Revision 1.5  2000/06/08 18:32:58  cblume
+Make code compliant to coding conventions
+
 Revision 1.4  2000/06/07 16:27:01  cblume
 Try to remove compiler warnings on Sun and HP
 
@@ -36,13 +90,21 @@ Add new TRD classes
 ///////////////////////////////////////////////////////////////////////////////
 
 #include <TF1.h>
+#include <TTree.h>
+#include <TH1.h>
+#include <TFile.h>
+
+#include "AliRun.h"
 
+#include "AliTRD.h"
 #include "AliTRDclusterizerV1.h"
 #include "AliTRDmatrix.h"
 #include "AliTRDgeometry.h"
 #include "AliTRDdigitizer.h"
-#include "AliTRDrecPoint.h"
 #include "AliTRDdataArrayF.h"
+#include "AliTRDdataArrayI.h"
+#include "AliTRDdigitsManager.h"
+#include "AliTRDparameter.h"
 
 ClassImp(AliTRDclusterizerV1)
 
@@ -53,7 +115,7 @@ AliTRDclusterizerV1::AliTRDclusterizerV1():AliTRDclusterizer()
   // AliTRDclusterizerV1 default constructor
   //
 
-  fDigitsManager = NULL;
+  fDigitsManager = 0;
 
 }
 
@@ -66,19 +128,18 @@ AliTRDclusterizerV1::AliTRDclusterizerV1(const Text_t* name, const Text_t* title
   //
 
   fDigitsManager = new AliTRDdigitsManager();
-
-  Init();
+  fDigitsManager->CreateArrays();
 
 }
 
 //_____________________________________________________________________________
-AliTRDclusterizerV1::AliTRDclusterizerV1(AliTRDclusterizerV1 &c)
+AliTRDclusterizerV1::AliTRDclusterizerV1(const AliTRDclusterizerV1 &c)
 {
   //
   // AliTRDclusterizerV1 copy constructor
   //
 
-  c.Copy(*this);
+  ((AliTRDclusterizerV1 &) c).Copy(*this);
 
 }
 
@@ -91,37 +152,33 @@ AliTRDclusterizerV1::~AliTRDclusterizerV1()
 
   if (fDigitsManager) {
     delete fDigitsManager;
+    fDigitsManager = NULL;
   }
 
 }
 
 //_____________________________________________________________________________
-void AliTRDclusterizerV1::Copy(AliTRDclusterizerV1 &c)
+AliTRDclusterizerV1 &AliTRDclusterizerV1::operator=(const AliTRDclusterizerV1 &c)
 {
   //
-  // Copy function
+  // Assignment operator
   //
 
-  c.fClusMaxThresh = fClusMaxThresh;
-  c.fClusSigThresh = fClusSigThresh;
-  c.fClusMethod    = fClusMethod;
-  c.fDigitsManager = NULL;
-
-  AliTRDclusterizer::Copy(c);
+  if (this != &c) ((AliTRDclusterizerV1 &) c).Copy(*this);
+  return *this;
 
 }
 
 //_____________________________________________________________________________
-void AliTRDclusterizerV1::Init()
+void AliTRDclusterizerV1::Copy(TObject &c)
 {
   //
-  // Initializes the cluster finder
+  // Copy function
   //
 
-  // The default parameter for the clustering
-  fClusMaxThresh = 5.0;
-  fClusSigThresh = 2.0;
-  fClusMethod    = 1;
+  ((AliTRDclusterizerV1 &) c).fDigitsManager = 0;
+
+  AliTRDclusterizer::Copy(c);
 
 }
 
@@ -133,18 +190,20 @@ Bool_t AliTRDclusterizerV1::ReadDigits()
   //
 
   if (!fInputFile) {
-    printf("AliTRDclusterizerV1::ReadDigits -- ");
+    printf("<AliTRDclusterizerV1::ReadDigits> ");
     printf("No input file open\n");
     return kFALSE;
   }
 
+  fDigitsManager->Open(fInputFile->GetName());
+
   // Read in the digit arrays
   return (fDigitsManager->ReadDigits());  
 
 }
 
 //_____________________________________________________________________________
-Bool_t AliTRDclusterizerV1::MakeCluster()
+Bool_t AliTRDclusterizerV1::MakeClusters()
 {
   //
   // Generates the cluster.
@@ -152,243 +211,386 @@ Bool_t AliTRDclusterizerV1::MakeCluster()
 
   Int_t row, col, time;
 
-  // Get the pointer to the detector class and check for version 1
-  AliTRD *trd = (AliTRD*) gAlice->GetDetector("TRD");
-  if (trd->IsVersion() != 1) {
-    printf("AliTRDclusterizerV1::MakeCluster -- ");
+  if (fTRD->IsVersion() != 1) {
+    printf("<AliTRDclusterizerV1::MakeCluster> ");
     printf("TRD must be version 1 (slow simulator).\n");
     return kFALSE; 
   }
 
   // Get the geometry
-  AliTRDgeometry *geo = trd->GetGeometry();
+  AliTRDgeometry *geo = fTRD->GetGeometry();
 
-  printf("AliTRDclusterizerV1::MakeCluster -- ");
-  printf("Start creating clusters.\n");
+  // Create a default parameter class if none is defined
+  if (!fPar) {
+    fPar = new AliTRDparameter("TRDparameter","Standard TRD parameter");
+    printf("<AliTRDclusterizerV1::MakeCluster> ");
+    printf("Create the default parameter object.\n");
+  }
+
+  Float_t timeBinSize = fPar->GetTimeBinSize();
+  // Half of ampl.region
+  const Float_t kAmWidth = AliTRDgeometry::AmThick()/2.; 
+
+  Float_t omegaTau = fPar->GetOmegaTau();
+  if (fVerbose > 0) {
+    printf("<AliTRDclusterizerV1::MakeCluster> ");
+    printf("OmegaTau = %f \n",omegaTau);
+    printf("<AliTRDclusterizerV1::MakeCluster> ");
+    printf("Start creating clusters.\n");
+  } 
 
   AliTRDdataArrayI *digits;
+  AliTRDdataArrayI *track0;
+  AliTRDdataArrayI *track1;
+  AliTRDdataArrayI *track2; 
 
-  // Parameters
-  Float_t maxThresh        = fClusMaxThresh;   // threshold value for maximum
-  Float_t signalThresh     = fClusSigThresh;   // threshold value for digit signal
-  Int_t   clusteringMethod = fClusMethod;      // clustering method option (for testing)
+  // Threshold value for the maximum
+  Int_t maxThresh = fPar->GetClusMaxThresh();   
+  // Threshold value for the digit signal
+  Int_t sigThresh = fPar->GetClusSigThresh();   
 
   // Iteration limit for unfolding procedure
   const Float_t kEpsilon = 0.01;             
 
   const Int_t   kNclus   = 3;  
   const Int_t   kNsig    = 5;
+  const Int_t   kNtrack  = 3 * kNclus;
+
+  Int_t   iType          = 0;
+  Int_t   iUnfold        = 0;
+
+  Float_t ratioLeft      = 1.0;
+  Float_t ratioRight     = 1.0;
+
+  Float_t padSignal[kNsig];   
+  Float_t clusterSignal[kNclus];
+  Float_t clusterPads[kNclus];   
+  Int_t   clusterDigit[kNclus];
+  Int_t   clusterTracks[kNtrack];   
 
   Int_t chamBeg = 0;
-  Int_t chamEnd = kNcham;
-  if (trd->GetSensChamber()  >= 0) {
-    chamBeg = trd->GetSensChamber();
+  Int_t chamEnd = AliTRDgeometry::Ncham();
+  if (fTRD->GetSensChamber()  >= 0) {
+    chamBeg = fTRD->GetSensChamber();
     chamEnd = chamBeg + 1;
   }
   Int_t planBeg = 0;
-  Int_t planEnd = kNplan;
-  if (trd->GetSensPlane()    >= 0) {
-    planBeg = trd->GetSensPlane();
+  Int_t planEnd = AliTRDgeometry::Nplan();
+  if (fTRD->GetSensPlane()    >= 0) {
+    planBeg = fTRD->GetSensPlane();
     planEnd = planBeg + 1;
   }
   Int_t sectBeg = 0;
-  Int_t sectEnd = kNsect;
+  Int_t sectEnd = AliTRDgeometry::Nsect();
 
-  // *** Start clustering *** in every chamber
+  // Start clustering in every chamber
   for (Int_t icham = chamBeg; icham < chamEnd; icham++) {
     for (Int_t iplan = planBeg; iplan < planEnd; iplan++) {
       for (Int_t isect = sectBeg; isect < sectEnd; isect++) {
 
-        if (trd->GetSensSector() >= 0) {
-          Int_t sens1 = trd->GetSensSector();
-          Int_t sens2 = sens1 + trd->GetSensSectorRange();
-          sens2 -= ((Int_t) (sens2 / kNsect)) * kNsect;
-          if (sens1 < sens2) 
+        if (fTRD->GetSensSector() >= 0) {
+          Int_t sens1 = fTRD->GetSensSector();
+          Int_t sens2 = sens1 + fTRD->GetSensSectorRange();
+          sens2 -= ((Int_t) (sens2 / AliTRDgeometry::Nsect())) 
+                 * AliTRDgeometry::Nsect();
+          if (sens1 < sens2) {
             if ((isect < sens1) || (isect >= sens2)) continue;
-          else
+         }
+          else {
             if ((isect < sens1) && (isect >= sens2)) continue;
+         }
        }
 
         Int_t idet = geo->GetDetector(iplan,icham,isect);
 
-        Int_t nClusters = 0;
-        printf("AliTRDclusterizerV1::MakeCluster -- ");
-        printf("Analyzing chamber %d, plane %d, sector %d.\n"
-               ,icham,iplan,isect);
+        Int_t nClusters      = 0;
+        Int_t nClusters2pad  = 0;
+        Int_t nClusters3pad  = 0;
+        Int_t nClusters4pad  = 0;
+        Int_t nClusters5pad  = 0;
+        Int_t nClustersLarge = 0;
+
+        if (fVerbose > 0) {
+          printf("<AliTRDclusterizerV1::MakeCluster> ");
+          printf("Analyzing chamber %d, plane %d, sector %d.\n"
+                ,icham,iplan,isect);
+       }
 
-        Int_t   nRowMax  = geo->GetRowMax(iplan,icham,isect);
-        Int_t   nColMax  = geo->GetColMax(iplan);
-        Int_t   nTimeMax = geo->GetTimeMax();
+        Int_t   nRowMax     = fPar->GetRowMax(iplan,icham,isect);
+        Int_t   nColMax     = fPar->GetColMax(iplan);
+        Int_t   nTimeBefore = fPar->GetTimeBefore();
+        Int_t   nTimeTotal  = fPar->GetTimeTotal();  
 
-        // Create a detector matrix to keep maxima
-        AliTRDmatrix *digitMatrix  = new AliTRDmatrix(nRowMax,nColMax,nTimeMax
-                                                     ,isect,icham,iplan);
-        // Create a matrix to contain maximum flags
-        AliTRDmatrix *maximaMatrix = new AliTRDmatrix(nRowMax,nColMax,nTimeMax
-                                                     ,isect,icham,iplan);
+        Float_t row0        = fPar->GetRow0(iplan,icham,isect);
+        Float_t col0        = fPar->GetCol0(iplan);
+        Float_t rowSize     = fPar->GetRowPadSize(iplan,icham,isect);
+        Float_t colSize     = fPar->GetColPadSize(iplan);
 
-        // Read in the digits
+        // Get the digits
         digits = fDigitsManager->GetDigits(idet);
-
-        // Loop through the detector pixel
-        for (time = 0; time < nTimeMax; time++) {
-          for ( col = 0;  col <  nColMax;  col++) {
-            for ( row = 0;  row <  nRowMax;  row++) {
-
-              Int_t signal = digits->GetData(row,col,time);
-              Int_t index  = digits->GetIndex(row,col,time);
-
-              // Fill the detector matrix
-              if (signal > signalThresh) {
-               // Store the signal amplitude
-                digitMatrix->SetSignal(row,col,time,signal);
-               // Store the digits number
-                digitMatrix->AddTrack(row,col,time,index);
-              }
-
-           }
-         }
-       }
-
-        // Loop chamber and find maxima in digitMatrix
-        for ( row = 0;  row <  nRowMax;  row++) {
-          for ( col = 1;  col <  nColMax;  col++) {
-            for (time = 0; time < nTimeMax; time++) {
-
-              if (digitMatrix->GetSignal(row,col,time) 
-                  < digitMatrix->GetSignal(row,col - 1,time)) {
-                // really maximum?
-                if (col > 1) {
-                  if (digitMatrix->GetSignal(row,col - 2,time)
-                      < digitMatrix->GetSignal(row,col - 1,time)) {
-                    // yes, so set maximum flag
-                    maximaMatrix->SetSignal(row,col - 1,time,1);
-                  }
-                  else maximaMatrix->SetSignal(row,col - 1,time,0);
-                }
-              }
-
-            }   // time
-          }     // col
-        }       // row
-
-        // now check maxima and calculate cluster position
-        for ( row = 0;  row <  nRowMax;  row++) {
-          for ( col = 1;  col <  nColMax;  col++) {
-            for (time = 0; time < nTimeMax; time++) {
-
-              if ((maximaMatrix->GetSignal(row,col,time) > 0)
-                  && (digitMatrix->GetSignal(row,col,time) > maxThresh)) {
-
-                // Ratio resulting from unfolding
-                Float_t ratio                 =  0;    
-                // Signals on max and neighbouring pads
-                Float_t padSignal[kNsig]      = {0};   
-                // Signals from cluster
-                Float_t clusterSignal[kNclus] = {0};
-                // Cluster pad info
-                Float_t clusterPads[kNclus]   = {0};   
-                // Cluster digit info
-                Int_t   clusterDigit[kNclus]  = {0};
+        digits->Expand();
+        track0 = fDigitsManager->GetDictionary(idet,0);
+        track0->Expand();
+        track1 = fDigitsManager->GetDictionary(idet,1);
+        track1->Expand();
+        track2 = fDigitsManager->GetDictionary(idet,2); 
+        track2->Expand();
+
+        // Loop through the chamber and find the maxima 
+        for ( row = 0;  row <  nRowMax;    row++) {
+          for ( col = 2;  col <  nColMax;    col++) {
+            for (time = 0; time < nTimeTotal; time++) {
+
+              Int_t signalL = TMath::Abs(digits->GetDataUnchecked(row,col  ,time));
+              Int_t signalM = TMath::Abs(digits->GetDataUnchecked(row,col-1,time));
+              Int_t signalR = TMath::Abs(digits->GetDataUnchecked(row,col-2,time));
+             // Look for the maximum
+              if (signalM >= maxThresh) {
+                if (((signalL >= sigThresh) &&
+                     (signalL <  signalM))  ||
+                    ((signalR >= sigThresh) &&
+                     (signalR <  signalM))) {
+                  // Maximum found, mark the position by a negative signal
+                  digits->SetDataUnchecked(row,col-1,time,-signalM);
+               }
+             }
+
+            }  
+          }    
+        }      
+
+        // Now check the maxima and calculate the cluster position
+        for ( row = 0;  row <  nRowMax  ;  row++) {
+          for (time = 0; time < nTimeTotal; time++) {
+            for ( col = 1;  col <  nColMax-1;  col++) {
+
+              // Maximum found ?             
+              if (digits->GetDataUnchecked(row,col,time) < 0) {
 
                 Int_t iPad;
                 for (iPad = 0; iPad < kNclus; iPad++) {
-                  clusterSignal[iPad] = digitMatrix->GetSignal(row,col-1+iPad,time);
-                  clusterDigit[iPad]  = digitMatrix->GetTrack(row,col-1+iPad,time,0);
+                  Int_t iPadCol = col - 1 + iPad;
+                  clusterSignal[iPad]     = TMath::Abs(digits->GetDataUnchecked(row
+                                                                               ,iPadCol
+                                                                               ,time));
+                  clusterDigit[iPad]      = digits->GetIndexUnchecked(row,iPadCol,time);
+                  clusterTracks[3*iPad  ] = track0->GetDataUnchecked(row,iPadCol,time) - 1;
+                 clusterTracks[3*iPad+1] = track1->GetDataUnchecked(row,iPadCol,time) - 1;
+                 clusterTracks[3*iPad+2] = track2->GetDataUnchecked(row,iPadCol,time) - 1;
                 }
 
-                // neighbouring maximum on right side?
-                if (col < nColMax - 2) {
-                  if (maximaMatrix->GetSignal(row,col + 2,time) > 0) {
-
-                    for (iPad = 0; iPad < 5; iPad++) {
-                      padSignal[iPad] = digitMatrix->GetSignal(row,col-1+iPad,time);
-                    }
-
-                    // unfold:
-                    ratio = Unfold(kEpsilon, padSignal);
-
-                    // set signal on overlapping pad to ratio
-                    clusterSignal[2] *= ratio;
-
-                  }
-                }
-                
-               // Calculate the position of the cluster
-                switch (clusteringMethod) {
-                case 1:
-                  // method 1: simply center of mass
-                  clusterPads[0] = row + 0.5;
-                  clusterPads[1] = col - 0.5 + (clusterSignal[2] - clusterSignal[0]) /
-                                   (clusterSignal[0] + clusterSignal[1] + clusterSignal[2]);
-                  clusterPads[2] = time + 0.5;
-
-                  nClusters++;
-                  break;
+               // Count the number of pads in the cluster
+                Int_t nPadCount = 0;
+                Int_t ii        = 0;
+                while (TMath::Abs(digits->GetDataUnchecked(row,col-ii  ,time))
+                                                                  >= sigThresh) {
+                  nPadCount++;
+                  ii++;
+                  if (col-ii   <        0) break;
+               }
+                ii = 0;
+                while (TMath::Abs(digits->GetDataUnchecked(row,col+ii+1,time))
+                                                                  >= sigThresh) {
+                  nPadCount++;
+                  ii++;
+                  if (col+ii+1 >= nColMax) break;
+               }
+
+                nClusters++;
+                switch (nPadCount) {
                 case 2:
-                  // method 2: integral gauss fit on 3 pads
-                  TH1F *hPadCharges = new TH1F("hPadCharges", "Charges on center 3 pads"
-                                                           , 5, -1.5, 3.5);
-                  for (Int_t iCol = -1; iCol <= 3; iCol++) {
-                    if (clusterSignal[iCol] < 1) clusterSignal[iCol] = 1;
-                    hPadCharges->Fill(iCol, clusterSignal[iCol]);
+                  iType = 0;
+                  nClusters2pad++;
+                  break;
+                case 3:
+                  iType = 1;
+                  nClusters3pad++;
+                  break;
+                case 4:
+                  iType = 2;
+                  nClusters4pad++;
+                  break;
+                case 5:
+                  iType = 3;
+                  nClusters5pad++;
+                  break;
+                default:
+                  iType = 4;
+                  nClustersLarge++;
+                  break;
+               };
+
+               // Don't analyze large clusters
+                //if (iType == 4) continue;
+
+                // Look for 5 pad cluster with minimum in the middle
+                Bool_t fivePadCluster = kFALSE;
+                if (col < nColMax-3) {
+                  if (digits->GetDataUnchecked(row,col+2,time) < 0) {
+                    fivePadCluster = kTRUE;
+                 }
+                  if ((fivePadCluster) && (col < nColMax-5)) {
+                    if (digits->GetDataUnchecked(row,col+4,time) >= sigThresh) {
+                      fivePadCluster = kFALSE;
+                   }
+                 }
+                  if ((fivePadCluster) && (col >         1)) {
+                    if (digits->GetDataUnchecked(row,col-2,time) >= sigThresh) {
+                      fivePadCluster = kFALSE;
+                   }
+                 }
+               }
+
+               // 5 pad cluster
+                // Modify the signal of the overlapping pad for the left part 
+               // of the cluster which remains from a previous unfolding
+                if (iUnfold) {
+                  clusterSignal[0] *= ratioLeft;
+                  iType   = 3;
+                  iUnfold = 0;
+               }
+
+               // Unfold the 5 pad cluster
+                if (fivePadCluster) {
+                  for (iPad = 0; iPad < kNsig; iPad++) {
+                    padSignal[iPad] = TMath::Abs(digits->GetDataUnchecked(row
+                                                                         ,col-1+iPad
+                                                                         ,time));
                   }
-                  hPadCharges->Fit("gaus", "IQ", "SAME", -0.5, 2.5);
-                  TF1     *fPadChargeFit = hPadCharges->GetFunction("gaus");
-                  Double_t  colMean = fPadChargeFit->GetParameter(1);
-
-                  clusterPads[0] = row + 0.5;
-                  clusterPads[1] = col - 1.5 + colMean;
-                  clusterPads[2] = time + 0.5;
-
-                  delete hPadCharges;
+                  // Unfold the two maxima and set the signal on 
+                  // the overlapping pad to the ratio
+                  ratioRight        = Unfold(kEpsilon,iplan,padSignal);
+                  ratioLeft         = 1.0 - ratioRight; 
+                  clusterSignal[2] *= ratioRight;
+                  iType   = 3;
+                  iUnfold = 1;
+                }
 
-                  nClusters++;
-                  break;
+                Float_t clusterCharge = clusterSignal[0]
+                                      + clusterSignal[1]
+                                      + clusterSignal[2];
+                
+               // The position of the cluster
+                clusterPads[0] = row + 0.5;
+               // Take the shift of the additional time bins into account
+                clusterPads[2] = time - nTimeBefore + 0.5;
+
+                if (fPar->LUTOn()) {
+
+                 // Calculate the position of the cluster by using the
+                 // lookup table method
+                  clusterPads[1] = col + 0.5
+                                 + fPar->LUTposition(iplan,clusterSignal[0]
+                                                          ,clusterSignal[1]
+                                                         ,clusterSignal[2]);
+
+               }
+               else {
+
+                 // Calculate the position of the cluster by using the
+                 // center of gravity method
+                  clusterPads[1] = col + 0.5 
+                                 + (clusterSignal[2] - clusterSignal[0]) 
+                                / clusterCharge;
+
+               }
+
+                Float_t q0 = clusterSignal[0];
+               Float_t q1 = clusterSignal[1];
+                Float_t q2 = clusterSignal[2];
+                Float_t clusterSigmaY2 = (q1*(q0+q2)+4*q0*q2) /
+                                         (clusterCharge*clusterCharge);
+
+                // Correct for ExB displacement
+                if (fPar->ExBOn()) { 
+                  Int_t   local_time_bin = (Int_t) clusterPads[2];
+                  Float_t driftLength    = local_time_bin * timeBinSize + kAmWidth;
+                  Float_t colSize        = fPar->GetColPadSize(iplan);
+                  Float_t deltaY         = omegaTau*driftLength/colSize;
+                  clusterPads[1]         = clusterPads[1] - deltaY;
+                }
+                                       
+                if (fVerbose > 1) {
+                  printf("-----------------------------------------------------------\n");
+                  printf("Create cluster no. %d\n",nClusters);
+                  printf("Position: row = %f, col = %f, time = %f\n",clusterPads[0]
+                                                                   ,clusterPads[1]
+                                                                    ,clusterPads[2]);
+                  printf("Indices: %d, %d, %d\n",clusterDigit[0]
+                                               ,clusterDigit[1]
+                                                ,clusterDigit[2]);
+                  printf("Total charge = %f\n",clusterCharge);
+                  printf("Tracks: pad0 %d, %d, %d\n",clusterTracks[0]
+                                                   ,clusterTracks[1]
+                                                    ,clusterTracks[2]);
+                  printf("        pad1 %d, %d, %d\n",clusterTracks[3]
+                                                   ,clusterTracks[4]
+                                                    ,clusterTracks[5]);
+                  printf("        pad2 %d, %d, %d\n",clusterTracks[6]
+                                                   ,clusterTracks[7]
+                                                    ,clusterTracks[8]);
+                  printf("Type = %d, Number of pads = %d\n",iType,nPadCount);
                 }
 
-                Float_t clusterCharge =   clusterSignal[0]
-                                        + clusterSignal[1]
-                                        + clusterSignal[2];
+               // Calculate the position and the error
+                Float_t clusterPos[3];
+                clusterPos[0] = clusterPads[1] * colSize + col0;
+                clusterPos[1] = clusterPads[0] * rowSize + row0;
+                clusterPos[2] = clusterPads[2];
+                Float_t clusterSig[2];
+                clusterSig[0] = (clusterSigmaY2 + 1./12.) * colSize*colSize;
+                clusterSig[1] = rowSize * rowSize / 12.;
 
                 // Add the cluster to the output array 
-                trd->AddRecPoint(clusterPads,clusterDigit,idet,clusterCharge);
+                fTRD->AddCluster(clusterPos
+                                ,idet
+                                ,clusterCharge
+                                ,clusterTracks
+                               ,clusterSig
+                                ,iType);
 
               }
-            }  // time
-          }    // col
-        }      // row
-
-        printf("AliTRDclusterizerV1::MakeCluster -- ");
-        printf("Number of clusters found: %d\n",nClusters);
-
-        delete digitMatrix;
-        delete maximaMatrix;
-
-      }          // isect
-    }            // iplan
-  }              // icham
-
-  printf("AliTRDclusterizerV1::MakeCluster -- ");
-  printf("Total number of points found: %d\n"
-        ,trd->RecPoints()->GetEntries());
+            } 
+          }   
+        }     
+
+       // Compress the arrays
+        digits->Compress(1,0);
+        track0->Compress(1,0);
+        track1->Compress(1,0);
+        track2->Compress(1,0);
+
+        // Write the cluster and reset the array
+       WriteClusters(idet);
+       fTRD->ResetRecPoints();
+
+        if (fVerbose > 0) {
+          printf("<AliTRDclusterizerV1::MakeCluster> ");
+          printf("Found %d clusters in total.\n"
+                ,nClusters);
+          printf("                                    2pad:  %d\n",nClusters2pad);
+          printf("                                    3pad:  %d\n",nClusters3pad);
+          printf("                                    4pad:  %d\n",nClusters4pad);
+          printf("                                    5pad:  %d\n",nClusters5pad);
+          printf("                                    Large: %d\n",nClustersLarge);
+       }
 
-  // Get the pointer to the cluster branch
-  TTree *clusterTree = gAlice->TreeR(); 
+      }    
+    }      
+  }        
 
-  // Fill the cluster-branch
-  printf("AliTRDclusterizerV1::MakeCluster -- ");
-  printf("Fill the cluster tree.\n");
-  clusterTree->Fill();
-  printf("AliTRDclusterizerV1::MakeCluster -- ");
-  printf("Done.\n");
+  if (fVerbose > 0) {
+    printf("<AliTRDclusterizerV1::MakeCluster> ");
+    printf("Done.\n");
+  }
 
   return kTRUE;
 
 }
 
 //_____________________________________________________________________________
-Float_t AliTRDclusterizerV1::Unfold(Float_t eps, Float_t* padSignal)
+Float_t AliTRDclusterizerV1::Unfold(Float_t eps, Int_t plane, Float_t* padSignal)
 {
   //
   // Method to unfold neighbouring maxima.
@@ -397,41 +599,41 @@ Float_t AliTRDclusterizerV1::Unfold(Float_t eps, Float_t* padSignal)
   // The resulting ratio is then returned to the calling method.
   //
 
-  Int_t   itStep            = 0;      // count iteration steps
+  Int_t   irc               = 0;
+  Int_t   itStep            = 0;      // Count iteration steps
 
-  Float_t ratio             = 0.5;    // start value for ratio
-  Float_t prevRatio         = 0;      // store previous ratio
+  Float_t ratio             = 0.5;    // Start value for ratio
+  Float_t prevRatio         = 0;      // Store previous ratio
 
-  Float_t newLeftSignal[3]  = {0};    // array to store left cluster signal
-  Float_t newRightSignal[3] = {0};    // array to store right cluster signal
+  Float_t newLeftSignal[3]  = {0};    // Array to store left cluster signal
+  Float_t newRightSignal[3] = {0};    // Array to store right cluster signal
+  Float_t newSignal[3]      = {0};
 
-  // start iteration:
+  // Start the iteration
   while ((TMath::Abs(prevRatio - ratio) > eps) && (itStep < 10)) {
 
     itStep++;
     prevRatio = ratio;
 
-    // cluster position according to charge ratio
-    Float_t maxLeft  = (ratio*padSignal[2] - padSignal[0]) /
-                       (padSignal[0] + padSignal[1] + ratio*padSignal[2]);
-    Float_t maxRight = (padSignal[4] - (1-ratio)*padSignal[2]) /
-                       ((1-ratio)*padSignal[2] + padSignal[3] + padSignal[4]);
+    // Cluster position according to charge ratio
+    Float_t maxLeft  = (ratio*padSignal[2] - padSignal[0]) 
+                     / (padSignal[0] + padSignal[1] + ratio*padSignal[2]);
+    Float_t maxRight = (padSignal[4] - (1-ratio)*padSignal[2]) 
+                     / ((1-ratio)*padSignal[2] + padSignal[3] + padSignal[4]);
 
-    // set cluster charge ratio
-    Float_t ampLeft  = padSignal[1];
-    Float_t ampRight = padSignal[3];
+    // Set cluster charge ratio
+    irc = fPar->PadResponse(1.0,maxLeft ,plane,newSignal);
+    Float_t ampLeft  = padSignal[1] / newSignal[1];
+    irc = fPar->PadResponse(1.0,maxRight,plane,newSignal);
+    Float_t ampRight = padSignal[3] / newSignal[1];
 
-    // apply pad response to parameters
-    newLeftSignal[0] = ampLeft*PadResponse(-1 - maxLeft);
-    newLeftSignal[1] = ampLeft*PadResponse( 0 - maxLeft);
-    newLeftSignal[2] = ampLeft*PadResponse( 1 - maxLeft);
+    // Apply pad response to parameters
+    irc = fPar->PadResponse(ampLeft ,maxLeft ,plane,newLeftSignal );
+    irc = fPar->PadResponse(ampRight,maxRight,plane,newRightSignal);
 
-    newRightSignal[0] = ampRight*PadResponse(-1 - maxRight);
-    newRightSignal[1] = ampRight*PadResponse( 0 - maxRight);
-    newRightSignal[2] = ampRight*PadResponse( 1 - maxRight);
-
-    // calculate new overlapping ratio
-    ratio = newLeftSignal[2]/(newLeftSignal[2] + newRightSignal[0]);
+    // Calculate new overlapping ratio
+    ratio = TMath::Min((Float_t)1.0,newLeftSignal[2] / 
+                          (newLeftSignal[2] + newRightSignal[0]));
 
   }
 
@@ -439,23 +641,3 @@ Float_t AliTRDclusterizerV1::Unfold(Float_t eps, Float_t* padSignal)
 
 }
 
-//_____________________________________________________________________________
-Float_t AliTRDclusterizerV1::PadResponse(Float_t x)
-{
-  //
-  // The pad response for the chevron pads. 
-  // We use a simple Gaussian approximation which should be good
-  // enough for our purpose.
-  //
-
-  // The parameters for the response function
-  const Float_t kA  =  0.8872;
-  const Float_t kB  = -0.00573;
-  const Float_t kC  =  0.454;
-  const Float_t kC2 =  kC*kC;
-
-  Float_t pr = kA * (kB + TMath::Exp(-x*x / (2. * kC2)));
-
-  return (pr);
-
-}