]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - TRD/AliTRDtrackerV1.cxx
Bug fix by Theodor
[u/mrichter/AliRoot.git] / TRD / AliTRDtrackerV1.cxx
index f3008adc733e2fc19d9daa655dd775305c2b3954..b4ad87e8d0f6628ffae46e6c8dff18ff4f3a0466 100644 (file)
@@ -1,4 +1,3 @@
-
 /**************************************************************************
 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
 *                                                                        *
 #include <TTree.h>  
 #include <TClonesArray.h>
 #include <TTreeStream.h>
+#include <TGeoMatrix.h>
+#include <TGeoManager.h>
 
 #include "AliLog.h"
+#include "AliMathBase.h"
 #include "AliESDEvent.h"
 #include "AliGeomManager.h"
 #include "AliRieman.h"
@@ -69,1086 +71,1707 @@ const  Double_t AliTRDtrackerV1::fgkMaxChi2            = 12.0;  //
 const  Double_t AliTRDtrackerV1::fgkMaxSnp             =  0.95; // Maximum local sine of the azimuthal angle
 const  Double_t AliTRDtrackerV1::fgkMaxStep            =  2.0;  // Maximal step size in propagation 
 Double_t AliTRDtrackerV1::fgTopologicQA[kNConfigs] = {
-       0.1112, 0.1112, 0.1112, 0.0786, 0.0786,
-       0.0786, 0.0786, 0.0579, 0.0579, 0.0474,
-       0.0474, 0.0408, 0.0335, 0.0335, 0.0335
-};
+  0.5112, 0.5112, 0.5112, 0.0786, 0.0786,
+  0.0786, 0.0786, 0.0579, 0.0579, 0.0474,
+  0.0474, 0.0408, 0.0335, 0.0335, 0.0335
+};  
+const Double_t AliTRDtrackerV1::fgkX0[kNPlanes]    = {
+  300.2, 312.8, 325.4, 338.0, 350.6, 363.2};
 Int_t AliTRDtrackerV1::fgNTimeBins = 0;
-TTreeSRedirector *AliTRDtrackerV1::fgDebugStreamer = 0x0;
 AliRieman* AliTRDtrackerV1::fgRieman = 0x0;
 TLinearFitter* AliTRDtrackerV1::fgTiltedRieman = 0x0;
 TLinearFitter* AliTRDtrackerV1::fgTiltedRiemanConstrained = 0x0;
 
 //____________________________________________________________________
-AliTRDtrackerV1::AliTRDtrackerV1() 
-       :AliTracker()
-       ,fGeom(new AliTRDgeometry())
-       ,fClusters(0x0)
-       ,fTracklets(0x0)
-       ,fTracks(0x0)
-       ,fSieveSeeding(0)
+AliTRDtrackerV1::AliTRDtrackerV1(AliTRDReconstructor *rec) 
+  :AliTracker()
+  ,fReconstructor(0x0)
+  ,fGeom(0x0)
+  ,fClusters(0x0)
+  ,fTracklets(0x0)
+  ,fTracks(0x0)
+  ,fSieveSeeding(0)
 {
-       //
-       // Default constructor.
-       // 
-       if (!AliTRDcalibDB::Instance()) {
-               AliFatal("Could not get calibration object");
-       }
-       fgNTimeBins = AliTRDcalibDB::Instance()->GetNumberOfTimeBins();
-
-       for (Int_t isector = 0; isector < AliTRDgeometry::kNsect; isector++) new(&fTrSec[isector]) AliTRDtrackingSector(fGeom, isector);
-       
-       if(AliTRDReconstructor::StreamLevel() > 1){
-               TDirectory *savedir = gDirectory; 
-               fgDebugStreamer    = new TTreeSRedirector("TRD.TrackerDebug.root");
-               savedir->cd();
-       }
+  //
+  // Default constructor.
+  // 
+  
+  SetReconstructor(rec); // initialize reconstructor
+
+  // initialize geometry
+  if(!AliGeomManager::GetGeometry()){
+    AliFatal("Could not get geometry.");
+  }
+  fGeom = new AliTRDgeometry();
+  fGeom->CreateClusterMatrixArray();
+  TGeoHMatrix *matrix = 0x0;
+  Double_t loc[] = {0., 0., 0.};
+  Double_t glb[] = {0., 0., 0.};
+  for(Int_t ily=kNPlanes; ily--;){
+    Int_t ism = 0;
+    while(!(matrix = fGeom->GetClusterMatrix(AliTRDgeometry::GetDetector(ily, 2, ism)))) ism++;
+    if(!matrix){
+      AliError(Form("Could not get transformation matrix for layer %d. Use default.", ily));
+      fR[ily] = fgkX0[ily];
+      continue;
+    }
+    matrix->LocalToMaster(loc, glb);
+    fR[ily] = glb[0]+ AliTRDgeometry::AnodePos()-.5*AliTRDgeometry::AmThick() - AliTRDgeometry::DrThick();
+  }
+
+  // initialize calibration values
+  AliTRDcalibDB *trd = 0x0;
+  if (!(trd = AliTRDcalibDB::Instance())) {
+    AliFatal("Could not get calibration.");
+  }
+  if(!fgNTimeBins) fgNTimeBins = trd->GetNumberOfTimeBins();
+
+  // initialize cluster containers
+  for (Int_t isector = 0; isector < AliTRDgeometry::kNsector; isector++) new(&fTrSec[isector]) AliTRDtrackingSector(fGeom, isector);
+  
+  // initialize arrays
+  memset(fTrackQuality, 0, kMaxTracksStack*sizeof(Double_t));
+  memset(fSeedLayer, 0, kMaxTracksStack*sizeof(Int_t));
+  memset(fSeedTB, 0, kNSeedPlanes*sizeof(AliTRDchamberTimeBin*));
 }
 
 //____________________________________________________________________
 AliTRDtrackerV1::~AliTRDtrackerV1()
 { 
-       //
-       // Destructor
-       //
-       
-       if(fgDebugStreamer) delete fgDebugStreamer;
-       if(fgRieman) delete fgRieman;
-       if(fgTiltedRieman) delete fgTiltedRieman;
-       if(fgTiltedRiemanConstrained) delete fgTiltedRiemanConstrained;
-       if(fTracks) {fTracks->Delete(); delete fTracks;}
-       if(fTracklets) {fTracklets->Delete(); delete fTracklets;}
-       if(fClusters) {fClusters->Delete(); delete fClusters;}
-       if(fGeom) delete fGeom;
+  //
+  // Destructor
+  //
+  
+  if(fgRieman) delete fgRieman; fgRieman = 0x0;
+  if(fgTiltedRieman) delete fgTiltedRieman; fgTiltedRieman = 0x0;
+  if(fgTiltedRiemanConstrained) delete fgTiltedRiemanConstrained; fgTiltedRiemanConstrained = 0x0;
+  for(Int_t isl =0; isl<kNSeedPlanes; isl++) if(fSeedTB[isl]) delete fSeedTB[isl];
+  if(fTracks) {fTracks->Delete(); delete fTracks;}
+  if(fTracklets) {fTracklets->Delete(); delete fTracklets;}
+  if(fClusters) {
+    fClusters->Delete(); delete fClusters;
+  }
+  if(fGeom) delete fGeom;
 }
 
 //____________________________________________________________________
 Int_t AliTRDtrackerV1::Clusters2Tracks(AliESDEvent *esd)
 {
-       //
-       // Steering stand alone tracking for full TRD detector
-       //
-       // Parameters :
-       //   esd     : The ESD event. On output it contains 
-       //             the ESD tracks found in TRD.
-       //
-       // Output :
-       //   Number of tracks found in the TRD detector.
-       // 
-       // Detailed description
-       // 1. Launch individual SM trackers. 
-       //    See AliTRDtrackerV1::Clusters2TracksSM() for details.
-       //
-
-       if(!AliTRDReconstructor::RecoParam()){
-               AliError("Reconstruction configuration not initialized. Call first AliTRDReconstructor::SetRecoParam().");
-               return 0;
-       }
-       
-       //AliInfo("Start Track Finder ...");
-       Int_t ntracks = 0;
-       for(int ism=0; ism<AliTRDgeometry::kNsect; ism++){
-               //      for(int ism=1; ism<2; ism++){
-               //AliInfo(Form("Processing supermodule %i ...", ism));
-               ntracks += Clusters2TracksSM(ism, esd);
-       }
-       AliInfo(Form("Number of found tracks : %d", ntracks));
-       return ntracks;
+  //
+  // Steering stand alone tracking for full TRD detector
+  //
+  // Parameters :
+  //   esd     : The ESD event. On output it contains 
+  //             the ESD tracks found in TRD.
+  //
+  // Output :
+  //   Number of tracks found in the TRD detector.
+  // 
+  // Detailed description
+  // 1. Launch individual SM trackers. 
+  //    See AliTRDtrackerV1::Clusters2TracksSM() for details.
+  //
+
+  if(!fReconstructor->GetRecoParam() ){
+    AliError("Reconstruction configuration not initialized. Call first AliTRDReconstructor::SetRecoParam().");
+    return 0;
+  }
+  
+  //AliInfo("Start Track Finder ...");
+  Int_t ntracks = 0;
+  for(int ism=0; ism<AliTRDgeometry::kNsector; ism++){
+    // for(int ism=1; ism<2; ism++){
+    //AliInfo(Form("Processing supermodule %i ...", ism));
+    ntracks += Clusters2TracksSM(ism, esd);
+  }
+  AliInfo(Form("Number of found tracks : %d", ntracks));
+  return ntracks;
 }
 
 
 //_____________________________________________________________________________
 Bool_t AliTRDtrackerV1::GetTrackPoint(Int_t index, AliTrackPoint &p) const
 {
-       //AliInfo(Form("Asking for tracklet %d", index));
-       
-       if(index<0) return kFALSE;
-       AliTRDseedV1 *tracklet = 0x0; 
-       if(!(tracklet = (AliTRDseedV1*)fTracklets->UncheckedAt(index))) return kFALSE;
-       
-       // get detector for this tracklet
-       AliTRDcluster *cl = 0x0;
-       Int_t ic = 0; do; while(!(cl = tracklet->GetClusters(ic++)));    
-       Int_t  idet     = cl->GetDetector();
-               
-       Double_t local[3];
-       local[0] = tracklet->GetX0(); 
-       local[1] = tracklet->GetYfit(0);
-       local[2] = tracklet->GetZfit(0);
-       Double_t global[3];
-       fGeom->RotateBack(idet, local, global);
-       p.SetXYZ(global[0],global[1],global[2]);
-       
-       
-       // setting volume id
-       AliGeomManager::ELayerID iLayer = AliGeomManager::kTRD1;
-       switch (fGeom->GetPlane(idet)) {
-       case 0:
-               iLayer = AliGeomManager::kTRD1;
-               break;
-       case 1:
-               iLayer = AliGeomManager::kTRD2;
-               break;
-       case 2:
-               iLayer = AliGeomManager::kTRD3;
-               break;
-       case 3:
-               iLayer = AliGeomManager::kTRD4;
-               break;
-       case 4:
-               iLayer = AliGeomManager::kTRD5;
-               break;
-       case 5:
-               iLayer = AliGeomManager::kTRD6;
-               break;
-       };
-       Int_t    modId = fGeom->GetSector(idet) * fGeom->Ncham() + fGeom->GetChamber(idet);
-       UShort_t volid = AliGeomManager::LayerToVolUID(iLayer, modId);
-       p.SetVolumeID(volid);
-               
-       return kTRUE;
+  //AliInfo(Form("Asking for tracklet %d", index));
+  
+  // reset position of the point before using it
+  p.SetXYZ(0., 0., 0.);
+  AliTRDseedV1 *tracklet = GetTracklet(index); 
+  if (!tracklet) return kFALSE;
+
+  // get detector for this tracklet
+  Int_t det = tracklet->GetDetector();
+  Int_t sec = fGeom->GetSector(det);
+  Double_t alpha = (sec+.5)*AliTRDgeometry::GetAlpha(),
+           sinA  = TMath::Sin(alpha),
+           cosA  = TMath::Cos(alpha);
+  Double_t local[3];
+  local[0] = tracklet->GetX(); 
+  local[1] = tracklet->GetY();
+  local[2] = tracklet->GetZ();
+  Double_t global[3];
+  fGeom->RotateBack(det, local, global);
+
+  Double_t cov2D[3]; Float_t cov[6];
+  tracklet->GetCovAt(local[0], cov2D);
+  cov[0] = cov2D[0]*sinA*sinA;
+  cov[1] =-cov2D[0]*sinA*cosA;
+  cov[2] =-cov2D[1]*sinA;
+  cov[3] = cov2D[0]*cosA*cosA;
+  cov[4] = cov2D[1]*cosA;
+  cov[5] = cov2D[2];
+  // store the global position of the tracklet and its covariance matrix in the track point 
+  p.SetXYZ(global[0],global[1],global[2], cov);
+  
+  // setting volume id
+  AliGeomManager::ELayerID iLayer = AliGeomManager::ELayerID(AliGeomManager::kTRD1+fGeom->GetLayer(det));
+  Int_t    modId = fGeom->GetSector(det) * AliTRDgeometry::kNstack + fGeom->GetStack(det);
+  UShort_t volid = AliGeomManager::LayerToVolUID(iLayer, modId);
+  p.SetVolumeID(volid);
+    
+  return kTRUE;
 }
 
 //____________________________________________________________________
 TLinearFitter* AliTRDtrackerV1::GetTiltedRiemanFitter()
 {
-       if(!fgTiltedRieman) fgTiltedRieman = new TLinearFitter(4, "hyp4");
-       return fgTiltedRieman;
+  if(!fgTiltedRieman) fgTiltedRieman = new TLinearFitter(4, "hyp4");
+  return fgTiltedRieman;
 }
 
 //____________________________________________________________________
 TLinearFitter* AliTRDtrackerV1::GetTiltedRiemanFitterConstraint()
 {
-       if(!fgTiltedRiemanConstrained) fgTiltedRiemanConstrained = new TLinearFitter(2, "hyp2");
-       return fgTiltedRiemanConstrained;
+  if(!fgTiltedRiemanConstrained) fgTiltedRiemanConstrained = new TLinearFitter(2, "hyp2");
+  return fgTiltedRiemanConstrained;
 }
-       
+  
 //____________________________________________________________________ 
 AliRieman* AliTRDtrackerV1::GetRiemanFitter()
 {
-       if(!fgRieman) fgRieman = new AliRieman(AliTRDtrackingChamber::kNTimeBins * AliTRDgeometry::kNplan);
-       return fgRieman;
+  if(!fgRieman) fgRieman = new AliRieman(AliTRDseedV1::kNtb * AliTRDgeometry::kNlayer);
+  return fgRieman;
 }
-       
+  
 //_____________________________________________________________________________
 Int_t AliTRDtrackerV1::PropagateBack(AliESDEvent *event) 
 {
-       //
-       // Gets seeds from ESD event. The seeds are AliTPCtrack's found and
-       // backpropagated by the TPC tracker. Each seed is first propagated 
-       // to the TRD, and then its prolongation is searched in the TRD.
-       // If sufficiently long continuation of the track is found in the TRD
-       // the track is updated, otherwise it's stored as originaly defined 
-       // by the TPC tracker.   
-       //  
-
-       // Calibration monitor
-       AliTRDCalibraFillHisto *calibra = AliTRDCalibraFillHisto::Instance();
-       if (!calibra) AliInfo("Could not get Calibra instance\n");
-       
-       Int_t   found    = 0;     // number of tracks found
-       Float_t foundMin = 20.0;
-       
-       Int_t    nSeed   = event->GetNumberOfTracks();
-       if(!nSeed){
-               // run stand alone tracking
-               if (AliTRDReconstructor::SeedingOn()) Clusters2Tracks(event);
-               return 0;
-       }
-       
-       Float_t *quality = new Float_t[nSeed];
-       Int_t   *index   = new Int_t[nSeed];
-       for (Int_t iSeed = 0; iSeed < nSeed; iSeed++) {
-               AliESDtrack *seed = event->GetTrack(iSeed);
-               Double_t covariance[15];
-               seed->GetExternalCovariance(covariance);
-               quality[iSeed] = covariance[0] + covariance[2];
-       }
-       // Sort tracks according to covariance of local Y and Z
-       TMath::Sort(nSeed,quality,index,kFALSE);
-       
-       // Backpropagate all seeds
-       Int_t   expectedClr;
-       AliTRDtrackV1 track;
-       for (Int_t iSeed = 0; iSeed < nSeed; iSeed++) {
-       
-               // Get the seeds in sorted sequence
-               AliESDtrack *seed = event->GetTrack(index[iSeed]);
-       
-               // Check the seed status
-               ULong_t status = seed->GetStatus();
-               if ((status & AliESDtrack::kTPCout) == 0) continue;
-               if ((status & AliESDtrack::kTRDout) != 0) continue;
-       
-               // Do the back prolongation
-               Int_t   lbl         = seed->GetLabel();
-               new(&track) AliTRDtrackV1(*seed);
-               //track->Print();
-               track.SetSeedLabel(lbl);
-               seed->UpdateTrackParams(&track, AliESDtrack::kTRDbackup); // Make backup
-               Float_t p4          = track.GetC();
-               if((expectedClr = FollowBackProlongation(track))){
-                       // computes PID for track
-                       track.CookPID();
-                       // update calibration references using this track
-                       if(calibra->GetHisto2d()) calibra->UpdateHistogramsV1(&track);
-                       // save calibration object
-                       if ((track.GetNumberOfClusters() > 15) && (track.GetNumberOfClusters() > 0.5*expectedClr)) {
-                               seed->UpdateTrackParams(&track, AliESDtrack::kTRDout);
-       
-                               track.UpdateESDtrack(seed);
-                               
-                               // Add TRD track to ESDfriendTrack
-                               if (AliTRDReconstructor::StreamLevel() > 0 /*&& quality TODO*/){ 
-                                       AliTRDtrackV1 *calibTrack = new AliTRDtrackV1(track);
-                                       calibTrack->SetOwner();
-                                       seed->AddCalibObject(calibTrack);
-                               }
-                       }
-               }
-
-               if ((TMath::Abs(track.GetC() - p4) / TMath::Abs(p4) < 0.2) ||(track.Pt() > 0.8)) {
-                       //
-                       // Make backup for back propagation
-                       //
-                       Int_t foundClr = track.GetNumberOfClusters();
-                       if (foundClr >= foundMin) {
-                               //AliInfo(Form("Making backup track ncls [%d]...", foundClr));
-                               track.CookdEdx();
-                               track.CookdEdxTimBin(seed->GetID());
-                               track.CookLabel(1. - fgkLabelFraction);
-                               if(track.GetBackupTrack()) UseClusters(track.GetBackupTrack());
-                               
-
-                               // Sign only gold tracks
-                               if (track.GetChi2() / track.GetNumberOfClusters() < 4) {
-                                       if ((seed->GetKinkIndex(0)      ==   0) && (track.Pt() <  1.5)) UseClusters(&track);
-                               }
-                               Bool_t isGold = kFALSE;
-       
-                               // Full gold track
-                               if (track.GetChi2() / track.GetNumberOfClusters() < 5) {
-                                       if (track.GetBackupTrack()) seed->UpdateTrackParams(track.GetBackupTrack(),AliESDtrack::kTRDbackup);
-
-                                       isGold = kTRUE;
-                               }
-       
-                               // Almost gold track
-                               if ((!isGold)  && (track.GetNCross() == 0) &&   (track.GetChi2() / track.GetNumberOfClusters()  < 7)) {
-                                       //seed->UpdateTrackParams(track, AliESDtrack::kTRDbackup);
-                                       if (track.GetBackupTrack()) seed->UpdateTrackParams(track.GetBackupTrack(),AliESDtrack::kTRDbackup);
-       
-                                       isGold = kTRUE;
-                               }
-                               
-                               if ((!isGold) && (track.GetBackupTrack())) {
-                                       if ((track.GetBackupTrack()->GetNumberOfClusters() > foundMin) && ((track.GetBackupTrack()->GetChi2()/(track.GetBackupTrack()->GetNumberOfClusters()+1)) < 7)) {
-                                               seed->UpdateTrackParams(track.GetBackupTrack(),AliESDtrack::kTRDbackup);
-                                               isGold = kTRUE;
-                                       }
-                               }
-       
-                               //if ((track->StatusForTOF() > 0) && (track->GetNCross() == 0) && (Float_t(track->GetNumberOfClusters()) / Float_t(track->GetNExpected())  > 0.4)) {
-                               //seed->UpdateTrackParams(track->GetBackupTrack(), AliESDtrack::kTRDbackup);
-                               //}
-                       }
-               }
-               
-               // Propagation to the TOF (I.Belikov)
-               if (track.GetStop() == kFALSE) {
-                       Double_t xtof  = 371.0;
-                       Double_t xTOF0 = 370.0;
-               
-                       Double_t c2    = track.GetSnp() + track.GetC() * (xtof - track.GetX());
-                       if (TMath::Abs(c2) >= 0.99) continue;
-                       
-                       PropagateToX(track, xTOF0, fgkMaxStep);
-       
-                       // Energy losses taken to the account - check one more time
-                       c2 = track.GetSnp() + track.GetC() * (xtof - track.GetX());
-                       if (TMath::Abs(c2) >= 0.99) continue;
-                       
-                       //if (!PropagateToX(*track,xTOF0,fgkMaxStep)) {
-                       //      fHBackfit->Fill(7);
-                       //delete track;
-                       //      continue;
-                       //}
-       
-                       Double_t ymax = xtof * TMath::Tan(0.5 * AliTRDgeometry::GetAlpha());
-                       Double_t y;
-                       track.GetYAt(xtof,GetBz(),y);
-                       if (y >  ymax) {
-                               if (!track.Rotate( AliTRDgeometry::GetAlpha())) continue;       
-                       }else if (y < -ymax) {
-                               if (!track.Rotate(-AliTRDgeometry::GetAlpha())) continue;
-                       }
-                                       
-                       if (track.PropagateTo(xtof)) {
-                               seed->UpdateTrackParams(&track, AliESDtrack::kTRDout);
-                               track.UpdateESDtrack(seed);
-                               
-                               // Add TRD track to ESDfriendTrack
-//                             if (AliTRDReconstructor::StreamLevel() > 0 /*&& quality TODO*/){ 
-//                                     AliTRDtrackV1 *calibTrack = new AliTRDtrackV1(track);
-//                                     calibTrack->SetOwner();
-//                                     seed->AddCalibObject(calibTrack);
-//                             }
-                               found++;
-                       }
-               } else {                        
-                       if ((track.GetNumberOfClusters() > 15) && (track.GetNumberOfClusters() > 0.5*expectedClr)) {
-                               seed->UpdateTrackParams(&track, AliESDtrack::kTRDout);
-       
-                               track.UpdateESDtrack(seed);
-                               
-                               // Add TRD track to ESDfriendTrack
-//                             if (AliTRDReconstructor::StreamLevel() > 0 /*&& quality TODO*/){ 
-//                                     AliTRDtrackV1 *calibTrack = new AliTRDtrackV1(track);
-//                                     calibTrack->SetOwner();
-//                                     seed->AddCalibObject(calibTrack);
-//                             }
-                               found++;
-                       }
-               }
-       
-               seed->SetTRDQuality(track.StatusForTOF());
-               seed->SetTRDBudget(track.GetBudget(0));
-       }
-       
-
-       AliInfo(Form("Number of seeds: %d", nSeed));
-       AliInfo(Form("Number of back propagated TRD tracks: %d", found));
-                       
-       delete [] index;
-       delete [] quality;
-       
-       return 0;
+// Propagation of ESD tracks from TPC to TOF detectors and building of the TRD track. For building
+// a TRD track an ESD track is used as seed. The informations obtained on the TRD track (measured points,
+// covariance, PID, etc.) are than used to update the corresponding ESD track.
+// Each track seed is first propagated to the geometrical limit of the TRD detector. 
+// Its prolongation is searched in the TRD and if corresponding clusters are found tracklets are 
+// constructed out of them (see AliTRDseedV1::AttachClusters()) and the track is updated. 
+// Otherwise the ESD track is left unchanged.
+// 
+// The following steps are performed:
+// 1. Selection of tracks based on the variance in the y-z plane.
+// 2. Propagation to the geometrical limit of the TRD volume. If track propagation fails the AliESDtrack::kTRDStop is set.
+// 3. Prolongation inside the fiducial volume (see AliTRDtrackerV1::FollowBackProlongation()) and marking
+// the following status bits:
+//   - AliESDtrack::kTRDin - if the tracks enters the TRD fiducial volume
+//   - AliESDtrack::kTRDStop - if the tracks fails propagation
+//   - AliESDtrack::kTRDbackup - if the tracks fulfills chi2 conditions and qualify for refitting
+// 4. Writting to friends, PID, MC label, quality etc. Setting status bit AliESDtrack::kTRDout.
+// 5. Propagation to TOF. If track propagation fails the AliESDtrack::kTRDStop is set.
+//  
+
+  AliTRDCalibraFillHisto *calibra = AliTRDCalibraFillHisto::Instance(); // Calibration monitor
+  if (!calibra) AliInfo("Could not get Calibra instance\n");
+  
+  // Define scalers
+  Int_t nFound   = 0, // number of tracks found
+        nSeeds   = 0, // total number of ESD seeds
+        nTRDseeds= 0, // number of seeds in the TRD acceptance
+        nTPCseeds= 0; // number of TPC seeds
+  Float_t foundMin = 20.0;
+  
+  Float_t *quality = 0x0;
+  Int_t   *index   = 0x0;
+  nSeeds   = event->GetNumberOfTracks();
+  // Sort tracks according to quality 
+  // (covariance in the yz plane)
+  if(nSeeds){  
+    quality = new Float_t[nSeeds];
+    index   = new Int_t[nSeeds];
+    for (Int_t iSeed = nSeeds; iSeed--;) {
+      AliESDtrack *seed = event->GetTrack(iSeed);
+      Double_t covariance[15];
+      seed->GetExternalCovariance(covariance);
+      quality[iSeed] = covariance[0] + covariance[2];
+    }
+    TMath::Sort(nSeeds, quality, index,kFALSE);
+  }
+  
+  // Propagate all seeds
+  Int_t   expectedClr;
+  AliTRDtrackV1 track;
+  for (Int_t iSeed = 0; iSeed < nSeeds; iSeed++) {
+  
+    // Get the seeds in sorted sequence
+    AliESDtrack *seed = event->GetTrack(index[iSeed]);
+    Float_t p4  = seed->GetC(seed->GetBz());
+  
+    // Check the seed status
+    ULong_t status = seed->GetStatus();
+    if ((status & AliESDtrack::kTPCout) == 0) continue;
+    if ((status & AliESDtrack::kTRDout) != 0) continue;
+
+    // Propagate to the entrance in the TRD mother volume
+    new(&track) AliTRDtrackV1(*seed);
+    if(AliTRDgeometry::GetXtrdBeg() > (fgkMaxStep + track.GetX()) && !PropagateToX(track, AliTRDgeometry::GetXtrdBeg(), fgkMaxStep)){ 
+      seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop);
+      continue;
+    }    
+    if(!AdjustSector(&track)){
+      seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop);
+      continue;
+    }
+    if(TMath::Abs(track.GetSnp()) > fgkMaxSnp) {
+      seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop);
+      continue;
+    }
+
+    nTPCseeds++;
+
+    // store track status at TRD entrance
+    seed->UpdateTrackParams(&track, AliESDtrack::kTRDbackup);
+
+    // prepare track and do propagation in the TRD
+    track.SetReconstructor(fReconstructor);
+    track.SetKink(Bool_t(seed->GetKinkIndex(0)));
+    expectedClr = FollowBackProlongation(track);
+    // check if track entered the TRD fiducial volume
+    if(track.GetTrackLow()){ 
+      seed->UpdateTrackParams(&track, AliESDtrack::kTRDin);
+      nTRDseeds++;
+    }
+    // check if track was stopped in the TRD
+    if (expectedClr<0){      
+      seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop);
+      continue;
+    }
+
+    if(expectedClr){
+      nFound++;  
+      // computes PID for track
+      track.CookPID();
+      // update calibration references using this track
+      if(calibra->GetHisto2d()) calibra->UpdateHistogramsV1(&track);
+      // save calibration object
+      if (fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker) > 0){ 
+        AliTRDtrackV1 *calibTrack = new AliTRDtrackV1(track);
+        calibTrack->SetOwner();
+        seed->AddCalibObject(calibTrack);
+      }
+      //update ESD track
+      if ((track.GetNumberOfClusters() > 15) && (track.GetNumberOfClusters() > 0.5*expectedClr)) {
+        seed->UpdateTrackParams(&track, AliESDtrack::kTRDout);
+        track.UpdateESDtrack(seed);
+      }
+    }
+
+    if ((TMath::Abs(track.GetC(track.GetBz()) - p4) / TMath::Abs(p4) < 0.2) ||(track.Pt() > 0.8)) {
+
+      // Make backup for back propagation
+      Int_t foundClr = track.GetNumberOfClusters();
+      if (foundClr >= foundMin) {
+        track.CookLabel(1. - fgkLabelFraction);
+        //if(track.GetBackupTrack()) UseClusters(track.GetBackupTrack());
+
+        // Sign only gold tracks
+        if (track.GetChi2() / track.GetNumberOfClusters() < 4) {
+          //if ((seed->GetKinkIndex(0)      ==   0) && (track.Pt() <  1.5)) UseClusters(&track);
+        }
+        Bool_t isGold = kFALSE;
+  
+        // Full gold track
+        if (track.GetChi2() / track.GetNumberOfClusters() < 5) {
+          if (track.GetBackupTrack()) seed->UpdateTrackParams(track.GetBackupTrack(),AliESDtrack::kTRDbackup);
+
+          isGold = kTRUE;
+        }
+  
+        // Almost gold track
+        if ((!isGold)  && (track.GetNCross() == 0) &&  (track.GetChi2() / track.GetNumberOfClusters()  < 7)) {
+          //seed->UpdateTrackParams(track, AliESDtrack::kTRDbackup);
+          if (track.GetBackupTrack()) seed->UpdateTrackParams(track.GetBackupTrack(),AliESDtrack::kTRDbackup);
+  
+          isGold = kTRUE;
+        }
+        
+        if ((!isGold) && (track.GetBackupTrack())) {
+          if ((track.GetBackupTrack()->GetNumberOfClusters() > foundMin) && ((track.GetBackupTrack()->GetChi2()/(track.GetBackupTrack()->GetNumberOfClusters()+1)) < 7)) {
+            seed->UpdateTrackParams(track.GetBackupTrack(),AliESDtrack::kTRDbackup);
+            isGold = kTRUE;
+          }
+        }
+      }
+    }
+    
+    // Propagation to the TOF
+    if(!(seed->GetStatus()&AliESDtrack::kTRDStop)) {
+      Int_t sm = track.GetSector();
+      // default value in case we have problems with the geometry.
+      Double_t xtof  = 371.; 
+      //Calculate radial position of the beginning of the TOF
+      //mother volume. In order to avoid mixing of the TRD 
+      //and TOF modules some hard values are needed. This are:
+      //1. The path to the TOF module.
+      //2. The width of the TOF (29.05 cm)
+      //(with the help of Annalisa de Caro Mar-17-2009)
+      if(gGeoManager){
+        gGeoManager->cd(Form("/ALIC_1/B077_1/BSEGMO%d_1/BTOF%d_1", sm, sm));
+        TGeoHMatrix *m = 0x0;
+        Double_t loc[]={0., 0., -.5*29.05}, glob[3];
+        
+        if((m=gGeoManager->GetCurrentMatrix())){
+          m->LocalToMaster(loc, glob);
+          xtof = TMath::Sqrt(glob[0]*glob[0]+glob[1]*glob[1]);
+        }
+      }
+      if(xtof > (fgkMaxStep + track.GetX()) && !PropagateToX(track, xtof, fgkMaxStep)){ 
+        seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop);
+        continue;
+      }
+      if(!AdjustSector(&track)){ 
+        seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop);
+        continue;
+      }
+      if(TMath::Abs(track.GetSnp()) > fgkMaxSnp){ 
+        seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop);
+        continue;
+      }
+      seed->UpdateTrackParams(&track, AliESDtrack::kTRDout);
+      // TODO obsolete - delete
+      seed->SetTRDQuality(track.StatusForTOF()); 
+    }
+    seed->SetTRDBudget(track.GetBudget(0));
+  }
+  if(index) delete [] index;
+  if(quality) delete [] quality;
+
+  AliInfo(Form("Number of seeds: TPCout[%d] TRDin[%d]", nTPCseeds, nTRDseeds));
+  AliInfo(Form("Number of tracks: TRDout[%d]", nFound));
+
+  // run stand alone tracking
+  if (fReconstructor->IsSeeding()) Clusters2Tracks(event);
+  
+  return 0;
 }
 
 
 //____________________________________________________________________
 Int_t AliTRDtrackerV1::RefitInward(AliESDEvent *event)
 {
-       //
-       // Refits tracks within the TRD. The ESD event is expected to contain seeds 
-       // at the outer part of the TRD. 
-       // The tracks are propagated to the innermost time bin 
-       // of the TRD and the ESD event is updated
-       // Origin: Thomas KUHR (Thomas.Kuhr@cern.ch)
-       //
-
-       Int_t   nseed    = 0; // contor for loaded seeds
-       Int_t   found    = 0; // contor for updated TRD tracks
-       
-       
-       AliTRDtrackV1 track;
-       for (Int_t itrack = 0; itrack < event->GetNumberOfTracks(); itrack++) {
-               AliESDtrack *seed = event->GetTrack(itrack);
-               new(&track) AliTRDtrackV1(*seed);
-
-               if (track.GetX() < 270.0) {
-                       seed->UpdateTrackParams(&track, AliESDtrack::kTRDbackup);
-                       continue;
-               }
-
-               ULong_t status = seed->GetStatus();
-               if((status & AliESDtrack::kTRDout) == 0) continue;
-               if((status & AliESDtrack::kTRDin)  != 0) continue;
-               nseed++; 
-
-               track.ResetCovariance(50.0);
-
-               // do the propagation and processing
-               Bool_t kUPDATE = kFALSE;
-               Double_t xTPC = 250.0;
-               if(FollowProlongation(track)){  
-                       // Prolongate to TPC
-                       if (PropagateToX(track, xTPC, fgkMaxStep)) { //  -with update
-       seed->UpdateTrackParams(&track, AliESDtrack::kTRDrefit);
-       found++;
-       kUPDATE = kTRUE;
-                       }
-               }        
-               
-               // Prolongate to TPC without update
-               if(!kUPDATE) {
-                       AliTRDtrackV1 tt(*seed);
-                       if (PropagateToX(tt, xTPC, fgkMaxStep)) seed->UpdateTrackParams(&tt, AliESDtrack::kTRDrefit);
-               }
-       }
-       AliInfo(Form("Number of loaded seeds: %d",nseed));
-       AliInfo(Form("Number of found tracks from loaded seeds: %d",found));
-       
-       return 0;
+  //
+  // Refits tracks within the TRD. The ESD event is expected to contain seeds 
+  // at the outer part of the TRD. 
+  // The tracks are propagated to the innermost time bin 
+  // of the TRD and the ESD event is updated
+  // Origin: Thomas KUHR (Thomas.Kuhr@cern.ch)
+  //
+
+  Int_t   nseed    = 0; // contor for loaded seeds
+  Int_t   found    = 0; // contor for updated TRD tracks
+  
+  
+  AliTRDtrackV1 track;
+  for (Int_t itrack = 0; itrack < event->GetNumberOfTracks(); itrack++) {
+    AliESDtrack *seed = event->GetTrack(itrack);
+    new(&track) AliTRDtrackV1(*seed);
+
+    if (track.GetX() < 270.0) {
+      seed->UpdateTrackParams(&track, AliESDtrack::kTRDbackup);
+      continue;
+    }
+
+    // reject tracks which failed propagation in the TRD or
+    // are produced by the TRD stand alone tracker
+    ULong_t status = seed->GetStatus();
+    if(!(status & AliESDtrack::kTRDout)) continue;
+    if(!(status & AliESDtrack::kTRDin)) continue;
+    nseed++; 
+
+    track.ResetCovariance(50.0);
+
+    // do the propagation and processing
+    Bool_t kUPDATE = kFALSE;
+    Double_t xTPC = 250.0;
+    if(FollowProlongation(track)){     
+      // Prolongate to TPC
+      if (PropagateToX(track, xTPC, fgkMaxStep)) { //  -with update
+        seed->UpdateTrackParams(&track, AliESDtrack::kTRDrefit);
+        found++;
+        kUPDATE = kTRUE;
+      }
+
+      // Update the friend track
+      if (fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker) > 0){ 
+        TObject *o = 0x0; Int_t ic = 0;
+        AliTRDtrackV1 *calibTrack = 0x0; 
+        while((o = seed->GetCalibObject(ic++))){
+          if(!(calibTrack = dynamic_cast<AliTRDtrackV1*>(o))) continue;
+          calibTrack->SetTrackHigh(track.GetTrackHigh());
+        }
+      }
+    }
+    
+    // Prolongate to TPC without update
+    if(!kUPDATE) {
+      AliTRDtrackV1 tt(*seed);
+      if (PropagateToX(tt, xTPC, fgkMaxStep)) seed->UpdateTrackParams(&tt, AliESDtrack::kTRDbackup);
+    }
+  }
+  AliInfo(Form("Number of loaded seeds: %d",nseed));
+  AliInfo(Form("Number of found tracks from loaded seeds: %d",found));
+  
+  return 0;
 }
 
-
 //____________________________________________________________________
 Int_t AliTRDtrackerV1::FollowProlongation(AliTRDtrackV1 &t)
 {
-       // Extrapolates the TRD track in the TPC direction.
-       //
-       // Parameters
-       //   t : the TRD track which has to be extrapolated
-       // 
-       // Output
-       //   number of clusters attached to the track
-       //
-       // Detailed description
-       //
-       // Starting from current radial position of track <t> this function
-       // extrapolates the track through the 6 TRD layers. The following steps
-       // are being performed for each plane:
-       // 1. prepare track:
-       //   a. get plane limits in the local x direction
-       //   b. check crossing sectors 
-       //   c. check track inclination
-       // 2. search tracklet in the tracker list (see GetTracklet() for details)
-       // 3. evaluate material budget using the geo manager
-       // 4. propagate and update track using the tracklet information.
-       //
-       // Debug level 2
-       //
-       
-       Int_t    nClustersExpected = 0;
-       Int_t lastplane = 5; //GetLastPlane(&t);
-       for (Int_t iplane = lastplane; iplane >= 0; iplane--) {
-               Int_t   index   = 0;
-               AliTRDseedV1 *tracklet = GetTracklet(&t, iplane, index);
-               if(!tracklet) continue;
-               if(!tracklet->IsOK()) AliWarning("tracklet not OK");
-               
-               Double_t x  = tracklet->GetX0();
-               // reject tracklets which are not considered for inward refit
-               if(x > t.GetX()+fgkMaxStep) continue;
-
-               // append tracklet to track
-               t.SetTracklet(tracklet, iplane, index);
-               
-               if (x < (t.GetX()-fgkMaxStep) && !PropagateToX(t, x+fgkMaxStep, fgkMaxStep)) break;
-               if (!AdjustSector(&t)) break;
-               
-               // Start global position
-               Double_t xyz0[3];
-               t.GetXYZ(xyz0);
-
-               // End global position
-               Double_t alpha = t.GetAlpha(), y, z;
-               if (!t.GetProlongation(x,y,z)) break;    
-               Double_t xyz1[3];
-               xyz1[0] =  x * TMath::Cos(alpha) - y * TMath::Sin(alpha);
-               xyz1[1] =  x * TMath::Sin(alpha) + y * TMath::Cos(alpha);
-               xyz1[2] =  z;
-                               
-               // Get material budget
-               Double_t param[7];
-               AliTracker::MeanMaterialBudget(xyz0, xyz1, param);
-               Double_t xrho= param[0]*param[4];
-               Double_t xx0 = param[1]; // Get mean propagation parameters
-
-               // Propagate and update         
-               t.PropagateTo(x, xx0, xrho);
-               if (!AdjustSector(&t)) break;
-               
-               Double_t maxChi2 = t.GetPredictedChi2(tracklet);
-               if (maxChi2 < 1e+10 && t.Update(tracklet, maxChi2)){ 
-                       nClustersExpected += tracklet->GetN();
-               }
-       }
-
-       if(AliTRDReconstructor::StreamLevel() > 1){
-               Int_t index;
-               for(int iplane=0; iplane<6; iplane++){
-                       AliTRDseedV1 *tracklet = GetTracklet(&t, iplane, index);
-                       if(!tracklet) continue;
-                       t.SetTracklet(tracklet, iplane, index);
-               }
-
-               Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
-               TTreeSRedirector &cstreamer = *fgDebugStreamer;
-               cstreamer << "FollowProlongation"
-                               << "EventNumber="       << eventNumber
-                               << "ncl="                                       << nClustersExpected
-                               << "track.="                    << &t
-                               << "\n";
-       }
-
-       return nClustersExpected;
+  // Extrapolates the TRD track in the TPC direction.
+  //
+  // Parameters
+  //   t : the TRD track which has to be extrapolated
+  // 
+  // Output
+  //   number of clusters attached to the track
+  //
+  // Detailed description
+  //
+  // Starting from current radial position of track <t> this function
+  // extrapolates the track through the 6 TRD layers. The following steps
+  // are being performed for each plane:
+  // 1. prepare track:
+  //   a. get plane limits in the local x direction
+  //   b. check crossing sectors 
+  //   c. check track inclination
+  // 2. search tracklet in the tracker list (see GetTracklet() for details)
+  // 3. evaluate material budget using the geo manager
+  // 4. propagate and update track using the tracklet information.
+  //
+  // Debug level 2
+  //
+  
+  Bool_t kStoreIn = kTRUE;
+  Int_t    nClustersExpected = 0;
+  for (Int_t iplane = kNPlanes; iplane--;) {
+    Int_t   index   = 0;
+    AliTRDseedV1 *tracklet = GetTracklet(&t, iplane, index);
+    if(!tracklet) continue;
+    if(!tracklet->IsOK()) AliWarning("tracklet not OK");
+    
+    Double_t x  = tracklet->GetX();//GetX0();
+    // reject tracklets which are not considered for inward refit
+    if(x > t.GetX()+fgkMaxStep) continue;
+
+    // append tracklet to track
+    t.SetTracklet(tracklet, index);
+    
+    if (x < (t.GetX()-fgkMaxStep) && !PropagateToX(t, x+fgkMaxStep, fgkMaxStep)) break;
+    if (!AdjustSector(&t)) break;
+    
+    // Start global position
+    Double_t xyz0[3];
+    t.GetXYZ(xyz0);
+
+    // End global position
+    Double_t alpha = t.GetAlpha(), y, z;
+    if (!t.GetProlongation(x,y,z)) break;    
+    Double_t xyz1[3];
+    xyz1[0] =  x * TMath::Cos(alpha) - y * TMath::Sin(alpha);
+    xyz1[1] =  x * TMath::Sin(alpha) + y * TMath::Cos(alpha);
+    xyz1[2] =  z;
+        
+    Double_t length = TMath::Sqrt(
+      (xyz0[0]-xyz1[0])*(xyz0[0]-xyz1[0]) +
+      (xyz0[1]-xyz1[1])*(xyz0[1]-xyz1[1]) +
+      (xyz0[2]-xyz1[2])*(xyz0[2]-xyz1[2])
+    );
+    if(length>0.){
+      // Get material budget
+      Double_t param[7];
+      if(AliTracker::MeanMaterialBudget(xyz0, xyz1, param)<=0.) break;
+      Double_t xrho= param[0]*param[4];
+      Double_t xx0 = param[1]; // Get mean propagation parameters
+  
+      // Propagate and update          
+      t.PropagateTo(x, xx0, xrho);
+      if (!AdjustSector(&t)) break;
+    }
+    if(kStoreIn){
+      t.SetTrackHigh(); 
+      kStoreIn = kFALSE;
+    }
+
+    Double_t cov[3]; tracklet->GetCovAt(x, cov);
+    Double_t p[2] = { tracklet->GetY(), tracklet->GetZ()};
+    Double_t chi2 = ((AliExternalTrackParam)t).GetPredictedChi2(p, cov);
+    if (chi2 < 1e+10 && t.Update(p, cov, chi2)){ 
+      nClustersExpected += tracklet->GetN();
+    }
+  }
+
+  if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker) > 1){
+    Int_t index;
+    for(int iplane=0; iplane<AliTRDgeometry::kNlayer; iplane++){
+      AliTRDseedV1 *tracklet = GetTracklet(&t, iplane, index);
+      if(!tracklet) continue;
+      t.SetTracklet(tracklet, index);
+    }
+
+    Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
+    TTreeSRedirector &cstreamer = *fReconstructor->GetDebugStream(AliTRDReconstructor::kTracker);
+    AliTRDtrackV1 track(t);
+    track.SetOwner();
+    cstreamer << "FollowProlongation"
+        << "EventNumber="      << eventNumber
+        << "ncl="                                      << nClustersExpected
+        << "track.="                   << &track
+        << "\n";
+  }
+
+  return nClustersExpected;
 
 }
 
 //_____________________________________________________________________________
 Int_t AliTRDtrackerV1::FollowBackProlongation(AliTRDtrackV1 &t)
 {
-       // Extrapolates the TRD track in the TOF direction.
-       //
-       // Parameters
-       //   t : the TRD track which has to be extrapolated
-       // 
-       // Output
-       //   number of clusters attached to the track
-       //
-       // Detailed description
-       //
-       // Starting from current radial position of track <t> this function
-       // extrapolates the track through the 6 TRD layers. The following steps
-       // are being performed for each plane:
-       // 1. prepare track:
-       //   a. get plane limits in the local x direction
-       //   b. check crossing sectors 
-       //   c. check track inclination
-       // 2. build tracklet (see AliTRDseed::AttachClusters() for details)
-       // 3. evaluate material budget using the geo manager
-       // 4. propagate and update track using the tracklet information.
-       //
-       // Debug level 2
-       //
-
-       Int_t nClustersExpected = 0;
-       Double_t clength = AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick();
-       AliTRDtrackingChamber *chamber = 0x0;
-       
-       // Loop through the TRD planes
-       for (Int_t iplane = 0; iplane < AliTRDgeometry::Nplan(); iplane++) {
-               // BUILD TRACKLET IF NOT ALREADY BUILT
-               Double_t x = 0., y, z, alpha;
-               AliTRDseedV1 tracklet(*t.GetTracklet(iplane));
-               if(!tracklet.IsOK()){
-                       alpha = t.GetAlpha();
-                       Int_t sector = Int_t(alpha/AliTRDgeometry::GetAlpha() + (alpha>0. ? 0 : AliTRDgeometry::kNsect));
-
-                       if(!fTrSec[sector].GetNChambers()) continue;
-                       
-                       if((x = fTrSec[sector].GetX(iplane)) < 1.) continue;
-               
-                       if (!t.GetProlongation(x, y, z)) break;
-                       Int_t stack = fGeom->GetChamber(z, iplane);
-                       Int_t nCandidates = stack >= 0 ? 1 : 2;
-                       z -= stack >= 0 ? 0. : 4.; 
-                       
-                       for(int icham=0; icham<nCandidates; icham++, z+=8){
-                               if((stack = fGeom->GetChamber(z, iplane)) < 0) continue;
-                       
-                               if(!(chamber = fTrSec[sector].GetChamber(stack, iplane))) continue;
-                       
-                               if(chamber->GetNClusters() < fgNTimeBins*AliTRDReconstructor::RecoParam()->GetFindableClusters()) continue;
-                       
-                               x = chamber->GetX();
-                       
-                               AliTRDpadPlane *pp = fGeom->GetPadPlane(iplane, stack);
-                               tracklet.SetTilt(TMath::Tan(-TMath::DegToRad()*pp->GetTiltingAngle()));
-                               tracklet.SetPadLength(pp->GetLengthIPad());
-                               tracklet.SetPlane(iplane);
-                               tracklet.SetX0(x);
-                               if(!tracklet.Init(&t)){
-                                       t.SetStop(kTRUE);
-                                       return nClustersExpected;
-                               }
-                               if(!tracklet.AttachClustersIter(chamber, 1000.)) continue;
-                               tracklet.Init(&t);
-                               
-                               if(tracklet.GetN() < fgNTimeBins * AliTRDReconstructor::RecoParam()->GetFindableClusters()) continue;
-                       
-                               break;
-                       }
-               }
-               if(!tracklet.IsOK()){
-                       if(x < 1.) continue; //temporary
-                       if(!PropagateToX(t, x-fgkMaxStep, fgkMaxStep)) break;
-                       if(!AdjustSector(&t)) break;
-                       if(TMath::Abs(t.GetSnp()) > fgkMaxSnp) break;
-                       continue;
-               }
-               
-               // Propagate closer to the current chamber if neccessary 
-               x -= clength;
-               if (x > (fgkMaxStep + t.GetX()) && !PropagateToX(t, x-fgkMaxStep, fgkMaxStep)) break;
-               if (!AdjustSector(&t)) break;
-               if (TMath::Abs(t.GetSnp()) > fgkMaxSnp) break;
-               
-               // load tracklet to the tracker and the track
-               Int_t index = SetTracklet(&tracklet);
-               t.SetTracklet(&tracklet, iplane, index);
-       
-       
-               // Calculate the mean material budget along the path inside the chamber
-               //Calculate global entry and exit positions of the track in chamber (only track prolongation)
-               Double_t xyz0[3]; // entry point 
-               t.GetXYZ(xyz0);
-               alpha = t.GetAlpha();
-               x = tracklet.GetX0();
-               if (!t.GetProlongation(x, y, z)) break;
-               Double_t xyz1[3]; // exit point
-               xyz1[0] =  x * TMath::Cos(alpha) - y * TMath::Sin(alpha); 
-               xyz1[1] = +x * TMath::Sin(alpha) + y * TMath::Cos(alpha);
-               xyz1[2] =  z;
-               Double_t param[7];
-               AliTracker::MeanMaterialBudget(xyz0, xyz1, param);      
-               // The mean propagation parameters
-               Double_t xrho = param[0]*param[4]; // density*length
-               Double_t xx0  = param[1]; // radiation length
-               
-               // Propagate and update track
-               t.PropagateTo(x, xx0, xrho);
-               if (!AdjustSector(&t)) break;
-               Double_t maxChi2 = t.GetPredictedChi2(&tracklet);
-               if (maxChi2<1e+10 && t.Update(&tracklet, maxChi2)){ 
-                       nClustersExpected += tracklet.GetN();
-                       t.SetTracklet(&tracklet, iplane, index);
-                       UpdateTracklet(&tracklet, index);
-               }
-               // Reset material budget if 2 consecutive gold
-               if(iplane>0 && tracklet.GetN() + t.GetTracklet(iplane-1)->GetN() > 20) t.SetBudget(2, 0.);
-
-               // Make backup of the track until is gold
-               // TO DO update quality check of the track.
-               // consider comparison with fTimeBinsRange
-               Float_t ratio0 = tracklet.GetN() / Float_t(fgNTimeBins);
-               //Float_t ratio1 = Float_t(t.GetNumberOfClusters()+1) / Float_t(t.GetNExpected()+1);    
-               //printf("tracklet.GetChi2() %f     [< 18.0]\n", tracklet.GetChi2()); 
-               //printf("ratio0    %f              [>   0.8]\n", ratio0);
-               //printf("ratio1     %f             [>   0.6]\n", ratio1); 
-               //printf("ratio0+ratio1 %f          [>   1.5]\n", ratio0+ratio1); 
-               //printf("t.GetNCross()  %d         [==    0]\n", t.GetNCross()); 
-               //printf("TMath::Abs(t.GetSnp()) %f [<  0.85]\n", TMath::Abs(t.GetSnp()));
-               //printf("t.GetNumberOfClusters() %d [>    20]\n", t.GetNumberOfClusters());
-               
-               if (//(tracklet.GetChi2()      <  18.0) && TO DO check with FindClusters and move it to AliTRDseed::Update 
-                               (ratio0                  >   0.8) && 
-                               //(ratio1                  >   0.6) && 
-                               //(ratio0+ratio1           >   1.5) && 
-                               (t.GetNCross()           ==    0) && 
-                               (TMath::Abs(t.GetSnp())  <  0.85) &&
-                               (t.GetNumberOfClusters() >    20)) t.MakeBackupTrack();
-               
-       } // end planes loop
-
-       if(AliTRDReconstructor::StreamLevel() > 1){
-               TTreeSRedirector &cstreamer = *fgDebugStreamer;
-               Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
-               cstreamer << "FollowBackProlongation"
-                               << "EventNumber="                       << eventNumber
-                               << "ncl="                                                       << nClustersExpected
-                               << "track.="                                    << &t
-                               << "\n";
-       }
-       
-       return nClustersExpected;
+// Extrapolates/Build the TRD track in the TOF direction.
+//
+// Parameters
+//   t : the TRD track which has to be extrapolated
+// 
+// Output
+//   number of clusters attached to the track
+//
+// Starting from current radial position of track <t> this function
+// extrapolates the track through the 6 TRD layers. The following steps
+// are being performed for each plane:
+// 1. Propagate track to the entrance of the next chamber:
+//   - get chamber limits in the radial direction
+//   - check crossing sectors 
+//   - check track inclination
+//   - check track prolongation against boundary conditions (see exclusion boundaries on AliTRDgeometry::IsOnBoundary())
+// 2. Build tracklet (see AliTRDseed::AttachClusters() for details) for this layer if needed. If only 
+//    Kalman filter is needed and tracklets are already linked to the track this step is skipped.
+// 3. Fit tracklet using the information from the Kalman filter.
+// 4. Propagate and update track at reference radial position of the tracklet.
+// 5. Register tracklet with the tracker and track; update pulls monitoring.
+//
+// Observation
+//   1. During the propagation a bit map is filled detailing the status of the track in each TRD chamber. The following errors are being registered for each tracklet:
+// - AliTRDtrackV1::kProlongation : track prolongation failed
+// - AliTRDtrackV1::kPropagation : track prolongation failed
+// - AliTRDtrackV1::kAdjustSector : failed during sector crossing
+// - AliTRDtrackV1::kSnp : too large bending
+// - AliTRDtrackV1::kTrackletInit : fail to initialize tracklet
+// - AliTRDtrackV1::kUpdate : fail to attach clusters or fit the tracklet
+// - AliTRDtrackV1::kUnknown : anything which is not covered before
+//   2. By default the status of the track before first TRD update is saved. 
+// 
+// Debug level 2
+//
+// Author
+//   Alexandru Bercuci <A.Bercuci@gsi.de>
+//
+
+  Int_t n = 0;
+  Double_t driftLength = .5*AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick();
+  AliTRDtrackingChamber *chamber = 0x0;
+  
+  AliTRDseedV1 tracklet, *ptrTracklet = 0x0;
+  // in case of stand alone tracking we store all the pointers to the tracklets in a temporary array
+  AliTRDseedV1 *tracklets[kNPlanes];
+  memset(tracklets, 0, sizeof(AliTRDseedV1 *) * kNPlanes);
+  for(Int_t ip = 0; ip < kNPlanes; ip++){
+    tracklets[ip] = t.GetTracklet(ip);
+    t.UnsetTracklet(ip);
+  } 
+  Bool_t kStoreIn = kTRUE, kPropagateIn = kTRUE;
+
+  // Loop through the TRD layers
+  TGeoHMatrix *matrix = 0x0;
+  Double_t x, y, z;
+  for (Int_t ily=0, sm=-1, stk=-1, det=-1; ily < AliTRDgeometry::kNlayer; ily++) {
+    // rough estimate of the entry point
+    if (!t.GetProlongation(fR[ily], y, z)){
+      n=-1; 
+      t.SetStatus(AliTRDtrackV1::kProlongation);
+      break;
+    }
+
+    // find sector / stack / detector
+    sm = t.GetSector();
+    // TODO cross check with y value !
+    stk = fGeom->GetStack(z, ily);
+    det = stk>=0 ? AliTRDgeometry::GetDetector(ily, stk, sm) : -1;
+    matrix = det>=0 ? fGeom->GetClusterMatrix(det) : 0x0;
+
+    // check if supermodule/chamber is installed
+    if( !fGeom->GetSMstatus(sm) ||
+        stk<0. ||
+        fGeom->IsHole(ily, stk, sm) ||
+        !matrix ){ 
+      // propagate to the default radial position
+      if(fR[ily] > (fgkMaxStep + t.GetX()) && !PropagateToX(t, fR[ily], fgkMaxStep)){
+        n=-1; 
+        t.SetStatus(AliTRDtrackV1::kPropagation);
+        break;
+      }
+      if(!AdjustSector(&t)){
+        n=-1; 
+        t.SetStatus(AliTRDtrackV1::kAdjustSector);
+        break;
+      }
+      if(TMath::Abs(t.GetSnp()) > fgkMaxSnp){
+        n=-1; 
+        t.SetStatus(AliTRDtrackV1::kSnp);
+        break;
+      }
+      t.SetStatus(AliTRDtrackV1::kGeometry, ily);
+      continue;
+    }
+
+    // retrieve rotation matrix for the current chamber
+    Double_t loc[] = {AliTRDgeometry::AnodePos()- driftLength, 0., 0.};
+    Double_t glb[] = {0., 0., 0.};
+    matrix->LocalToMaster(loc, glb);
+
+    // Propagate to the radial distance of the current layer
+    x = glb[0] - fgkMaxStep;
+    if(x > (fgkMaxStep + t.GetX()) && !PropagateToX(t, x, fgkMaxStep)){
+      n=-1; 
+      t.SetStatus(AliTRDtrackV1::kPropagation);
+      break;
+    }
+    if(!AdjustSector(&t)){
+      n=-1; 
+      t.SetStatus(AliTRDtrackV1::kAdjustSector);
+      break;
+    }
+    if(TMath::Abs(t.GetSnp()) > fgkMaxSnp) {
+      n=-1; 
+      t.SetStatus(AliTRDtrackV1::kSnp);
+      break;
+    }
+    Bool_t RECALCULATE = kFALSE;
+    if(sm != t.GetSector()){
+      sm = t.GetSector(); 
+      RECALCULATE = kTRUE;
+    }
+    if(stk != fGeom->GetStack(z, ily)){
+      stk = fGeom->GetStack(z, ily);
+      RECALCULATE = kTRUE;
+    }
+    if(RECALCULATE){
+      det = AliTRDgeometry::GetDetector(ily, stk, sm);
+      if(!(matrix = fGeom->GetClusterMatrix(det))){ 
+        t.SetStatus(AliTRDtrackV1::kGeometry, ily);
+        continue;
+      }
+      matrix->LocalToMaster(loc, glb);
+      x = glb[0] - fgkMaxStep;
+    }
+
+    // check if track is well inside fiducial volume 
+    if (!t.GetProlongation(x+fgkMaxStep, y, z)) {
+      n=-1; 
+      t.SetStatus(AliTRDtrackV1::kProlongation);
+      break;
+    }
+    if(fGeom->IsOnBoundary(det, y, z, .5)){ 
+      t.SetStatus(AliTRDtrackV1::kBoundary, ily);
+      continue;
+    }
+    // mark track as entering the FIDUCIAL volume of TRD
+    if(kStoreIn){
+      t.SetTrackLow(); 
+      kStoreIn = kFALSE;
+    }
+
+    ptrTracklet  = tracklets[ily];
+    if(!ptrTracklet){ // BUILD TRACKLET
+      // check data in supermodule
+      if(!fTrSec[sm].GetNChambers()){ 
+        t.SetStatus(AliTRDtrackV1::kNoClusters, ily);
+        continue;
+      }
+      if(fTrSec[sm].GetX(ily) < 1.){ 
+        t.SetStatus(AliTRDtrackV1::kNoClusters, ily);
+        continue;
+      }
+      
+      // check data in chamber
+      if(!(chamber = fTrSec[sm].GetChamber(stk, ily))){ 
+        t.SetStatus(AliTRDtrackV1::kNoClusters, ily);
+        continue;
+      }
+      if(chamber->GetNClusters() < fgNTimeBins*fReconstructor->GetRecoParam() ->GetFindableClusters()){ 
+        t.SetStatus(AliTRDtrackV1::kNoClusters, ily);
+        continue;
+      }      
+      // build tracklet
+      ptrTracklet = new(&tracklet) AliTRDseedV1(det);
+      ptrTracklet->SetReconstructor(fReconstructor);
+      ptrTracklet->SetKink(t.IsKink());
+      ptrTracklet->SetPadPlane(fGeom->GetPadPlane(ily, stk));
+      ptrTracklet->SetX0(glb[0]+driftLength);
+      if(!tracklet.Init(&t)){
+        n=-1; 
+        t.SetStatus(AliTRDtrackV1::kTrackletInit);
+        break;
+      }
+      if(!tracklet.AttachClusters(chamber, kTRUE)){   
+        t.SetStatus(AliTRDtrackV1::kNoAttach, ily);
+        continue;
+      }
+      if(tracklet.GetN() < fgNTimeBins*fReconstructor->GetRecoParam() ->GetFindableClusters()){
+        t.SetStatus(AliTRDtrackV1::kNoClustersTracklet, ily);
+        continue;
+      }
+      ptrTracklet->UpdateUsed();
+    }
+    // propagate track to the radial position of the tracklet
+    ptrTracklet->UseClusters(); // TODO ? do we need this here ?
+    // fit tracklet no tilt correction
+    if(!ptrTracklet->Fit(kFALSE)){
+      t.SetStatus(AliTRDtrackV1::kNoFit, ily);
+      continue;
+    } 
+    x = ptrTracklet->GetX(); //GetX0();
+    if(x > (fgkMaxStep + t.GetX()) && !PropagateToX(t, x, fgkMaxStep)) {
+      n=-1; 
+      t.SetStatus(AliTRDtrackV1::kPropagation);
+      break;
+    }
+    if(!AdjustSector(&t)) {
+      n=-1; 
+      t.SetStatus(AliTRDtrackV1::kAdjustSector);
+      break;
+    }
+    if(TMath::Abs(t.GetSnp()) > fgkMaxSnp) {
+      n=-1; 
+      t.SetStatus(AliTRDtrackV1::kSnp);
+      break;
+    }
+    if(kPropagateIn){
+      t.SetTrackLow(); 
+      kPropagateIn = kFALSE;
+    }
+    Double_t cov[3]; ptrTracklet->GetCovAt(x, cov);
+    Double_t p[2] = { ptrTracklet->GetY(), ptrTracklet->GetZ()};
+    Double_t chi2 = ((AliExternalTrackParam)t).GetPredictedChi2(p, cov);
+    if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker) > 2){
+      Double_t ytrack = ptrTracklet->GetYref(0);
+      Double_t ztrack = ptrTracklet->GetZref(0);
+      Double_t ytracklet = ptrTracklet->GetYfit(0);
+      Double_t ztracklet = ptrTracklet->GetZfit(0);
+      Double_t phitrack = ptrTracklet->GetYref(1);
+      Double_t phitracklet = ptrTracklet->GetYfit(1);
+      Double_t thetatrack = ptrTracklet->GetZref(1);
+      Double_t thetatracklet = ptrTracklet->GetZfit(1);
+   
+      TTreeSRedirector &mystreamer = *fReconstructor->GetDebugStream(AliTRDReconstructor::kTracker);
+      mystreamer << "FollowBackProlongation1"
+        << "il="              << ily
+        << "x="               << x
+        << "ytrack="          << ytrack
+        << "ztrack="          << ztrack
+        << "ytracklet="       << ytracklet
+        << "ztracklet="       << ztracklet
+        << "phitrack="        << phitrack
+        << "thetatrack="      << thetatrack
+        << "phitracklet="     << phitracklet
+        << "thetatracklet="   << thetatracklet
+        << "chi2="            << chi2
+        << "\n";
+    }
+    // update Kalman with the TRD measurement
+    if(chi2>1e+10){ // TODO
+      t.SetStatus(AliTRDtrackV1::kChi2, ily);
+      continue; 
+    }
+    if(!t.Update(p, cov, chi2)) {
+      n=-1; 
+      t.SetStatus(AliTRDtrackV1::kUpdate);
+      break;
+    }
+    // fill residuals ?!
+    AliTracker::FillResiduals(&t, p, cov, ptrTracklet->GetVolumeId());
+  
+
+    // load tracklet to the tracker
+    ptrTracklet->Update(&t);
+    ptrTracklet = SetTracklet(ptrTracklet);
+    t.SetTracklet(ptrTracklet, fTracklets->GetEntriesFast()-1);
+    n += ptrTracklet->GetN();
+
+    // Reset material budget if 2 consecutive gold
+//     if(ilayer>0 && t.GetTracklet(ilayer-1) && ptrTracklet->GetN() + t.GetTracklet(ilayer-1)->GetN() > 20) t.SetBudget(2, 0.);
+
+    // Make backup of the track until is gold
+    // TO DO update quality check of the track.
+    // consider comparison with fTimeBinsRange
+    Float_t ratio0 = ptrTracklet->GetN() / Float_t(fgNTimeBins);
+    //Float_t ratio1 = Float_t(t.GetNumberOfClusters()+1) / Float_t(t.GetNExpected()+1);       
+    
+    if( (chi2                    <  18.0) &&  
+        (ratio0                  >   0.8) && 
+        //(ratio1                  >   0.6) && 
+        //(ratio0+ratio1           >   1.5) && 
+        (t.GetNCross()           ==    0) && 
+        (TMath::Abs(t.GetSnp())  <  0.85) &&
+        (t.GetNumberOfClusters() >    20)){
+      t.MakeBackupTrack();
+    }
+  } // end layers loop
+  //printf("clusters[%d] chi2[%f] x[%f] status[%d ", n, t.GetChi2(), t.GetX(), t.GetStatusTRD());
+  //for(int i=0; i<6; i++) printf("%d ", t.GetStatusTRD(i)); printf("]\n");
+
+  if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker) > 1){
+    TTreeSRedirector &cstreamer = *fReconstructor->GetDebugStream(AliTRDReconstructor::kTracker);
+    Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
+    AliTRDtrackV1 track(t);
+    track.SetOwner();
+    cstreamer << "FollowBackProlongation"
+        << "EventNumber=" << eventNumber
+        << "ncl="         << n
+        << "track.="      << &track
+        << "\n";
+  }
+  
+  return n;
 }
 
 //_________________________________________________________________________
 Float_t AliTRDtrackerV1::FitRieman(AliTRDseedV1 *tracklets, Double_t *chi2, Int_t *planes){
-       //
-       // Fits a Riemann-circle to the given points without tilting pad correction.
-       // The fit is performed using an instance of the class AliRieman (equations 
-       // and transformations see documentation of this class)
-       // Afterwards all the tracklets are Updated
-       //
-       // Parameters: - Array of tracklets (AliTRDseedV1)
-       //             - Storage for the chi2 values (beginning with direction z)  
-       //             - Seeding configuration
-       // Output:     - The curvature
-       //
-       AliRieman *fitter = AliTRDtrackerV1::GetRiemanFitter();
-       fitter->Reset();
-       Int_t allplanes[] = {0, 1, 2, 3, 4, 5};
-       Int_t *ppl = &allplanes[0];
-       Int_t maxLayers = 6;
-       if(planes){
-               maxLayers = 4;
-               ppl = planes;
-       }
-       for(Int_t il = 0; il < maxLayers; il++){
-               if(!tracklets[ppl[il]].IsOK()) continue;
-               fitter->AddPoint(tracklets[ppl[il]].GetX0(), tracklets[ppl[il]].GetYfitR(0), tracklets[ppl[il]].GetZProb(),1,10);
-       }
-       fitter->Update();
-       // Set the reference position of the fit and calculate the chi2 values
-       memset(chi2, 0, sizeof(Double_t) * 2);
-       for(Int_t il = 0; il < maxLayers; il++){
-               // Reference positions
-               tracklets[ppl[il]].Init(fitter);
-               
-               // chi2
-               if((!tracklets[ppl[il]].IsOK()) && (!planes)) continue;
-               chi2[0] += tracklets[ppl[il]].GetChi2Y();
-               chi2[1] += tracklets[ppl[il]].GetChi2Z();
-       }
-       return fitter->GetC();
+  //
+  // Fits a Riemann-circle to the given points without tilting pad correction.
+  // The fit is performed using an instance of the class AliRieman (equations 
+  // and transformations see documentation of this class)
+  // Afterwards all the tracklets are Updated
+  //
+  // Parameters: - Array of tracklets (AliTRDseedV1)
+  //             - Storage for the chi2 values (beginning with direction z)  
+  //             - Seeding configuration
+  // Output:     - The curvature
+  //
+  AliRieman *fitter = AliTRDtrackerV1::GetRiemanFitter();
+  fitter->Reset();
+  Int_t allplanes[] = {0, 1, 2, 3, 4, 5};
+  Int_t *ppl = &allplanes[0];
+  Int_t maxLayers = 6;
+  if(planes){
+    maxLayers = 4;
+    ppl = planes;
+  }
+  for(Int_t il = 0; il < maxLayers; il++){
+    if(!tracklets[ppl[il]].IsOK()) continue;
+    fitter->AddPoint(tracklets[ppl[il]].GetX0(), tracklets[ppl[il]].GetYfit(0), tracklets[ppl[il]].GetZfit(0),1,10);
+  }
+  fitter->Update();
+  // Set the reference position of the fit and calculate the chi2 values
+  memset(chi2, 0, sizeof(Double_t) * 2);
+  for(Int_t il = 0; il < maxLayers; il++){
+    // Reference positions
+    tracklets[ppl[il]].Init(fitter);
+    
+    // chi2
+    if((!tracklets[ppl[il]].IsOK()) && (!planes)) continue;
+    chi2[0] += tracklets[ppl[il]].GetChi2Y();
+    chi2[1] += tracklets[ppl[il]].GetChi2Z();
+  }
+  return fitter->GetC();
 }
 
 //_________________________________________________________________________
 void AliTRDtrackerV1::FitRieman(AliTRDcluster **seedcl, Double_t chi2[2])
 {
-       //
-       // Performs a Riemann helix fit using the seedclusters as spacepoints
-       // Afterwards the chi2 values are calculated and the seeds are updated
-       //
-       // Parameters: - The four seedclusters
-       //             - The tracklet array (AliTRDseedV1)
-       //             - The seeding configuration
-       //             - Chi2 array
-       //
-       // debug level 2
-       //
-       AliRieman *fitter = AliTRDtrackerV1::GetRiemanFitter();
-       fitter->Reset();
-       for(Int_t i = 0; i < 4; i++)
-               fitter->AddPoint(seedcl[i]->GetX(), seedcl[i]->GetY(), seedcl[i]->GetZ(), 1, 10);
-       fitter->Update();
-       
-       
-       // Update the seed and calculated the chi2 value
-       chi2[0] = 0; chi2[1] = 0;
-       for(Int_t ipl = 0; ipl < kNSeedPlanes; ipl++){
-               // chi2
-               chi2[0] += (seedcl[ipl]->GetZ() - fitter->GetZat(seedcl[ipl]->GetX())) * (seedcl[ipl]->GetZ() - fitter->GetZat(seedcl[ipl]->GetX()));
-               chi2[1] += (seedcl[ipl]->GetY() - fitter->GetYat(seedcl[ipl]->GetX())) * (seedcl[ipl]->GetY() - fitter->GetYat(seedcl[ipl]->GetX()));
-       }       
+  //
+  // Performs a Riemann helix fit using the seedclusters as spacepoints
+  // Afterwards the chi2 values are calculated and the seeds are updated
+  //
+  // Parameters: - The four seedclusters
+  //             - The tracklet array (AliTRDseedV1)
+  //             - The seeding configuration
+  //             - Chi2 array
+  //
+  // debug level 2
+  //
+  AliRieman *fitter = AliTRDtrackerV1::GetRiemanFitter();
+  fitter->Reset();
+  for(Int_t i = 0; i < 4; i++){
+    fitter->AddPoint(seedcl[i]->GetX(), seedcl[i]->GetY(), seedcl[i]->GetZ(), 1., 10.);
+  }
+  fitter->Update();
+  
+  
+  // Update the seed and calculated the chi2 value
+  chi2[0] = 0; chi2[1] = 0;
+  for(Int_t ipl = 0; ipl < kNSeedPlanes; ipl++){
+    // chi2
+    chi2[0] += (seedcl[ipl]->GetZ() - fitter->GetZat(seedcl[ipl]->GetX())) * (seedcl[ipl]->GetZ() - fitter->GetZat(seedcl[ipl]->GetX()));
+    chi2[1] += (seedcl[ipl]->GetY() - fitter->GetYat(seedcl[ipl]->GetX())) * (seedcl[ipl]->GetY() - fitter->GetYat(seedcl[ipl]->GetX()));
+  }    
 }
 
 
 //_________________________________________________________________________
 Float_t AliTRDtrackerV1::FitTiltedRiemanConstraint(AliTRDseedV1 *tracklets, Double_t zVertex)
 {
-       //
-       // Fits a helix to the clusters. Pad tilting is considered. As constraint it is 
-       // assumed that the vertex position is set to 0.
-       // This method is very usefull for high-pt particles
-       // Basis for the fit: (x - x0)^2 + (y - y0)^2 - R^2 = 0
-       //      x0, y0: Center of the circle
-       // Measured y-position: ymeas = y - tan(phiT)(zc - zt)
-       //      zc: center of the pad row
-       // Equation which has to be fitted (after transformation):
-       // a + b * u + e * v + 2*(ymeas + tan(phiT)(z - zVertex))*t = 0
-       // Transformation:
-       // t = 1/(x^2 + y^2)
-       // u = 2 * x * t
-       // v = 2 * x * tan(phiT) * t
-       // Parameters in the equation: 
-       //    a = -1/y0, b = x0/y0, e = dz/dx
-       //
-       // The Curvature is calculated by the following equation:
-       //               - curv = a/Sqrt(b^2 + 1) = 1/R
-       // Parameters:   - the 6 tracklets
-       //               - the Vertex constraint
-       // Output:       - the Chi2 value of the track
-       //
-       // debug level 5
-       //
-
-       TLinearFitter *fitter = GetTiltedRiemanFitterConstraint();
-       fitter->StoreData(kTRUE);
-       fitter->ClearPoints();
-       AliTRDcluster *cl = 0x0;
-       
-       Float_t x, y, z, w, t, error, tilt;
-       Double_t uvt[2];
-       Int_t nPoints = 0;
-       for(Int_t ipl = 0; ipl < AliTRDgeometry::kNplan; ipl++){
-               if(!tracklets[ipl].IsOK()) continue;
-               for(Int_t itb = 0; itb < fgNTimeBins; itb++){
-                       if(!tracklets[ipl].IsUsable(itb)) continue;
-                       cl = tracklets[ipl].GetClusters(itb);
-                       x = cl->GetX();
-                       y = cl->GetY();
-                       z = cl->GetZ();
-                       tilt = tracklets[ipl].GetTilt();
-                       // Transformation
-                       t = 1./(x * x + y * y);
-                       uvt[0] = 2. * x * t;
-                       uvt[1] = 2. * x * t * tilt ;
-                       w = 2. * (y + tilt * (z - zVertex)) * t;
-                       error = 2. * 0.2 * t;
-                       fitter->AddPoint(uvt, w, error);
-                       nPoints++;
-               }
-       }
-       fitter->Eval();
-
-       // Calculate curvature
-       Double_t a = fitter->GetParameter(0);
-       Double_t b = fitter->GetParameter(1);
-       Double_t curvature = a/TMath::Sqrt(b*b + 1);
-
-       Float_t chi2track = fitter->GetChisquare()/Double_t(nPoints);
-       for(Int_t ip = 0; ip < AliTRDtrackerV1::kNPlanes; ip++)
-               tracklets[ip].SetCC(curvature);
-
-       if(AliTRDReconstructor::StreamLevel() >= 5){
-               //Linear Model on z-direction
-               Double_t xref = CalculateReferenceX(tracklets);         // Relative to the middle of the stack
-               Double_t slope = fitter->GetParameter(2);
-               Double_t zref = slope * xref;
-               Float_t chi2Z = CalculateChi2Z(tracklets, zref, slope, xref);
-               Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
-               Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
-               TTreeSRedirector &treeStreamer = *fgDebugStreamer;
-               treeStreamer << "FitTiltedRiemanConstraint"
-               << "EventNumber="               << eventNumber
-               << "CandidateNumber="   << candidateNumber
-               << "Curvature="                         << curvature
-               << "Chi2Track="                         << chi2track
-               << "Chi2Z="                                             << chi2Z
-               << "zref="                                              << zref
-               << "\n";
-       }
-       return chi2track;
+  //
+  // Fits a helix to the clusters. Pad tilting is considered. As constraint it is 
+  // assumed that the vertex position is set to 0.
+  // This method is very usefull for high-pt particles
+  // Basis for the fit: (x - x0)^2 + (y - y0)^2 - R^2 = 0
+  //      x0, y0: Center of the circle
+  // Measured y-position: ymeas = y - tan(phiT)(zc - zt)
+  //      zc: center of the pad row
+  // Equation which has to be fitted (after transformation):
+  // a + b * u + e * v + 2*(ymeas + tan(phiT)(z - zVertex))*t = 0
+  // Transformation:
+  // t = 1/(x^2 + y^2)
+  // u = 2 * x * t
+  // v = 2 * x * tan(phiT) * t
+  // Parameters in the equation: 
+  //    a = -1/y0, b = x0/y0, e = dz/dx
+  //
+  // The Curvature is calculated by the following equation:
+  //               - curv = a/Sqrt(b^2 + 1) = 1/R
+  // Parameters:   - the 6 tracklets
+  //               - the Vertex constraint
+  // Output:       - the Chi2 value of the track
+  //
+  // debug level 5
+  //
+
+  TLinearFitter *fitter = GetTiltedRiemanFitterConstraint();
+  fitter->StoreData(kTRUE);
+  fitter->ClearPoints();
+  AliTRDcluster *cl = 0x0;
+  
+  Float_t x, y, z, w, t, error, tilt;
+  Double_t uvt[2];
+  Int_t nPoints = 0;
+  for(Int_t ilr = 0; ilr < AliTRDgeometry::kNlayer; ilr++){
+    if(!tracklets[ilr].IsOK()) continue;
+    for(Int_t itb = 0; itb < AliTRDseedV1::kNclusters; itb++){
+      if(!tracklets[ilr].IsUsable(itb)) continue;
+      cl = tracklets[ilr].GetClusters(itb);
+      if(!cl->IsInChamber()) continue;
+      x = cl->GetX();
+      y = cl->GetY();
+      z = cl->GetZ();
+      tilt = tracklets[ilr].GetTilt();
+      // Transformation
+      t = 1./(x * x + y * y);
+      uvt[0] = 2. * x * t;
+      uvt[1] = 2. * x * t * tilt ;
+      w = 2. * (y + tilt * (z - zVertex)) * t;
+      error = 2. * TMath::Sqrt(cl->GetSigmaY2()+tilt*tilt*cl->GetSigmaZ2()) * t;
+      fitter->AddPoint(uvt, w, error);
+      nPoints++;
+    }
+  }
+  fitter->Eval();
+
+  // Calculate curvature
+  Double_t a = fitter->GetParameter(0);
+  Double_t b = fitter->GetParameter(1);
+  Double_t curvature = a/TMath::Sqrt(b*b + 1);
+
+  Float_t chi2track = fitter->GetChisquare()/Double_t(nPoints);
+  for(Int_t ip = 0; ip < AliTRDtrackerV1::kNPlanes; ip++)
+    tracklets[ip].SetC(curvature);
+
+/*  if(fReconstructor->GetStreamLevel() >= 5){
+    //Linear Model on z-direction
+    Double_t xref = CalculateReferenceX(tracklets);            // Relative to the middle of the stack
+    Double_t slope = fitter->GetParameter(2);
+    Double_t zref = slope * xref;
+    Float_t chi2Z = CalculateChi2Z(tracklets, zref, slope, xref);
+    Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
+    Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
+    TTreeSRedirector &treeStreamer = *fReconstructor->GetDebugStream(AliTRDReconstructor::kTracker);
+    treeStreamer << "FitTiltedRiemanConstraint"
+    << "EventNumber="          << eventNumber
+    << "CandidateNumber="      << candidateNumber
+    << "Curvature="                            << curvature
+    << "Chi2Track="                            << chi2track
+    << "Chi2Z="                                                << chi2Z
+    << "zref="                                         << zref
+    << "\n";
+  }*/
+  return chi2track;
 }
 
 //_________________________________________________________________________
 Float_t AliTRDtrackerV1::FitTiltedRieman(AliTRDseedV1 *tracklets, Bool_t sigError)
 {
-       //
-       // Performs a Riemann fit taking tilting pad correction into account
-       // The equation of a Riemann circle, where the y position is substituted by the 
-       // measured y-position taking pad tilting into account, has to be transformed
-       // into a 4-dimensional hyperplane equation
-       // Riemann circle: (x-x0)^2 + (y-y0)^2 -R^2 = 0
-       // Measured y-Position: ymeas = y - tan(phiT)(zc - zt)
-       //          zc: center of the pad row
-       //          zt: z-position of the track
-       // The z-position of the track is assumed to be linear dependent on the x-position
-       // Transformed equation: a + b * u + c * t + d * v  + e * w - 2 * (ymeas + tan(phiT) * zc) * t = 0
-       // Transformation:       u = 2 * x * t
-       //                       v = 2 * tan(phiT) * t
-       //                       w = 2 * tan(phiT) * (x - xref) * t
-       //                       t = 1 / (x^2 + ymeas^2)
-       // Parameters:           a = -1/y0
-       //                       b = x0/y0
-       //                       c = (R^2 -x0^2 - y0^2)/y0
-       //                       d = offset
-       //                       e = dz/dx
-       // If the offset respectively the slope in z-position is impossible, the parameters are fixed using 
-       // results from the simple riemann fit. Afterwards the fit is redone.
-       // The curvature is calculated according to the formula:
-       //                       curv = a/(1 + b^2 + c*a) = 1/R
-       //
-       // Paramters:   - Array of tracklets (connected to the track candidate)
-       //              - Flag selecting the error definition
-       // Output:      - Chi2 values of the track (in Parameter list)
-       //
-       TLinearFitter *fitter = GetTiltedRiemanFitter();
-       fitter->StoreData(kTRUE);
-       fitter->ClearPoints();
-       AliTRDLeastSquare zfitter;
-       AliTRDcluster *cl = 0x0;
-
-       Double_t xref = CalculateReferenceX(tracklets);
-       Double_t x, y, z, t, tilt, dx, w, we;
-       Double_t uvt[4];
-       Int_t nPoints = 0;
-       // Containers for Least-square fitter
-       for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
-               if(!tracklets[ipl].IsOK()) continue;
-               for(Int_t itb = 0; itb < fgNTimeBins; itb++){
-                       if(!(cl = tracklets[ipl].GetClusters(itb))) continue;
-                       if (!tracklets[ipl].IsUsable(itb)) continue;
-                       x = cl->GetX();
-                       y = cl->GetY();
-                       z = cl->GetZ();
-                       tilt = tracklets[ipl].GetTilt();
-                       dx = x - xref;
-                       // Transformation
-                       t = 1./(x*x + y*y);
-                       uvt[0] = 2. * x * t;
-                       uvt[1] = t;
-                       uvt[2] = 2. * tilt * t;
-                       uvt[3] = 2. * tilt * dx * t;
-                       w = 2. * (y + tilt*z) * t;
-                       // error definition changes for the different calls
-                       we = 2. * t;
-                       we *= sigError ? tracklets[ipl].GetSigmaY() : 0.2;
-                       fitter->AddPoint(uvt, w, we);
-                       zfitter.AddPoint(&x, z, static_cast<Double_t>(TMath::Sqrt(cl->GetSigmaZ2())));
-                       nPoints++;
-               }
-       }
-       fitter->Eval();
-       zfitter.Eval();
-
-       Double_t offset = fitter->GetParameter(3);
-       Double_t slope  = fitter->GetParameter(4);
-
-       // Linear fitter  - not possible to make boundaries
-       // Do not accept non possible z and dzdx combinations
-       Bool_t acceptablez = kTRUE;
-       Double_t zref = 0.0;
-       for (Int_t iLayer = 0; iLayer < kNPlanes; iLayer++) {
-               if(!tracklets[iLayer].IsOK()) continue;
-               zref = offset + slope * (tracklets[iLayer].GetX0() - xref);
-               if (TMath::Abs(tracklets[iLayer].GetZProb() - zref) > tracklets[iLayer].GetPadLength() * 0.5 + 1.0) 
-                       acceptablez = kFALSE;
-       }
-       if (!acceptablez) {
-               Double_t dzmf   = zfitter.GetFunctionParameter(1);
-               Double_t zmf    = zfitter.GetFunctionValue(&xref);
-               fgTiltedRieman->FixParameter(3, zmf);
-               fgTiltedRieman->FixParameter(4, dzmf);
-               fitter->Eval();
-               fitter->ReleaseParameter(3);
-               fitter->ReleaseParameter(4);
-               offset = fitter->GetParameter(3);
-               slope = fitter->GetParameter(4);
-       }
+  //
+  // Performs a Riemann fit taking tilting pad correction into account
+  // The equation of a Riemann circle, where the y position is substituted by the 
+  // measured y-position taking pad tilting into account, has to be transformed
+  // into a 4-dimensional hyperplane equation
+  // Riemann circle: (x-x0)^2 + (y-y0)^2 -R^2 = 0
+  // Measured y-Position: ymeas = y - tan(phiT)(zc - zt)
+  //          zc: center of the pad row
+  //          zt: z-position of the track
+  // The z-position of the track is assumed to be linear dependent on the x-position
+  // Transformed equation: a + b * u + c * t + d * v  + e * w - 2 * (ymeas + tan(phiT) * zc) * t = 0
+  // Transformation:       u = 2 * x * t
+  //                       v = 2 * tan(phiT) * t
+  //                       w = 2 * tan(phiT) * (x - xref) * t
+  //                       t = 1 / (x^2 + ymeas^2)
+  // Parameters:           a = -1/y0
+  //                       b = x0/y0
+  //                       c = (R^2 -x0^2 - y0^2)/y0
+  //                       d = offset
+  //                       e = dz/dx
+  // If the offset respectively the slope in z-position is impossible, the parameters are fixed using 
+  // results from the simple riemann fit. Afterwards the fit is redone.
+  // The curvature is calculated according to the formula:
+  //                       curv = a/(1 + b^2 + c*a) = 1/R
+  //
+  // Paramters:   - Array of tracklets (connected to the track candidate)
+  //              - Flag selecting the error definition
+  // Output:      - Chi2 values of the track (in Parameter list)
+  //
+  TLinearFitter *fitter = GetTiltedRiemanFitter();
+  fitter->StoreData(kTRUE);
+  fitter->ClearPoints();
+  AliTRDLeastSquare zfitter;
+  AliTRDcluster *cl = 0x0;
+
+  Double_t xref = CalculateReferenceX(tracklets);
+  Double_t x, y, z, t, tilt, dx, w, we, erry, errz;
+  Double_t uvt[4], sumPolY[5], sumPolZ[3];
+  memset(sumPolY, 0, sizeof(Double_t) * 5);
+  memset(sumPolZ, 0, sizeof(Double_t) * 3);
+  Int_t nPoints = 0;
+  // Containers for Least-square fitter
+  for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
+    if(!tracklets[ipl].IsOK()) continue;
+    tilt = tracklets[ipl].GetTilt();
+    for(Int_t itb = 0; itb < AliTRDseedV1::kNclusters; itb++){
+      if(!(cl = tracklets[ipl].GetClusters(itb))) continue;
+      if(!cl->IsInChamber()) continue;
+      if (!tracklets[ipl].IsUsable(itb)) continue;
+      x = cl->GetX();
+      y = cl->GetY();
+      z = cl->GetZ();
+      dx = x - xref;
+      // Transformation
+      t = 1./(x*x + y*y);
+      uvt[0] = 2. * x * t;
+      uvt[1] = t;
+      uvt[2] = 2. * tilt * t;
+      uvt[3] = 2. * tilt * dx * t;
+      w = 2. * (y + tilt*z) * t;
+      // error definition changes for the different calls
+      we = 2. * t;
+      we *= sigError ? TMath::Sqrt(cl->GetSigmaY2()+tilt*tilt*cl->GetSigmaZ2()) : 0.2;
+      fitter->AddPoint(uvt, w, we);
+      zfitter.AddPoint(&x, z, static_cast<Double_t>(TMath::Sqrt(cl->GetSigmaZ2())));
+      // adding points for covariance matrix estimation
+      erry = 1./(TMath::Sqrt(cl->GetSigmaY2()) + 0.1);  // 0.1 is a systematic error (due to misalignment and miscalibration)
+      erry *= erry;
+      errz = 1./cl->GetSigmaZ2();
+      for(Int_t ipol = 0; ipol < 5; ipol++){
+        sumPolY[ipol] += erry;
+        erry *= x;
+        if(ipol < 3){
+          sumPolZ[ipol] += errz;
+          errz *= x;
+        }
+      }
+      nPoints++;
+    }
+  }
+  fitter->Eval();
+  zfitter.Eval();
+
+  Double_t offset = fitter->GetParameter(3);
+  Double_t slope  = fitter->GetParameter(4);
+
+  // Linear fitter  - not possible to make boundaries
+  // Do not accept non possible z and dzdx combinations
+  Bool_t acceptablez = kTRUE;
+  Double_t zref = 0.0;
+  for (Int_t iLayer = 0; iLayer < kNPlanes; iLayer++) {
+    if(!tracklets[iLayer].IsOK()) continue;
+    zref = offset + slope * (tracklets[iLayer].GetX0() - xref);
+    if (TMath::Abs(tracklets[iLayer].GetZfit(0) - zref) > tracklets[iLayer].GetPadLength() * 0.5 + 1.0) 
+      acceptablez = kFALSE;
+  }
+  if (!acceptablez) {
+    Double_t dzmf      = zfitter.GetFunctionParameter(1);
+    Double_t zmf       = zfitter.GetFunctionValue(&xref);
+    fgTiltedRieman->FixParameter(3, zmf);
+    fgTiltedRieman->FixParameter(4, dzmf);
+    fitter->Eval();
+    fitter->ReleaseParameter(3);
+    fitter->ReleaseParameter(4);
+    offset = fitter->GetParameter(3);
+    slope = fitter->GetParameter(4);
+  }
+
+  // Calculate Curvarture
+  Double_t a     =  fitter->GetParameter(0);
+  Double_t b     =  fitter->GetParameter(1);
+  Double_t c     =  fitter->GetParameter(2);
+  Double_t curvature =  1.0 + b*b - c*a;
+  if (curvature > 0.0) 
+    curvature  =  a / TMath::Sqrt(curvature);
+
+  Double_t chi2track = fitter->GetChisquare()/Double_t(nPoints);
+
+  // Prepare error calculation
+  TMatrixD covarPolY(3,3);
+  covarPolY(0,0) = sumPolY[0]; covarPolY(1,1) = sumPolY[2]; covarPolY(2,2) = sumPolY[4];
+  covarPolY(0,1) = covarPolY(1,0) = sumPolY[1];
+  covarPolY(0,2) = covarPolY(2,0) = sumPolY[2];
+  covarPolY(2,1) = covarPolY(1,2) = sumPolY[3];
+  covarPolY.Invert();
+  TMatrixD covarPolZ(2,2);
+  covarPolZ(0,0) = sumPolZ[0]; covarPolZ(1,1) = sumPolZ[2];
+  covarPolZ(1,0) = covarPolZ(0,1) = sumPolZ[1];
+  covarPolZ.Invert();
+
+  // Update the tracklets
+  Double_t x1, dy, dz;
+  Double_t cov[15];
+  memset(cov, 0, sizeof(Double_t) * 15);
+  for(Int_t iLayer = 0; iLayer < AliTRDtrackerV1::kNPlanes; iLayer++) {
+
+    x  = tracklets[iLayer].GetX0();
+    x1 = x - xref;
+    y  = 0;
+    z  = 0;
+    dy = 0;
+    dz = 0;
+    memset(cov, 0, sizeof(Double_t) * 3);
+    TMatrixD transform(3,3);
+    transform(0,0) = 1;
+    transform(0,1) = x;
+    transform(0,2) = x*x;
+    transform(1,1) = 1;
+    transform(1,2) = x;
+    transform(2,2) = 1;
+    TMatrixD covariance(transform, TMatrixD::kMult, covarPolY);
+    covariance *= transform.T();
+    TMatrixD transformZ(2,2);
+    transformZ(0,0) = transformZ(1,1) = 1;
+    transformZ(0,1) = x;
+    TMatrixD covarZ(transformZ, TMatrixD::kMult, covarPolZ);
+    covarZ *= transformZ.T();
+    // y:     R^2 = (x - x0)^2 + (y - y0)^2
+    //     =>   y = y0 +/- Sqrt(R^2 - (x - x0)^2)
+    //          R = Sqrt() = 1/Curvature
+    //     =>   y = y0 +/- Sqrt(1/Curvature^2 - (x - x0)^2)  
+    Double_t res = (x * a + b);                                                                // = (x - x0)/y0
+    res *= res;
+    res  = 1.0 - c * a + b * b - res;                                  // = (R^2 - (x - x0)^2)/y0^2
+    if (res >= 0) {
+      res = TMath::Sqrt(res);
+      y    = (1.0 - res) / a;
+    }
+    cov[0] = covariance(0,0);
+    cov[2] = covarZ(0,0);
+    cov[1] = 0.;
+
+    // dy:      R^2 = (x - x0)^2 + (y - y0)^2
+    //     =>     y = +/- Sqrt(R^2 - (x - x0)^2) + y0
+    //     => dy/dx = (x - x0)/Sqrt(R^2 - (x - x0)^2) 
+    // Curvature: cr = 1/R = a/Sqrt(1 + b^2 - c*a)
+    //     => dy/dx =  (x - x0)/(1/(cr^2) - (x - x0)^2) 
+    Double_t x0 = -b / a;
+    if (-c * a + b * b + 1 > 0) {
+      if (1.0/(curvature * curvature) - (x - x0) * (x - x0) > 0.0) {
+       Double_t yderiv = (x - x0) / TMath::Sqrt(1.0/(curvature * curvature) - (x - x0) * (x - x0));
+        if (a < 0) yderiv *= -1.0;
+        dy = yderiv;
+      }
+    }
+    z  = offset + slope * (x - xref);
+    dz = slope;
+    tracklets[iLayer].SetYref(0, y);
+    tracklets[iLayer].SetYref(1, dy);
+    tracklets[iLayer].SetZref(0, z);
+    tracklets[iLayer].SetZref(1, dz);
+    tracklets[iLayer].SetC(curvature);
+    tracklets[iLayer].SetCovRef(cov);
+    tracklets[iLayer].SetChi2(chi2track);
+  }
+  
+/*  if(fReconstructor->GetStreamLevel() >=5){
+    TTreeSRedirector &cstreamer = *fReconstructor->GetDebugStream(AliTRDReconstructor::kTracker);
+    Int_t eventNumber                  = AliTRDtrackerDebug::GetEventNumber();
+    Int_t candidateNumber      = AliTRDtrackerDebug::GetCandidateNumber();
+    Double_t chi2z = CalculateChi2Z(tracklets, offset, slope, xref);
+    cstreamer << "FitTiltedRieman0"
+        << "EventNumber="                      << eventNumber
+        << "CandidateNumber="  << candidateNumber
+        << "xref="                                             << xref
+        << "Chi2Z="                                            << chi2z
+        << "\n";
+  }*/
+  return chi2track;
+}
 
-       // Calculate Curvarture
-       Double_t a     =  fitter->GetParameter(0);
-       Double_t b     =  fitter->GetParameter(1);
-       Double_t c     =  fitter->GetParameter(2);
-       Double_t curvature =  1.0 + b*b - c*a;
-       if (curvature > 0.0) 
-               curvature  =  a / TMath::Sqrt(curvature);
-
-       Double_t chi2track = fitter->GetChisquare()/Double_t(nPoints);
-
-       // Update the tracklets
-       Double_t dy, dz;
-       for(Int_t iLayer = 0; iLayer < AliTRDtrackerV1::kNPlanes; iLayer++) {
-
-               x  = tracklets[iLayer].GetX0();
-               y  = 0;
-               z  = 0;
-               dy = 0;
-               dz = 0;
-
-               // y:     R^2 = (x - x0)^2 + (y - y0)^2
-               //     =>   y = y0 +/- Sqrt(R^2 - (x - x0)^2)
-               //          R = Sqrt() = 1/Curvature
-               //     =>   y = y0 +/- Sqrt(1/Curvature^2 - (x - x0)^2)  
-               Double_t res = (x * a + b);                                                             // = (x - x0)/y0
-               res *= res;
-               res  = 1.0 - c * a + b * b - res;                                       // = (R^2 - (x - x0)^2)/y0^2
-               if (res >= 0) {
-                       res = TMath::Sqrt(res);
-                       y    = (1.0 - res) / a;
-               }
-
-               // dy:      R^2 = (x - x0)^2 + (y - y0)^2
-               //     =>     y = +/- Sqrt(R^2 - (x - x0)^2) + y0
-               //     => dy/dx = (x - x0)/Sqrt(R^2 - (x - x0)^2) 
-               // Curvature: cr = 1/R = a/Sqrt(1 + b^2 - c*a)
-               //     => dy/dx =  (x - x0)/(1/(cr^2) - (x - x0)^2) 
-               Double_t x0 = -b / a;
-               if (-c * a + b * b + 1 > 0) {
-                       if (1.0/(curvature * curvature) - (x - x0) * (x - x0) > 0.0) {
-       Double_t yderiv = (x - x0) / TMath::Sqrt(1.0/(curvature * curvature) - (x - x0) * (x - x0));
-       if (a < 0) yderiv *= -1.0;
-       dy = yderiv;
-                       }
-               }
-               z  = offset + slope * (x - xref);
-               dz = slope;
-               tracklets[iLayer].SetYref(0, y);
-               tracklets[iLayer].SetYref(1, dy);
-               tracklets[iLayer].SetZref(0, z);
-               tracklets[iLayer].SetZref(1, dz);
-               tracklets[iLayer].SetC(curvature);
-               tracklets[iLayer].SetChi2(chi2track);
-       }
-       
-       if(AliTRDReconstructor::StreamLevel() >=5){
-               TTreeSRedirector &cstreamer = *fgDebugStreamer;
-               Int_t eventNumber                       = AliTRDtrackerDebug::GetEventNumber();
-               Int_t candidateNumber   = AliTRDtrackerDebug::GetCandidateNumber();
-               Double_t chi2z = CalculateChi2Z(tracklets, offset, slope, xref);
-               cstreamer << "FitTiltedRieman0"
-                               << "EventNumber="                       << eventNumber
-                               << "CandidateNumber="   << candidateNumber
-                               << "xref="                                              << xref
-                               << "Chi2Z="                                             << chi2z
-                               << "\n";
-       }
-       return chi2track;
+
+//____________________________________________________________________
+Double_t AliTRDtrackerV1::FitLine(const AliTRDtrackV1 *track, AliTRDseedV1 *tracklets, Bool_t err, Int_t np, AliTrackPoint *points)
+{
+  AliTRDLeastSquare yfitter, zfitter;
+  AliTRDcluster *cl = 0x0;
+
+  AliTRDseedV1 work[kNPlanes], *tracklet = 0x0;
+  if(!tracklets){
+    for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
+      if(!(tracklet = track->GetTracklet(ipl))) continue;
+      if(!tracklet->IsOK()) continue;
+      new(&work[ipl]) AliTRDseedV1(*tracklet);
+    }
+    tracklets = &work[0];
+  }
+
+  Double_t xref = CalculateReferenceX(tracklets);
+  Double_t x, y, z, dx, ye, yr, tilt;
+  for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
+    if(!tracklets[ipl].IsOK()) continue;
+    for(Int_t itb = 0; itb < fgNTimeBins; itb++){
+      if(!(cl = tracklets[ipl].GetClusters(itb))) continue;
+      if (!tracklets[ipl].IsUsable(itb)) continue;
+      x = cl->GetX();
+      z = cl->GetZ();
+      dx = x - xref;
+      zfitter.AddPoint(&dx, z, static_cast<Double_t>(TMath::Sqrt(cl->GetSigmaZ2())));
+    }
+  }
+  zfitter.Eval();
+  Double_t z0    = zfitter.GetFunctionParameter(0);
+  Double_t dzdx  = zfitter.GetFunctionParameter(1);
+  for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
+    if(!tracklets[ipl].IsOK()) continue;
+    for(Int_t itb = 0; itb < fgNTimeBins; itb++){
+      if(!(cl = tracklets[ipl].GetClusters(itb))) continue;
+      if (!tracklets[ipl].IsUsable(itb)) continue;
+      x = cl->GetX();
+      y = cl->GetY();
+      z = cl->GetZ();
+      tilt = tracklets[ipl].GetTilt();
+      dx = x - xref;
+      yr = y + tilt*(z - z0 - dzdx*dx); 
+      // error definition changes for the different calls
+      ye = tilt*TMath::Sqrt(cl->GetSigmaZ2());
+      ye += err ? tracklets[ipl].GetSigmaY() : 0.2;
+      yfitter.AddPoint(&dx, yr, ye);
+    }
+  }
+  yfitter.Eval();
+  Double_t y0   = yfitter.GetFunctionParameter(0);
+  Double_t dydx = yfitter.GetFunctionParameter(1);
+  Double_t chi2 = 0.;//yfitter.GetChisquare()/Double_t(nPoints);
+
+  //update track points array
+  if(np && points){
+    Float_t xyz[3];
+    for(int ip=0; ip<np; ip++){
+      points[ip].GetXYZ(xyz);
+      xyz[1] = y0 + dydx * (xyz[0] - xref);
+      xyz[2] = z0 + dzdx * (xyz[0] - xref);
+      points[ip].SetXYZ(xyz);
+    }
+  }
+  return chi2;
+}
+
+
+//_________________________________________________________________________
+Double_t AliTRDtrackerV1::FitRiemanTilt(const AliTRDtrackV1 *track, AliTRDseedV1 *tracklets, Bool_t sigError, Int_t np, AliTrackPoint *points)
+{
+//
+// Performs a Riemann fit taking tilting pad correction into account
+//
+// Paramters:   - Array of tracklets (connected to the track candidate)
+//              - Flag selecting the error definition
+// Output:      - Chi2 values of the track (in Parameter list)
+//
+// The equations which has to be solved simultaneously are:
+// BEGIN_LATEX
+// R^{2} = (x-x_{0})^{2} + (y^{*}-y_{0})^{2}
+// y^{*} = y - tg(h)(z - z_{t})
+// z_{t} = z_{0}+dzdx*(x-x_{r})
+// END_LATEX
+// with (x, y, z) the coordinate of the cluster, (x_0, y_0, z_0) the coordinate of the center of the Riemann circle,
+// R its radius, x_r a constant refrence radial position in the middle of the TRD stack  and dzdx the slope of the 
+// track in the x-z plane. Using the following transformations
+// BEGIN_LATEX
+// t = 1 / (x^{2} + y^{2})
+// u = 2 * x * t
+// v = 2 * tan(h) * t
+// w = 2 * tan(h) * (x - x_{r}) * t
+// END_LATEX
+// One gets the following linear equation
+// BEGIN_LATEX
+// a + b * u + c * t + d * v  + e * w = 2 * (y + tg(h) * z) * t
+// END_LATEX
+// where the coefficients have the following meaning 
+// BEGIN_LATEX
+// a = -1/y_{0}
+// b = x_{0}/y_{0}
+// c = (R^{2} -x_{0}^{2} - y_{0}^{2})/y_{0}
+// d = z_{0}
+// e = dz/dx
+// END_LATEX
+// The error calculation for the free term is thus
+// BEGIN_LATEX
+// #sigma = 2 * #sqrt{#sigma^{2}_{y} + (tilt corr ...) + tg^{2}(h) * #sigma^{2}_{z}} * t
+// END_LATEX
+//
+// From this simple model one can compute chi^2 estimates and a rough approximation of pt from the curvature according 
+// to the formula:
+// BEGIN_LATEX
+// C = 1/R = a/(1 + b^{2} + c*a)
+// END_LATEX
+//
+// Authors
+//   M.Ivanov <M.Ivanov@gsi.de>
+//   A.Bercuci <A.Bercuci@gsi.de>
+//   M.Fasel <M.Fasel@gsi.de>
+
+  TLinearFitter *fitter = GetTiltedRiemanFitter();
+  fitter->StoreData(kTRUE);
+  fitter->ClearPoints();
+  AliTRDLeastSquare zfitter;
+  AliTRDcluster *cl = 0x0;
+
+  AliTRDseedV1 work[kNPlanes], *tracklet = 0x0;
+  if(!tracklets){
+    for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
+      if(!(tracklet = track->GetTracklet(ipl))) continue;
+      if(!tracklet->IsOK()) continue;
+      new(&work[ipl]) AliTRDseedV1(*tracklet);
+    }
+    tracklets = &work[0];
+  }
+
+  Double_t xref = CalculateReferenceX(tracklets);
+  Double_t x, y, z, t, tilt, dx, w, we;
+  Double_t uvt[4];
+  Int_t nPoints = 0;
+  // Containers for Least-square fitter
+  for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
+    if(!tracklets[ipl].IsOK()) continue;
+    for(Int_t itb = 0; itb < AliTRDseedV1::kNclusters; itb++){
+      if(!(cl = tracklets[ipl].GetClusters(itb))) continue;
+      if (!tracklets[ipl].IsUsable(itb)) continue;
+      x = cl->GetX();
+      y = cl->GetY();
+      z = cl->GetZ();
+      tilt = tracklets[ipl].GetTilt();
+      dx = x - xref;
+      // Transformation
+      t = 1./(x*x + y*y);
+      uvt[0] = 2. * x * t;
+      uvt[1] = t;
+      uvt[2] = 2. * tilt * t;
+      uvt[3] = 2. * tilt * dx * t;
+      w = 2. * (y + tilt*z) * t;
+      // error definition changes for the different calls
+      we = 2. * t;
+      we *= sigError ? TMath::Sqrt(cl->GetSigmaY2()) : 0.2;
+      fitter->AddPoint(uvt, w, we);
+      zfitter.AddPoint(&x, z, static_cast<Double_t>(TMath::Sqrt(cl->GetSigmaZ2())));
+      nPoints++;
+    }
+  }
+  if(fitter->Eval()) return 1.E10;
+
+  Double_t z0    = fitter->GetParameter(3);
+  Double_t dzdx  = fitter->GetParameter(4);
+
+
+  // Linear fitter  - not possible to make boundaries
+  // Do not accept non possible z and dzdx combinations
+  Bool_t accept = kTRUE;
+  Double_t zref = 0.0;
+  for (Int_t iLayer = 0; iLayer < kNPlanes; iLayer++) {
+    if(!tracklets[iLayer].IsOK()) continue;
+    zref = z0 + dzdx * (tracklets[iLayer].GetX0() - xref);
+    if (TMath::Abs(tracklets[iLayer].GetZfit(0) - zref) > tracklets[iLayer].GetPadLength() * 0.5 + 1.0) 
+      accept = kFALSE;
+  }
+  if (!accept) {
+    zfitter.Eval();
+    Double_t dzmf      = zfitter.GetFunctionParameter(1);
+    Double_t zmf       = zfitter.GetFunctionValue(&xref);
+    fitter->FixParameter(3, zmf);
+    fitter->FixParameter(4, dzmf);
+    fitter->Eval();
+    fitter->ReleaseParameter(3);
+    fitter->ReleaseParameter(4);
+    z0   = fitter->GetParameter(3); // = zmf ?
+    dzdx = fitter->GetParameter(4); // = dzmf ?
+  }
+
+  // Calculate Curvature
+  Double_t a    =  fitter->GetParameter(0);
+  Double_t b    =  fitter->GetParameter(1);
+  Double_t c    =  fitter->GetParameter(2);
+  Double_t y0   = 1. / a;
+  Double_t x0   = -b * y0;
+  Double_t tmp  = y0*y0 + x0*x0 - c*y0;
+  if(tmp<=0.) return 1.E10;
+  Double_t R    = TMath::Sqrt(tmp);
+  Double_t C    =  1.0 + b*b - c*a;
+  if (C > 0.0) C  =  a / TMath::Sqrt(C);
+
+  // Calculate chi2 of the fit 
+  Double_t chi2 = fitter->GetChisquare()/Double_t(nPoints);
+
+  // Update the tracklets
+  if(!track){
+    for(Int_t ip = 0; ip < kNPlanes; ip++) {
+      x = tracklets[ip].GetX0();
+      tmp = R*R-(x-x0)*(x-x0);  
+      if(tmp <= 0.) continue;
+      tmp = TMath::Sqrt(tmp);  
+
+      // y:     R^2 = (x - x0)^2 + (y - y0)^2
+      //     =>   y = y0 +/- Sqrt(R^2 - (x - x0)^2)
+      tracklets[ip].SetYref(0, y0 - (y0>0.?1.:-1)*tmp);
+      //     => dy/dx = (x - x0)/Sqrt(R^2 - (x - x0)^2) 
+      tracklets[ip].SetYref(1, (x - x0) / tmp);
+      tracklets[ip].SetZref(0, z0 + dzdx * (x - xref));
+      tracklets[ip].SetZref(1, dzdx);
+      tracklets[ip].SetC(C);
+      tracklets[ip].SetChi2(chi2);
+    }
+  }
+  //update track points array
+  if(np && points){
+    Float_t xyz[3];
+    for(int ip=0; ip<np; ip++){
+      points[ip].GetXYZ(xyz);
+      xyz[1] = TMath::Abs(xyz[0] - x0) > R ? 100. : y0 - (y0>0.?1.:-1.)*TMath::Sqrt((R-(xyz[0]-x0))*(R+(xyz[0]-x0)));
+      xyz[2] = z0 + dzdx * (xyz[0] - xref);
+      points[ip].SetXYZ(xyz);
+    }
+  }
+  
+  return chi2;
+}
+
+
+//____________________________________________________________________
+Double_t AliTRDtrackerV1::FitKalman(AliTRDtrackV1 *track, AliTRDseedV1 *tracklets, Bool_t up, Int_t np, AliTrackPoint *points)
+{
+//   Kalman filter implementation for the TRD.
+//   It returns the positions of the fit in the array "points"
+// 
+//   Author : A.Bercuci@gsi.de
+
+  // printf("Start track @ x[%f]\n", track->GetX());
+       
+  //prepare marker points along the track
+  Int_t ip = np ? 0 : 1;
+  while(ip<np){
+    if((up?-1:1) * (track->GetX() - points[ip].GetX()) > 0.) break;
+    //printf("AliTRDtrackerV1::FitKalman() : Skip track marker x[%d] = %7.3f. Before track start ( %7.3f ).\n", ip, points[ip].GetX(), track->GetX());
+    ip++;
+  }
+  //if(points) printf("First marker point @ x[%d] = %f\n", ip, points[ip].GetX());
+
+
+  AliTRDseedV1 tracklet, *ptrTracklet = 0x0;
+
+  //Loop through the TRD planes
+  for (Int_t jplane = 0; jplane < kNPlanes; jplane++) {
+    // GET TRACKLET OR BUILT IT                
+    Int_t iplane = up ? jplane : kNPlanes - 1 - jplane;
+    if(tracklets){ 
+      if(!(ptrTracklet = &tracklets[iplane])) continue;
+    }else{
+      if(!(ptrTracklet  = track->GetTracklet(iplane))){ 
+      /*AliTRDtrackerV1 *tracker = 0x0;
+        if(!(tracker = dynamic_cast<AliTRDtrackerV1*>( AliTRDReconstructor::Tracker()))) continue;
+        ptrTracklet = new(&tracklet) AliTRDseedV1(iplane);
+        if(!tracker->MakeTracklet(ptrTracklet, track)) */
+        continue;
+      }
+    }
+    if(!ptrTracklet->IsOK()) continue;
+
+    Double_t x = ptrTracklet->GetX0();
+
+    while(ip < np){
+      //don't do anything if next marker is after next update point.
+      if((up?-1:1) * (points[ip].GetX() - x) - fgkMaxStep < 0) break;
+      if(((up?-1:1) * (points[ip].GetX() - track->GetX()) < 0) && !PropagateToX(*track, points[ip].GetX(), fgkMaxStep)) return -1.;
+      
+      Double_t xyz[3]; // should also get the covariance
+      track->GetXYZ(xyz);
+      track->Global2LocalPosition(xyz, track->GetAlpha());
+      points[ip].SetXYZ(xyz[0], xyz[1], xyz[2]);
+      ip++;
+    }
+    // printf("plane[%d] tracklet[%p] x[%f]\n", iplane, ptrTracklet, x);
+
+    // Propagate closer to the next update point 
+    if(((up?-1:1) * (x - track->GetX()) + fgkMaxStep < 0) && !PropagateToX(*track, x + (up?-1:1)*fgkMaxStep, fgkMaxStep)) return -1.;
+
+    if(!AdjustSector(track)) return -1;
+    if(TMath::Abs(track->GetSnp()) > fgkMaxSnp) return -1;
+    
+    //load tracklet to the tracker and the track
+/*    Int_t index;
+    if((index = FindTracklet(ptrTracklet)) < 0){
+      ptrTracklet = SetTracklet(&tracklet);
+      index = fTracklets->GetEntriesFast()-1;
+    }
+    track->SetTracklet(ptrTracklet, index);*/
+
+
+    // register tracklet to track with tracklet creation !!
+    // PropagateBack : loaded tracklet to the tracker and update index 
+    // RefitInward : update index 
+    // MakeTrack   : loaded tracklet to the tracker and update index 
+    if(!tracklets) track->SetTracklet(ptrTracklet, -1);
+    
+  
+    //Calculate the mean material budget along the path inside the chamber
+    Double_t xyz0[3]; track->GetXYZ(xyz0);
+    Double_t alpha = track->GetAlpha();
+    Double_t xyz1[3], y, z;
+    if(!track->GetProlongation(x, y, z)) return -1;
+    xyz1[0] =  x * TMath::Cos(alpha) - y * TMath::Sin(alpha); 
+    xyz1[1] = +x * TMath::Sin(alpha) + y * TMath::Cos(alpha);
+    xyz1[2] =  z;
+    if((xyz0[0] - xyz1[9] < 1e-3) && (xyz0[0] - xyz1[9] < 1e-3)) continue; // check wheter we are at the same global x position
+    Double_t param[7];
+    if(AliTracker::MeanMaterialBudget(xyz0, xyz1, param) <=0.) break;  
+    Double_t xrho = param[0]*param[4]; // density*length
+    Double_t xx0  = param[1]; // radiation length
+    
+    //Propagate the track
+    track->PropagateTo(x, xx0, xrho);
+    if (!AdjustSector(track)) break;
+  
+    //Update track
+    Double_t cov[3]; ptrTracklet->GetCovAt(x, cov);
+    Double_t p[2] = { ptrTracklet->GetY(), ptrTracklet->GetZ()};
+    Double_t chi2 = ((AliExternalTrackParam*)track)->GetPredictedChi2(p, cov);
+    if(chi2<1e+10) track->Update(p, cov, chi2);
+    if(!up) continue;
+
+               //Reset material budget if 2 consecutive gold
+               if(iplane>0 && track->GetTracklet(iplane-1) && ptrTracklet->GetN() + track->GetTracklet(iplane-1)->GetN() > 20) track->SetBudget(2, 0.);
+       } // end planes loop
+
+  // extrapolation
+  while(ip < np){
+    if(((up?-1:1) * (points[ip].GetX() - track->GetX()) < 0) && !PropagateToX(*track, points[ip].GetX(), fgkMaxStep)) return -1.;
+    
+    Double_t xyz[3]; // should also get the covariance
+    track->GetXYZ(xyz); 
+    track->Global2LocalPosition(xyz, track->GetAlpha());
+    points[ip].SetXYZ(xyz[0], xyz[1], xyz[2]);
+    ip++;
+  }
+
+       return track->GetChi2();
 }
 
 //_________________________________________________________________________
 Float_t AliTRDtrackerV1::CalculateChi2Z(AliTRDseedV1 *tracklets, Double_t offset, Double_t slope, Double_t xref)
 {
-       //
-       // Calculates the chi2-value of the track in z-Direction including tilting pad correction.
-       // A linear dependence on the x-value serves as a model.
-       // The parameters are related to the tilted Riemann fit.
-       // Parameters: - Array of tracklets (AliTRDseedV1) related to the track candidate
-       //             - the offset for the reference x
-       //             - the slope
-       //             - the reference x position
-       // Output:     - The Chi2 value of the track in z-Direction
-       //
-       Float_t chi2Z = 0, nLayers = 0;
-       for (Int_t iLayer = 0; iLayer < AliTRDgeometry::kNplan; iLayer++) {
-               if(!tracklets[iLayer].IsOK()) continue;
-               Double_t z = offset + slope * (tracklets[iLayer].GetX0() - xref);
-               chi2Z += TMath::Abs(tracklets[iLayer].GetMeanz() - z);
-               nLayers++;
-       }
-       chi2Z /= TMath::Max((nLayers - 3.0),1.0);
-       return chi2Z;
+  //
+  // Calculates the chi2-value of the track in z-Direction including tilting pad correction.
+  // A linear dependence on the x-value serves as a model.
+  // The parameters are related to the tilted Riemann fit.
+  // Parameters: - Array of tracklets (AliTRDseedV1) related to the track candidate
+  //             - the offset for the reference x
+  //             - the slope
+  //             - the reference x position
+  // Output:     - The Chi2 value of the track in z-Direction
+  //
+  Float_t chi2Z = 0, nLayers = 0;
+  for (Int_t iLayer = 0; iLayer < AliTRDgeometry::kNlayer; iLayer++) {
+    if(!tracklets[iLayer].IsOK()) continue;
+    Double_t z = offset + slope * (tracklets[iLayer].GetX0() - xref);
+    chi2Z += TMath::Abs(tracklets[iLayer].GetZfit(0) - z);
+    nLayers++;
+  }
+  chi2Z /= TMath::Max((nLayers - 3.0),1.0);
+  return chi2Z;
 }
 
 //_____________________________________________________________________________
 Int_t AliTRDtrackerV1::PropagateToX(AliTRDtrackV1 &t, Double_t xToGo, Double_t maxStep)
 {
-       //
-       // Starting from current X-position of track <t> this function
-       // extrapolates the track up to radial position <xToGo>. 
-       // Returns 1 if track reaches the plane, and 0 otherwise 
-       //
+  //
+  // Starting from current X-position of track <t> this function
+  // extrapolates the track up to radial position <xToGo>. 
+  // Returns 1 if track reaches the plane, and 0 otherwise 
+  //
 
-       const Double_t kEpsilon = 0.00001;
+  const Double_t kEpsilon = 0.00001;
 
-       // Current track X-position
-       Double_t xpos = t.GetX();
+  // Current track X-position
+  Double_t xpos = t.GetX();
 
-       // Direction: inward or outward
-       Double_t dir  = (xpos < xToGo) ? 1.0 : -1.0;
+  // Direction: inward or outward
+  Double_t dir  = (xpos < xToGo) ? 1.0 : -1.0;
 
-       while (((xToGo - xpos) * dir) > kEpsilon) {
+  while (((xToGo - xpos) * dir) > kEpsilon) {
 
-               Double_t xyz0[3];
-               Double_t xyz1[3];
-               Double_t param[7];
-               Double_t x;
-               Double_t y;
-               Double_t z;
+    Double_t xyz0[3];
+    Double_t xyz1[3];
+    Double_t param[7];
+    Double_t x;
+    Double_t y;
+    Double_t z;
 
-               // The next step size
-               Double_t step = dir * TMath::Min(TMath::Abs(xToGo-xpos),maxStep);
+    // The next step size
+    Double_t step = dir * TMath::Min(TMath::Abs(xToGo-xpos),maxStep);
 
-               // Get the global position of the starting point
-               t.GetXYZ(xyz0);
+    // Get the global position of the starting point
+    t.GetXYZ(xyz0);
 
-               // X-position after next step
-               x = xpos + step;
+    // X-position after next step
+    x = xpos + step;
 
-               // Get local Y and Z at the X-position of the next step
-               if (!t.GetProlongation(x,y,z)) {
-                       return 0; // No prolongation possible
-               }
+    // Get local Y and Z at the X-position of the next step
+    if(t.GetProlongation(x,y,z)<0) return 0; // No prolongation possible
 
-               // The global position of the end point of this prolongation step
-               xyz1[0] =  x * TMath::Cos(t.GetAlpha()) - y * TMath::Sin(t.GetAlpha()); 
-               xyz1[1] = +x * TMath::Sin(t.GetAlpha()) + y * TMath::Cos(t.GetAlpha());
-               xyz1[2] =  z;
+    // The global position of the end point of this prolongation step
+    xyz1[0] =  x * TMath::Cos(t.GetAlpha()) - y * TMath::Sin(t.GetAlpha()); 
+    xyz1[1] = +x * TMath::Sin(t.GetAlpha()) + y * TMath::Cos(t.GetAlpha());
+    xyz1[2] =  z;
 
-               // Calculate the mean material budget between start and
-               // end point of this prolongation step
-               AliTracker::MeanMaterialBudget(xyz0, xyz1, param);
+    // Calculate the mean material budget between start and
+    // end point of this prolongation step
+    if(AliTracker::MeanMaterialBudget(xyz0, xyz1, param)<=0.) return 0;
 
-               // Propagate the track to the X-position after the next step
-               if (!t.PropagateTo(x,param[1],param[0]*param[4])) {
-                       return 0;
-               }
+    // Propagate the track to the X-position after the next step
+    if (!t.PropagateTo(x, param[1], param[0]*param[4])) return 0;
 
-               // Rotate the track if necessary
-               AdjustSector(&t);
+    // Rotate the track if necessary
+    AdjustSector(&t);
 
-               // New track X-position
-               xpos = t.GetX();
+    // New track X-position
+    xpos = t.GetX();
 
-       }
+  }
 
-       return 1;
+  return 1;
 
 }
 
@@ -1156,133 +1779,209 @@ Int_t AliTRDtrackerV1::PropagateToX(AliTRDtrackV1 &t, Double_t xToGo, Double_t m
 //_____________________________________________________________________________
 Int_t AliTRDtrackerV1::ReadClusters(TClonesArray* &array, TTree *clusterTree) const
 {
-       //
-       // Reads AliTRDclusters from the file. 
-       // The names of the cluster tree and branches 
-       // should match the ones used in AliTRDclusterizer::WriteClusters()
-       //
-
-       Int_t nsize = Int_t(clusterTree->GetTotBytes() / (sizeof(AliTRDcluster))); 
-       TObjArray *clusterArray = new TObjArray(nsize+1000); 
-       
-       TBranch *branch = clusterTree->GetBranch("TRDcluster");
-       if (!branch) {
-               AliError("Can't get the branch !");
-               return 1;
-       }
-       branch->SetAddress(&clusterArray); 
-       
-       if(!fClusters){ 
-               array = new TClonesArray("AliTRDcluster", nsize);
-               array->SetOwner(kTRUE);
-       }
-       
-       // Loop through all entries in the tree
-       Int_t nEntries   = (Int_t) clusterTree->GetEntries();
-       Int_t nbytes     = 0;
-       Int_t ncl        = 0;
-       AliTRDcluster *c = 0x0;
-       for (Int_t iEntry = 0; iEntry < nEntries; iEntry++) {
-               // Import the tree
-               nbytes += clusterTree->GetEvent(iEntry);  
-               
-               // Get the number of points in the detector
-               Int_t nCluster = clusterArray->GetEntriesFast();  
-               for (Int_t iCluster = 0; iCluster < nCluster; iCluster++) { 
-                       if(!(c = (AliTRDcluster *) clusterArray->UncheckedAt(iCluster))) continue;
-                       c->SetInChamber();
-                       new((*fClusters)[ncl++]) AliTRDcluster(*c);
-                       delete (clusterArray->RemoveAt(iCluster)); 
-               }
-
-       }
-       delete clusterArray;
-
-       return 0;
+  //
+  // Reads AliTRDclusters from the file. 
+  // The names of the cluster tree and branches 
+  // should match the ones used in AliTRDclusterizer::WriteClusters()
+  //
+
+  Int_t nsize = Int_t(clusterTree->GetTotBytes() / (sizeof(AliTRDcluster))); 
+  TObjArray *clusterArray = new TObjArray(nsize+1000); 
+  
+  TBranch *branch = clusterTree->GetBranch("TRDcluster");
+  if (!branch) {
+    AliError("Can't get the branch !");
+    return 1;
+  }
+  branch->SetAddress(&clusterArray); 
+  
+  if(!fClusters){ 
+    Float_t nclusters =  fReconstructor->GetRecoParam()->GetNClusters();
+    if(fReconstructor->IsHLT()) nclusters /= AliTRDgeometry::kNsector;
+    array = new TClonesArray("AliTRDcluster", Int_t(nclusters));
+    array->SetOwner(kTRUE);
+  }
+  
+  // Loop through all entries in the tree
+  Int_t nEntries   = (Int_t) clusterTree->GetEntries();
+  Int_t nbytes     = 0;
+  Int_t ncl        = 0;
+  AliTRDcluster *c = 0x0;
+  for (Int_t iEntry = 0; iEntry < nEntries; iEntry++) {
+    // Import the tree
+    nbytes += clusterTree->GetEvent(iEntry);  
+    
+    // Get the number of points in the detector
+    Int_t nCluster = clusterArray->GetEntriesFast();  
+    for (Int_t iCluster = 0; iCluster < nCluster; iCluster++) { 
+      if(!(c = (AliTRDcluster *) clusterArray->UncheckedAt(iCluster))) continue;
+      new((*fClusters)[ncl++]) AliTRDcluster(*c);
+      delete (clusterArray->RemoveAt(iCluster)); 
+    }
+
+  }
+  delete clusterArray;
+
+  return 0;
 }
 
 //_____________________________________________________________________________
 Int_t AliTRDtrackerV1::LoadClusters(TTree *cTree)
 {
-       //
-       // Fills clusters into TRD tracking_sectors 
-       // Note that the numbering scheme for the TRD tracking_sectors 
-       // differs from that of TRD sectors
-       //
+  //
+  // Fills clusters into TRD tracking sectors
+  //
+  
+  if(!fReconstructor->IsWritingClusters()){ 
+    fClusters = AliTRDReconstructor::GetClusters();
+  } else {
+    if (ReadClusters(fClusters, cTree)) {
+      AliError("Problem with reading the clusters !");
+      return 1;
+    }
+  }
+  SetClustersOwner();
+
+  if(!fClusters || !fClusters->GetEntriesFast()){ 
+    AliInfo("No TRD clusters");
+    return 1;
+  }
+
+  //Int_t nin = 
+  BuildTrackingContainers();  
+
+  //Int_t ncl  = fClusters->GetEntriesFast();
+  //AliInfo(Form("Clusters %d [%6.2f %% in the active volume]", ncl, 100.*float(nin)/ncl));
+
+  return 0;
+}
 
-       
-       if (ReadClusters(fClusters, cTree)) {
-               AliError("Problem with reading the clusters !");
-               return 1;
-       }
-       Int_t ncl  = fClusters->GetEntriesFast(), nin = 0;
-       if(!ncl){ 
-               AliInfo("Clusters 0");
-               return 1;
-       }
+//_____________________________________________________________________________
+Int_t AliTRDtrackerV1::LoadClusters(TClonesArray *clusters)
+{
+  //
+  // Fills clusters into TRD tracking sectors
+  // Function for use in the HLT
+  
+  if(!clusters || !clusters->GetEntriesFast()){ 
+    AliInfo("No TRD clusters");
+    return 1;
+  }
 
-       Int_t icl = ncl;
-       while (icl--) {
-               AliTRDcluster *c = (AliTRDcluster *) fClusters->UncheckedAt(icl);
-               if(c->IsInChamber()) nin++;
-               Int_t detector       = c->GetDetector();
-               Int_t sector         = fGeom->GetSector(detector);
-               Int_t stack          = fGeom->GetChamber(detector);
-               Int_t plane          = fGeom->GetPlane(detector);
-               
-               fTrSec[sector].GetChamber(stack, plane, kTRUE)->InsertCluster(c, icl);
-       }
-       AliInfo(Form("Clusters %d in %6.2f %%", ncl, 100.*float(nin)/ncl));
-       
-       for(int isector =0; isector<AliTRDgeometry::kNsect; isector++){ 
-               if(!fTrSec[isector].GetNChambers()) continue;
-               fTrSec[isector].Init();
-       }
-       
-       return 0;
+  fClusters = clusters;
+  SetClustersOwner();
+
+  //Int_t nin = 
+  BuildTrackingContainers();  
+
+  //Int_t ncl  = fClusters->GetEntriesFast();
+  //AliInfo(Form("Clusters %d [%6.2f %% in the active volume]", ncl, 100.*float(nin)/ncl));
+
+  return 0;
 }
 
 
 //____________________________________________________________________
-void AliTRDtrackerV1::UnloadClusters() 
-{ 
-       //
-       // Clears the arrays of clusters and tracks. Resets sectors and timebins 
-       //
+Int_t AliTRDtrackerV1::BuildTrackingContainers()
+{
+// Building tracking containers for clusters
+
+  Int_t nin =0, icl = fClusters->GetEntriesFast();
+  while (icl--) {
+    AliTRDcluster *c = (AliTRDcluster *) fClusters->UncheckedAt(icl);
+    if(c->IsInChamber()) nin++;
+    Int_t detector       = c->GetDetector();
+    Int_t sector         = fGeom->GetSector(detector);
+    Int_t stack          = fGeom->GetStack(detector);
+    Int_t layer          = fGeom->GetLayer(detector);
+    
+    fTrSec[sector].GetChamber(stack, layer, kTRUE)->InsertCluster(c, icl);
+  }
+
+  const AliTRDCalDet *cal = AliTRDcalibDB::Instance()->GetT0Det();
+  for(int isector =0; isector<AliTRDgeometry::kNsector; isector++){ 
+    if(!fTrSec[isector].GetNChambers()) continue;
+    fTrSec[isector].Init(fReconstructor, cal);
+  }
+
+  return nin;
+}
 
-       if(fTracks) fTracks->Delete(); 
-       if(fTracklets) fTracklets->Delete();
-       if(fClusters) fClusters->Delete();
 
-       for (int i = 0; i < AliTRDgeometry::kNsect; i++) fTrSec[i].Clear();
 
-       // Increment the Event Number
-       AliTRDtrackerDebug::SetEventNumber(AliTRDtrackerDebug::GetEventNumber()  + 1);
+//____________________________________________________________________
+void AliTRDtrackerV1::UnloadClusters() 
+{ 
+//
+// Clears the arrays of clusters and tracks. Resets sectors and timebins 
+// If option "force" is also set the containers are also deleted. This is useful 
+// in case of HLT
+
+  if(fTracks){ 
+    fTracks->Delete(); 
+    if(HasRemoveContainers()){delete fTracks; fTracks = 0x0;}
+  }
+  if(fTracklets){ 
+    fTracklets->Delete();
+    if(HasRemoveContainers()){delete fTracklets; fTracklets = 0x0;}
+  }
+  if(fClusters){ 
+    if(IsClustersOwner()) fClusters->Delete();
+    
+    // save clusters array in the reconstructor for further use.
+    if(!fReconstructor->IsWritingClusters()){
+      AliTRDReconstructor::SetClusters(fClusters);
+      SetClustersOwner(kFALSE);
+    } else AliTRDReconstructor::SetClusters(0x0);
+  }
+
+  for (int i = 0; i < AliTRDgeometry::kNsector; i++) fTrSec[i].Clear();
+
+  // Increment the Event Number
+  AliTRDtrackerDebug::SetEventNumber(AliTRDtrackerDebug::GetEventNumber()  + 1);
 }
 
+// //____________________________________________________________________
+// void AliTRDtrackerV1::UseClusters(const AliKalmanTrack *t, Int_t) const
+// {
+//   const AliTRDtrackV1 *track = dynamic_cast<const AliTRDtrackV1*>(t);
+//   if(!track) return;
+// 
+//   AliTRDseedV1 *tracklet = 0x0;
+//   for(Int_t ily=AliTRDgeometry::kNlayer; ily--;){
+//     if(!(tracklet = track->GetTracklet(ily))) continue;
+//     AliTRDcluster *c = 0x0;
+//     for(Int_t ic=AliTRDseed::kNclusters; ic--;){
+//       if(!(c=tracklet->GetClusters(ic))) continue;
+//       c->Use();
+//     }
+//   }
+// }
+// 
+
 //_____________________________________________________________________________
 Bool_t AliTRDtrackerV1::AdjustSector(AliTRDtrackV1 *track) 
 {
-       //
-       // Rotates the track when necessary
-       //
-
-       Double_t alpha = AliTRDgeometry::GetAlpha(); 
-       Double_t y     = track->GetY();
-       Double_t ymax  = track->GetX()*TMath::Tan(0.5*alpha);
-
-       if      (y >  ymax) {
-               if (!track->Rotate( alpha)) {
-                       return kFALSE;
-               }
-       
-       else if (y < -ymax) {
-               if (!track->Rotate(-alpha)) {
-                       return kFALSE;   
-               }
-       
-
-       return kTRUE;
+  //
+  // Rotates the track when necessary
+  //
+
+  Double_t alpha = AliTRDgeometry::GetAlpha(); 
+  Double_t y     = track->GetY();
+  Double_t ymax  = track->GetX()*TMath::Tan(0.5*alpha);
+  
+  if      (y >  ymax) {
+    if (!track->Rotate( alpha)) {
+      return kFALSE;
+    }
+  } 
+  else if (y < -ymax) {
+    if (!track->Rotate(-alpha)) {
+      return kFALSE;   
+    }
+  } 
+
+  return kTRUE;
 
 }
 
@@ -1290,1492 +1989,1598 @@ Bool_t AliTRDtrackerV1::AdjustSector(AliTRDtrackV1 *track)
 //____________________________________________________________________
 AliTRDseedV1* AliTRDtrackerV1::GetTracklet(AliTRDtrackV1 *track, Int_t p, Int_t &idx)
 {
-       // Find tracklet for TRD track <track>
-       // Parameters
-       // - track
-       // - sector
-       // - plane
-       // - index
-       // Output
-       // tracklet
-       // index
-       // Detailed description
-       //
-       idx = track->GetTrackletIndex(p);
-       AliTRDseedV1 *tracklet = idx<0 ? 0x0 : (AliTRDseedV1*)fTracklets->UncheckedAt(idx);
-
-       return tracklet;
+  // Find tracklet for TRD track <track>
+  // Parameters
+  // - track
+  // - sector
+  // - plane
+  // - index
+  // Output
+  // tracklet
+  // index
+  // Detailed description
+  //
+  idx = track->GetTrackletIndex(p);
+  AliTRDseedV1 *tracklet = (idx==0xffff) ? 0x0 : (AliTRDseedV1*)fTracklets->UncheckedAt(idx);
+
+  return tracklet;
 }
 
 //____________________________________________________________________
-Int_t AliTRDtrackerV1::SetTracklet(AliTRDseedV1 *tracklet)
+AliTRDseedV1* AliTRDtrackerV1::SetTracklet(AliTRDseedV1 *tracklet)
 {
-       // Add this tracklet to the list of tracklets stored in the tracker
-       //
-       // Parameters
-       //   - tracklet : pointer to the tracklet to be added to the list
-       //
-       // Output
-       //   - the index of the new tracklet in the tracker tracklets list
-       //
-       // Detailed description
-       // Build the tracklets list if it is not yet created (late initialization)
-       // and adds the new tracklet to the list.
-       //
-       if(!fTracklets){
-               fTracklets = new TClonesArray("AliTRDseedV1", AliTRDgeometry::Nsect()*kMaxTracksStack);
-               fTracklets->SetOwner(kTRUE);
-       }
-       Int_t nentries = fTracklets->GetEntriesFast();
-       new ((*fTracklets)[nentries]) AliTRDseedV1(*tracklet);
-       return nentries;
+  // Add this tracklet to the list of tracklets stored in the tracker
+  //
+  // Parameters
+  //   - tracklet : pointer to the tracklet to be added to the list
+  //
+  // Output
+  //   - the index of the new tracklet in the tracker tracklets list
+  //
+  // Detailed description
+  // Build the tracklets list if it is not yet created (late initialization)
+  // and adds the new tracklet to the list.
+  //
+  if(!fTracklets){
+    fTracklets = new TClonesArray("AliTRDseedV1", AliTRDgeometry::Nsector()*kMaxTracksStack);
+    fTracklets->SetOwner(kTRUE);
+  }
+  Int_t nentries = fTracklets->GetEntriesFast();
+  return new ((*fTracklets)[nentries]) AliTRDseedV1(*tracklet);
 }
 
 //____________________________________________________________________
-Bool_t AliTRDtrackerV1::UpdateTracklet(AliTRDseedV1 *tracklet, Int_t index){
-       //
-       // Update Tracklet in the tracklet container
-       // 
-       // Parameters:
-       //  - the tracklet information
-       //  - the index of the tracklet which has to be updated
-       //
-       // Output:
-       //  - True if successfull
-       //  - false if the container doesn't exist or the index is out of range
-       //
-       if(!fTracklets || index >= fTracklets->GetEntriesFast()) return kFALSE;
-       
-       new((*fTracklets)[index]) AliTRDseedV1(*tracklet);
-       return kTRUE;
+AliTRDtrackV1* AliTRDtrackerV1::SetTrack(AliTRDtrackV1 *track)
+{
+  // Add this track to the list of tracks stored in the tracker
+  //
+  // Parameters
+  //   - track : pointer to the track to be added to the list
+  //
+  // Output
+  //   - the pointer added
+  //
+  // Detailed description
+  // Build the tracks list if it is not yet created (late initialization)
+  // and adds the new track to the list.
+  //
+  if(!fTracks){
+    fTracks = new TClonesArray("AliTRDtrackV1", AliTRDgeometry::Nsector()*kMaxTracksStack);
+    fTracks->SetOwner(kTRUE);
+  }
+  Int_t nentries = fTracks->GetEntriesFast();
+  return new ((*fTracks)[nentries]) AliTRDtrackV1(*track);
 }
 
+
+
 //____________________________________________________________________
 Int_t AliTRDtrackerV1::Clusters2TracksSM(Int_t sector, AliESDEvent *esd)
 {
-       //
-       // Steer tracking for one SM.
-       //
-       // Parameters :
-       //   sector  : Array of (SM) propagation layers containing clusters
-       //   esd     : The current ESD event. On output it contains the also
-       //             the ESD (TRD) tracks found in this SM. 
-       //
-       // Output :
-       //   Number of tracks found in this TRD supermodule.
-       // 
-       // Detailed description
-       //
-       // 1. Unpack AliTRDpropagationLayers objects for each stack.
-       // 2. Launch stack tracking. 
-       //    See AliTRDtrackerV1::Clusters2TracksStack() for details.
-       // 3. Pack results in the ESD event.
-       //
-       
-       // allocate space for esd tracks in this SM
-       TClonesArray esdTrackList("AliESDtrack", 2*kMaxTracksStack);
-       esdTrackList.SetOwner();
-       
-       Int_t nTracks   = 0;
-       Int_t nChambers = 0;
-       AliTRDtrackingChamber **stack = 0x0, *chamber = 0x0;
-       for(int istack = 0; istack<AliTRDgeometry::kNcham; istack++){
-               if(!(stack = fTrSec[sector].GetStack(istack))) continue;
-               nChambers = 0;
-               for(int iplane=0; iplane<AliTRDgeometry::kNplan; iplane++){
-                       if(!(chamber = stack[iplane])) continue;
-                       if(chamber->GetNClusters() < fgNTimeBins * AliTRDReconstructor::RecoParam()->GetFindableClusters()) continue;
-                       nChambers++;
-                       //AliInfo(Form("sector %d stack %d plane %d clusters %d", sector, istack, iplane, chamber->GetNClusters()));
-               }
-               if(nChambers < 4) continue;
-               //AliInfo(Form("Doing stack %d", istack));
-               nTracks += Clusters2TracksStack(stack, &esdTrackList);
-       }
-       //AliInfo(Form("Found %d tracks in SM %d [%d]\n", nTracks, sector, esd->GetNumberOfTracks()));
-       
-       for(int itrack=0; itrack<nTracks; itrack++)
-               esd->AddTrack((AliESDtrack*)esdTrackList[itrack]);
-
-       // Reset Track and Candidate Number
-       AliTRDtrackerDebug::SetCandidateNumber(0);
-       AliTRDtrackerDebug::SetTrackNumber(0);
-       return nTracks;
+  //
+  // Steer tracking for one SM.
+  //
+  // Parameters :
+  //   sector  : Array of (SM) propagation layers containing clusters
+  //   esd     : The current ESD event. On output it contains the also
+  //             the ESD (TRD) tracks found in this SM. 
+  //
+  // Output :
+  //   Number of tracks found in this TRD supermodule.
+  // 
+  // Detailed description
+  //
+  // 1. Unpack AliTRDpropagationLayers objects for each stack.
+  // 2. Launch stack tracking. 
+  //    See AliTRDtrackerV1::Clusters2TracksStack() for details.
+  // 3. Pack results in the ESD event.
+  //
+  
+  // allocate space for esd tracks in this SM
+  TClonesArray esdTrackList("AliESDtrack", 2*kMaxTracksStack);
+  esdTrackList.SetOwner();
+  
+  Int_t nTracks   = 0;
+  Int_t nChambers = 0;
+  AliTRDtrackingChamber **stack = 0x0, *chamber = 0x0;
+  for(int istack = 0; istack<AliTRDgeometry::kNstack; istack++){
+    if(!(stack = fTrSec[sector].GetStack(istack))) continue;
+    nChambers = 0;
+    for(int ilayer=0; ilayer<AliTRDgeometry::kNlayer; ilayer++){
+      if(!(chamber = stack[ilayer])) continue;
+      if(chamber->GetNClusters() < fgNTimeBins * fReconstructor->GetRecoParam() ->GetFindableClusters()) continue;
+      nChambers++;
+      //AliInfo(Form("sector %d stack %d layer %d clusters %d", sector, istack, ilayer, chamber->GetNClusters()));
+    }
+    if(nChambers < 4) continue;
+    //AliInfo(Form("Doing stack %d", istack));
+    nTracks += Clusters2TracksStack(stack, &esdTrackList);
+  }
+  //AliInfo(Form("Found %d tracks in SM %d [%d]\n", nTracks, sector, esd->GetNumberOfTracks()));
+  
+  for(int itrack=0; itrack<nTracks; itrack++)
+    esd->AddTrack((AliESDtrack*)esdTrackList[itrack]);
+
+  // Reset Track and Candidate Number
+  AliTRDtrackerDebug::SetCandidateNumber(0);
+  AliTRDtrackerDebug::SetTrackNumber(0);
+  return nTracks;
 }
 
 //____________________________________________________________________
 Int_t AliTRDtrackerV1::Clusters2TracksStack(AliTRDtrackingChamber **stack, TClonesArray *esdTrackList)
 {
-       //
-       // Make tracks in one TRD stack.
-       //
-       // Parameters :
-       //   layer  : Array of stack propagation layers containing clusters
-       //   esdTrackList  : Array of ESD tracks found by the stand alone tracker. 
-       //                   On exit the tracks found in this stack are appended.
-       //
-       // Output :
-       //   Number of tracks found in this stack.
-       // 
-       // Detailed description
-       //
-       // 1. Find the 3 most useful seeding chambers. See BuildSeedingConfigs() for details.
-       // 2. Steer AliTRDtrackerV1::MakeSeeds() for 3 seeding layer configurations. 
-       //    See AliTRDtrackerV1::MakeSeeds() for more details.
-       // 3. Arrange track candidates in decreasing order of their quality
-       // 4. Classify tracks in 5 categories according to:
-       //    a) number of layers crossed
-       //    b) track quality 
-       // 5. Sign clusters by tracks in decreasing order of track quality
-       // 6. Build AliTRDtrack out of seeding tracklets
-       // 7. Cook MC label
-       // 8. Build ESD track and register it to the output list
-       //
-
-       AliTRDtrackingChamber *chamber = 0x0;
-       AliTRDseedV1 sseed[kMaxTracksStack*6]; // to be initialized
-       Int_t pars[4]; // MakeSeeds parameters
-
-       //Double_t alpha = AliTRDgeometry::GetAlpha();
-       //Double_t shift = .5 * alpha;
-       Int_t configs[kNConfigs];
-       
-       // Build initial seeding configurations
-       Double_t quality = BuildSeedingConfigs(stack, configs);
-       if(AliTRDReconstructor::StreamLevel() > 1){
-               AliInfo(Form("Plane config %d %d %d Quality %f"
-               , configs[0], configs[1], configs[2], quality));
-       }
-       
-       // Initialize contors
-       Int_t ntracks,      // number of TRD track candidates
-               ntracks1,     // number of registered TRD tracks/iter
-               ntracks2 = 0; // number of all registered TRD tracks in stack
-       fSieveSeeding = 0;
-       do{
-               // Loop over seeding configurations
-               ntracks = 0; ntracks1 = 0;
-               for (Int_t iconf = 0; iconf<3; iconf++) {
-                       pars[0] = configs[iconf];
-                       pars[1] = ntracks;
-                       ntracks = MakeSeeds(stack, &sseed[6*ntracks], pars);
-                       if(ntracks == kMaxTracksStack) break;
-               }
-               if(AliTRDReconstructor::StreamLevel() > 1) AliInfo(Form("Candidate TRD tracks %d in iteration %d.", ntracks, fSieveSeeding));
-               
-               if(!ntracks) break;
-               
-               // Sort the seeds according to their quality
-               Int_t sort[kMaxTracksStack];
-               TMath::Sort(ntracks, fTrackQuality, sort, kTRUE);
-       
-               // Initialize number of tracks so far and logic switches
-               Int_t ntracks0 = esdTrackList->GetEntriesFast();
-               Bool_t signedTrack[kMaxTracksStack];
-               Bool_t fakeTrack[kMaxTracksStack];
-               for (Int_t i=0; i<ntracks; i++){
-                       signedTrack[i] = kFALSE;
-                       fakeTrack[i] = kFALSE;
-               }
-               //AliInfo("Selecting track candidates ...");
-               
-               // Sieve clusters in decreasing order of track quality
-               Double_t trackParams[7];
-               //              AliTRDseedV1 *lseed = 0x0;
-               Int_t jSieve = 0, candidates;
-               do{
-                       //AliInfo(Form("\t\tITER = %i ", jSieve));
-
-                       // Check track candidates
-                       candidates = 0;
-                       for (Int_t itrack = 0; itrack < ntracks; itrack++) {
-       Int_t trackIndex = sort[itrack];
-       if (signedTrack[trackIndex] || fakeTrack[trackIndex]) continue;
-       
-                               
-       // Calculate track parameters from tracklets seeds
-       Int_t labelsall[1000];
-       Int_t nlabelsall = 0;
-       Int_t naccepted  = 0;
-       Int_t ncl        = 0;
-       Int_t nused      = 0;
-       Int_t nlayers    = 0;
-       Int_t findable   = 0;
-       for (Int_t jLayer = 0; jLayer < kNPlanes; jLayer++) {
-               Int_t jseed = kNPlanes*trackIndex+jLayer;
-               if(!sseed[jseed].IsOK()) continue;
-               if (TMath::Abs(sseed[jseed].GetYref(0) / sseed[jseed].GetX0()) < 0.15) findable++;
-       
-               sseed[jseed].UpdateUsed();
-               ncl   += sseed[jseed].GetN2();
-               nused += sseed[jseed].GetNUsed();
-               nlayers++;
-       
-               // Cooking label
-               for (Int_t itime = 0; itime < fgNTimeBins; itime++) {
-                       if(!sseed[jseed].IsUsable(itime)) continue;
-                       naccepted++;
-                       Int_t tindex = 0, ilab = 0;
-                       while(ilab<3 && (tindex = sseed[jseed].GetClusters(itime)->GetLabel(ilab)) >= 0){
-                               labelsall[nlabelsall++] = tindex;
-                               ilab++;
-                       }
-               }
-       }
-       // Filter duplicated tracks
-       if (nused > 30){
-               //printf("Skip %d nused %d\n", trackIndex, nused);
-               fakeTrack[trackIndex] = kTRUE;
-               continue;
-       }
-       if (Float_t(nused)/ncl >= .25){
-               //printf("Skip %d nused/ncl >= .25\n", trackIndex);
-               fakeTrack[trackIndex] = kTRUE;
-               continue;
-       }
-                               
-       // Classify tracks
-       Bool_t skip = kFALSE;
-       switch(jSieve){
-       case 0:
-               if(nlayers < 6) {skip = kTRUE; break;}
-               if(TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -5.){skip = kTRUE; break;}
-               break;
-       
-       case 1:
-               if(nlayers < findable){skip = kTRUE; break;}
-               if(TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -4.){skip = kTRUE; break;}
-               break;
-       
-       case 2:
-               if ((nlayers == findable) || (nlayers == 6)) { skip = kTRUE; break;}
-               if (TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -6.0){skip = kTRUE; break;}
-               break;
-       
-       case 3:
-               if (TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -5.){skip = kTRUE; break;}
-               break;
-       
-       case 4:
-               if (nlayers == 3){skip = kTRUE; break;}
-               //if (TMath::Log(1.E-9+fTrackQuality[trackIndex]) - nused/(nlayers-3.0) < -15.0){skip = kTRUE; break;}
-               break;
-       }
-       if(skip){
-               candidates++;
-               //printf("REJECTED : %d [%d] nlayers %d trackQuality = %e nused %d\n", itrack, trackIndex, nlayers, fTrackQuality[trackIndex], nused);
-               continue;
-       }
-       signedTrack[trackIndex] = kTRUE;
-                                               
-
-       // Build track label - what happens if measured data ???
-       Int_t labels[1000];
-       Int_t outlab[1000];
-       Int_t nlab = 0;
-       for (Int_t iLayer = 0; iLayer < 6; iLayer++) {
-               Int_t jseed = kNPlanes*trackIndex+iLayer;
-               if(!sseed[jseed].IsOK()) continue;
-               for(int ilab=0; ilab<2; ilab++){
-                       if(sseed[jseed].GetLabels(ilab) < 0) continue;
-                       labels[nlab] = sseed[jseed].GetLabels(ilab);
-                       nlab++;
-               }
-       }
-       Freq(nlab,labels,outlab,kFALSE);
-       Int_t   label     = outlab[0];
-       Int_t   frequency = outlab[1];
-       Freq(nlabelsall,labelsall,outlab,kFALSE);
-       Int_t   label1    = outlab[0];
-       Int_t   label2    = outlab[2];
-       Float_t fakeratio = (naccepted - outlab[1]) / Float_t(naccepted);
-       
-                               
-       // Sign clusters
-       AliTRDcluster *cl = 0x0; Int_t clusterIndex = -1;
-       for (Int_t jLayer = 0; jLayer < 6; jLayer++) {
-               Int_t jseed = kNPlanes*trackIndex+jLayer;
-               if(!sseed[jseed].IsOK()) continue;
-               if(TMath::Abs(sseed[jseed].GetYfit(1) - sseed[jseed].GetYfit(1)) >= .2) continue; // check this condition with Marian
-               sseed[jseed].UseClusters();
-               if(!cl){
-                       Int_t ic = 0;
-                       while(!(cl = sseed[jseed].GetClusters(ic))) ic++;
-                       clusterIndex =  sseed[jseed].GetIndexes(ic);
-               }
-       }
-       if(!cl) continue;
-
-                               
-       // Build track parameters
-       AliTRDseedV1 *lseed =&sseed[trackIndex*6];
-       Int_t idx = 0;
-       while(idx<3 && !lseed->IsOK()) {
-               idx++;
-               lseed++;
-       }
-       Double_t cR = lseed->GetC();
-       trackParams[1] = lseed->GetYref(0);
-       trackParams[2] = lseed->GetZref(0);
-       trackParams[3] = lseed->GetX0() * cR - TMath::Sin(TMath::ATan(lseed->GetYref(1)));
-       trackParams[4] = lseed->GetZref(1) / TMath::Sqrt(1. + lseed->GetYref(1) * lseed->GetYref(1));
-       trackParams[5] = cR;
-       trackParams[0] = lseed->GetX0();
-       Int_t ich = 0; while(!(chamber = stack[ich])) ich++;
-       trackParams[6] = fGeom->GetSector(chamber->GetDetector());/* *alpha+shift;      // Supermodule*/
-
-       if(AliTRDReconstructor::StreamLevel() > 1){
-               AliInfo(Form("Track %d [%d] nlayers %d trackQuality = %e nused %d, yref = %3.3f", itrack, trackIndex, nlayers, fTrackQuality[trackIndex], nused, trackParams[1]));
-                                       
-               Int_t nclusters = 0;
-               AliTRDseedV1 *dseed[6];
-               for(int is=0; is<6; is++){
-                       dseed[is] = new AliTRDseedV1(sseed[trackIndex*6+is]);
-                       dseed[is]->SetOwner();
-                       nclusters += sseed[is].GetN2();
-               }
-               //Int_t eventNrInFile = esd->GetEventNumberInFile();
-               //AliInfo(Form("Number of clusters %d.", nclusters));
-               Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
-               Int_t trackNumber = AliTRDtrackerDebug::GetTrackNumber();
-               Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
-               TTreeSRedirector &cstreamer = *fgDebugStreamer;
-               cstreamer << "Clusters2TracksStack"
-                               << "EventNumber="               << eventNumber
-                               << "TrackNumber="               << trackNumber
-                               << "CandidateNumber="   << candidateNumber
-                               << "Iter="                              << fSieveSeeding
-                               << "Like="                              << fTrackQuality[trackIndex]
-                               << "S0.="                               << dseed[0]
-                               << "S1.="                               << dseed[1]
-                               << "S2.="                               << dseed[2]
-                               << "S3.="                               << dseed[3]
-                               << "S4.="                               << dseed[4]
-                               << "S5.="                               << dseed[5]
-                               << "p0="                                << trackParams[0]
-                               << "p1="                                << trackParams[1]
-                               << "p2="                                << trackParams[2]
-                               << "p3="                                << trackParams[3]
-                               << "p4="                                << trackParams[4]
-                               << "p5="                                << trackParams[5]
-                               << "p6="                                << trackParams[6]
-                               << "Label="                             << label
-                               << "Label1="                    << label1
-                               << "Label2="                    << label2
-                               << "FakeRatio="                 << fakeratio
-                               << "Freq="                              << frequency
-                               << "Ncl="                               << ncl
-                               << "NLayers="                   << nlayers
-                               << "Findable="                  << findable
-
-                               << "NUsed="                             << nused
-                               << "\n";
-       }
-                       
-       AliTRDtrackV1 *track = MakeTrack(&sseed[trackIndex*kNPlanes], trackParams);
-       if(!track){
-               //AliWarning("Fail to build a TRD Track.");
-               continue;
-       }
-       //AliInfo("End of MakeTrack()");
-       AliESDtrack esdTrack;
-       esdTrack.UpdateTrackParams(track, AliESDtrack::kTRDout);
-       esdTrack.SetLabel(track->GetLabel());
-       track->UpdateESDtrack(&esdTrack);
-       // write ESD-friends if neccessary
-       if (AliTRDReconstructor::StreamLevel() > 0){
-               //printf("Creating Calibrations Object\n");
-               AliTRDtrackV1 *calibTrack = new AliTRDtrackV1(*track);
-               calibTrack->SetOwner();
-               esdTrack.AddCalibObject(calibTrack);
-       }
-       new ((*esdTrackList)[ntracks0++]) AliESDtrack(esdTrack);
-       ntracks1++;
-       AliTRDtrackerDebug::SetTrackNumber(AliTRDtrackerDebug::GetTrackNumber() + 1);
-                       }
-
-                       jSieve++;
-               } while(jSieve<5 && candidates); // end track candidates sieve
-               if(!ntracks1) break;
-
-               // increment counters
-               ntracks2 += ntracks1;
-               fSieveSeeding++;
-
-               // Rebuild plane configurations and indices taking only unused clusters into account
-               quality = BuildSeedingConfigs(stack, configs);
-               if(quality < 1.E-7) break; //AliTRDReconstructor::RecoParam()->GetPlaneQualityThreshold()) break;
-               
-               for(Int_t ip = 0; ip < kNPlanes; ip++){ 
-                       if(!(chamber = stack[ip])) continue;
-                       chamber->Build(fGeom);//Indices(fSieveSeeding);
-               }
-
-               if(AliTRDReconstructor::StreamLevel() > 1){ 
-                       AliInfo(Form("Sieve level %d Plane config %d %d %d Quality %f", fSieveSeeding, configs[0], configs[1], configs[2], quality));
-               }
-       } while(fSieveSeeding<10); // end stack clusters sieve
-       
-
-
-       //AliInfo(Form("Registered TRD tracks %d in stack %d.", ntracks2, pars[1]));
-
-       return ntracks2;
+  //
+  // Make tracks in one TRD stack.
+  //
+  // Parameters :
+  //   layer  : Array of stack propagation layers containing clusters
+  //   esdTrackList  : Array of ESD tracks found by the stand alone tracker. 
+  //                   On exit the tracks found in this stack are appended.
+  //
+  // Output :
+  //   Number of tracks found in this stack.
+  // 
+  // Detailed description
+  //
+  // 1. Find the 3 most useful seeding chambers. See BuildSeedingConfigs() for details.
+  // 2. Steer AliTRDtrackerV1::MakeSeeds() for 3 seeding layer configurations. 
+  //    See AliTRDtrackerV1::MakeSeeds() for more details.
+  // 3. Arrange track candidates in decreasing order of their quality
+  // 4. Classify tracks in 5 categories according to:
+  //    a) number of layers crossed
+  //    b) track quality 
+  // 5. Sign clusters by tracks in decreasing order of track quality
+  // 6. Build AliTRDtrack out of seeding tracklets
+  // 7. Cook MC label
+  // 8. Build ESD track and register it to the output list
+  //
+
+  const AliTRDCalDet *cal = AliTRDcalibDB::Instance()->GetT0Det();
+  AliTRDtrackingChamber *chamber = 0x0;
+  AliTRDtrackingChamber **ci = 0x0;
+  AliTRDseedV1 sseed[kMaxTracksStack*6]; // to be initialized
+  Int_t pars[4]; // MakeSeeds parameters
+
+  //Double_t alpha = AliTRDgeometry::GetAlpha();
+  //Double_t shift = .5 * alpha;
+  Int_t configs[kNConfigs];
+  
+  // Purge used clusters from the containers
+  ci = &stack[0];
+  for(Int_t ic = kNPlanes; ic--; ci++){
+    if(!(*ci)) continue;
+    (*ci)->Update();
+  }
+
+  // Build initial seeding configurations
+  Double_t quality = BuildSeedingConfigs(stack, configs);
+  if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker) > 10){
+    AliInfo(Form("Plane config %d %d %d Quality %f"
+    , configs[0], configs[1], configs[2], quality));
+  }
+
+  
+  // Initialize contors
+  Int_t ntracks,      // number of TRD track candidates
+    ntracks1,     // number of registered TRD tracks/iter
+    ntracks2 = 0; // number of all registered TRD tracks in stack
+  fSieveSeeding = 0;
+
+  // Get stack index
+  Int_t ic = 0; ci = &stack[0];
+  while(ic<kNPlanes && !(*ci)){ic++; ci++;}
+  if(!(*ci)) return ntracks2;
+  Int_t istack = fGeom->GetStack((*ci)->GetDetector());
+
+  do{
+    // Loop over seeding configurations
+    ntracks = 0; ntracks1 = 0;
+    for (Int_t iconf = 0; iconf<3; iconf++) {
+      pars[0] = configs[iconf];
+      pars[1] = ntracks;
+      pars[2] = istack;
+      ntracks = MakeSeeds(stack, &sseed[6*ntracks], pars);
+      //AliInfo(Form("Number of Tracks after iteration step %d: %d\n", iconf, ntracks));
+      if(ntracks == kMaxTracksStack) break;
+    }
+    if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker) > 1) AliInfo(Form("Candidate TRD tracks %d in iteration %d.", ntracks, fSieveSeeding));
+    
+    if(!ntracks) break;
+    
+    // Sort the seeds according to their quality
+    Int_t sort[kMaxTracksStack];
+    TMath::Sort(ntracks, fTrackQuality, sort, kTRUE);
+  
+    // Initialize number of tracks so far and logic switches
+    Int_t ntracks0 = esdTrackList->GetEntriesFast();
+    Bool_t signedTrack[kMaxTracksStack];
+    Bool_t fakeTrack[kMaxTracksStack];
+    for (Int_t i=0; i<ntracks; i++){
+      signedTrack[i] = kFALSE;
+      fakeTrack[i] = kFALSE;
+    }
+    //AliInfo("Selecting track candidates ...");
+    
+    // Sieve clusters in decreasing order of track quality
+    Double_t trackParams[7];
+    //                 AliTRDseedV1 *lseed = 0x0;
+    Int_t jSieve = 0, candidates;
+    do{
+      //AliInfo(Form("\t\tITER = %i ", jSieve));
+
+      // Check track candidates
+      candidates = 0;
+      for (Int_t itrack = 0; itrack < ntracks; itrack++) {
+        Int_t trackIndex = sort[itrack];
+        if (signedTrack[trackIndex] || fakeTrack[trackIndex]) continue;
+  
+        
+        // Calculate track parameters from tracklets seeds
+        Int_t ncl        = 0;
+        Int_t nused      = 0;
+        Int_t nlayers    = 0;
+        Int_t findable   = 0;
+        for (Int_t jLayer = 0; jLayer < kNPlanes; jLayer++) {
+          Int_t jseed = kNPlanes*trackIndex+jLayer;
+          if(!sseed[jseed].IsOK()) continue;
+          if (TMath::Abs(sseed[jseed].GetYref(0) / sseed[jseed].GetX0()) < 0.158) findable++;
+          // TODO here we get a sig fault which should never happen !
+          sseed[jseed].UpdateUsed();
+          ncl   += sseed[jseed].GetN2();
+          nused += sseed[jseed].GetNUsed();
+          nlayers++;
+        }
+
+        // Filter duplicated tracks
+        if (nused > 30){
+          //printf("Skip %d nused %d\n", trackIndex, nused);
+          fakeTrack[trackIndex] = kTRUE;
+          continue;
+        }
+        if (Float_t(nused)/ncl >= .25){
+          //printf("Skip %d nused/ncl >= .25\n", trackIndex);
+          fakeTrack[trackIndex] = kTRUE;
+          continue;
+        }
+
+        // Classify tracks
+        Bool_t skip = kFALSE;
+        switch(jSieve){
+          case 0:
+            if(nlayers < 6) {skip = kTRUE; break;}
+            if(TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -5.){skip = kTRUE; break;}
+            break;
+
+          case 1:
+            if(nlayers < findable){skip = kTRUE; break;}
+            if(TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -4.){skip = kTRUE; break;}
+            break;
+
+          case 2:
+            if ((nlayers == findable) || (nlayers == 6)) { skip = kTRUE; break;}
+            if (TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -6.0){skip = kTRUE; break;}
+            break;
+
+          case 3:
+            if (TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -5.){skip = kTRUE; break;}
+            break;
+
+          case 4:
+            if (nlayers == 3){skip = kTRUE; break;}
+            //if (TMath::Log(1.E-9+fTrackQuality[trackIndex]) - nused/(nlayers-3.0) < -15.0){skip = kTRUE; break;}
+            break;
+        }
+        if(skip){
+          candidates++;
+          //printf("REJECTED : %d [%d] nlayers %d trackQuality = %e nused %d\n", itrack, trackIndex, nlayers, fTrackQuality[trackIndex], nused);
+          continue;
+        }
+        signedTrack[trackIndex] = kTRUE;
+
+        // Build track parameters
+        AliTRDseedV1 *lseed =&sseed[trackIndex*6];
+      /*  Int_t idx = 0;
+        while(idx<3 && !lseed->IsOK()) {
+          idx++;
+          lseed++;
+        }*/
+        Double_t x = lseed->GetX0();// - 3.5;
+        trackParams[0] = x; //NEW AB
+        trackParams[1] = lseed->GetYref(0); // lseed->GetYat(x);  
+        trackParams[2] = lseed->GetZref(0); // lseed->GetZat(x); 
+        trackParams[3] = TMath::Sin(TMath::ATan(lseed->GetYref(1)));
+        trackParams[4] = lseed->GetZref(1) / TMath::Sqrt(1. + lseed->GetYref(1) * lseed->GetYref(1));
+        trackParams[5] = lseed->GetC();
+        Int_t ich = 0; while(!(chamber = stack[ich])) ich++;
+        trackParams[6] = fGeom->GetSector(chamber->GetDetector());/* *alpha+shift;     // Supermodule*/
+
+        if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker) > 1){
+          //AliInfo(Form("Track %d [%d] nlayers %d trackQuality = %e nused %d, yref = %3.3f", itrack, trackIndex, nlayers, fTrackQuality[trackIndex], nused, trackParams[1]));
+
+          AliTRDseedV1 *dseed[6];
+          for(Int_t iseed = AliTRDgeometry::kNlayer; iseed--;) dseed[iseed] = new AliTRDseedV1(lseed[iseed]);
+
+          //Int_t eventNrInFile = esd->GetEventNumberInFile();
+          Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
+          Int_t trackNumber = AliTRDtrackerDebug::GetTrackNumber();
+          Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
+          TTreeSRedirector &cstreamer = *fReconstructor->GetDebugStream(AliTRDReconstructor::kTracker);
+          cstreamer << "Clusters2TracksStack"
+              << "EventNumber="                << eventNumber
+              << "TrackNumber="                << trackNumber
+              << "CandidateNumber="    << candidateNumber
+              << "Iter="                               << fSieveSeeding
+              << "Like="                               << fTrackQuality[trackIndex]
+              << "S0.="                                << dseed[0]
+              << "S1.="                                << dseed[1]
+              << "S2.="                                << dseed[2]
+              << "S3.="                                << dseed[3]
+              << "S4.="                                << dseed[4]
+              << "S5.="                                << dseed[5]
+              << "p0="                         << trackParams[0]
+              << "p1="                         << trackParams[1]
+              << "p2="                         << trackParams[2]
+              << "p3="                         << trackParams[3]
+              << "p4="                         << trackParams[4]
+              << "p5="                         << trackParams[5]
+              << "p6="                         << trackParams[6]
+              << "Ncl="                                << ncl
+              << "NLayers="                    << nlayers
+              << "Findable="                   << findable
+              << "NUsed="                              << nused
+              << "\n";
+        }
+
+        AliTRDtrackV1 *track = MakeTrack(&sseed[trackIndex*kNPlanes], trackParams);
+        if(!track){
+          AliWarning("Fail to build a TRD Track.");
+          continue;
+        }
+      
+        //AliInfo("End of MakeTrack()");
+        AliESDtrack *esdTrack = new ((*esdTrackList)[ntracks0++]) AliESDtrack();
+        esdTrack->UpdateTrackParams(track, AliESDtrack::kTRDout);
+        esdTrack->SetLabel(track->GetLabel());
+        track->UpdateESDtrack(esdTrack);
+        // write ESD-friends if neccessary
+        if (fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker) > 0){
+          AliTRDtrackV1 *calibTrack = new AliTRDtrackV1(*track);
+          calibTrack->SetOwner();
+          esdTrack->AddCalibObject(calibTrack);
+        }
+        ntracks1++;
+        AliTRDtrackerDebug::SetTrackNumber(AliTRDtrackerDebug::GetTrackNumber() + 1);
+      }
+
+      jSieve++;
+    } while(jSieve<5 && candidates); // end track candidates sieve
+    if(!ntracks1) break;
+
+    // increment counters
+    ntracks2 += ntracks1;
+
+    if(fReconstructor->IsHLT()) break;
+    fSieveSeeding++;
+
+    // Rebuild plane configurations and indices taking only unused clusters into account
+    quality = BuildSeedingConfigs(stack, configs);
+    if(quality < 1.E-7) break; //fReconstructor->GetRecoParam() ->GetPlaneQualityThreshold()) break;
+    
+    for(Int_t ip = 0; ip < kNPlanes; ip++){ 
+      if(!(chamber = stack[ip])) continue;
+      chamber->Build(fGeom, cal);//Indices(fSieveSeeding);
+    }
+
+    if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker) > 10){ 
+      AliInfo(Form("Sieve level %d Plane config %d %d %d Quality %f", fSieveSeeding, configs[0], configs[1], configs[2], quality));
+    }
+  } while(fSieveSeeding<10); // end stack clusters sieve
+  
+
+
+  //AliInfo(Form("Registered TRD tracks %d in stack %d.", ntracks2, pars[1]));
+
+  return ntracks2;
 }
 
 //___________________________________________________________________
 Double_t AliTRDtrackerV1::BuildSeedingConfigs(AliTRDtrackingChamber **stack, Int_t *configs)
 {
-       //
-       // Assign probabilities to chambers according to their
-       // capability of producing seeds.
-       // 
-       // Parameters :
-       //
-       //   layers : Array of stack propagation layers for all 6 chambers in one stack
-       //   configs : On exit array of configuration indexes (see GetSeedingConfig()
-       // for details) in the decreasing order of their seeding probabilities. 
-       //
-       // Output :
-       //
-       //  Return top configuration quality 
-       //
-       // Detailed description:
-       //
-       // To each chamber seeding configuration (see GetSeedingConfig() for
-       // the list of all configurations) one defines 2 quality factors:
-       //  - an apriori topological quality (see GetSeedingConfig() for details) and
-       //  - a data quality based on the uniformity of the distribution of
-       //    clusters over the x range (time bins population). See CookChamberQA() for details.
-       // The overall chamber quality is given by the product of this 2 contributions.
-       // 
-
-       Double_t chamberQ[kNPlanes];
-       AliTRDtrackingChamber *chamber = 0x0;
-       for(int iplane=0; iplane<kNPlanes; iplane++){
-               if(!(chamber = stack[iplane])) continue;
-               chamberQ[iplane] = (chamber = stack[iplane]) ?  chamber->GetQuality() : 0.;
-       }
-
-       Double_t tconfig[kNConfigs];
-       Int_t planes[4];
-       for(int iconf=0; iconf<kNConfigs; iconf++){
-               GetSeedingConfig(iconf, planes);
-               tconfig[iconf] = fgTopologicQA[iconf];
-               for(int iplane=0; iplane<4; iplane++) tconfig[iconf] *= chamberQ[planes[iplane]]; 
-       }
-       
-       TMath::Sort((Int_t)kNConfigs, tconfig, configs, kTRUE);
-       //      AliInfo(Form("q[%d] = %f", configs[0], tconfig[configs[0]]));
-       //      AliInfo(Form("q[%d] = %f", configs[1], tconfig[configs[1]]));
-       //      AliInfo(Form("q[%d] = %f", configs[2], tconfig[configs[2]]));
-       
-       return tconfig[configs[0]];
+  //
+  // Assign probabilities to chambers according to their
+  // capability of producing seeds.
+  // 
+  // Parameters :
+  //
+  //   layers : Array of stack propagation layers for all 6 chambers in one stack
+  //   configs : On exit array of configuration indexes (see GetSeedingConfig()
+  // for details) in the decreasing order of their seeding probabilities. 
+  //
+  // Output :
+  //
+  //  Return top configuration quality 
+  //
+  // Detailed description:
+  //
+  // To each chamber seeding configuration (see GetSeedingConfig() for
+  // the list of all configurations) one defines 2 quality factors:
+  //  - an apriori topological quality (see GetSeedingConfig() for details) and
+  //  - a data quality based on the uniformity of the distribution of
+  //    clusters over the x range (time bins population). See CookChamberQA() for details.
+  // The overall chamber quality is given by the product of this 2 contributions.
+  // 
+
+  Double_t chamberQ[kNPlanes];memset(chamberQ, 0, kNPlanes*sizeof(Double_t));
+  AliTRDtrackingChamber *chamber = 0x0;
+  for(int iplane=0; iplane<kNPlanes; iplane++){
+    if(!(chamber = stack[iplane])) continue;
+    chamberQ[iplane] = (chamber = stack[iplane]) ?  chamber->GetQuality() : 0.;
+  }
+
+  Double_t tconfig[kNConfigs];memset(tconfig, 0, kNConfigs*sizeof(Double_t));
+  Int_t planes[] = {0, 0, 0, 0};
+  for(int iconf=0; iconf<kNConfigs; iconf++){
+    GetSeedingConfig(iconf, planes);
+    tconfig[iconf] = fgTopologicQA[iconf];
+    for(int iplane=0; iplane<4; iplane++) tconfig[iconf] *= chamberQ[planes[iplane]]; 
+  }
+  
+  TMath::Sort((Int_t)kNConfigs, tconfig, configs, kTRUE);
+  //   AliInfo(Form("q[%d] = %f", configs[0], tconfig[configs[0]]));
+  //   AliInfo(Form("q[%d] = %f", configs[1], tconfig[configs[1]]));
+  //   AliInfo(Form("q[%d] = %f", configs[2], tconfig[configs[2]]));
+  
+  return tconfig[configs[0]];
 }
 
 //____________________________________________________________________
 Int_t AliTRDtrackerV1::MakeSeeds(AliTRDtrackingChamber **stack, AliTRDseedV1 *sseed, Int_t *ipar)
 {
-       //
-       // Make tracklet seeds in the TRD stack.
-       //
-       // Parameters :
-       //   layers : Array of stack propagation layers containing clusters
-       //   sseed  : Array of empty tracklet seeds. On exit they are filled.
-       //   ipar   : Control parameters:
-       //       ipar[0] -> seeding chambers configuration
-       //       ipar[1] -> stack index
-       //       ipar[2] -> number of track candidates found so far
-       //
-       // Output :
-       //   Number of tracks candidates found.
-       // 
-       // Detailed description
-       //
-       // The following steps are performed:
-       // 1. Select seeding layers from seeding chambers
-       // 2. Select seeding clusters from the seeding AliTRDpropagationLayerStack.
-       //   The clusters are taken from layer 3, layer 0, layer 1 and layer 2, in
-       //   this order. The parameters controling the range of accepted clusters in
-       //   layer 0, 1, and 2 are defined in AliTRDchamberTimeBin::BuildCond().
-       // 3. Helix fit of the cluster set. (see AliTRDtrackerFitter::FitRieman(AliTRDcluster**))
-       // 4. Initialize seeding tracklets in the seeding chambers.
-       // 5. Filter 0.
-       //   Chi2 in the Y direction less than threshold ... (1./(3. - sLayer))
-       //   Chi2 in the Z direction less than threshold ... (1./(3. - sLayer))
-       // 6. Attach clusters to seeding tracklets and find linear approximation of
-       //   the tracklet (see AliTRDseedV1::AttachClustersIter()). The number of used
-       //   clusters used by current seeds should not exceed ... (25).
-       // 7. Filter 1.
-       //   All 4 seeding tracklets should be correctly constructed (see
-       //   AliTRDseedV1::AttachClustersIter())
-       // 8. Helix fit of the seeding tracklets
-       // 9. Filter 2.
-       //   Likelihood calculation of the fit. (See AliTRDtrackerV1::CookLikelihood() for details)
-       // 10. Extrapolation of the helix fit to the other 2 chambers:
-       //    a) Initialization of extrapolation tracklet with fit parameters
-       //    b) Helix fit of tracklets
-       //    c) Attach clusters and linear interpolation to extrapolated tracklets
-       //    d) Helix fit of tracklets
-       // 11. Improve seeding tracklets quality by reassigning clusters.
-       //      See AliTRDtrackerV1::ImproveSeedQuality() for details.
-       // 12. Helix fit of all 6 seeding tracklets and chi2 calculation
-       // 13. Hyperplane fit and track quality calculation. See AliTRDtrackerFitter::FitHyperplane() for details.
-       // 14. Cooking labels for tracklets. Should be done only for MC
-       // 15. Register seeds.
-       //
-
-       AliTRDtrackingChamber *chamber = 0x0;
-       AliTRDcluster *c[4] = {0x0, 0x0, 0x0, 0x0}; // initilize seeding clusters
-       AliTRDseedV1 *cseed = &sseed[0]; // initialize tracklets for first track
-       Int_t ncl, mcl; // working variable for looping over clusters
-       Int_t index[AliTRDchamberTimeBin::kMaxClustersLayer], jndex[AliTRDchamberTimeBin::kMaxClustersLayer];
-       // chi2 storage
-       // chi2[0] = tracklet chi2 on the Z direction
-       // chi2[1] = tracklet chi2 on the R direction
-       Double_t chi2[4];
-
-
-       // this should be data member of AliTRDtrack
-       Double_t seedQuality[kMaxTracksStack];
-       
-       // unpack control parameters
-       Int_t config  = ipar[0];
-       Int_t ntracks = ipar[1];
-       Int_t planes[kNSeedPlanes]; GetSeedingConfig(config, planes);   
-       
-       // Init chambers geometry
-       Int_t ic = 0; while(!(chamber = stack[ic])) ic++;
-       Int_t istack = fGeom->GetChamber(chamber->GetDetector());
-       Double_t hL[kNPlanes];       // Tilting angle
-       Float_t padlength[kNPlanes]; // pad lenghts
-       AliTRDpadPlane *pp = 0x0;
-       for(int iplane=0; iplane<kNPlanes; iplane++){
-               pp                = fGeom->GetPadPlane(iplane, istack);
-               hL[iplane]        = TMath::Tan(-TMath::DegToRad()*pp->GetTiltingAngle());
-               padlength[iplane] = pp->GetLengthIPad();
-       }
-       
-       if(AliTRDReconstructor::StreamLevel() > 1){
-               AliInfo(Form("Making seeds Stack[%d] Config[%d] Tracks[%d]...", istack, config, ntracks));
-       }
-
-       Int_t nlayers = 0;
-       AliTRDchamberTimeBin *layer[] = {0x0, 0x0, 0x0, 0x0};
-       for(int isl=0; isl<kNSeedPlanes; isl++){ 
-               if(!(chamber = stack[planes[isl]])) continue;
-               if(!(layer[isl] = chamber->GetSeedingLayer(fGeom))) continue;
-               nlayers++;
-               //AliInfo(Form("seeding plane %d clusters %d", planes[isl], Int_t(*layer[isl])));
-       }
-       if(nlayers < 4) return 0;
-       
-       
-       // Start finding seeds
-       Double_t cond0[4], cond1[4], cond2[4];
-       Int_t icl = 0;
-       while((c[3] = (*layer[3])[icl++])){
-               if(!c[3]) continue;
-               layer[0]->BuildCond(c[3], cond0, 0);
-               layer[0]->GetClusters(cond0, index, ncl);
-               //printf("Found c[3] candidates 0 %d\n", ncl);
-               Int_t jcl = 0;
-               while(jcl<ncl) {
-                       c[0] = (*layer[0])[index[jcl++]];
-                       if(!c[0]) continue;
-                       Double_t dx    = c[3]->GetX() - c[0]->GetX();
-                       Double_t theta = (c[3]->GetZ() - c[0]->GetZ())/dx;
-                       Double_t phi   = (c[3]->GetY() - c[0]->GetY())/dx;
-                       layer[1]->BuildCond(c[0], cond1, 1, theta, phi);
-                       layer[1]->GetClusters(cond1, jndex, mcl);
-                       //printf("Found c[0] candidates 1 %d\n", mcl);
-
-                       Int_t kcl = 0;
-                       while(kcl<mcl) {
-       c[1] = (*layer[1])[jndex[kcl++]];
-       if(!c[1]) continue;
-       layer[2]->BuildCond(c[1], cond2, 2, theta, phi);
-       c[2] = layer[2]->GetNearestCluster(cond2);
-       //printf("Found c[1] candidate 2 %p\n", c[2]);
-       if(!c[2]) continue;
-                               
-       //                              AliInfo("Seeding clusters found. Building seeds ...");
-       //                              for(Int_t i = 0; i < kNSeedPlanes; i++) printf("%i. coordinates: x = %6.3f, y = %6.3f, z = %6.3f\n", i, c[i]->GetX(), c[i]->GetY(), c[i]->GetZ());
-                               
-       for (Int_t il = 0; il < 6; il++) cseed[il].Reset();
-
-       FitRieman(c, chi2);
-
-       AliTRDseedV1 *tseed = 0x0;
-       for(int iLayer=0; iLayer<kNSeedPlanes; iLayer++){
-               Int_t jLayer = planes[iLayer];
-               tseed = &cseed[jLayer];
-               tseed->SetPlane(jLayer);
-               tseed->SetTilt(hL[jLayer]);
-               tseed->SetPadLength(padlength[jLayer]);
-               tseed->SetX0(stack[jLayer]->GetX());
-               tseed->Init(GetRiemanFitter());
-       }
-
-       Bool_t isFake = kFALSE;
-       if(AliTRDReconstructor::StreamLevel() >= 2){
-               if (c[0]->GetLabel(0) != c[3]->GetLabel(0)) isFake = kTRUE;
-               if (c[1]->GetLabel(0) != c[3]->GetLabel(0)) isFake = kTRUE;
-               if (c[2]->GetLabel(0) != c[3]->GetLabel(0)) isFake = kTRUE;
-
-               Double_t xpos[4];
-               for(Int_t l = 0; l < kNSeedPlanes; l++) xpos[l] = layer[l]->GetX();
-               Float_t yref[4];
-               for(int il=0; il<4; il++) yref[il] = cseed[planes[il]].GetYref(0);
-               Int_t ll = c[3]->GetLabel(0);
-               Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
-               Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
-               AliRieman *rim = GetRiemanFitter();
-               TTreeSRedirector &cs0 = *fgDebugStreamer;
-               cs0 << "MakeSeeds0"
-                               <<"EventNumber="                << eventNumber
-                               <<"CandidateNumber="    << candidateNumber
-                               <<"isFake="                             << isFake
-                               <<"config="                             << config
-                               <<"label="                              << ll
-                               <<"chi2z="                              << chi2[0]
-                               <<"chi2y="                              << chi2[1]
-                               <<"Y2exp="                              << cond2[0]     
-                               <<"Z2exp="                              << cond2[1]
-                               <<"X0="                                 << xpos[0] //layer[sLayer]->GetX()
-                               <<"X1="                                 << xpos[1] //layer[sLayer + 1]->GetX()
-                               <<"X2="                                 << xpos[2] //layer[sLayer + 2]->GetX()
-                               <<"X3="                                 << xpos[3] //layer[sLayer + 3]->GetX()
-                               <<"yref0="                              << yref[0]
-                               <<"yref1="                              << yref[1]
-                               <<"yref2="                              << yref[2]
-                               <<"yref3="                              << yref[3]
-                               <<"c0.="                                << c[0]
-                               <<"c1.="                                << c[1]
-                               <<"c2.="                                << c[2]
-                               <<"c3.="                                << c[3]
-                               <<"Seed0.="                             << &cseed[planes[0]]
-                               <<"Seed1.="                             << &cseed[planes[1]]
-                               <<"Seed2.="                             << &cseed[planes[2]]
-                               <<"Seed3.="                             << &cseed[planes[3]]
-                               <<"RiemanFitter.="              << rim
-                               <<"\n";
-       }
-
-       if(chi2[0] > AliTRDReconstructor::RecoParam()->GetChi2Z()/*7./(3. - sLayer)*//*iter*/){
-               //AliInfo(Form("Failed chi2 filter on chi2Z [%f].", chi2[0]));
-               AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
-               continue;
-       }
-       if(chi2[1] > AliTRDReconstructor::RecoParam()->GetChi2Y()/*1./(3. - sLayer)*//*iter*/){
-               //AliInfo(Form("Failed chi2 filter on chi2Y [%f].", chi2[1]));
-               AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
-               continue;
-       }
-       //AliInfo("Passed chi2 filter.");
-
-       // try attaching clusters to tracklets
-       Int_t nUsedCl = 0;
-       Int_t nlayers = 0;
-       for(int iLayer=0; iLayer<kNSeedPlanes; iLayer++){
-               Int_t jLayer = planes[iLayer];
-               if(!cseed[jLayer].AttachClustersIter(stack[jLayer], 5., kFALSE, c[iLayer])) continue;
-               nUsedCl += cseed[jLayer].GetNUsed();
-               if(nUsedCl > 25) break;
-               nlayers++;
-       }
-       if(nlayers < kNSeedPlanes){ 
-               //AliInfo(Form("Failed updating all seeds %d [%d].", nlayers, kNSeedPlanes));
-               AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
-               continue;
-       }
-       // fit tracklets and cook likelihood
-       FitTiltedRieman(&cseed[0], kTRUE);// Update Seeds and calculate Likelihood
-       chi2[0] = GetChi2Y(&cseed[0]);
-       chi2[1] = GetChi2Z(&cseed[0]);
-       //Chi2 definitions in testing stage
-       //chi2[0] = GetChi2YTest(&cseed[0]);
-       //chi2[1] = GetChi2ZTest(&cseed[0]);
-       Double_t like = CookLikelihood(&cseed[0], planes, chi2); // to be checked
-
-       if (TMath::Log(1.E-9 + like) < AliTRDReconstructor::RecoParam()->GetTrackLikelihood()){
-               //AliInfo(Form("Failed likelihood %f[%e].", TMath::Log(1.E-9 + like), like));
-               AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
-               continue;
-       }
-       //AliInfo(Form("Passed likelihood %f[%e].", TMath::Log(1.E-9 + like), like));
-
-       // book preliminary results
-       seedQuality[ntracks] = like;
-       fSeedLayer[ntracks]  = config;/*sLayer;*/
-
-       // attach clusters to the extrapolation seeds
-       Int_t lextrap[2];
-       GetExtrapolationConfig(config, lextrap);
-       Int_t nusedf   = 0; // debug value
-       for(int iLayer=0; iLayer<2; iLayer++){
-               Int_t jLayer = lextrap[iLayer];
-               if(!(chamber = stack[jLayer])) continue;
-                                               
-               // prepare extrapolated seed
-               cseed[jLayer].Reset();
-               cseed[jLayer].SetPlane(jLayer);
-               cseed[jLayer].SetTilt(hL[jLayer]);
-               cseed[jLayer].SetX0(chamber->GetX());
-               cseed[jLayer].SetPadLength(padlength[jLayer]);
-
-               // fit extrapolated seed
-               if ((jLayer == 0) && !(cseed[1].IsOK())) continue;
-               if ((jLayer == 5) && !(cseed[4].IsOK())) continue;
-               AliTRDseedV1 tseed = cseed[jLayer];
-               if(!tseed.AttachClustersIter(chamber, 1000.)) continue;
-               cseed[jLayer] = tseed;
-               nusedf += cseed[jLayer].GetNUsed(); // debug value
-               FitTiltedRieman(cseed,  kTRUE);
-       }
-
-       // AliInfo("Extrapolation done.");
-       // Debug Stream containing all the 6 tracklets
-       if(AliTRDReconstructor::StreamLevel() >= 2){
-               TTreeSRedirector &cstreamer = *fgDebugStreamer;
-               TLinearFitter *tiltedRieman = GetTiltedRiemanFitter();
-               Int_t eventNumber               = AliTRDtrackerDebug::GetEventNumber();
-               Int_t candidateNumber   = AliTRDtrackerDebug::GetCandidateNumber();
-               cstreamer << "MakeSeeds1"
-                               << "EventNumber="               << eventNumber
-                               << "CandidateNumber="   << candidateNumber
-                               << "S0.="                               << &cseed[0]
-                               << "S1.="                               << &cseed[1]
-                               << "S2.="                               << &cseed[2]
-                               << "S3.="                               << &cseed[3]
-                               << "S4.="                               << &cseed[4]
-                               << "S5.="                               << &cseed[5]
-                               << "FitterT.="                  << tiltedRieman
-                               << "\n";
-       }
-                               
-       if(ImproveSeedQuality(stack, cseed) < 4){
-               AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
-               continue;
-       }
-       //AliInfo("Improve seed quality done.");
-
-       // fit full track and cook likelihoods
-       //                              Double_t curv = FitRieman(&cseed[0], chi2);
-       //                              Double_t chi2ZF = chi2[0] / TMath::Max((nlayers - 3.), 1.);
-       //                              Double_t chi2RF = chi2[1] / TMath::Max((nlayers - 3.), 1.);
-
-       // do the final track fitting (Once with vertex constraint and once without vertex constraint)
-       Double_t chi2Vals[3];
-       chi2Vals[0] = FitTiltedRieman(&cseed[0], kFALSE);
-       chi2Vals[1] = FitTiltedRiemanConstraint(&cseed[0], GetZ());
-       chi2Vals[2] = GetChi2Z(&cseed[0]) / TMath::Max((nlayers - 3.), 1.);
-       // Chi2 definitions in testing stage
-       //chi2Vals[2] = GetChi2ZTest(&cseed[0]);
-       fTrackQuality[ntracks] = CalculateTrackLikelihood(&cseed[0], &chi2Vals[0]);
-       //AliInfo("Hyperplane fit done\n");
-
-       // finalize tracklets
-       Int_t labels[12];
-       Int_t outlab[24];
-       Int_t nlab = 0;
-       for (Int_t iLayer = 0; iLayer < 6; iLayer++) {
-               if (!cseed[iLayer].IsOK()) continue;
-
-               if (cseed[iLayer].GetLabels(0) >= 0) {
-                       labels[nlab] = cseed[iLayer].GetLabels(0);
-                       nlab++;
-               }
-
-               if (cseed[iLayer].GetLabels(1) >= 0) {
-                       labels[nlab] = cseed[iLayer].GetLabels(1);
-                       nlab++;
-               }
-       }
-       Freq(nlab,labels,outlab,kFALSE);
-       Int_t label     = outlab[0];
-       Int_t frequency = outlab[1];
-       for (Int_t iLayer = 0; iLayer < 6; iLayer++) {
-               cseed[iLayer].SetFreq(frequency);
-               cseed[iLayer].SetChi2Z(chi2[1]);
-       }
-                       
-       if(AliTRDReconstructor::StreamLevel() >= 2){
-               TTreeSRedirector &cstreamer = *fgDebugStreamer;
-               Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
-               Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
-               TLinearFitter *fitterTC = GetTiltedRiemanFitterConstraint();
-               TLinearFitter *fitterT = GetTiltedRiemanFitter();
-               cstreamer << "MakeSeeds2"
-                               << "EventNumber="               << eventNumber
-                               << "CandidateNumber="   << candidateNumber
-                               << "Chi2TR="                    << chi2Vals[0]
-                               << "Chi2TC="                    << chi2Vals[1]
-                               << "Nlayers="                   << nlayers
-                               << "NUsedS="                    << nUsedCl
-                               << "NUsed="                             << nusedf
-                               << "Like="                              << like
-                               << "S0.="                               << &cseed[0]
-                               << "S1.="                               << &cseed[1]
-                               << "S2.="                               << &cseed[2]
-                               << "S3.="                               << &cseed[3]
-                               << "S4.="                               << &cseed[4]
-                               << "S5.="                               << &cseed[5]
-                               << "Label="                             << label
-                               << "Freq="                              << frequency
-                               << "FitterT.="                  << fitterT
-                               << "FitterTC.="                 << fitterTC
-                               << "\n";
-       }
-                               
-       ntracks++;
-       AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
-       if(ntracks == kMaxTracksStack){
-               AliWarning(Form("Number of seeds reached maximum allowed (%d) in stack.", kMaxTracksStack));
-               for(int isl=0; isl<4; isl++) delete layer[isl];
-               return ntracks;
-       }
-       cseed += 6;
-                       }
-               }
-       }
-       for(int isl=0; isl<4; isl++) delete layer[isl];
-       
-       return ntracks;
+//
+// Seed tracklets and build candidate TRD tracks. The procedure is used during barrel tracking to account for tracks which are 
+// either missed by TPC prolongation or conversions inside the TRD volume. 
+// For stand alone tracking the procedure is used to estimate all tracks measured by TRD. 
+//
+// Parameters :
+//   layers : Array of stack propagation layers containing clusters
+//   sseed  : Array of empty tracklet seeds. On exit they are filled.
+//   ipar   : Control parameters:
+//       ipar[0] -> seeding chambers configuration
+//       ipar[1] -> stack index
+//       ipar[2] -> number of track candidates found so far
+//
+// Output :
+//   Number of tracks candidates found.
+// 
+// The following steps are performed:
+// 1. Build seeding layers by collapsing all time bins from each of the four seeding chambers along the 
+// radial coordinate. See AliTRDtrackingChamber::GetSeedingLayer() for details. The chambers selection for seeding
+// is described in AliTRDtrackerV1::Clusters2TracksStack().
+// 2. Using the seeding clusters from the seeding layer (step 1) build combinatorics using the following algorithm:
+// - for each seeding cluster in the lower seeding layer find
+// - all seeding clusters in the upper seeding layer inside a road defined by a given phi angle. The angle 
+//   is calculated on the minimum pt of tracks from vertex accesible to the stand alone tracker.
+// - for each pair of two extreme seeding clusters select middle upper cluster using roads defined externally by the 
+//   reco params
+// - select last seeding cluster as the nearest to the linear approximation of the track described by the first three
+//   seeding clusters.
+//   The implementation of road calculation and cluster selection can be found in the functions AliTRDchamberTimeBin::BuildCond()
+//   and AliTRDchamberTimeBin::GetClusters().   
+// 3. Helix fit of the seeding clusters set. (see AliTRDtrackerFitter::FitRieman(AliTRDcluster**)). No tilt correction is 
+//    performed at this level 
+// 4. Initialize seeding tracklets in the seeding chambers.
+// 5. *Filter 0* Chi2 cut on the Y and Z directions. The threshold is set externally by the reco params.
+// 6. Attach (true) clusters to seeding tracklets (see AliTRDseedV1::AttachClusters()) and fit tracklet (see 
+//    AliTRDseedV1::Fit()). The number of used clusters used by current seeds should not exceed ... (25).
+// 7. *Filter 1* Check if all 4 seeding tracklets are correctly constructed.
+// 8. Helix fit of the clusters from the seeding tracklets with tilt correction. Refit tracklets using the new 
+//    approximation of the track.
+// 9. *Filter 2* Calculate likelihood of the track. (See AliTRDtrackerV1::CookLikelihood()). The following quantities are
+//    checked against the Riemann fit:
+//      - position resolution in y
+//      - angular resolution in the bending plane
+//      - likelihood of the number of clusters attached to the tracklet
+// 10. Extrapolation of the helix fit to the other 2 chambers *non seeding* chambers:
+//      - Initialization of extrapolation tracklets with the fit parameters
+//      - Attach clusters to extrapolated tracklets
+//      - Helix fit of tracklets
+// 11. Improve seeding tracklets quality by reassigning clusters based on the last parameters of the track
+//      See AliTRDtrackerV1::ImproveSeedQuality() for details.
+// 12. Helix fit of all 6 seeding tracklets and chi2 calculation
+// 13. Hyperplane fit and track quality calculation. See AliTRDtrackerFitter::FitHyperplane() for details.
+// 14. Cooking labels for tracklets. Should be done only for MC
+// 15. Register seeds.
+//
+// Authors:
+//   Marian Ivanov <M.Ivanov@gsi.de>
+//   Alexandru Bercuci <A.Bercuci@gsi.de>
+//   Markus Fasel <M.Fasel@gsi.de>
+
+  AliTRDtrackingChamber *chamber = 0x0;
+  AliTRDcluster *c[kNSeedPlanes] = {0x0, 0x0, 0x0, 0x0}; // initilize seeding clusters
+  AliTRDseedV1 *cseed = &sseed[0]; // initialize tracklets for first track
+  Int_t ncl, mcl; // working variable for looping over clusters
+  Int_t index[AliTRDchamberTimeBin::kMaxClustersLayer], jndex[AliTRDchamberTimeBin::kMaxClustersLayer];
+  // chi2 storage
+  // chi2[0] = tracklet chi2 on the Z direction
+  // chi2[1] = tracklet chi2 on the R direction
+  Double_t chi2[4];
+
+  // this should be data member of AliTRDtrack TODO
+  Double_t seedQuality[kMaxTracksStack];
+  
+  // unpack control parameters
+  Int_t config  = ipar[0];
+  Int_t ntracks = ipar[1];
+  Int_t istack  = ipar[2];
+  Int_t planes[kNSeedPlanes]; GetSeedingConfig(config, planes);        
+  Int_t planesExt[kNPlanes-kNSeedPlanes]; GetExtrapolationConfig(config, planesExt);
+
+
+  // Init chambers geometry
+  Double_t hL[kNPlanes];       // Tilting angle
+  Float_t padlength[kNPlanes]; // pad lenghts
+  Float_t padwidth[kNPlanes];  // pad widths
+  AliTRDpadPlane *pp = 0x0;
+  for(int iplane=0; iplane<kNPlanes; iplane++){
+    pp                = fGeom->GetPadPlane(iplane, istack);
+    hL[iplane]        = TMath::Tan(TMath::DegToRad()*pp->GetTiltingAngle());
+    padlength[iplane] = pp->GetLengthIPad();
+    padwidth[iplane] = pp->GetWidthIPad();
+  }
+  
+  // Init anode wire position for chambers
+  Double_t x0[kNPlanes],       // anode wire position
+           driftLength = .5*AliTRDgeometry::AmThick() - AliTRDgeometry::DrThick(); // drift length
+  TGeoHMatrix *matrix = 0x0;
+  Double_t loc[] = {AliTRDgeometry::AnodePos(), 0., 0.};
+  Double_t glb[] = {0., 0., 0.};
+  AliTRDtrackingChamber **cIter = &stack[0];
+  for(int iLayer=0; iLayer<kNPlanes; iLayer++,cIter++){
+    if(!(*cIter)) continue;
+    if(!(matrix = fGeom->GetClusterMatrix((*cIter)->GetDetector()))){ 
+      continue;
+      x0[iLayer] = fgkX0[iLayer];
+    }
+    matrix->LocalToMaster(loc, glb);
+    x0[iLayer] = glb[0];
+  }
+
+  if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker) > 2){
+    AliInfo(Form("Making seeds Stack[%d] Config[%d] Tracks[%d]...", istack, config, ntracks));
+  }
+
+  // Build seeding layers
+  ResetSeedTB();
+  Int_t nlayers = 0;
+  for(int isl=0; isl<kNSeedPlanes; isl++){ 
+    if(!(chamber = stack[planes[isl]])) continue;
+    if(!chamber->GetSeedingLayer(fSeedTB[isl], fGeom, fReconstructor)) continue;
+    nlayers++;
+  }
+  if(nlayers < kNSeedPlanes) return ntracks;
+  
+  
+  // Start finding seeds
+  Double_t cond0[4], cond1[4], cond2[4];
+  Int_t icl = 0;
+  while((c[3] = (*fSeedTB[3])[icl++])){
+    if(!c[3]) continue;
+    fSeedTB[0]->BuildCond(c[3], cond0, 0);
+    fSeedTB[0]->GetClusters(cond0, index, ncl);
+    //printf("Found c[3] candidates 0 %d\n", ncl);
+    Int_t jcl = 0;
+    while(jcl<ncl) {
+      c[0] = (*fSeedTB[0])[index[jcl++]];
+      if(!c[0]) continue;
+      Double_t dx    = c[3]->GetX() - c[0]->GetX();
+      Double_t dzdx = (c[3]->GetZ() - c[0]->GetZ())/dx;
+      Double_t dydx   = (c[3]->GetY() - c[0]->GetY())/dx;
+      fSeedTB[1]->BuildCond(c[0], cond1, 1, dzdx, dydx);
+      fSeedTB[1]->GetClusters(cond1, jndex, mcl);
+      //printf("Found c[0] candidates 1 %d\n", mcl);
+
+      Int_t kcl = 0;
+      while(kcl<mcl) {
+        c[1] = (*fSeedTB[1])[jndex[kcl++]];
+        if(!c[1]) continue;
+        fSeedTB[2]->BuildCond(c[1], cond2, 2, dzdx, dydx);
+        c[2] = fSeedTB[2]->GetNearestCluster(cond2);
+        //printf("Found c[1] candidate 2 %p\n", c[2]);
+        if(!c[2]) continue;
+              
+               //AliInfo("Seeding clusters found. Building seeds ...");
+               //for(Int_t i = 0; i < kNSeedPlanes; i++) printf("%i. coordinates: x = %6.3f, y = %6.3f, z = %6.3f\n", i, c[i]->GetX(), c[i]->GetY(), c[i]->GetZ());
+              
+        for (Int_t il = 0; il < kNPlanes; il++) cseed[il].Reset();
+      
+        FitRieman(c, chi2);
+      
+        AliTRDseedV1 *tseed = &cseed[0];
+        cIter = &stack[0];
+        for(int iLayer=0; iLayer<kNPlanes; iLayer++, tseed++, cIter++){
+          Int_t det = (*cIter) ? (*cIter)->GetDetector() : -1;
+          tseed->SetDetector(det);
+          tseed->SetTilt(hL[iLayer]);
+          tseed->SetPadLength(padlength[iLayer]);
+          tseed->SetPadWidth(padwidth[iLayer]);
+          tseed->SetReconstructor(fReconstructor);
+          tseed->SetX0(det<0 ? fR[iLayer]+driftLength : x0[iLayer]);
+          tseed->Init(GetRiemanFitter());
+          tseed->SetStandAlone(kTRUE);
+        }
+      
+        Bool_t isFake = kFALSE;
+        if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker) >= 2){
+          if (c[0]->GetLabel(0) != c[3]->GetLabel(0)) isFake = kTRUE;
+          if (c[1]->GetLabel(0) != c[3]->GetLabel(0)) isFake = kTRUE;
+          if (c[2]->GetLabel(0) != c[3]->GetLabel(0)) isFake = kTRUE;
+      
+          Double_t xpos[4];
+          for(Int_t l = 0; l < kNSeedPlanes; l++) xpos[l] = fSeedTB[l]->GetX();
+          Float_t yref[4];
+          for(int il=0; il<4; il++) yref[il] = cseed[planes[il]].GetYref(0);
+          Int_t ll = c[3]->GetLabel(0);
+          Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
+          Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
+          AliRieman *rim = GetRiemanFitter();
+          TTreeSRedirector &cs0 = *fReconstructor->GetDebugStream(AliTRDReconstructor::kTracker);
+          cs0 << "MakeSeeds0"
+              <<"EventNumber="         << eventNumber
+              <<"CandidateNumber="     << candidateNumber
+              <<"isFake="                              << isFake
+              <<"config="                              << config
+              <<"label="                               << ll
+              <<"chi2z="                               << chi2[0]
+              <<"chi2y="                               << chi2[1]
+              <<"Y2exp="                               << cond2[0]     
+              <<"Z2exp="                               << cond2[1]
+              <<"X0="                                  << xpos[0] //layer[sLayer]->GetX()
+              <<"X1="                                  << xpos[1] //layer[sLayer + 1]->GetX()
+              <<"X2="                                  << xpos[2] //layer[sLayer + 2]->GetX()
+              <<"X3="                                  << xpos[3] //layer[sLayer + 3]->GetX()
+              <<"yref0="                               << yref[0]
+              <<"yref1="                               << yref[1]
+              <<"yref2="                               << yref[2]
+              <<"yref3="                               << yref[3]
+              <<"c0.="                         << c[0]
+              <<"c1.="                         << c[1]
+              <<"c2.="                         << c[2]
+              <<"c3.="                         << c[3]
+              <<"Seed0.="                              << &cseed[planes[0]]
+              <<"Seed1.="                              << &cseed[planes[1]]
+              <<"Seed2.="                              << &cseed[planes[2]]
+              <<"Seed3.="                              << &cseed[planes[3]]
+              <<"RiemanFitter.="               << rim
+              <<"\n";
+        }
+        if(chi2[0] > fReconstructor->GetRecoParam() ->GetChi2Z()/*7./(3. - sLayer)*//*iter*/){
+          //AliInfo(Form("Failed chi2 filter on chi2Z [%f].", chi2[0]));
+          AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
+          continue;
+        }
+        if(chi2[1] > fReconstructor->GetRecoParam() ->GetChi2Y()/*1./(3. - sLayer)*//*iter*/){
+          //AliInfo(Form("Failed chi2 filter on chi2Y [%f].", chi2[1]));
+          AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
+          continue;
+        }
+        //AliInfo("Passed chi2 filter.");
+      
+        // try attaching clusters to tracklets
+        Int_t mlayers = 0; 
+             AliTRDcluster *cl = NULL;
+        for(int iLayer=0; iLayer<kNSeedPlanes; iLayer++){
+          Int_t jLayer = planes[iLayer];
+               Int_t nNotInChamber = 0;
+          if(!cseed[jLayer].AttachClusters(stack[jLayer], kTRUE)) continue;
+          cseed[jLayer].Fit();
+          cseed[jLayer].UpdateUsed();
+               cseed[jLayer].ResetClusterIter();
+               while((cl = cseed[jLayer].NextCluster())){
+                     if(!cl->IsInChamber()) nNotInChamber++;
+               }
+          //printf("clusters[%d], used[%d], not in chamber[%d]\n", cseed[jLayer].GetN(), cseed[jLayer].GetNUsed(), nNotInChamber);
+               if(cseed[jLayer].GetN() - (cseed[jLayer].GetNUsed() + nNotInChamber) < 5) continue; // checking for Cluster which are not in chamber is a much stronger restriction on real data
+          mlayers++;
+        }
+
+        if(mlayers < kNSeedPlanes){ 
+          //AliInfo(Form("Failed updating all seeds %d [%d].", mlayers, kNSeedPlanes));
+          AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
+          continue;
+        }
+
+        // temporary exit door for the HLT
+        if(fReconstructor->IsHLT()){ 
+          // attach clusters to extrapolation chambers
+          for(int iLayer=0; iLayer<kNPlanes-kNSeedPlanes; iLayer++){
+            Int_t jLayer = planesExt[iLayer];
+            if(!(chamber = stack[jLayer])) continue;
+            cseed[jLayer].AttachClusters(chamber, kTRUE);
+            cseed[jLayer].Fit();
+          }
+          fTrackQuality[ntracks] = 1.; // dummy value
+          ntracks++;
+          if(ntracks == kMaxTracksStack) return ntracks;
+          cseed += 6; 
+          continue;
+        }
+
+
+        // Update Seeds and calculate Likelihood
+        // fit tracklets and cook likelihood
+        FitTiltedRieman(&cseed[0], kTRUE);
+        for(int iLayer=0; iLayer<kNSeedPlanes; iLayer++){
+          Int_t jLayer = planes[iLayer];
+          cseed[jLayer].Fit(kTRUE);
+        }
+        Double_t like = CookLikelihood(&cseed[0], planes); // to be checked
+      
+        if (TMath::Log(1.E-9 + like) < fReconstructor->GetRecoParam() ->GetTrackLikelihood()){
+          //AliInfo(Form("Failed likelihood %f[%e].", TMath::Log(1.E-9 + like), like));
+          AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
+          continue;
+        }
+        //AliInfo(Form("Passed likelihood %f[%e].", TMath::Log(1.E-9 + like), like));
+      
+        // book preliminary results
+        seedQuality[ntracks] = like;
+        fSeedLayer[ntracks]  = config;/*sLayer;*/
+      
+        // attach clusters to the extrapolation seeds
+        for(int iLayer=0; iLayer<kNPlanes-kNSeedPlanes; iLayer++){
+          Int_t jLayer = planesExt[iLayer];
+          if(!(chamber = stack[jLayer])) continue;
+      
+          // fit extrapolated seed
+          if ((jLayer == 0) && !(cseed[1].IsOK())) continue;
+          if ((jLayer == 5) && !(cseed[4].IsOK())) continue;
+          AliTRDseedV1 pseed = cseed[jLayer];
+          if(!pseed.AttachClusters(chamber, kTRUE)) continue;
+          pseed.Fit(kTRUE);
+          cseed[jLayer] = pseed;
+          FitTiltedRieman(cseed,  kTRUE);
+          cseed[jLayer].Fit(kTRUE);
+        }
+      
+        // AliInfo("Extrapolation done.");
+        // Debug Stream containing all the 6 tracklets
+        if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker) >= 2){
+          TTreeSRedirector &cstreamer = *fReconstructor->GetDebugStream(AliTRDReconstructor::kTracker);
+          TLinearFitter *tiltedRieman = GetTiltedRiemanFitter();
+          Int_t eventNumber            = AliTRDtrackerDebug::GetEventNumber();
+          Int_t candidateNumber        = AliTRDtrackerDebug::GetCandidateNumber();
+          cstreamer << "MakeSeeds1"
+              << "EventNumber="                << eventNumber
+              << "CandidateNumber="    << candidateNumber
+              << "S0.="                                << &cseed[0]
+              << "S1.="                                << &cseed[1]
+              << "S2.="                                << &cseed[2]
+              << "S3.="                                << &cseed[3]
+              << "S4.="                                << &cseed[4]
+              << "S5.="                                << &cseed[5]
+              << "FitterT.="                   << tiltedRieman
+              << "\n";
+        }
+              
+        if(fReconstructor->HasImproveTracklets() && ImproveSeedQuality(stack, cseed) < 4){
+          AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
+          continue;
+        }
+        //AliInfo("Improve seed quality done.");
+      
+        // fit full track and cook likelihoods
+        //                             Double_t curv = FitRieman(&cseed[0], chi2);
+        //                             Double_t chi2ZF = chi2[0] / TMath::Max((mlayers - 3.), 1.);
+        //                             Double_t chi2RF = chi2[1] / TMath::Max((mlayers - 3.), 1.);
+      
+        // do the final track fitting (Once with vertex constraint and once without vertex constraint)
+        Double_t chi2Vals[3];
+        chi2Vals[0] = FitTiltedRieman(&cseed[0], kTRUE);
+        if(fReconstructor->HasVertexConstrained())
+          chi2Vals[1] = FitTiltedRiemanConstraint(&cseed[0], GetZ()); // Do Vertex Constrained fit if desired
+        else
+          chi2Vals[1] = 1.;
+        chi2Vals[2] = GetChi2Z(&cseed[0]) / TMath::Max((mlayers - 3.), 1.);
+        // Chi2 definitions in testing stage
+        //chi2Vals[2] = GetChi2ZTest(&cseed[0]);
+        fTrackQuality[ntracks] = CalculateTrackLikelihood(&cseed[0], &chi2Vals[0]);
+        //AliInfo("Hyperplane fit done\n");
+                  
+        if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker) >= 2){
+          TTreeSRedirector &cstreamer = *fReconstructor->GetDebugStream(AliTRDReconstructor::kTracker);
+          Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
+          Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
+          TLinearFitter *fitterTC = GetTiltedRiemanFitterConstraint();
+          TLinearFitter *fitterT = GetTiltedRiemanFitter();
+          Int_t ncls = 0; 
+          for(Int_t iseed = 0; iseed < kNPlanes; iseed++){
+               ncls += cseed[iseed].IsOK() ? cseed[iseed].GetN2() : 0;
+          }
+          cstreamer << "MakeSeeds2"
+              << "EventNumber="                << eventNumber
+              << "CandidateNumber="    << candidateNumber
+              << "Chi2TR="                     << chi2Vals[0]
+              << "Chi2TC="                     << chi2Vals[1]
+              << "Nlayers="                    << mlayers
+              << "NClusters="   << ncls
+              << "Like="                               << like
+              << "S0.="                                << &cseed[0]
+              << "S1.="                                << &cseed[1]
+              << "S2.="                                << &cseed[2]
+              << "S3.="                                << &cseed[3]
+              << "S4.="                                << &cseed[4]
+              << "S5.="                                << &cseed[5]
+              << "FitterT.="                   << fitterT
+              << "FitterTC.="                  << fitterTC
+              << "\n";
+        }
+              
+        ntracks++;
+        AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
+        if(ntracks == kMaxTracksStack){
+          AliWarning(Form("Number of seeds reached maximum allowed (%d) in stack.", kMaxTracksStack));
+          return ntracks;
+        }
+        cseed += 6;
+      }
+    }
+  }
+  
+  return ntracks;
 }
 
 //_____________________________________________________________________________
 AliTRDtrackV1* AliTRDtrackerV1::MakeTrack(AliTRDseedV1 *seeds, Double_t *params)
 {
-       //
-       // Build a TRD track out of tracklet candidates
-       //
-       // Parameters :
-       //   seeds  : array of tracklets
-       //   params : track parameters (see MakeSeeds() function body for a detailed description)
-       //
-       // Output :
-       //   The TRD track.
-       //
-       // Detailed description
-       //
-       // To be discussed with Marian !!
-       //
-
-       AliTRDCalibraFillHisto *calibra = AliTRDCalibraFillHisto::Instance();
-       if (!calibra) AliInfo("Could not get Calibra instance\n");
-
-       Double_t alpha = AliTRDgeometry::GetAlpha();
-       Double_t shift = AliTRDgeometry::GetAlpha()/2.0;
-       Double_t c[15];
-
-       c[ 0] = 0.2;
-       c[ 1] = 0.0; c[ 2] = 2.0;
-       c[ 3] = 0.0; c[ 4] = 0.0; c[ 5] = 0.02;
-       c[ 6] = 0.0; c[ 7] = 0.0; c[ 8] = 0.0;  c[ 9] = 0.1;
-       c[10] = 0.0; c[11] = 0.0; c[12] = 0.0;  c[13] = 0.0; c[14] = params[5]*params[5]*0.01;
-
-       AliTRDtrackV1 *track = new AliTRDtrackV1(seeds, &params[1], c, params[0], params[6]*alpha+shift);
-       track->PropagateTo(params[0]-5.0);
-       track->ResetCovariance(1);
-       Int_t nc = FollowBackProlongation(*track);
-       //AliInfo(Form("N clusters for track %d", nc));
-       if (nc < 30) {
-               delete track;
-               track = 0x0;
-       } else {
-               track->CookdEdx();
-               track->CookdEdxTimBin(-1);
-               track->CookLabel(.9);
-               // computes PID for track
-               track->CookPID();
-               // update calibration references using this track
-               if(calibra->GetHisto2d()) calibra->UpdateHistogramsV1(track);
-       }
-
-       return track;
+//
+// Build a TRD track out of tracklet candidates
+//
+// Parameters :
+//   seeds  : array of tracklets
+//   params : array of track parameters as they are estimated by stand alone tracker. 7 elements.
+//     [0] - radial position of the track at reference point
+//     [1] - y position of the fit at [0]
+//     [2] - z position of the fit at [0]
+//     [3] - snp of the first tracklet
+//     [4] - tgl of the first tracklet
+//     [5] - curvature of the Riemann fit - 1/pt
+//     [6] - sector rotation angle
+//
+// Output :
+//   The TRD track.
+//
+// Initialize the TRD track based on the parameters of the fit and a parametric covariance matrix 
+// (diagonal with constant variance terms TODO - correct parameterization) 
+// 
+// In case of HLT just register the tracklets in the tracker and return values of the Riemann fit. For the
+// offline case perform a full Kalman filter on the already found tracklets (see AliTRDtrackerV1::FollowBackProlongation() 
+// for details). Do also MC label calculation and PID if propagation successfully.
+
+  Double_t alpha = AliTRDgeometry::GetAlpha();
+  Double_t shift = AliTRDgeometry::GetAlpha()/2.0;
+  Double_t c[15];
+
+  c[ 0] = 0.2; // s^2_y
+  c[ 1] = 0.0; c[ 2] = 2.0; // s^2_z
+  c[ 3] = 0.0; c[ 4] = 0.0; c[ 5] = 0.02; // s^2_snp
+  c[ 6] = 0.0; c[ 7] = 0.0; c[ 8] = 0.0;  c[ 9] = 0.1; // s^2_tgl
+  c[10] = 0.0; c[11] = 0.0; c[12] = 0.0;  c[13] = 0.0; c[14] = params[5]*params[5]*0.01; // s^2_1/pt
+
+  AliTRDtrackV1 track(seeds, &params[1], c, params[0], params[6]*alpha+shift);
+  track.PropagateTo(params[0]-5.0);
+  AliTRDseedV1 *ptrTracklet = 0x0;
+
+  // skip Kalman filter for HLT
+  if(fReconstructor->IsHLT()){ 
+    for (Int_t jLayer = 0; jLayer < AliTRDgeometry::kNlayer; jLayer++) {
+      track.UnsetTracklet(jLayer);
+      ptrTracklet = &seeds[jLayer];
+      if(!ptrTracklet->IsOK()) continue;
+      if(TMath::Abs(ptrTracklet->GetYref(1) - ptrTracklet->GetYfit(1)) >= .2) continue; // check this condition with Marian
+      ptrTracklet = SetTracklet(ptrTracklet);
+      ptrTracklet->UseClusters();
+      track.SetTracklet(ptrTracklet, fTracklets->GetEntriesFast()-1);
+    }
+    AliTRDtrackV1 *ptrTrack = SetTrack(&track);
+    ptrTrack->CookPID();
+    ptrTrack->SetReconstructor(fReconstructor);
+    return ptrTrack;
+  }
+
+  track.ResetCovariance(1);
+  Int_t nc = TMath::Abs(FollowBackProlongation(track));
+  if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker) > 5){
+    Int_t eventNumber          = AliTRDtrackerDebug::GetEventNumber();
+    Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
+    Double_t p[5]; // Track Params for the Debug Stream
+    track.GetExternalParameters(params[0], p);
+    TTreeSRedirector &cs = *fReconstructor->GetDebugStream(AliTRDReconstructor::kTracker);
+    cs << "MakeTrack"
+    << "EventNumber="     << eventNumber
+    << "CandidateNumber=" << candidateNumber
+    << "nc="     << nc
+    << "X="      << params[0]
+    << "Y="      << p[0]
+    << "Z="      << p[1]
+    << "snp="    << p[2]
+    << "tnd="    << p[3]
+    << "crv="    << p[4]
+    << "Yin="    << params[1]
+    << "Zin="    << params[2]
+    << "snpin="  << params[3]
+    << "tndin="  << params[4]
+    << "crvin="  << params[5]
+    << "track.=" << &track
+    << "\n";
+  }
+  if (nc < 30) return 0x0;
+
+  AliTRDtrackV1 *ptrTrack = SetTrack(&track);
+  ptrTrack->SetReconstructor(fReconstructor);
+  ptrTrack->CookLabel(.9);
+  
+  // computes PID for track
+  ptrTrack->CookPID();
+  // update calibration references using this track
+  AliTRDCalibraFillHisto *calibra = AliTRDCalibraFillHisto::Instance();
+  if (!calibra){ 
+    AliInfo("Could not get Calibra instance\n");
+    if(calibra->GetHisto2d()) calibra->UpdateHistogramsV1(ptrTrack);
+  }
+  return ptrTrack;
 }
 
 
 //____________________________________________________________________
 Int_t AliTRDtrackerV1::ImproveSeedQuality(AliTRDtrackingChamber **stack, AliTRDseedV1 *cseed)
 {
-       //
-       // Sort tracklets according to "quality" and try to "improve" the first 4 worst
-       //
-       // Parameters :
-       //  layers : Array of propagation layers for a stack/supermodule
-       //  cseed  : Array of 6 seeding tracklets which has to be improved
-       // 
-       // Output :
-       //   cssed : Improved seeds
-       // 
-       // Detailed description
-       //
-       // Iterative procedure in which new clusters are searched for each
-       // tracklet seed such that the seed quality (see AliTRDseed::GetQuality())
-       // can be maximized. If some optimization is found the old seeds are replaced.
-       //
-       // debug level: 7
-       //
-       
-       // make a local working copy
-       AliTRDtrackingChamber *chamber = 0x0;
-       AliTRDseedV1 bseed[6];
-       Int_t nLayers = 0;
-       for (Int_t jLayer = 0; jLayer < 6; jLayer++) bseed[jLayer] = cseed[jLayer];
-       
-       Float_t lastquality = 10000.0;
-       Float_t lastchi2    = 10000.0;
-       Float_t chi2        =  1000.0;
-
-       for (Int_t iter = 0; iter < 4; iter++) {
-               Float_t sumquality = 0.0;
-               Float_t squality[6];
-               Int_t   sortindexes[6];
-
-               for (Int_t jLayer = 0; jLayer < 6; jLayer++) {
-                       squality[jLayer]  = bseed[jLayer].IsOK() ? bseed[jLayer].GetQuality(kTRUE) : -1.;
-                       sumquality += squality[jLayer];
-               }
-               if ((sumquality >= lastquality) || (chi2       >     lastchi2)) break;
-
-               nLayers = 0;
-               lastquality = sumquality;
-               lastchi2    = chi2;
-               if (iter > 0) for (Int_t jLayer = 0; jLayer < 6; jLayer++) cseed[jLayer] = bseed[jLayer];
-
-               TMath::Sort(6, squality, sortindexes, kFALSE);
-               for (Int_t jLayer = 5; jLayer > 1; jLayer--) {
-                       Int_t bLayer = sortindexes[jLayer];
-                       if(!(chamber = stack[bLayer])) continue;
-                       bseed[bLayer].AttachClustersIter(chamber, squality[bLayer], kTRUE);
-                       if(bseed[bLayer].IsOK()) nLayers++;
-               }
-
-               chi2 = FitTiltedRieman(bseed, kTRUE);
-               if(AliTRDReconstructor::StreamLevel() >= 7){
-                       Int_t eventNumber               = AliTRDtrackerDebug::GetEventNumber();
-                       Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
-                       TLinearFitter *tiltedRieman = GetTiltedRiemanFitter();
-                       TTreeSRedirector &cstreamer = *fgDebugStreamer;
-                       cstreamer << "ImproveSeedQuality"
-               << "EventNumber="               << eventNumber
-               << "CandidateNumber="   << candidateNumber
-               << "Iteration="                         << iter
-               << "S0.="                                                       << &bseed[0]
-               << "S1.="                                                       << &bseed[1]
-               << "S2.="                                                       << &bseed[2]
-               << "S3.="                                                       << &bseed[3]
-               << "S4.="                                                       << &bseed[4]
-               << "S5.="                                                       << &bseed[5]
-               << "FitterT.="                          << tiltedRieman
-               << "\n";
-               }
-       } // Loop: iter
-       
-       // we are sure that at least 2 tracklets are OK !
-       return nLayers+2;
+  //
+  // Sort tracklets according to "quality" and try to "improve" the first 4 worst
+  //
+  // Parameters :
+  //  layers : Array of propagation layers for a stack/supermodule
+  //  cseed  : Array of 6 seeding tracklets which has to be improved
+  // 
+  // Output : 
+  //   cssed : Improved seeds
+  // 
+  // Detailed description
+  //
+  // Iterative procedure in which new clusters are searched for each
+  // tracklet seed such that the seed quality (see AliTRDseed::GetQuality())
+  // can be maximized. If some optimization is found the old seeds are replaced.
+  //
+  // debug level: 7
+  //
+  
+  // make a local working copy
+  AliTRDtrackingChamber *chamber = 0x0;
+  AliTRDseedV1 bseed[6];
+  Int_t nLayers = 0;
+  for (Int_t jLayer = 0; jLayer < 6; jLayer++) bseed[jLayer] = cseed[jLayer];
+  
+  Float_t lastquality = 10000.0;
+  Float_t lastchi2    = 10000.0;
+  Float_t chi2        =  1000.0;
+
+  for (Int_t iter = 0; iter < 4; iter++) {
+    Float_t sumquality = 0.0;
+    Float_t squality[6];
+    Int_t   sortindexes[6];
+
+    for (Int_t jLayer = 0; jLayer < 6; jLayer++) {
+      squality[jLayer]  = bseed[jLayer].IsOK() ? bseed[jLayer].GetQuality(kTRUE) : 1000.;
+      sumquality += squality[jLayer];
+    }
+    if ((sumquality >= lastquality) || (chi2       >     lastchi2)) break;
+
+    nLayers = 0;
+    lastquality = sumquality;
+    lastchi2    = chi2;
+    if (iter > 0) for (Int_t jLayer = 0; jLayer < 6; jLayer++) cseed[jLayer] = bseed[jLayer];
+
+    TMath::Sort(6, squality, sortindexes, kFALSE);
+    for (Int_t jLayer = 5; jLayer > 1; jLayer--) {
+      Int_t bLayer = sortindexes[jLayer];
+      if(!(chamber = stack[bLayer])) continue;
+      bseed[bLayer].AttachClusters(chamber, kTRUE);
+      bseed[bLayer].Fit(kTRUE);
+      if(bseed[bLayer].IsOK()) nLayers++;
+    }
+
+    chi2 = FitTiltedRieman(bseed, kTRUE);
+    if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker) >= 7){
+      Int_t eventNumber                = AliTRDtrackerDebug::GetEventNumber();
+      Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
+      TLinearFitter *tiltedRieman = GetTiltedRiemanFitter();
+      TTreeSRedirector &cstreamer = *fReconstructor->GetDebugStream(AliTRDReconstructor::kTracker);
+      cstreamer << "ImproveSeedQuality"
+    << "EventNumber="          << eventNumber
+    << "CandidateNumber="      << candidateNumber
+    << "Iteration="                            << iter
+    << "S0.="                                                  << &bseed[0]
+    << "S1.="                                                  << &bseed[1]
+    << "S2.="                                                  << &bseed[2]
+    << "S3.="                                                  << &bseed[3]
+    << "S4.="                                                  << &bseed[4]
+    << "S5.="                                                  << &bseed[5]
+    << "FitterT.="                             << tiltedRieman
+    << "\n";
+    }
+  } // Loop: iter
+  // we are sure that at least 2 tracklets are OK !
+  return nLayers+2;
 }
 
 //_________________________________________________________________________
 Double_t AliTRDtrackerV1::CalculateTrackLikelihood(AliTRDseedV1 *tracklets, Double_t *chi2){
-       //
-       // Calculates the Track Likelihood value. This parameter serves as main quality criterion for 
-       // the track selection
-       // The likelihood value containes:
-       //    - The chi2 values from the both fitters and the chi2 values in z-direction from a linear fit
-       //    - The Sum of the Parameter  |slope_ref - slope_fit|/Sigma of the tracklets
-       // For all Parameters an exponential dependency is used
-       //
-       // Parameters: - Array of tracklets (AliTRDseedV1) related to the track candidate
-       //             - Array of chi2 values: 
-       //                 * Non-Constrained Tilted Riemann fit
-       //                 * Vertex-Constrained Tilted Riemann fit
-       //                 * z-Direction from Linear fit
-       // Output:     - The calculated track likelihood
-       //
-       // debug level 2
-       //
-
-       Double_t sumdaf = 0, nLayers = 0;
-       for (Int_t iLayer = 0; iLayer < kNPlanes; iLayer++) {
-               if(!tracklets[iLayer].IsOK()) continue;
-               sumdaf += TMath::Abs((tracklets[iLayer].GetYfit(1) - tracklets[iLayer].GetYref(1))/ tracklets[iLayer].GetSigmaY2());
-               nLayers++;
-       }
-       sumdaf /= Float_t (nLayers - 2.0);
-       
-       Double_t likeChi2Z  = TMath::Exp(-chi2[2] * 0.14);                      // Chi2Z 
-       Double_t likeChi2TC = TMath::Exp(-chi2[1] * 0.677);                     // Constrained Tilted Riemann
-       Double_t likeChi2TR = TMath::Exp(-chi2[0] * 0.78);                      // Non-constrained Tilted Riemann
-       Double_t likeAF     = TMath::Exp(-sumdaf * 3.23);
-       Double_t trackLikelihood     = likeChi2Z * likeChi2TR * likeAF;
-
-       if(AliTRDReconstructor::StreamLevel() >= 2){
-               Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
-               Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
-               TTreeSRedirector &cstreamer = *fgDebugStreamer;
-               cstreamer << "CalculateTrackLikelihood0"
-                               << "EventNumber="                       << eventNumber
-                               << "CandidateNumber="   << candidateNumber
-                               << "LikeChi2Z="                         << likeChi2Z
-                               << "LikeChi2TR="                        << likeChi2TR
-                               << "LikeChi2TC="                        << likeChi2TC
-                               << "LikeAF="                                    << likeAF
-                               << "TrackLikelihood=" << trackLikelihood
-                               << "\n";
-       }
-
-       return trackLikelihood;
+  //
+  // Calculates the Track Likelihood value. This parameter serves as main quality criterion for 
+  // the track selection
+  // The likelihood value containes:
+  //    - The chi2 values from the both fitters and the chi2 values in z-direction from a linear fit
+  //    - The Sum of the Parameter  |slope_ref - slope_fit|/Sigma of the tracklets
+  // For all Parameters an exponential dependency is used
+  //
+  // Parameters: - Array of tracklets (AliTRDseedV1) related to the track candidate
+  //             - Array of chi2 values: 
+  //                 * Non-Constrained Tilted Riemann fit
+  //                 * Vertex-Constrained Tilted Riemann fit
+  //                 * z-Direction from Linear fit
+  // Output:     - The calculated track likelihood
+  //
+  // debug level 2
+  //
+
+  Double_t chi2phi = 0, nLayers = 0;
+  for (Int_t iLayer = 0; iLayer < kNPlanes; iLayer++) {
+    if(!tracklets[iLayer].IsOK()) continue;
+    chi2phi += tracklets[iLayer].GetChi2Phi();
+    nLayers++;
+  }
+  chi2phi /= Float_t (nLayers - 2.0);
+  
+  Double_t likeChi2Z  = TMath::Exp(-chi2[2] * 0.14);                   // Chi2Z 
+  Double_t likeChi2TC = (fReconstructor->HasVertexConstrained()) ? 
+                                                                                       TMath::Exp(-chi2[1] * 0.677) : 1;                       // Constrained Tilted Riemann
+  Double_t likeChi2TR = TMath::Exp(-chi2[0] * 0.0078);                 // Non-constrained Tilted Riemann
+  Double_t likeChi2Phi= TMath::Exp(-chi2phi * 3.23);//3.23
+  Double_t trackLikelihood     = likeChi2Z * likeChi2TR * likeChi2Phi;
+
+  if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker) >= 2){
+    Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
+    Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
+    TTreeSRedirector &cstreamer = *fReconstructor->GetDebugStream(AliTRDReconstructor::kTracker);
+    cstreamer << "CalculateTrackLikelihood0"
+        << "EventNumber="                      << eventNumber
+        << "CandidateNumber="  << candidateNumber
+        << "LikeChi2Z="                                << likeChi2Z
+        << "LikeChi2TR="                       << likeChi2TR
+        << "LikeChi2TC="                       << likeChi2TC
+        << "LikeChi2Phi="              << likeChi2Phi
+        << "TrackLikelihood=" << trackLikelihood
+        << "\n";
+  }
+  
+  return trackLikelihood;
 }
 
 //____________________________________________________________________
-Double_t AliTRDtrackerV1::CookLikelihood(AliTRDseedV1 *cseed, Int_t planes[4]
-                                       , Double_t *chi2)
+Double_t AliTRDtrackerV1::CookLikelihood(AliTRDseedV1 *cseed, Int_t planes[4])
 {
-       //
-       // Calculate the probability of this track candidate.
-       //
-       // Parameters :
-       //   cseeds : array of candidate tracklets
-       //   planes : array of seeding planes (see seeding configuration)
-       //   chi2   : chi2 values (on the Z and Y direction) from the rieman fit of the track.
-       //
-       // Output :
-       //   likelihood value
-       // 
-       // Detailed description
-       //
-       // The track quality is estimated based on the following 4 criteria:
-       //  1. precision of the rieman fit on the Y direction (likea)
-       //  2. chi2 on the Y direction (likechi2y)
-       //  3. chi2 on the Z direction (likechi2z)
-       //  4. number of attached clusters compared to a reference value 
-       //     (see AliTRDrecoParam::fkFindable) (likeN)
-       //
-       // The distributions for each type of probabilities are given below as of
-       // (date). They have to be checked to assure consistency of estimation.
-       //
-
-       // ratio of the total number of clusters/track which are expected to be found by the tracker.
-       Float_t fgFindable = AliTRDReconstructor::RecoParam()->GetFindableClusters();
-
-       
-       Int_t nclusters = 0;
-       Double_t sumda = 0.;
-       for(UChar_t ilayer = 0; ilayer < 4; ilayer++){
-               Int_t jlayer = planes[ilayer];
-               nclusters += cseed[jlayer].GetN2();
-               sumda += TMath::Abs(cseed[jlayer].GetYfitR(1) - cseed[jlayer].GetYref(1));
-       }
-       Double_t likea     = TMath::Exp(-sumda*10.6);
-       Double_t likechi2y  = 0.0000000001;
-       if (chi2[0] < 0.5) likechi2y += TMath::Exp(-TMath::Sqrt(chi2[0]) * 7.73);
-       Double_t likechi2z = TMath::Exp(-chi2[1] * 0.088) / TMath::Exp(-chi2[1] * 0.019);
-       Int_t enc = Int_t(fgFindable*4.*fgNTimeBins);   // Expected Number Of Clusters, normally 72
-       Double_t likeN     = TMath::Exp(-(enc - nclusters) * 0.19);
-       
-       Double_t like      = likea * likechi2y * likechi2z * likeN;
-
-       //      AliInfo(Form("sumda(%f) chi2[0](%f) chi2[1](%f) likea(%f) likechi2y(%f) likechi2z(%f) nclusters(%d) likeN(%f)", sumda, chi2[0], chi2[1], likea, likechi2y, likechi2z, nclusters, likeN));
-       if(AliTRDReconstructor::StreamLevel() >= 2){
-               Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
-               Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
-               // The Debug Stream contains the seed 
-               TTreeSRedirector &cstreamer = *fgDebugStreamer;
-               cstreamer << "CookLikelihood"
-                               << "EventNumber="                       << eventNumber
-                               << "CandidateNumber=" << candidateNumber
-                               << "tracklet0.="                        << &cseed[0]
-                               << "tracklet1.="                        << &cseed[1]
-                               << "tracklet2.="                        << &cseed[2]
-                               << "tracklet3.="                        << &cseed[3]
-                               << "tracklet4.="                        << &cseed[4]
-                               << "tracklet5.="                        << &cseed[5]
-                               << "sumda="                                             << sumda
-                               << "chi0="                                              << chi2[0]
-                               << "chi1="                                              << chi2[1]
-                               << "likea="                                             << likea
-                               << "likechi2y="                         << likechi2y
-                               << "likechi2z="                         << likechi2z
-                               << "nclusters="                         << nclusters
-                               << "likeN="                                             << likeN
-                               << "like="                                              << like
-                               << "\n";
-       }
-
-       return like;
+  //
+  // Calculate the probability of this track candidate.
+  //
+  // Parameters :
+  //   cseeds : array of candidate tracklets
+  //   planes : array of seeding planes (see seeding configuration)
+  //   chi2   : chi2 values (on the Z and Y direction) from the rieman fit of the track.
+  //
+  // Output :
+  //   likelihood value
+  // 
+  // Detailed description
+  //
+  // The track quality is estimated based on the following 4 criteria:
+  //  1. precision of the rieman fit on the Y direction (likea)
+  //  2. chi2 on the Y direction (likechi2y)
+  //  3. chi2 on the Z direction (likechi2z)
+  //  4. number of attached clusters compared to a reference value 
+  //     (see AliTRDrecoParam::fkFindable) (likeN)
+  //
+  // The distributions for each type of probabilities are given below as of
+  // (date). They have to be checked to assure consistency of estimation.
+  //
+
+  // ratio of the total number of clusters/track which are expected to be found by the tracker.
+  const AliTRDrecoParam *fRecoPars = fReconstructor->GetRecoParam();
+  
+       Double_t chi2y = GetChi2Y(&cseed[0]);
+  Double_t chi2z = GetChi2Z(&cseed[0]);
+
+  Float_t nclusters = 0.;
+  Double_t sumda = 0.;
+  for(UChar_t ilayer = 0; ilayer < 4; ilayer++){
+    Int_t jlayer = planes[ilayer];
+    nclusters += cseed[jlayer].GetN2();
+    sumda += TMath::Abs(cseed[jlayer].GetYfit(1) - cseed[jlayer].GetYref(1));
+  }
+  nclusters *= .25;
+
+  Double_t likea     = TMath::Exp(-sumda * fRecoPars->GetPhiSlope());
+  Double_t likechi2y  = 0.0000000001;
+  if (fReconstructor->IsCosmic() || chi2y < fRecoPars->GetChi2YCut()) likechi2y += TMath::Exp(-TMath::Sqrt(chi2y) * fRecoPars->GetChi2YSlope());
+  Double_t likechi2z = TMath::Exp(-chi2z * fRecoPars->GetChi2ZSlope());
+  Double_t likeN     = TMath::Exp(-(fRecoPars->GetNMeanClusters() - nclusters) / fRecoPars->GetNSigmaClusters());
+  Double_t like      = likea * likechi2y * likechi2z * likeN;
+
+  if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker) >= 2){
+    Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
+    Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
+    Int_t nTracklets = 0; Float_t mean_ncls = 0;
+    for(Int_t iseed=0; iseed < kNPlanes; iseed++){
+       if(!cseed[iseed].IsOK()) continue;
+       nTracklets++;
+       mean_ncls += cseed[iseed].GetN2();
+    }
+    if(nTracklets) mean_ncls /= nTracklets;
+    // The Debug Stream contains the seed 
+    TTreeSRedirector &cstreamer = *fReconstructor->GetDebugStream(AliTRDReconstructor::kTracker);
+    cstreamer << "CookLikelihood"
+        << "EventNumber="                      << eventNumber
+        << "CandidateNumber=" << candidateNumber
+        << "tracklet0.="                       << &cseed[0]
+        << "tracklet1.="                       << &cseed[1]
+        << "tracklet2.="                       << &cseed[2]
+        << "tracklet3.="                       << &cseed[3]
+        << "tracklet4.="                       << &cseed[4]
+        << "tracklet5.="                       << &cseed[5]
+        << "sumda="                                            << sumda
+        << "chi2y="                                            << chi2y
+        << "chi2z="                                            << chi2z
+        << "likea="                                            << likea
+        << "likechi2y="                                << likechi2y
+        << "likechi2z="                                << likechi2z
+        << "nclusters="                                << nclusters
+        << "likeN="                                            << likeN
+        << "like="                                             << like
+        << "meanncls="        << mean_ncls
+        << "\n";
+  }
+
+  return like;
 }
 
-
-
 //____________________________________________________________________
 void AliTRDtrackerV1::GetSeedingConfig(Int_t iconfig, Int_t planes[4])
 {
-       //
-       // Map seeding configurations to detector planes.
-       //
-       // Parameters :
-       //   iconfig : configuration index
-       //   planes  : member planes of this configuration. On input empty.
-       //
-       // Output :
-       //   planes : contains the planes which are defining the configuration
-       // 
-       // Detailed description
-       //
-       // Here is the list of seeding planes configurations together with
-       // their topological classification:
-       //
-       //  0 - 5432 TQ 0
-       //  1 - 4321 TQ 0
-       //  2 - 3210 TQ 0
-       //  3 - 5321 TQ 1
-       //  4 - 4210 TQ 1
-       //  5 - 5431 TQ 1
-       //  6 - 4320 TQ 1
-       //  7 - 5430 TQ 2
-       //  8 - 5210 TQ 2
-       //  9 - 5421 TQ 3
-       // 10 - 4310 TQ 3
-       // 11 - 5410 TQ 4
-       // 12 - 5420 TQ 5
-       // 13 - 5320 TQ 5
-       // 14 - 5310 TQ 5
-       //
-       // The topologic quality is modeled as follows:
-       // 1. The general model is define by the equation:
-       //  p(conf) = exp(-conf/2)
-       // 2. According to the topologic classification, configurations from the same
-       //    class are assigned the agerage value over the model values.
-       // 3. Quality values are normalized.
-       // 
-       // The topologic quality distribution as function of configuration is given below:
-       //Begin_Html
-       // <img src="gif/topologicQA.gif">
-       //End_Html
-       //
-
-       switch(iconfig){
-       case 0: // 5432 TQ 0
-               planes[0] = 2;
-               planes[1] = 3;
-               planes[2] = 4;
-               planes[3] = 5;
-               break;
-       case 1: // 4321 TQ 0
-               planes[0] = 1;
-               planes[1] = 2;
-               planes[2] = 3;
-               planes[3] = 4;
-               break;
-       case 2: // 3210 TQ 0
-               planes[0] = 0;
-               planes[1] = 1;
-               planes[2] = 2;
-               planes[3] = 3;
-               break;
-       case 3: // 5321 TQ 1
-               planes[0] = 1;
-               planes[1] = 2;
-               planes[2] = 3;
-               planes[3] = 5;
-               break;
-       case 4: // 4210 TQ 1
-               planes[0] = 0;
-               planes[1] = 1;
-               planes[2] = 2;
-               planes[3] = 4;
-               break;
-       case 5: // 5431 TQ 1
-               planes[0] = 1;
-               planes[1] = 3;
-               planes[2] = 4;
-               planes[3] = 5;
-               break;
-       case 6: // 4320 TQ 1
-               planes[0] = 0;
-               planes[1] = 2;
-               planes[2] = 3;
-               planes[3] = 4;
-               break;
-       case 7: // 5430 TQ 2
-               planes[0] = 0;
-               planes[1] = 3;
-               planes[2] = 4;
-               planes[3] = 5;
-               break;
-       case 8: // 5210 TQ 2
-               planes[0] = 0;
-               planes[1] = 1;
-               planes[2] = 2;
-               planes[3] = 5;
-               break;
-       case 9: // 5421 TQ 3
-               planes[0] = 1;
-               planes[1] = 2;
-               planes[2] = 4;
-               planes[3] = 5;
-               break;
-       case 10: // 4310 TQ 3
-               planes[0] = 0;
-               planes[1] = 1;
-               planes[2] = 3;
-               planes[3] = 4;
-               break;
-       case 11: // 5410 TQ 4
-               planes[0] = 0;
-               planes[1] = 1;
-               planes[2] = 4;
-               planes[3] = 5;
-               break;
-       case 12: // 5420 TQ 5
-               planes[0] = 0;
-               planes[1] = 2;
-               planes[2] = 4;
-               planes[3] = 5;
-               break;
-       case 13: // 5320 TQ 5
-               planes[0] = 0;
-               planes[1] = 2;
-               planes[2] = 3;
-               planes[3] = 5;
-               break;
-       case 14: // 5310 TQ 5
-               planes[0] = 0;
-               planes[1] = 1;
-               planes[2] = 3;
-               planes[3] = 5;
-               break;
-       }
+  //
+  // Map seeding configurations to detector planes.
+  //
+  // Parameters :
+  //   iconfig : configuration index
+  //   planes  : member planes of this configuration. On input empty.
+  //
+  // Output :
+  //   planes : contains the planes which are defining the configuration
+  // 
+  // Detailed description
+  //
+  // Here is the list of seeding planes configurations together with
+  // their topological classification:
+  //
+  //  0 - 5432 TQ 0
+  //  1 - 4321 TQ 0
+  //  2 - 3210 TQ 0
+  //  3 - 5321 TQ 1
+  //  4 - 4210 TQ 1
+  //  5 - 5431 TQ 1
+  //  6 - 4320 TQ 1
+  //  7 - 5430 TQ 2
+  //  8 - 5210 TQ 2
+  //  9 - 5421 TQ 3
+  // 10 - 4310 TQ 3
+  // 11 - 5410 TQ 4
+  // 12 - 5420 TQ 5
+  // 13 - 5320 TQ 5
+  // 14 - 5310 TQ 5
+  //
+  // The topologic quality is modeled as follows:
+  // 1. The general model is define by the equation:
+  //  p(conf) = exp(-conf/2)
+  // 2. According to the topologic classification, configurations from the same
+  //    class are assigned the agerage value over the model values.
+  // 3. Quality values are normalized.
+  // 
+  // The topologic quality distribution as function of configuration is given below:
+  //Begin_Html
+  // <img src="gif/topologicQA.gif">
+  //End_Html
+  //
+
+  switch(iconfig){
+  case 0: // 5432 TQ 0
+    planes[0] = 2;
+    planes[1] = 3;
+    planes[2] = 4;
+    planes[3] = 5;
+    break;
+  case 1: // 4321 TQ 0
+    planes[0] = 1;
+    planes[1] = 2;
+    planes[2] = 3;
+    planes[3] = 4;
+    break;
+  case 2: // 3210 TQ 0
+    planes[0] = 0;
+    planes[1] = 1;
+    planes[2] = 2;
+    planes[3] = 3;
+    break;
+  case 3: // 5321 TQ 1
+    planes[0] = 1;
+    planes[1] = 2;
+    planes[2] = 3;
+    planes[3] = 5;
+    break;
+  case 4: // 4210 TQ 1
+    planes[0] = 0;
+    planes[1] = 1;
+    planes[2] = 2;
+    planes[3] = 4;
+    break;
+  case 5: // 5431 TQ 1
+    planes[0] = 1;
+    planes[1] = 3;
+    planes[2] = 4;
+    planes[3] = 5;
+    break;
+  case 6: // 4320 TQ 1
+    planes[0] = 0;
+    planes[1] = 2;
+    planes[2] = 3;
+    planes[3] = 4;
+    break;
+  case 7: // 5430 TQ 2
+    planes[0] = 0;
+    planes[1] = 3;
+    planes[2] = 4;
+    planes[3] = 5;
+    break;
+  case 8: // 5210 TQ 2
+    planes[0] = 0;
+    planes[1] = 1;
+    planes[2] = 2;
+    planes[3] = 5;
+    break;
+  case 9: // 5421 TQ 3
+    planes[0] = 1;
+    planes[1] = 2;
+    planes[2] = 4;
+    planes[3] = 5;
+    break;
+  case 10: // 4310 TQ 3
+    planes[0] = 0;
+    planes[1] = 1;
+    planes[2] = 3;
+    planes[3] = 4;
+    break;
+  case 11: // 5410 TQ 4
+    planes[0] = 0;
+    planes[1] = 1;
+    planes[2] = 4;
+    planes[3] = 5;
+    break;
+  case 12: // 5420 TQ 5
+    planes[0] = 0;
+    planes[1] = 2;
+    planes[2] = 4;
+    planes[3] = 5;
+    break;
+  case 13: // 5320 TQ 5
+    planes[0] = 0;
+    planes[1] = 2;
+    planes[2] = 3;
+    planes[3] = 5;
+    break;
+  case 14: // 5310 TQ 5
+    planes[0] = 0;
+    planes[1] = 1;
+    planes[2] = 3;
+    planes[3] = 5;
+    break;
+  }
 }
 
 //____________________________________________________________________
 void AliTRDtrackerV1::GetExtrapolationConfig(Int_t iconfig, Int_t planes[2])
 {
-       //
-       // Returns the extrapolation planes for a seeding configuration.
-       //
-       // Parameters :
-       //   iconfig : configuration index
-       //   planes  : planes which are not in this configuration. On input empty.
-       //
-       // Output :
-       //   planes : contains the planes which are not in the configuration
-       // 
-       // Detailed description
-       //
-
-       switch(iconfig){
-       case 0: // 5432 TQ 0
-               planes[0] = 1;
-               planes[1] = 0;
-               break;
-       case 1: // 4321 TQ 0
-               planes[0] = 5;
-               planes[1] = 0;
-               break;
-       case 2: // 3210 TQ 0
-               planes[0] = 4;
-               planes[1] = 5;
-               break;
-       case 3: // 5321 TQ 1
-               planes[0] = 4;
-               planes[1] = 0;
-               break;
-       case 4: // 4210 TQ 1
-               planes[0] = 5;
-               planes[1] = 3;
-               break;
-       case 5: // 5431 TQ 1
-               planes[0] = 2;
-               planes[1] = 0;
-               break;
-       case 6: // 4320 TQ 1
-               planes[0] = 5;
-               planes[1] = 1;
-               break;
-       case 7: // 5430 TQ 2
-               planes[0] = 2;
-               planes[1] = 1;
-               break;
-       case 8: // 5210 TQ 2
-               planes[0] = 4;
-               planes[1] = 3;
-               break;
-       case 9: // 5421 TQ 3
-               planes[0] = 3;
-               planes[1] = 0;
-               break;
-       case 10: // 4310 TQ 3
-               planes[0] = 5;
-               planes[1] = 2;
-               break;
-       case 11: // 5410 TQ 4
-               planes[0] = 3;
-               planes[1] = 2;
-               break;
-       case 12: // 5420 TQ 5
-               planes[0] = 3;
-               planes[1] = 1;
-               break;
-       case 13: // 5320 TQ 5
-               planes[0] = 4;
-               planes[1] = 1;
-               break;
-       case 14: // 5310 TQ 5
-               planes[0] = 4;
-               planes[1] = 2;
-               break;
-       }
+  //
+  // Returns the extrapolation planes for a seeding configuration.
+  //
+  // Parameters :
+  //   iconfig : configuration index
+  //   planes  : planes which are not in this configuration. On input empty.
+  //
+  // Output :
+  //   planes : contains the planes which are not in the configuration
+  // 
+  // Detailed description
+  //
+
+  switch(iconfig){
+  case 0: // 5432 TQ 0
+    planes[0] = 1;
+    planes[1] = 0;
+    break;
+  case 1: // 4321 TQ 0
+    planes[0] = 5;
+    planes[1] = 0;
+    break;
+  case 2: // 3210 TQ 0
+    planes[0] = 4;
+    planes[1] = 5;
+    break;
+  case 3: // 5321 TQ 1
+    planes[0] = 4;
+    planes[1] = 0;
+    break;
+  case 4: // 4210 TQ 1
+    planes[0] = 5;
+    planes[1] = 3;
+    break;
+  case 5: // 5431 TQ 1
+    planes[0] = 2;
+    planes[1] = 0;
+    break;
+  case 6: // 4320 TQ 1
+    planes[0] = 5;
+    planes[1] = 1;
+    break;
+  case 7: // 5430 TQ 2
+    planes[0] = 2;
+    planes[1] = 1;
+    break;
+  case 8: // 5210 TQ 2
+    planes[0] = 4;
+    planes[1] = 3;
+    break;
+  case 9: // 5421 TQ 3
+    planes[0] = 3;
+    planes[1] = 0;
+    break;
+  case 10: // 4310 TQ 3
+    planes[0] = 5;
+    planes[1] = 2;
+    break;
+  case 11: // 5410 TQ 4
+    planes[0] = 3;
+    planes[1] = 2;
+    break;
+  case 12: // 5420 TQ 5
+    planes[0] = 3;
+    planes[1] = 1;
+    break;
+  case 13: // 5320 TQ 5
+    planes[0] = 4;
+    planes[1] = 1;
+    break;
+  case 14: // 5310 TQ 5
+    planes[0] = 4;
+    planes[1] = 2;
+    break;
+  }
 }
 
 //____________________________________________________________________
 AliCluster* AliTRDtrackerV1::GetCluster(Int_t idx) const
 {
-       Int_t ncls = fClusters->GetEntriesFast();
-       return idx >= 0 || idx < ncls ? (AliCluster*)fClusters->UncheckedAt(idx) : 0x0;
+  Int_t ncls = fClusters->GetEntriesFast();
+  return idx >= 0 && idx < ncls ? (AliCluster*)fClusters->UncheckedAt(idx) : 0x0;
 }
 
 //____________________________________________________________________
-Float_t AliTRDtrackerV1::CalculateReferenceX(AliTRDseedV1 *tracklets){
-       //
-       // Calculates the reference x-position for the tilted Rieman fit defined as middle
-       // of the stack (middle between layers 2 and 3). For the calculation all the tracklets
-       // are taken into account
-       // 
-       // Parameters:  - Array of tracklets(AliTRDseedV1)
-       //
-       // Output:              - The reference x-position(Float_t)
-       //
-       Int_t nDistances = 0;
-       Float_t meanDistance = 0.;
-       Int_t startIndex = 5;
-       for(Int_t il =5; il > 0; il--){
-               if(tracklets[il].IsOK() && tracklets[il -1].IsOK()){
-                       Float_t xdiff = tracklets[il].GetX0() - tracklets[il -1].GetX0();
-                       meanDistance += xdiff;
-                       nDistances++;
-               }
-               if(tracklets[il].IsOK()) startIndex = il;
-       }
-       if(tracklets[0].IsOK()) startIndex = 0;
-       if(!nDistances){
-               // We should normally never get here
-               Float_t xpos[2]; memset(xpos, 0, sizeof(Float_t) * 2);
-               Int_t iok = 0, idiff = 0;
-               // This attempt is worse and should be avoided:
-               // check for two chambers which are OK and repeat this without taking the mean value
-               // Strategy avoids a division by 0;
-               for(Int_t il = 5; il >= 0; il--){
-                       if(tracklets[il].IsOK()){
-       xpos[iok] = tracklets[il].GetX0();
-       iok++;
-       startIndex = il;
-                       }
-                       if(iok) idiff++;        // to get the right difference;
-                       if(iok > 1) break;
-               }
-               if(iok > 1){
-                       meanDistance = (xpos[0] - xpos[1])/idiff;
-               }
-               else{
-                       // we have do not even have 2 layers which are OK? The we do not need to fit at all
-                       return 331.;
-               }
-       }
-       else{
-               meanDistance /= nDistances;
-       }
-       return tracklets[startIndex].GetX0() + (2.5 - startIndex) * meanDistance - 0.5 * (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick());
+AliTRDseedV1* AliTRDtrackerV1::GetTracklet(Int_t idx) const
+{
+  Int_t ntrklt = fTracklets->GetEntriesFast();
+  return idx >= 0 && idx < ntrklt ? (AliTRDseedV1*)fTracklets->UncheckedAt(idx) : 0x0;
 }
 
-//_____________________________________________________________________________
-Int_t AliTRDtrackerV1::Freq(Int_t n, const Int_t *inlist
-                                       , Int_t *outlist, Bool_t down)
-{    
-       //
-       // Sort eleements according occurancy 
-       // The size of output array has is 2*n 
-       //
-
-       if (n <= 0) {
-               return 0;
-       }
+//____________________________________________________________________
+AliKalmanTrack* AliTRDtrackerV1::GetTrack(Int_t idx) const
+{
+  Int_t ntrk = fTracks->GetEntriesFast();
+  return idx >= 0 && idx < ntrk ? (AliKalmanTrack*)fTracks->UncheckedAt(idx) : 0x0;
+}
 
-       Int_t *sindexS = new Int_t[n];   // Temporary array for sorting
-       Int_t *sindexF = new Int_t[2*n];   
-       for (Int_t i = 0; i < n; i++) {
-               sindexF[i] = 0;
-       }
 
-       TMath::Sort(n,inlist,sindexS,down); 
-
-       Int_t last     = inlist[sindexS[0]];
-       Int_t val      = last;
-       sindexF[0]     = 1;
-       sindexF[0+n]   = last;
-       Int_t countPos = 0;
-
-       // Find frequency
-       for (Int_t i = 1; i < n; i++) {
-               val = inlist[sindexS[i]];
-               if (last == val) {
-                       sindexF[countPos]++;
-               }
-               else {      
-                       countPos++;
-                       sindexF[countPos+n] = val;
-                       sindexF[countPos]++;
-                       last                = val;
-               }
-       }
-       if (last == val) {
-               countPos++;
-       }
 
-       // Sort according frequency
-       TMath::Sort(countPos,sindexF,sindexS,kTRUE);
+// //_____________________________________________________________________________
+// Int_t AliTRDtrackerV1::Freq(Int_t n, const Int_t *inlist
+//           , Int_t *outlist, Bool_t down)
+// {    
+//   //
+//   // Sort eleements according occurancy 
+//   // The size of output array has is 2*n 
+//   //
+// 
+//   if (n <= 0) {
+//     return 0;
+//   }
+// 
+//   Int_t *sindexS = new Int_t[n];   // Temporary array for sorting
+//   Int_t *sindexF = new Int_t[2*n];   
+//   for (Int_t i = 0; i < n; i++) {
+//     sindexF[i] = 0;
+//   }
+// 
+//   TMath::Sort(n,inlist,sindexS,down); 
+// 
+//   Int_t last     = inlist[sindexS[0]];
+//   Int_t val      = last;
+//   sindexF[0]     = 1;
+//   sindexF[0+n]   = last;
+//   Int_t countPos = 0;
+// 
+//   // Find frequency
+//   for (Int_t i = 1; i < n; i++) {
+//     val = inlist[sindexS[i]];
+//     if (last == val) {
+//       sindexF[countPos]++;
+//     }
+//     else {      
+//       countPos++;
+//       sindexF[countPos+n] = val;
+//       sindexF[countPos]++;
+//       last                = val;
+//     }
+//   }
+//   if (last == val) {
+//     countPos++;
+//   }
+// 
+//   // Sort according frequency
+//   TMath::Sort(countPos,sindexF,sindexS,kTRUE);
+// 
+//   for (Int_t i = 0; i < countPos; i++) {
+//     outlist[2*i  ] = sindexF[sindexS[i]+n];
+//     outlist[2*i+1] = sindexF[sindexS[i]];
+//   }
+// 
+//   delete [] sindexS;
+//   delete [] sindexF;
+//   
+//   return countPos;
+// 
+// }
 
-       for (Int_t i = 0; i < countPos; i++) {
-               outlist[2*i  ] = sindexF[sindexS[i]+n];
-               outlist[2*i+1] = sindexF[sindexS[i]];
-       }
 
-       delete [] sindexS;
-       delete [] sindexF;
-       
-       return countPos;
+//____________________________________________________________________
+void AliTRDtrackerV1::ResetSeedTB()
+{
+// reset buffer for seeding time bin layers. If the time bin 
+// layers are not allocated this function allocates them  
 
+  for(Int_t isl=0; isl<kNSeedPlanes; isl++){
+    if(!fSeedTB[isl]) fSeedTB[isl] = new AliTRDchamberTimeBin();
+    else fSeedTB[isl]->Clear();
+  }
 }
 
+
 //_____________________________________________________________________________
 Float_t AliTRDtrackerV1::GetChi2Y(AliTRDseedV1 *tracklets) const
 {
-       //      Chi2 definition on y-direction
-
-       Float_t chi2 = 0;
-       for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
-               if(!tracklets[ipl].IsOK()) continue;
-               Double_t distLayer = tracklets[ipl].GetYfit(0) - tracklets[ipl].GetYref(0); 
-               chi2 += distLayer * distLayer;
-       }
-       return chi2;
+  //   Calculates normalized chi2 in y-direction
+  // chi2 = Sum chi2 / n_tracklets
+
+  Double_t chi2 = 0.; Int_t n = 0;
+  for(Int_t ipl = kNPlanes; ipl--;){
+    if(!tracklets[ipl].IsOK()) continue;
+    chi2 += tracklets[ipl].GetChi2Y();
+    n++;
+  }
+  return n ? chi2/n : 0.;
 }
 
 //_____________________________________________________________________________
 Float_t AliTRDtrackerV1::GetChi2Z(AliTRDseedV1 *tracklets) const 
 {
-       //      Chi2 definition on z-direction
+  //   Calculates normalized chi2 in z-direction
+  // chi2 = Sum chi2 / n_tracklets
+
+  Double_t chi2 = 0; Int_t n = 0;
+  for(Int_t ipl = kNPlanes; ipl--;){
+    if(!tracklets[ipl].IsOK()) continue;
+    chi2 += tracklets[ipl].GetChi2Z();
+    n++;
+  }
+  return n ? chi2/n : 0.;
+}
 
-       Float_t chi2 = 0;
-       for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
-               if(!tracklets[ipl].IsOK()) continue;
-               Double_t distLayer = tracklets[ipl].GetMeanz() - tracklets[ipl].GetZref(0); 
-               chi2 += distLayer * distLayer;
+//____________________________________________________________________
+Float_t AliTRDtrackerV1::CalculateReferenceX(AliTRDseedV1 *tracklets){
+       //
+       // Calculates the reference x-position for the tilted Rieman fit defined as middle
+       // of the stack (middle between layers 2 and 3). For the calculation all the tracklets
+       // are taken into account
+       //
+       // Parameters: - Array of tracklets(AliTRDseedV1)
+       //
+       // Output: - The reference x-position(Float_t)
+  // Only kept for compatibility with the old code
+       //
+       Int_t nDistances = 0;
+       Float_t meanDistance = 0.;
+       Int_t startIndex = 5;
+       for(Int_t il =5; il > 0; il--){
+       if(tracklets[il].IsOK() && tracklets[il -1].IsOK()){
+       Float_t xdiff = tracklets[il].GetX0() - tracklets[il -1].GetX0();
+           meanDistance += xdiff;
+           nDistances++;
+         }
+         if(tracklets[il].IsOK()) startIndex = il;
+       }
+       if(tracklets[0].IsOK()) startIndex = 0;
+       if(!nDistances){
+         // We should normally never get here
+         Float_t xpos[2]; memset(xpos, 0, sizeof(Float_t) * 2);
+         Int_t iok = 0, idiff = 0;
+         // This attempt is worse and should be avoided:
+         // check for two chambers which are OK and repeat this without taking the mean value
+         // Strategy avoids a division by 0;
+         for(Int_t il = 5; il >= 0; il--){
+           if(tracklets[il].IsOK()){
+             xpos[iok] = tracklets[il].GetX0();
+             iok++;
+             startIndex = il;
+           }
+           if(iok) idiff++; // to get the right difference;
+           if(iok > 1) break;
+         }
+         if(iok > 1){
+           meanDistance = (xpos[0] - xpos[1])/idiff;
+         }
+         else{
+           // we have do not even have 2 layers which are OK? The we do not need to fit at all
+           return 331.;
+       }
+       }
+       else{
+         meanDistance /= nDistances;
        }
-       return chi2;
+       return tracklets[startIndex].GetX0() + (2.5 - startIndex) * meanDistance - 0.5 * (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick());
+}
+
+//_____________________________________________________________________________
+Double_t AliTRDtrackerV1::FitTiltedRiemanV1(AliTRDseedV1 *tracklets){
+  //
+  // Track Fitter Function using the new class implementation of 
+  // the Rieman fit
+  //
+  AliTRDtrackFitterRieman fitter;
+  fitter.SetRiemanFitter(GetTiltedRiemanFitter());
+  fitter.Reset();
+  for(Int_t il = 0; il < AliTRDgeometry::kNlayer; il++) fitter.SetTracklet(il, &tracklets[il]);
+  Double_t chi2 = fitter.Eval();
+  // Update the tracklets
+  Double_t cov[15]; Double_t x0;
+  memset(cov, 0, sizeof(Double_t) * 15);
+  for(Int_t il = 0; il < AliTRDgeometry::kNlayer; il++){
+    x0 = tracklets[il].GetX0();
+    tracklets[il].SetYref(0, fitter.GetYat(x0));
+    tracklets[il].SetZref(0, fitter.GetZat(x0));
+    tracklets[il].SetYref(1, fitter.GetDyDxAt(x0));
+    tracklets[il].SetZref(1, fitter.GetDzDx());
+    tracklets[il].SetC(fitter.GetCurvature());
+    fitter.GetCovAt(x0, cov);
+    tracklets[il].SetCovRef(cov);
+    tracklets[il].SetChi2(chi2);
+  }
+  return chi2;
 }
 
 ///////////////////////////////////////////////////////
@@ -2786,81 +3591,418 @@ Float_t AliTRDtrackerV1::GetChi2Z(AliTRDseedV1 *tracklets) const
 
 //_____________________________________________________________________________
 AliTRDtrackerV1::AliTRDLeastSquare::AliTRDLeastSquare(){
-       //
-       // Constructor of the nested class AliTRDtrackFitterLeastSquare
-       //
-       memset(fParams, 0, sizeof(Double_t) * 2);
-       memset(fSums, 0, sizeof(Double_t) * 5);
-       memset(fCovarianceMatrix, 0, sizeof(Double_t) * 3);
+  //
+  // Constructor of the nested class AliTRDtrackFitterLeastSquare
+  //
+  memset(fParams, 0, sizeof(Double_t) * 2);
+  memset(fSums, 0, sizeof(Double_t) * 5);
+  memset(fCovarianceMatrix, 0, sizeof(Double_t) * 3);
 
 }
 
 //_____________________________________________________________________________
 void AliTRDtrackerV1::AliTRDLeastSquare::AddPoint(Double_t *x, Double_t y, Double_t sigmaY){
-       //
-       // Adding Point to the fitter
-       //
-       Double_t weight = 1/(sigmaY * sigmaY);
-       Double_t &xpt = *x;
-       //      printf("Adding point x = %f, y = %f, sigma = %f\n", xpt, y, sigmaY);
-       fSums[0] += weight;
-       fSums[1] += weight * xpt;
-       fSums[2] += weight * y;
-       fSums[3] += weight * xpt * y;
-       fSums[4] += weight * xpt * xpt;
-       fSums[5] += weight * y * y;
+  //
+  // Adding Point to the fitter
+  //
+  Double_t weight = 1/(sigmaY > 1e-9 ? sigmaY : 1e-9);
+  weight *= weight;
+  Double_t &xpt = *x;
+  //   printf("Adding point x = %f, y = %f, sigma = %f\n", xpt, y, sigmaY);
+  fSums[0] += weight;
+  fSums[1] += weight * xpt;
+  fSums[2] += weight * y;
+  fSums[3] += weight * xpt * y;
+  fSums[4] += weight * xpt * xpt;
+  fSums[5] += weight * y * y;
 }
 
 //_____________________________________________________________________________
 void AliTRDtrackerV1::AliTRDLeastSquare::RemovePoint(Double_t *x, Double_t y, Double_t sigmaY){
-       //
-       // Remove Point from the sample
-       //
-       Double_t weight = 1/(sigmaY * sigmaY);
-       Double_t &xpt = *x; 
-       fSums[0] -= weight;
-       fSums[1] -= weight * xpt;
-       fSums[2] -= weight * y;
-       fSums[3] -= weight * xpt * y;
-       fSums[4] -= weight * xpt * xpt;
-       fSums[5] -= weight * y * y;
+  //
+  // Remove Point from the sample
+  //
+  
+  Double_t weight = 1/(sigmaY > 1e-9 ? sigmaY : 1e-9);
+  weight *= weight;
+  Double_t &xpt = *x; 
+  fSums[0] -= weight;
+  fSums[1] -= weight * xpt;
+  fSums[2] -= weight * y;
+  fSums[3] -= weight * xpt * y;
+  fSums[4] -= weight * xpt * xpt;
+  fSums[5] -= weight * y * y;
 }
 
 //_____________________________________________________________________________
 void AliTRDtrackerV1::AliTRDLeastSquare::Eval(){
-       //
-       // Evaluation of the fit:
-       // Calculation of the parameters
-       // Calculation of the covariance matrix
-       //
-       
-       Double_t denominator = fSums[0] * fSums[4] - fSums[1] *fSums[1];
-       //      for(Int_t isum = 0; isum < 5; isum++)
-       //              printf("fSums[%d] = %f\n", isum, fSums[isum]);
-       //      printf("denominator = %f\n", denominator);
-       fParams[0] = (fSums[2] * fSums[4] - fSums[1] * fSums[3])/ denominator;
-       fParams[1] = (fSums[0] * fSums[3] - fSums[1] * fSums[2]) / denominator;
-       //      printf("fParams[0] = %f, fParams[1] = %f\n", fParams[0], fParams[1]);
-       
-       // Covariance matrix
-       fCovarianceMatrix[0] = fSums[4] - fSums[1] * fSums[1] / fSums[0];
-       fCovarianceMatrix[1] = fSums[5] - fSums[2] * fSums[2] / fSums[0];
-       fCovarianceMatrix[2] = fSums[3] - fSums[1] * fSums[2] / fSums[0];
+  //
+  // Evaluation of the fit:
+  // Calculation of the parameters
+  // Calculation of the covariance matrix
+  //
+  
+  Double_t denominator = fSums[0] * fSums[4] - fSums[1] *fSums[1];
+  if(denominator==0) return;
+
+  //   for(Int_t isum = 0; isum < 5; isum++)
+  //           printf("fSums[%d] = %f\n", isum, fSums[isum]);
+  //   printf("denominator = %f\n", denominator);
+  fParams[0] = (fSums[2] * fSums[4] - fSums[1] * fSums[3])/ denominator;
+  fParams[1] = (fSums[0] * fSums[3] - fSums[1] * fSums[2]) / denominator;
+  //   printf("fParams[0] = %f, fParams[1] = %f\n", fParams[0], fParams[1]);
+  
+  // Covariance matrix
+  fCovarianceMatrix[0] = fSums[4] / fSums[0] - fSums[1] * fSums[1] / (fSums[0] * fSums[0]);
+  fCovarianceMatrix[1] = fSums[5] / fSums[0] - fSums[2] * fSums[2] / (fSums[0] * fSums[0]);
+  fCovarianceMatrix[2] = fSums[3] / fSums[0] - fSums[1] * fSums[2] / (fSums[0] * fSums[0]);
 }
 
 //_____________________________________________________________________________
 Double_t AliTRDtrackerV1::AliTRDLeastSquare::GetFunctionValue(Double_t *xpos) const {
-       //
-       // Returns the Function value of the fitted function at a given x-position
-       //
-       return fParams[0] + fParams[1] * (*xpos);
+  //
+  // Returns the Function value of the fitted function at a given x-position
+  //
+  return fParams[0] + fParams[1] * (*xpos);
 }
 
 //_____________________________________________________________________________
 void AliTRDtrackerV1::AliTRDLeastSquare::GetCovarianceMatrix(Double_t *storage) const {
-       //
-       // Copies the values of the covariance matrix into the storage
-       //
-       memcpy(storage, fCovarianceMatrix, sizeof(Double_t) * 3);
+  //
+  // Copies the values of the covariance matrix into the storage
+  //
+  memcpy(storage, fCovarianceMatrix, sizeof(Double_t) * 3);
+}
+
+//_____________________________________________________________________________
+void AliTRDtrackerV1::AliTRDLeastSquare::Reset(){
+  //
+  // Reset the fitter
+  //
+  memset(fParams, 0, sizeof(Double_t) * 2);
+  memset(fCovarianceMatrix, 0, sizeof(Double_t) * 3);
+  memset(fSums, 0, sizeof(Double_t) * 6);
+}
+
+///////////////////////////////////////////////////////
+//                                                   //
+// Resources of class AliTRDtrackFitterRieman        //
+//                                                   //
+///////////////////////////////////////////////////////
+
+//_____________________________________________________________________________
+AliTRDtrackerV1::AliTRDtrackFitterRieman::AliTRDtrackFitterRieman():
+  fTrackFitter(NULL),
+  fZfitter(NULL),
+  fCovarPolY(NULL),
+  fCovarPolZ(NULL),
+  fXref(0.),
+  fSysClusterError(0.)
+{
+  //
+  // Default constructor
+  //
+  fZfitter = new AliTRDLeastSquare;
+  fCovarPolY = new TMatrixD(3,3);
+  fCovarPolZ = new TMatrixD(2,2);
+  memset(fTracklets, 0, sizeof(AliTRDseedV1 *) * 6);
+  memset(fParameters, 0, sizeof(Double_t) * 5);
+  memset(fSumPolY, 0, sizeof(Double_t) * 5);
+  memset(fSumPolZ, 0, sizeof(Double_t) * 2);
 }
 
+//_____________________________________________________________________________
+AliTRDtrackerV1::AliTRDtrackFitterRieman::~AliTRDtrackFitterRieman(){
+  //
+  // Destructor
+  //
+  if(fZfitter) delete fZfitter;
+  if(fCovarPolY) delete fCovarPolY;
+  if(fCovarPolZ) delete fCovarPolZ;
+}
+
+//_____________________________________________________________________________
+void AliTRDtrackerV1::AliTRDtrackFitterRieman::Reset(){
+  //
+  // Reset the Fitter
+  //
+  if(fTrackFitter){
+    fTrackFitter->StoreData(kTRUE);
+    fTrackFitter->ClearPoints();
+  }
+  if(fZfitter){
+    fZfitter->Reset();
+  }
+  fXref = 0.;
+  memset(fTracklets, 0, sizeof(AliTRDseedV1 *) * AliTRDgeometry::kNlayer);
+  memset(fParameters, 0, sizeof(Double_t) * 5);
+  memset(fSumPolY, 0, sizeof(Double_t) * 5);
+  memset(fSumPolZ, 0, sizeof(Double_t) * 2);
+  for(Int_t irow = 0; irow < fCovarPolY->GetNrows(); irow++)
+    for(Int_t icol = 0; icol < fCovarPolY->GetNcols(); icol++){
+      (*fCovarPolY)(irow, icol) = 0.;
+      if(irow < 2 && icol < 2)
+        (*fCovarPolZ)(irow, icol) = 0.;
+    }
+}
+
+//_____________________________________________________________________________
+void AliTRDtrackerV1::AliTRDtrackFitterRieman::SetTracklet(Int_t itr, AliTRDseedV1 *tracklet){ 
+  //
+  // Add tracklet into the fitter
+  //
+  if(itr >= AliTRDgeometry::kNlayer) return;
+  fTracklets[itr] = tracklet; 
+}
+
+//_____________________________________________________________________________
+Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::Eval(){
+  //
+  // Perform the fit
+  // 1. Apply linear transformation and store points in the fitter
+  // 2. Evaluate the fit
+  // 3. Check if the result of the fit in z-direction is reasonable
+  // if not
+  // 3a. Fix the parameters 3 and 4 with the results of a simple least
+  //     square fit
+  // 3b. Redo the fit with the fixed parameters
+  // 4. Store fit results (parameters and errors)
+  //
+  if(!fTrackFitter){
+    return 1e10;
+  }
+  fXref = CalculateReferenceX();
+  for(Int_t il = 0; il < AliTRDgeometry::kNlayer; il++) UpdateFitters(fTracklets[il]);
+  if(!fTrackFitter->GetNpoints()) return 1e10;
+  // perform the fit
+  fTrackFitter->Eval();
+  fZfitter->Eval();
+  fParameters[3] = fTrackFitter->GetParameter(3);
+  fParameters[4] = fTrackFitter->GetParameter(4);
+  if(!CheckAcceptable(fParameters[3], fParameters[4])) {
+    fTrackFitter->FixParameter(3, fZfitter->GetFunctionValue(&fXref));
+    fTrackFitter->FixParameter(4, fZfitter->GetFunctionParameter(1));
+    fTrackFitter->Eval();
+    fTrackFitter->ReleaseParameter(3);
+    fTrackFitter->ReleaseParameter(4);
+    fParameters[3] = fTrackFitter->GetParameter(3);
+    fParameters[4] = fTrackFitter->GetParameter(4);
+  }
+  // Update the Fit Parameters and the errors
+  fParameters[0] = fTrackFitter->GetParameter(0);
+  fParameters[1] = fTrackFitter->GetParameter(1);
+  fParameters[2] = fTrackFitter->GetParameter(2);
+
+  // Prepare Covariance estimation
+  (*fCovarPolY)(0,0) = fSumPolY[0]; (*fCovarPolY)(1,1) = fSumPolY[2]; (*fCovarPolY)(2,2) = fSumPolY[4];
+  (*fCovarPolY)(1,0) = (*fCovarPolY)(0,1) = fSumPolY[1];
+  (*fCovarPolY)(2,0) = (*fCovarPolY)(0,2) = fSumPolY[2];
+  (*fCovarPolY)(2,1) = (*fCovarPolY)(1,2) = fSumPolY[3];
+  fCovarPolY->Invert();
+  (*fCovarPolZ)(0,0) = fSumPolZ[0]; (*fCovarPolZ)(1,1) = fSumPolZ[2];
+  (*fCovarPolZ)(1,0) = (*fCovarPolZ)(0,1) = fSumPolZ[1];
+  fCovarPolZ->Invert();
+  return fTrackFitter->GetChisquare() / fTrackFitter->GetNpoints();
+}
+
+//_____________________________________________________________________________
+void AliTRDtrackerV1::AliTRDtrackFitterRieman::UpdateFitters(AliTRDseedV1 *tracklet){
+  //
+  // Does the transformations and updates the fitters
+  // The following transformation is applied
+  //
+  AliTRDcluster *cl = NULL;
+  Double_t x, y, z, dx, t, w, we, yerr, zerr;
+  Double_t uvt[4];
+  if(!tracklet || !tracklet->IsOK()) return; 
+  Double_t tilt = tracklet->GetTilt();
+  for(Int_t itb = 0; itb < AliTRDseedV1::kNclusters; itb++){
+    if(!(cl = tracklet->GetClusters(itb))) continue;
+    if(!cl->IsInChamber()) continue;
+    if (!tracklet->IsUsable(itb)) continue;
+    x = cl->GetX();
+    y = cl->GetY();
+    z = cl->GetZ();
+    dx = x - fXref;
+    // Transformation
+    t = 1./(x*x + y*y);
+    uvt[0] = 2. * x * t;
+    uvt[1] = t;
+    uvt[2] = 2. * tilt * t;
+    uvt[3] = 2. * tilt * dx * t;
+    w = 2. * (y + tilt*z) * t;
+    // error definition changes for the different calls
+    we = 2. * t;
+    we *= TMath::Sqrt(cl->GetSigmaY2()+tilt*tilt*cl->GetSigmaZ2());
+    // Update sums for error calculation
+    yerr = 1./(TMath::Sqrt(cl->GetSigmaY2()) + fSysClusterError);
+    yerr *= yerr;
+    zerr = 1./cl->GetSigmaZ2();
+    for(Int_t ipol = 0; ipol < 5; ipol++){
+      fSumPolY[ipol] += yerr;
+      yerr *= x;
+      if(ipol < 3){
+        fSumPolZ[ipol] += zerr;
+        zerr *= x;
+      }
+    }
+    fTrackFitter->AddPoint(uvt, w, we);
+    fZfitter->AddPoint(&x, z, static_cast<Double_t>(TMath::Sqrt(cl->GetSigmaZ2())));
+  }
+}
+
+//_____________________________________________________________________________
+Bool_t AliTRDtrackerV1::AliTRDtrackFitterRieman::CheckAcceptable(Double_t offset, Double_t slope){
+  // 
+  // Check whether z-results are acceptable
+  // Definition: Distance between tracklet fit and track fit has to be
+  // less then half a padlength
+  // Point of comparision is at the anode wire
+  //
+  Bool_t acceptablez = kTRUE;
+  Double_t zref = 0.0;
+  for (Int_t iLayer = 0; iLayer < kNPlanes; iLayer++) {
+    if(!fTracklets[iLayer]->IsOK()) continue;
+    zref = offset + slope * (fTracklets[iLayer]->GetX0() - fXref);
+    if (TMath::Abs(fTracklets[iLayer]->GetZfit(0) - zref) > fTracklets[iLayer]->GetPadLength() * 0.5 + 1.0) 
+      acceptablez = kFALSE;
+  }
+  return acceptablez;
+}
+
+//_____________________________________________________________________________
+Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::GetYat(Double_t x) const {
+  //
+  // Calculate y position out of the track parameters
+  // y:     R^2 = (x - x0)^2 + (y - y0)^2
+  //     =>   y = y0 +/- Sqrt(R^2 - (x - x0)^2)
+  //          R = Sqrt() = 1/Curvature
+  //     =>   y = y0 +/- Sqrt(1/Curvature^2 - (x - x0)^2)
+  //
+  Double_t y = 0;
+  Double_t disc = (x * fParameters[0] + fParameters[1]);
+  disc = 1 - fParameters[0]*fParameters[2] + fParameters[1]*fParameters[1] - disc*disc;
+  if (disc >= 0) {
+    disc = TMath::Sqrt(disc);
+    y    = (1.0 - disc) / fParameters[0];
+  }
+  return y;
+}
+
+//_____________________________________________________________________________
+Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::GetZat(Double_t x) const {
+  //
+  // Return z position for a given x position
+  // Simple linear function
+  //
+  return fParameters[3] + fParameters[4] * (x - fXref);
+}
+
+//_____________________________________________________________________________
+Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::GetDyDxAt(Double_t x) const {
+  //
+  // Calculate dydx at a given radial position out of the track parameters
+  // dy:      R^2 = (x - x0)^2 + (y - y0)^2
+  //     =>     y = +/- Sqrt(R^2 - (x - x0)^2) + y0
+  //     => dy/dx = (x - x0)/Sqrt(R^2 - (x - x0)^2) 
+  // Curvature: cr = 1/R = a/Sqrt(1 + b^2 - c*a)
+  //     => dy/dx =  (x - x0)/(1/(cr^2) - (x - x0)^2) 
+  //
+  Double_t x0 = -fParameters[1] / fParameters[0];
+  Double_t curvature = GetCurvature();
+  Double_t dy = 0;
+  if (-fParameters[2] * fParameters[0] + fParameters[1] * fParameters[1] + 1 > 0) {
+    if (1.0/(curvature * curvature) - (x - x0) * (x - x0) > 0.0) {
+     Double_t yderiv = (x - x0) / TMath::Sqrt(1.0/(curvature * curvature) - (x - x0) * (x - x0));
+      if (fParameters[0] < 0) yderiv *= -1.0;
+      dy = yderiv;
+    }
+  }
+  return dy;
+}
+
+//_____________________________________________________________________________
+Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::GetCurvature() const {
+  //
+  // Calculate track curvature
+  //
+  //
+  Double_t curvature =  1.0 + fParameters[1]*fParameters[1] - fParameters[2]*fParameters[0];
+  if (curvature > 0.0) 
+    curvature  =  fParameters[0] / TMath::Sqrt(curvature);
+  return curvature;
+}
+
+//_____________________________________________________________________________
+void AliTRDtrackerV1::AliTRDtrackFitterRieman::GetCovAt(Double_t x, Double_t *cov) const {
+  //
+  // Error Definition according to gauss error propagation
+  //  
+  TMatrixD transform(3,3);
+  transform(0,0) = transform(1,1) = transform(2,2) = 1;
+  transform(0,1) = transform(1,2) = x;
+  transform(0,2) = x*x;
+  TMatrixD covariance(transform, TMatrixD::kMult, *fCovarPolY);
+  covariance *= transform.T();
+  cov[0] = covariance(0,0);
+  TMatrixD transformZ(2,2);
+  transformZ(0,0) = transformZ(1,1) = 1;
+  transformZ(0,1) = x;
+  TMatrixD covarZ(transformZ, TMatrixD::kMult, *fCovarPolZ);
+  covarZ *= transformZ.T();
+  cov[1] = covarZ(0,0);
+  cov[2] = 0;
+}
+
+//____________________________________________________________________
+Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::CalculateReferenceX(){
+  //
+  // Calculates the reference x-position for the tilted Rieman fit defined as middle
+  // of the stack (middle between layers 2 and 3). For the calculation all the tracklets
+  // are taken into account
+  // 
+  // Parameters:       - Array of tracklets(AliTRDseedV1)
+  //
+  // Output:           - The reference x-position(Float_t)
+  //
+  Int_t nDistances = 0;
+  Float_t meanDistance = 0.;
+  Int_t startIndex = 5;
+  for(Int_t il =5; il > 0; il--){
+    if(fTracklets[il]->IsOK() && fTracklets[il -1]->IsOK()){
+      Float_t xdiff = fTracklets[il]->GetX0() - fTracklets[il -1]->GetX0();
+      meanDistance += xdiff;
+      nDistances++;
+    }
+    if(fTracklets[il]->IsOK()) startIndex = il;
+  }
+  if(fTracklets[0]->IsOK()) startIndex = 0;
+  if(!nDistances){
+    // We should normally never get here
+    Float_t xpos[2]; memset(xpos, 0, sizeof(Float_t) * 2);
+    Int_t iok = 0, idiff = 0;
+    // This attempt is worse and should be avoided:
+    // check for two chambers which are OK and repeat this without taking the mean value
+    // Strategy avoids a division by 0;
+    for(Int_t il = 5; il >= 0; il--){
+      if(fTracklets[il]->IsOK()){
+        xpos[iok] = fTracklets[il]->GetX0();
+        iok++;
+        startIndex = il;
+      }
+      if(iok) idiff++; // to get the right difference;
+      if(iok > 1) break;
+    }
+    if(iok > 1){
+      meanDistance = (xpos[0] - xpos[1])/idiff;
+    }
+    else{
+      // we have do not even have 2 layers which are OK? The we do not need to fit at all
+      return 331.;
+    }
+  }
+  else{
+    meanDistance /= nDistances;
+  }
+  return fTracklets[startIndex]->GetX0() + (2.5 - startIndex) * meanDistance - 0.5 * (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick());
+}