]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSSimuParam.h
HLT mode retrieved from the OCDB and used to set SDD raw data format in simulation...
[u/mrichter/AliRoot.git] / ITS / AliITSSimuParam.h
CommitLineData
cd2a0045 1#ifndef ALIITSSIMUPARAM_H
2#define ALIITSSIMUPARAM_H
3/* Copyright(c) 2007-2009, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
2ae37d58 6/* $Id$ */
cd2a0045 7
8///////////////////////////////////////////////////////////////////
9// //
10// Class to store the parameters used in the simulation of //
11// SPD, SDD and SSD detectors //
12// Origin: F.Prino, Torino, prino@to.infn.it //
13// //
14///////////////////////////////////////////////////////////////////
2ae37d58 15#include <TRandom.h>
cd2a0045 16#include<TObject.h>
17#include <TString.h>
18#include <TArrayF.h>
19
20class AliITSSimuParam : public TObject {
21
22 public:
23 AliITSSimuParam();
24 AliITSSimuParam(const AliITSSimuParam& simpar);
25 // assignment operator
26 AliITSSimuParam& operator=(const AliITSSimuParam& source);
27 ~AliITSSimuParam();
28
29
30 void SetGeVToCharge(Double_t gc=3.6e-9){fGeVcharge = gc;}
31 Double_t GetGeVToCharge() const {return fGeVcharge;}
32 Double_t GeVToCharge(Double_t gev) const {return gev/fGeVcharge;}
33
34 void SetDistanceOverVoltage(Double_t d,Double_t v){fDOverV = d/v;}
35 void SetDistanceOverVoltage(Double_t dv=0.000375){fDOverV = dv;}
36 Double_t GetDistanceOverVoltage() const {return fDOverV;}
37
38
39
2ae37d58 40 void SetSPDBiasVoltageAll(Double_t bias=18.182) {for(Int_t i=0;i<240;i++) fSPDBiasVoltage[i]=bias;}
41 void SetSPDBiasVoltage(Int_t mod, Double_t bias=18.182) {if(mod<0 || mod>239) return; fSPDBiasVoltage[mod]=bias;}
42 Double_t GetSPDBiasVoltage(Int_t mod=0) const {if(mod<0 || mod>239) return 0; return fSPDBiasVoltage[mod];}
43
44 void SetSPDThresholdsAll(Double_t thresh, Double_t sigma)
45 {for(Int_t i=0;i<240;i++) {fSPDThresh[i]=thresh; fSPDSigma[i]=sigma;}}
46 void SetSPDThresholds(Int_t mod,Double_t thresh, Double_t sigma)
47 {if(mod<0 || mod>239) return; fSPDThresh[mod]=thresh; fSPDSigma[mod]=sigma; }
48 void SPDThresholds(const Int_t mod, Double_t& thresh, Double_t& sigma) const;
49 void SetSPDNoiseAll(Double_t noise, Double_t baseline)
50 {for(Int_t i=0;i<240;i++) {fSPDNoise[i]=noise; fSPDBaseline[i]=baseline;}}
51 void SetSPDNoise(Int_t mod,Double_t noise, Double_t baseline)
52 {if(mod<0 || mod>239) return; fSPDNoise[mod]=noise; fSPDBaseline[mod]=baseline; }
53 void SPDNoise(const Int_t mod,Double_t &noise, Double_t &baseline) const;
54 // Applies a random noise and addes the baseline
55 Double_t ApplySPDBaselineAndNoise(Int_t mod=0) const
56 {if (mod<0 || mod>239) mod=0; return fSPDBaseline[mod]+fSPDNoise[mod]*gRandom->Gaus();}
cd2a0045 57
cd2a0045 58
59 void SetSPDCouplingOption(const char *opt) {fSPDCouplOpt=opt;}
60 void GetSPDCouplingOption(char *opt) const {strcpy(opt,fSPDCouplOpt.Data());}
61
62 void SetSPDCouplingParam(Double_t col, Double_t row)
63 {fSPDCouplCol = col; fSPDCouplRow = row;}
64 void GetSPDCouplingParam(Double_t &col, Double_t &row) const
65 {col = fSPDCouplCol; row = fSPDCouplRow;}
66
67 void SetSPDSigmaDiffusionAsymmetry(Double_t ecc) {fSPDEccDiff=ecc;}
68 void GetSPDSigmaDiffusionAsymmetry(Double_t &ecc) const {ecc=fSPDEccDiff;}
69
70 void SetSDDElectronics(Int_t p1=1) {fSDDElectronics=p1; }
71 Int_t GetSDDElectronics() const {return fSDDElectronics;}
72
73 void SetSDDDiffCoeff(Float_t p1, Float_t p2) {
74 fSDDDiffCoeff=p1; fSDDDiffCoeff1=p2;}
75 void GetSDDDiffCoeff(Float_t &diff,Float_t &diff1) const {
76 diff=fSDDDiffCoeff; diff1=fSDDDiffCoeff1;}
77
78 void SetSDDJitterError(Float_t jitter) {fSDDJitterError=jitter;}
79 Float_t GetSDDJitterError() const {return fSDDJitterError;}
80
81 void SetSDDDynamicRange(Double_t p1) {fSDDDynamicRange = p1;}
82 Float_t GetSDDDynamicRange() const {return fSDDDynamicRange;}
83
84 void SetSDDMaxAdc(Double_t p1) {fSDDMaxAdc=p1;}
85 Float_t GetSDDMaxAdc() const {return fSDDMaxAdc;}
86
87 void SetSDDChargeLoss(Double_t p1) {fSDDChargeLoss=p1;}
88 Float_t GetSDDChargeLoss() const {return fSDDChargeLoss;}
89
8be4e1b1 90 Int_t GetSSDZSThreshold() const { // ZS threshold
91 return fSSDZSThreshold; }
92 virtual void SetSSDZSThreshold(Int_t zsth) { fSSDZSThreshold = zsth; }
93
cd2a0045 94 void SetSSDCouplings(Double_t pr, Double_t pl, Double_t nr, Double_t nl) {
95 fSSDCouplingPR=pr; fSSDCouplingPL=pl; fSSDCouplingNR=nr; fSSDCouplingNL=nl; }
96 Double_t GetSSDCouplingPR() const {return fSSDCouplingPR;}
97 Double_t GetSSDCouplingPL() const {return fSSDCouplingPL;}
98 Double_t GetSSDCouplingNR() const {return fSSDCouplingNR;}
99 Double_t GetSSDCouplingNL() const {return fSSDCouplingNL;}
100
101 void SetNSigmaIntegration(Double_t p1) {fNsigmas=p1;}
102 Float_t GetNSigmaIntegration() const {return fNsigmas;}
103 void SetNLookUp(Int_t p1);
104 Int_t GetGausNLookUp() const {return fNcomps;}
105 Float_t GetGausLookUp(Int_t i) {
106 if (!fGaus) SetNLookUp(fgkNcompsDefault);
107 if(i<0 || i>=fNcomps) return 0.;return fGaus->At(i);
108 }
109
2ae37d58 110 // Set the impurity concentrations in [#/cm^3]
111 void SetImpurity(Double_t n=0.0){fN = n;}
112 // Returns the impurity consentration in [#/cm^3]
113 Double_t Impurity() const {return fN;}
114
115 // Electron mobility in Si. [cm^2/(Volt Sec)]. T in degree K, N in #/cm^3
116 Double_t MobilityElectronSiEmp() const ;
117 // Hole mobility in Si. [cm^2/(Volt Sec)] T in degree K, N in #/cm^3
118 Double_t MobilityHoleSiEmp() const ;
119 // Einstein relation for Diffusion Coefficient of Electrons. [cm^2/sec]
120 // T in degree K, N in #/cm^3
121 Double_t DiffusionCoefficientElectron() const ;
122 // Einstein relation for Diffusion Coefficient of Holes. [cm^2/sec]
123 // T in [degree K], N in [#/cm^3]
124 Double_t DiffusionCoefficientHole() const ;
125 // Electron <speed> under an applied electric field E=Volts/cm. [cm/sec]
126 // d distance-thickness in [cm], v in [volts], T in [degree K],
127 // N in [#/cm^3]
128 Double_t SpeedElectron() const ;
129 // Holes <speed> under an applied electric field E=Volts/cm. [cm/sec]
130 // d distance-thickness in [cm], v in [volts], T in [degree K],
131 // N in [#/cm^3]
132 Double_t SpeedHole() const ;
133 // Returns the Gaussian sigma == <x^2+z^2> [cm^2] due to the defusion of
134 // electrons or holes through a distance l [cm] caused by an applied
135 // voltage v [volt] through a distance d [cm] in any material at a
136 // temperature T [degree K].
137 Double_t SigmaDiffusion3D(Double_t l) const;
138 // Returns the Gaussian sigma == <x^2 +y^2+z^2> [cm^2] due to the
139 // defusion of electrons or holes through a distance l [cm] caused by an
140 // applied voltage v [volt] through a distance d [cm] in any material at a
141 // temperature T [degree K].
142 Double_t SigmaDiffusion2D(Double_t l) const;
143 // Returns the Gaussian sigma == <x^2+z^2> [cm^2] due to the defusion of
144 // electrons or holes through a distance l [cm] caused by an applied
145 // voltage v [volt] through a distance d [cm] in any material at a
146 // temperature T [degree K].
147 Double_t SigmaDiffusion1D(Double_t l) const;
148 // Computes the Lorentz angle for Electron and Hole, under the Magnetic field bz (in kGauss)
149 Double_t LorentzAngleElectron(Double_t bz) const;
150 Double_t LorentzAngleHole(Double_t bz) const;
151 // Compute the thickness of the depleted region in a Si detector, version A
152 Double_t DepletedRegionThicknessA(Double_t dopCons,
153 Double_t voltage,
154 Double_t elecCharge,
155 Double_t voltBuiltIn=0.5)const;
156 // Compute the thickness of the depleted region in a Si detector, version B
157 Double_t DepletedRegionThicknessB(Double_t resist,Double_t voltage,
158 Double_t mobility,
159 Double_t voltBuiltIn=0.5,
160 Double_t dielConst=1.E-12)const;
161 // Computes the temperature dependance of the reverse bias current
162 Double_t ReverseBiasCurrent(Double_t temp,Double_t revBiasCurT1,
163 Double_t tempT1,Double_t energy=1.2)const;
164
165
cd2a0045 166 void PrintParameters() const;
167
168 protected:
169
170 static const Float_t fgkSPDBiasVoltageDefault;//default for fSPDBiasVoltage
171 static const Double_t fgkSPDThreshDefault; //default for fThresh
172 static const Double_t fgkSPDSigmaDefault; //default for fSigma
173 static const TString fgkSPDCouplingOptDefault; // type of pixel Coupling (old or new)
174 static const Double_t fgkSPDCouplColDefault; //default for fSPDCouplCol
175 static const Double_t fgkSPDCouplRowDefault; //default for fSPDCouplRow
176 static const Float_t fgkSPDEccDiffDefault;//default for fSPDEccDiff
177 static const Float_t fgkSDDDiffCoeffDefault; // default for fSDDDiffCoeff
178 static const Float_t fgkSDDDiffCoeff1Default; // default for fSDDDiffCoeff1
179 static const Float_t fgkSDDJitterErrorDefault; // default for fSDDJitterError
180 static const Float_t fgkSDDDynamicRangeDefault; // default for fSDDDynamicRange
181 static const Int_t fgkSDDMaxAdcDefault; // default for fSDDMaxAdc
182 static const Float_t fgkSDDChargeLossDefault; // default for fSDDChargeLoss
183
184 static const Double_t fgkSSDCouplingPRDefault; // default values
185 static const Double_t fgkSSDCouplingPLDefault; // for the
186 static const Double_t fgkSSDCouplingNRDefault; // various SSD
187 static const Double_t fgkSSDCouplingNLDefault; // couplings
188 static const Int_t fgkSSDZSThresholdDefault; // default for fSSDZSThreshold
189
190 static const Float_t fgkNsigmasDefault; //default for fNsigmas
191 static const Int_t fgkNcompsDefault; //default for fNcomps
192
193 private:
194 Double_t fGeVcharge; // Energy to ionize (free an electron) in GeV
195 Double_t fDOverV; // The parameter d/v where d is the disance over which the
2ae37d58 196 // the potential v is applied d/v [cm/volts]
cd2a0045 197
198
2ae37d58 199 Double_t fSPDBiasVoltage[240]; // Bias Voltage for the SPD
200 Double_t fSPDThresh[240]; // SPD Threshold value
201 Double_t fSPDSigma[240]; // SPD threshold fluctuations spread
202 Double_t fSPDNoise[240]; // SPD electronic noise: sigma
203 Double_t fSPDBaseline[240]; // SPD electronic noise: baseline
cd2a0045 204 TString fSPDCouplOpt; // SPD Coupling Option
205 Double_t fSPDCouplCol; // SPD Coupling parameter along the cols
206 Double_t fSPDCouplRow; // SPD Coupling parameter along the rows
207 Float_t fSPDEccDiff; // Eccentricity (i.e. asymmetry parameter) in the
208 // Gaussian diffusion for SPD
209
210 Int_t fSDDElectronics; // SDD Electronics Pascal (1) or OLA (2)
211 Float_t fSDDDiffCoeff; // SDD Diffusion Coefficient (scaling the time)
212 Float_t fSDDDiffCoeff1; // SDD Diffusion Coefficient (constant term)
213 Float_t fSDDJitterError; // SDD jitter error
214 Float_t fSDDDynamicRange; // SDD Dynamic Range
215 Float_t fSDDMaxAdc; // SDD ADC saturation value
216 Float_t fSDDChargeLoss; // Set Linear Coefficient for Charge Loss
217
cd2a0045 218 Double_t fSSDCouplingPR; // SSD couplings
219 Double_t fSSDCouplingPL; // SSD couplings
220 Double_t fSSDCouplingNR; // SSD couplings
221 Double_t fSSDCouplingNL; // SSD couplings
222 Int_t fSSDZSThreshold; // SSD threshold for the zero suppresion
223
224 Float_t fNsigmas; // Number of sigmas over which charge disintegration
225 // is performed
226 Int_t fNcomps; // Number of samplings along the gaussian
227 TArrayF *fGaus; // Gaussian lookup table for signal generation
228
2ae37d58 229 Double_t fN; // the impurity concentration of the material in #/cm^3 (NOT USED!)
230 Float_t fT; // The temperature of the Si in Degree K.
231
232 ClassDef(AliITSSimuParam,2);
cd2a0045 233};
234#endif