]> git.uio.no Git - u/mrichter/AliRoot.git/blame - HMPID/AliHMPIDParam.h
new histograms added
[u/mrichter/AliRoot.git] / HMPID / AliHMPIDParam.h
CommitLineData
d3da6dc4 1#ifndef AliHMPIDParam_h
2#define AliHMPIDParam_h
3010c308 3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
d3da6dc4 5
3010c308 6/* $Id$ */
7
8#include <TMath.h>
d3da6dc4 9#include <TNamed.h> //base class
10#include <TGeoManager.h> //Instance()
268f57b1 11#include <TGeoMatrix.h> //Instance()
d3da6dc4 12#include <TVector3.h> //Lors2Mars() Mars2Lors()
13
d3da6dc4 14// Class providing all the needed parametrised information
15// to construct the geometry, to define segmentation and to provide response model
16// In future will also provide all the staff needed for alignment and calibration
17
18class AliHMPIDParam :public TNamed
19{
20public:
21//ctor&dtor
606697a8 22 virtual ~AliHMPIDParam() {if (fgInstance){for(Int_t i=0;i<7;i++){delete fM[i];fM[i] = 0x0;};fgInstance=0;}}
1d6047fb 23
24 void Print(Option_t *opt="") const; //print current parametrization
25
d3da6dc4 26 static inline AliHMPIDParam* Instance(); //pointer to AliHMPIDParam singleton
58fc9564 27 static inline AliHMPIDParam* InstanceNoGeo(); //pointer to AliHMPIDParam singleton without geometry.root for MOOD, displays, ...
ae5a42aa 28//geo info
29 enum EChamberData{kMinCh=0,kMaxCh=6,kMinPc=0,kMaxPc=5}; //Segmenation
30 enum EPadxData{kPadPcX=80,kMinPx=0,kMaxPx=79,kMaxPcx=159}; //Segmentation structure along x
31 enum EPadyData{kPadPcY=48,kMinPy=0,kMaxPy=47,kMaxPcy=143}; //Segmentation structure along y
12e50a57 32 //The electronics takes the 32bit int as: first 9 bits for the pedestal and the second 9 bits for threshold - values below should be within range
33 enum EPedestalData{kPadMeanZeroCharge=400,kPadSigmaZeroCharge=20,kPadMeanMasked=401,kPadSigmaMasked=20}; //One can go up to 5 sigma cut, overflow is protected in AliHMPIDCalib
34
2ac899f2 35
457997a7 36 static Float_t r2d ( ) {return 57.2957795; }
a8ff381e 37 static Float_t SizePadX ( ) {return fgCellX; } //pad size x, [cm]
38 static Float_t SizePadY ( ) {return fgCellY; } //pad size y, [cm]
ae5a42aa 39
a8ff381e 40 static Float_t SizePcX ( ) {return fgPcX; } // PC size x
41 static Float_t SizePcY ( ) {return fgPcY; } // PC size y
42 static Float_t MaxPcX (Int_t iPc ) {return fgkMaxPcX[iPc]; } // PC limits
43 static Float_t MaxPcY (Int_t iPc ) {return fgkMaxPcY[iPc]; } // PC limits
44 static Float_t MinPcX (Int_t iPc ) {return fgkMinPcX[iPc]; } // PC limits
45 static Float_t MinPcY (Int_t iPc ) {return fgkMinPcY[iPc]; } // PC limits
46 static Int_t Nsig ( ) {return fgSigmas; } //Getter n. sigmas for noise
47 static Float_t SizeAllX ( ) {return fgAllX; } //all PCs size x, [cm]
48 static Float_t SizeAllY ( ) {return fgAllY; } //all PCs size y, [cm]
ae5a42aa 49
457997a7 50 static Float_t LorsX (Int_t pc,Int_t padx ) {return (padx +0.5)*SizePadX()+fgkMinPcX[pc]; } //center of the pad x, [cm]
a8ff381e 51 static Float_t LorsY (Int_t pc,Int_t pady ) {return (pady +0.5)*SizePadY()+fgkMinPcY[pc]; } //center of the pad y, [cm]
ae5a42aa 52
457997a7 53 Float_t ChPhiMin (Int_t ch ) {return Lors2Mars(ch,LorsX(ch,kMinPx)-fX,LorsY(ch,kMinPy)-fY).Phi()*r2d();} //PhiMin (degree) of the camber ch
54 Float_t ChThMin (Int_t ch ) {return Lors2Mars(ch,LorsX(ch,kMinPx)-fX,LorsY(ch,kMinPy)-fY).Theta()*r2d();} //ThMin (degree) of the camber ch
55 Float_t ChPhiMax (Int_t ch ) {return Lors2Mars(ch,LorsX(ch,kMaxPcx)-fX,LorsY(ch,kMaxPcy)-fY).Phi()*r2d();} //PhiMax (degree) of the camber ch
56 Float_t ChThMax (Int_t ch ) {return Lors2Mars(ch,LorsX(ch,kMaxPcx)-fX,LorsY(ch,kMaxPcy)-fY).Theta()*r2d();} //ThMax (degree) of the camber ch
57
a8ff381e 58 inline static void Lors2Pad(Float_t x,Float_t y,Int_t &pc,Int_t &px,Int_t &py); //(x,y)->(pc,px,py)
ae5a42aa 59
a8ff381e 60 static Int_t Abs (Int_t ch,Int_t pc,Int_t x,Int_t y) {return ch*100000000+pc*1000000+x*1000+y; } //(ch,pc,padx,pady)-> abs pad
56c73976 61 static Int_t DDL2C (Int_t ddl ) {return ddl/2; } //ddl -> chamber
a8ff381e 62 static Int_t A2C (Int_t pad ) {return pad/100000000; } //abs pad -> chamber
63 static Int_t A2P (Int_t pad ) {return pad%100000000/1000000; } //abs pad -> pc
64 static Int_t A2X (Int_t pad ) {return pad%1000000/1000; } //abs pad -> pad X
65 static Int_t A2Y (Int_t pad ) {return pad%1000; } //abs pad -> pad Y
ae5a42aa 66
a8ff381e 67 static Bool_t IsOverTh (Float_t q ) {return q >= fgSigmas; } //is digit over threshold?
68
b38ac33a 69 Bool_t GetInstType ( )const{return fgInstanceType; } //return if the instance is from geom or ideal
a8ff381e 70
71 inline static Bool_t IsInDead(Float_t x,Float_t y ); //is the point in dead area?
7656d8ac 72 inline static Int_t InHVSector( Float_t y ); //find HV sector
f455af6e 73 static Int_t Radiator( Float_t y ) {if (InHVSector(y)<0) return -1; return InHVSector(y)/2;}
a8ff381e 74 static Bool_t IsInside (Float_t x,Float_t y,Float_t d=0) {return x>-d&&y>-d&&x<fgkMaxPcX[kMaxPc]+d&&y<fgkMaxPcY[kMaxPc]+d; } //is point inside chamber boundaries?
ae5a42aa 75
f455af6e 76 //For optical properties
77 static Double_t EPhotMin() {return 5.5;} //
78 static Double_t EPhotMax() {return 8.5;} //Photon energy range,[eV]
79 static Double_t NIdxRad(Double_t eV,Double_t temp) {return TMath::Sqrt(1+0.554*(1239.84/eV)*(1239.84/eV)/((1239.84/eV)*(1239.84/eV)-5769)-0.0005*(temp-20));}
80 static Double_t NIdxWin(Double_t eV) {return TMath::Sqrt(1+46.411/(10.666*10.666-eV*eV)+228.71/(18.125*18.125-eV*eV));}
81 static Double_t NMgF2Idx(Double_t eV) {return 1.7744 - 2.866e-3*(1239.842609/eV) + 5.5564e-6*(1239.842609/eV)*(1239.842609/eV);} // MgF2 idx of trasparency system
82 static Double_t NIdxGap(Double_t eV) {return 1+0.12489e-6/(2.62e-4 - eV*eV/1239.84/1239.84);}
83 static Double_t LAbsRad(Double_t eV) {return (eV<7.8)*(GausPar(eV,3.20491e16,-0.00917890,0.742402)+GausPar(eV,3035.37,4.81171,0.626309))+(eV>=7.8)*0.0001;}
84 static Double_t LAbsWin(Double_t eV) {return (eV<8.2)*(818.8638-301.0436*eV+36.89642*eV*eV-1.507555*eV*eV*eV)+(eV>=8.2)*0.0001;}//fit from DiMauro data 28.10.03
85 static Double_t LAbsGap(Double_t eV) {return (eV<7.75)*6512.399+(eV>=7.75)*3.90743e-2/(-1.655279e-1+6.307392e-2*eV-8.011441e-3*eV*eV+3.392126e-4*eV*eV*eV);}
86 static Double_t QEffCSI(Double_t eV) {return (eV>6.07267)*0.344811*(1-exp(-1.29730*(eV-6.07267)));}//fit from DiMauro data 28.10.03
87 static Double_t GausPar(Double_t x,Double_t a1,Double_t a2,Double_t a3) {return a1*TMath::Exp(-0.5*((x-a2)/a3)*((x-a2)/a3));}
88 inline static Double_t FindTemp(Double_t tLow,Double_t tUp,Double_t y); //find the temperature of the C6F14 in a given point with coord. y (in x is uniform)
89
90
91 Double_t GetEPhotMean ()const {return fPhotEMean;}
92 Double_t GetRefIdx ()const {return fRefIdx;} //running refractive index
93
94 Double_t MeanIdxRad ()const {return NIdxRad(fPhotEMean,fTemp);}
95 Double_t MeanIdxWin ()const {return NIdxWin(fPhotEMean);}
96 //
97 Float_t DistCut ()const {return 1.0;} //<--TEMPORAR--> to be removed in future. Cut for MIP-TRACK residual
98 Float_t QCut ()const {return 100;} //<--TEMPORAR--> to be removed in future. Separation PHOTON-MIP charge
99 Float_t MultCut ()const {return 200;} //<--TEMPORAR--> to be removed in future. Multiplicity cut to activate WEIGHT procedure
ae5a42aa 100
f455af6e 101 Double_t RadThick ()const {return 1.5;} //<--TEMPORAR--> to be removed in future. Radiator thickness
102 Double_t WinThick ()const {return 0.5;} //<--TEMPORAR--> to be removed in future. Window thickness
103 Double_t GapThick ()const {return 8.0;} //<--TEMPORAR--> to be removed in future. Proximity gap thickness
104 Double_t WinIdx ()const {return 1.5787;} //<--TEMPORAR--> to be removed in future. Mean refractive index of WIN material (SiO2)
105 Double_t GapIdx ()const {return 1.0005;} //<--TEMPORAR--> to be removed in future. Mean refractive index of GAP material (CH4)
ae5a42aa 106
d3da6dc4 107 static Int_t Stack(Int_t evt=-1,Int_t tid=-1); //Print stack info for event and tid
108 static Int_t StackCount(Int_t pid,Int_t evt); //Counts stack particles of given sort in given event
1d4857c5 109 static void IdealPosition(Int_t iCh,TGeoHMatrix *m); //ideal position of given chamber
110 //trasformation methodes
d3da6dc4 111 void Lors2Mars (Int_t c,Float_t x,Float_t y,Double_t *m,Int_t pl=kPc)const{Double_t z=0; switch(pl){case kPc:z=8.0;break; case kAnod:z=7.806;break; case kRad:z=-1.25; break;} Double_t l[3]={x-fX,y-fY,z}; fM[c]->LocalToMaster(l,m); }
112 TVector3 Lors2Mars (Int_t c,Float_t x,Float_t y, Int_t pl=kPc)const{Double_t m[3];Lors2Mars(c,x,y,m,pl); return TVector3(m); }//MRS->LRS
59d9d4b3 113 void Mars2Lors (Int_t c,Double_t *m,Float_t &x ,Float_t &y )const{Double_t l[3];fM[c]->MasterToLocal(m,l);x=l[0]+fX;y=l[1]+fY;}//MRS->LRS
86568433 114 void Mars2LorsVec(Int_t c,Double_t *m,Float_t &th,Float_t &ph )const{Double_t l[3]; fM[c]->MasterToLocalVect(m,l);
115 Float_t pt=TMath::Sqrt(l[0]*l[0]+l[1]*l[1]);
116 th=TMath::ATan(pt/l[2]);
117 ph=TMath::ATan2(l[1],l[0]);}
63402065 118 void Lors2MarsVec(Int_t c,Double_t *m,Double_t *l )const{fM[c]->LocalToMasterVect(m,l); }//LRS->MRS
d3da6dc4 119 TVector3 Norm (Int_t c )const{Double_t n[3]; Norm(c,n); return TVector3(n); }//norm
120 void Norm (Int_t c,Double_t *n )const{Double_t l[3]={0,0,1};fM[c]->LocalToMasterVect(l,n); }//norm
f455af6e 121 void Point (Int_t c,Double_t *p,Int_t plane )const{Lors2Mars(c,0,0,p,plane);} //point of given chamber plane
58fc9564 122
f455af6e 123 void SetTemp (Double_t temp ) {fTemp = temp;} //set actual temperature of the C6F14
124 void SetEPhotMean (Double_t ePhotMean ) {fPhotEMean = ePhotMean;} //set mean photon energy
125
126 void SetRefIdx (Double_t refRadIdx ) {fRefIdx = refRadIdx;} //set running refractive index
127
b38ac33a 128 void SetSigmas (Int_t sigmas ) {fgSigmas = sigmas;} //set sigma cut
129 void SetInstanceType(Bool_t inst ) {fgInstanceType = inst;} //kTRUE if from geomatry kFALSE if from ideal geometry
3278403b 130 //For PID
131 Double_t SigLoc (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh,Double_t beta);//error due to cathode segmetation
132 Double_t SigGeom (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh,Double_t beta);//error due to unknown photon origin
133 Double_t SigCrom (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh,Double_t beta);//error due to unknonw photon energy
134 Double_t Sigma2 (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh );//photon candidate sigma^2
c770ceb9 135
136 //Mathieson Getters
a8ff381e 137
c770ceb9 138 static Double_t PitchAnodeCathode() {return fgkD;}
139 static Double_t SqrtK3x() {return fgkSqrtK3x;}
140 static Double_t K2x () {return fgkK2x;}
141 static Double_t K1x () {return fgkK1x;}
142 static Double_t K4x () {return fgkK4x;}
143 static Double_t SqrtK3y() {return fgkSqrtK3y;}
144 static Double_t K2y () {return fgkK2y;}
145 static Double_t K1y () {return fgkK1y;}
146 static Double_t K4y () {return fgkK4y;}
147 //
d3da6dc4 148 enum EPlaneId {kPc,kRad,kAnod}; //3 planes in chamber
a8ff381e 149 enum ETrackingFlags {kMipDistCut=-9,kMipQdcCut=-5,kNoPhotAccept=-11}; //flags for Reconstruction
ae5a42aa 150
d3da6dc4 151protected:
ae5a42aa 152 static /*const*/ Float_t fgkMinPcX[6]; //limits PC
153 static /*const*/ Float_t fgkMinPcY[6]; //limits PC
154 static /*const*/ Float_t fgkMaxPcX[6]; //limits PC
155 static /*const*/ Float_t fgkMaxPcY[6];
c770ceb9 156
157// Mathieson constants
158// For HMPID --> x direction means parallel to the wires: K3 = 0.66 (NIM A270 (1988) 602-603) fig.1
159// For HMPID --> y direction means perpendicular to the wires: K3 = 0.90 (NIM A270 (1988) 602-603) fig.2
160//
ae5a42aa 161
c770ceb9 162 static const Double_t fgkD; // ANODE-CATHODE distance 0.445/2
163
164 static const Double_t fgkSqrtK3x,fgkK2x,fgkK1x,fgkK4x;
165 static const Double_t fgkSqrtK3y,fgkK2y,fgkK1y,fgkK4y;
166//
167
b38ac33a 168 static Int_t fgSigmas; //sigma Cut
169 static Bool_t fgInstanceType; //kTRUE if from geomatry kFALSE if from ideal geometry
170
171 static Float_t fgCellX, fgCellY, fgPcX, fgPcY, fgAllX, fgAllY; //definition of HMPID geometric parameters
58fc9564 172 AliHMPIDParam(Bool_t noGeo); //default ctor is protected to enforce it to be singleton
ae5a42aa 173
d3da6dc4 174 static AliHMPIDParam *fgInstance; //static pointer to instance of AliHMPIDParam singleton
ae5a42aa 175
423554a3 176 TGeoHMatrix *fM[7]; //pointers to matrices defining HMPID chambers rotations-translations
177 Float_t fX; //x shift of LORS with respect to rotated MARS
f455af6e 178 Float_t fY; //y shift of LORS with respect to rotated MARS
179 Double_t fRefIdx; //running refractive index of C6F14
180 Double_t fPhotEMean; //mean energy of photon
181 Double_t fTemp; //actual temparature of C6F14
8f05fd11 182private:
183 AliHMPIDParam(const AliHMPIDParam& r); //dummy copy constructor
184 AliHMPIDParam &operator=(const AliHMPIDParam& r); //dummy assignment operator
185
f455af6e 186 ClassDef(AliHMPIDParam,1) //HMPID main parameters class
d3da6dc4 187};
cf7e313e 188
d3da6dc4 189//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
190AliHMPIDParam* AliHMPIDParam::Instance()
191{
192// Return pointer to the AliHMPIDParam singleton.
193// Arguments: none
194// Returns: pointer to the instance of AliHMPIDParam or 0 if no geometry
58fc9564 195 if(!fgInstance) new AliHMPIDParam(kFALSE); //default setting for reconstruction, if no geometry.root -> AliFatal
196 return fgInstance;
197}//Instance()
198//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
199AliHMPIDParam* AliHMPIDParam::InstanceNoGeo()
200{
201// Return pointer to the AliHMPIDParam singleton without the geometry.root.
202// Arguments: none
203// Returns: pointer to the instance of AliHMPIDParam or 0 if no geometry
204 if(!fgInstance) new AliHMPIDParam(kTRUE); //to avoid AliFatal, for MOOD and displays, use ideal geometry parameters
d3da6dc4 205 return fgInstance;
206}//Instance()
207//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
ae5a42aa 208Bool_t AliHMPIDParam::IsInDead(Float_t x,Float_t y)
209{
210// Check is the current point is outside of sensitive area or in dead zones
211// Arguments: x,y -position
212// Returns: 1 if not in sensitive zone
213 for(Int_t iPc=0;iPc<6;iPc++)
214 if(x>=fgkMinPcX[iPc] && x<=fgkMaxPcX[iPc] && y>=fgkMinPcY[iPc] && y<=fgkMaxPcY [iPc]) return kFALSE; //in current pc
215
216 return kTRUE;
217}
218//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
219void AliHMPIDParam::Lors2Pad(Float_t x,Float_t y,Int_t &pc,Int_t &px,Int_t &py)
220{
221// Check the pad of given position
222// Arguments: x,y- position [cm] in LORS; pc,px,py- pad where to store the result
223// Returns: none
224 pc=px=py=-1;
225 if (x>fgkMinPcX[0] && x<fgkMaxPcX[0]) {pc=0; px=Int_t( x / SizePadX());}//PC 0 or 2 or 4
226 else if(x>fgkMinPcX[1] && x<fgkMaxPcX[1]) {pc=1; px=Int_t((x-fgkMinPcX[1]) / SizePadX());}//PC 1 or 3 or 5
227 else return;
228 if (y>fgkMinPcY[0] && y<fgkMaxPcY[0]) { py=Int_t( y / SizePadY());}//PC 0 or 1
229 else if(y>fgkMinPcY[2] && y<fgkMaxPcY[2]) {pc+=2;py=Int_t((y-fgkMinPcY[2]) / SizePadY());}//PC 2 or 3
230 else if(y>fgkMinPcY[4] && y<fgkMaxPcY[4]) {pc+=4;py=Int_t((y-fgkMinPcY[4]) / SizePadY());}//PC 4 or 5
231 else return;
232}
49881df7 233//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
7656d8ac 234Int_t AliHMPIDParam::InHVSector(Float_t y)
49881df7 235{
7656d8ac 236//Calculate the HV sector corresponding to the cluster position
237//Arguments: y
238//Returns the HV sector in the single module
239
240 Int_t hvsec = -1;
241 Int_t pc,px,py;
242 Lors2Pad(1.,y,pc,px,py);
243 if(py==-1) return hvsec;
244
245 hvsec = (py+(pc/2)*(kMaxPy+1))/((kMaxPy+1)/2);
246
247 return hvsec;
49881df7 248}
249//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
f455af6e 250Double_t AliHMPIDParam::FindTemp(Double_t tLow,Double_t tHigh,Double_t y)
251{
252// Model for gradient in temperature
253
254// Double_t gradT = (t2-t1)/SizePcY(); // linear gradient
255// return gradT*y+t1;
256 Double_t halfPadSize = 0.5*SizePadY();
12e50a57 257 Double_t gradT = (TMath::Log(SizePcY()) - TMath::Log(halfPadSize))/(TMath::Log(tHigh)-TMath::Log(tLow));
258 if(y<0) y = 0;
259 return tLow + TMath::Power(y/halfPadSize,1./gradT);
f455af6e 260}
261//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
d3da6dc4 262#endif