]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSgeom.cxx
Minors
[u/mrichter/AliRoot.git] / ITS / AliITSgeom.cxx
CommitLineData
4c039060 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
88cb7938 16/* $Id$ */
4c039060 17
58005f18 18///////////////////////////////////////////////////////////////////////
593e9459 19// ITS geometry manipulation routines. //
58005f18 20// Created April 15 1999. //
21// version: 0.0.0 //
22// By: Bjorn S. Nilsen //
23// version: 0.0.1 //
24// Updated May 27 1999. //
023ae34b 25// Added Cylindrical random and global based changes. //
58005f18 26// Added function PrintComparison. //
023ae34b 27// Modified and added functions Feb. 7 2006 //
58005f18 28///////////////////////////////////////////////////////////////////////
593e9459 29
30
31////////////////////////////////////////////////////////////////////////
593e9459 32// The local coordinate system by, default, is show in the following
33// figures. Also shown are the ladder numbering scheme.
34//Begin_Html
35/*
269f57ed 36<img src="picts/ITS/AliITSgeomMatrix_L1.gif">
37</pre>
38<br clear=left>
39<font size=+2 color=blue>
40<p>This shows the relative geometry differences between the ALICE Global
41coordinate system and the local detector coordinate system.
42</font>
43<pre>
44
45<pre>
593e9459 46<img src="picts/ITS/its1+2_convention_front_5.gif">
47</pre>
48<br clear=left>
49<font size=+2 color=blue>
50<p>This shows the front view of the SPDs and the orientation of the local
51pixel coordinate system. Note that the inner pixel layer has its y coordinate
52in the opposite direction from all of the other layers.
53</font>
54<pre>
55
56<pre>
57<img src="picts/ITS/its3+4_convention_front_5.gif">
58</pre>
59<br clear=left>
60<font size=+2 color=blue>
61<p>This shows the front view of the SDDs and the orientation of the local
62pixel coordinate system.
63</font>
64<pre>
65
66<pre>
67<img src="picts/ITS/its5+6_convention_front_5.gif">
68</pre>
69<br clear=left>
70<font size=+2 color=blue>
71<p>This shows the front view of the SSDs and the orientation of the local
72pixel coordinate system.
73</font>
74<pre>
75*/
76//End_Html
269f57ed 77//
593e9459 78////////////////////////////////////////////////////////////////////////
79
80////////////////////////////////////////////////////////////////////////
81//
82// version: 0
83// Written by Bjorn S. Nilsen
84//
85// Data Members:
86//
023ae34b 87// TString fVersion
88// Transformation version.
89// Int_t fTrans
90// Flag to keep track of which transformation
91// Int_t fNmodules
92// The total number of modules
593e9459 93// Int_t fNlayers
94// The number of ITS layers for this geometry. By default this
95// is 6, but can be modified by the creator function if there are
96// more layers defined.
97//
023ae34b 98// TArrayI fNlad
593e9459 99// A pointer to an array fNlayers long containing the number of
100// ladders for each layer. This array is typically created and filled
101// by the AliITSgeom creator function.
102//
023ae34b 103// TArrayI fNdet
593e9459 104// A pointer to an array fNlayers long containing the number of
105// active detector volumes for each ladder. This array is typically
106// created and filled by the AliITSgeom creator function.
107//
023ae34b 108// TObjArray fGm containing objects of type AliITSgeomMatrix
269f57ed 109// A pointer to an array of AliITSgeomMatrix classes. One element
110// per module (detector) in the ITS. AliITSgeomMatrix basicly contains
111// all of the necessary information about the detector and it's coordinate
112// transformations.
593e9459 113//
023ae34b 114// TObjArray fShape containting objects of type AliITSgeom
593e9459 115// A pointer to an array of TObjects containing the detailed shape
116// information for each type of detector used in the ITS. For example
023ae34b 117// I have created AliITSgeomSPD, AliITSgeomSDD, and
118// AliITSsegmenttionSSD as example structures, derived from TObjects,
119// to hold the detector information. I would recommend that one element
120// in each of these structures, that which describes the shape of the
121// active volume, be one of the ROOT classes derived from TShape. In this
122// way it would be easy to have the display program display the correct
123// active ITS volumes. See the example classes AliITSgeomSPD,
124// AliITSgeomSDD, and AliITSgeomSSD for a more detailed
125// example.
593e9459 126////////////////////////////////////////////////////////////////////////
4ae5bbc4 127#include <Riostream.h>
5cf690c1 128#include <ctype.h>
8253cd9a 129
269f57ed 130#include <TRandom.h>
f77f13c8 131#include <TSystem.h>
023ae34b 132#include <TArrayI.h>
e8189707 133
f77f13c8 134#include "AliITSgeomSPD.h"
023ae34b 135#include "AliITSgeomSDD.h"
269f57ed 136#include "AliITSgeomSSD.h"
023ae34b 137#include "AliITSgeom.h"
f77f13c8 138#include "AliLog.h"
58005f18 139
140ClassImp(AliITSgeom)
141
85f1e34a 142//______________________________________________________________________
023ae34b 143AliITSgeom::AliITSgeom():
144TObject(),
145fVersion("GEANT"),// Transformation version.
146fTrans(0), // Flag to keep track of which transformation
147fNmodules(0), // The total number of modules
148fNlayers(0), // The number of layers.
149fNlad(), //[] Array of the number of ladders/layer(layer)
150fNdet(), //[] Array of the number of detector/ladder(layer)
151fGm(0,0), // Structure of translation. and rotation.
152fShape(0,0) // Array of shapes and detector information.
153{
85f1e34a 154 // The default constructor for the AliITSgeom class. It, by default,
155 // sets fNlayers to zero and zeros all pointers.
156 // Do not allocate anything zero everything.
023ae34b 157 // Inputs:
158 // none.
159 // Outputs:
160 // none.
161 // Return:
162 // a zeroed AliITSgeom object.
85f1e34a 163
023ae34b 164 fGm.SetOwner(kTRUE);
165 fShape.SetOwner(kTRUE);
8253cd9a 166 return;
167}
e56160b8 168
85f1e34a 169//______________________________________________________________________
023ae34b 170AliITSgeom::AliITSgeom(Int_t itype,Int_t nlayers,const Int_t *nlads,
171 const Int_t *ndets,Int_t mods):
172TObject(),
173fVersion("GEANT"), // Transformation version.
174fTrans(itype), // Flag to keep track of which transformation
175fNmodules(mods), // The total number of modules
176fNlayers(nlayers), // The number of layers.
177fNlad(nlayers,nlads),//[] Array of the number of ladders/layer(layer)
178fNdet(nlayers,ndets),//[] Array of the number of detector/ladder(layer)
179fGm(mods,0), // Structure of translation. and rotation.
180fShape(5,0) // Array of shapes and detector information.
181{
85f1e34a 182 // A simple constructor to set basic geometry class variables
183 // Inputs:
023ae34b 184 // Int_t itype the type of transformation kept.
185 // bit 0 => Standard GEANT
186 // bit 1 => ITS tracking
187 // bit 2 => A change in the coordinate system has been made.
188 // others are still to be defined as needed.
189 // Int_t nlayers The number of ITS layers also set the size of the arrays
190 // Int_t *nlads an array of the number of ladders for each layer. This
191 // array must be nlayers long.
192 // Int_t *ndets an array of the number of detectors per ladder for each
193 // layer. This array must be nlayers long.
194 // Int_t mods The number of modules. Typically the sum of all the
195 // detectors on every layer and ladder.
85f1e34a 196 // Outputs:
023ae34b 197 // none
198 // Return:
199 // A properly inilized AliITSgeom object.
200
201 fGm.SetOwner(kTRUE);
202 fShape.SetOwner(kTRUE);
203 return;
204}
205//______________________________________________________________________
206void AliITSgeom::Init(Int_t itype,Int_t nlayers,const Int_t *nlads,
207 const Int_t *ndets,Int_t mods){
208 // A simple Inilizer to set basic geometry class variables
209 // Inputs:
210 // Int_t itype the type of transformation kept.
211 // bit 0 => Standard GEANT
212 // bit 1 => ITS tracking
213 // bit 2 => A change in the coordinate system has been made.
214 // others are still to be defined as needed.
215 // Int_t nlayers The number of ITS layers also set the size of the arrays
216 // Int_t *nlads an array of the number of ladders for each layer. This
217 // array must be nlayers long.
218 // Int_t *ndets an array of the number of detectors per ladder for each
219 // layer. This array must be nlayers long.
220 // Int_t mods The number of modules. Typically the sum of all the
221 // detectors on every layer and ladder.
222 // Outputs:
223 // none
224 // Return:
225 // A properly inilized AliITSgeom object.
8253cd9a 226
023ae34b 227 fVersion = "GEANT"; // Transformation version.
228 fTrans = itype; // Flag to keep track of which transformation
229 fNmodules = mods; // The total number of modules
230 fNlayers = nlayers; // The number of layers.
231 fNlad.Set(nlayers,nlads);//[] Array of the number of ladders/layer(layer)
232 fNdet.Set(nlayers,ndets);//[] Array of the number of detector/ladder(layer)
233 fGm.Clear();
234 fGm.Expand(mods); // Structure of translation. and rotation.
235 fGm.SetOwner(kTRUE);
236 fShape.Clear();
237 fShape.Expand(5); // Array of shapes and detector information.
238 fShape.SetOwner(kTRUE);
8253cd9a 239 return;
58005f18 240}
8253cd9a 241//______________________________________________________________________
023ae34b 242void AliITSgeom::CreateMatrix(Int_t mod,Int_t lay,Int_t lad,Int_t det,
243 AliITSDetector idet,const Double_t tran[3],
244 const Double_t rot[10]){
85f1e34a 245 // Given the translation vector tran[3] and the rotation matrix rot[1],
246 // this function creates and adds to the TObject Array fGm the
247 // AliITSgeomMatrix object.
85f1e34a 248 // The rot[10] matrix is set up like:
249 /* / rot[0] rot[1] rot[2] \
250 // | rot[3] rot[4] rot[5] |
251 // \ rot[6] rot[7] rot[8] / if(rot[9]!=0) then the Identity matrix
252 // is used regardless of the values in rot[0]-rot[8].
253 */
023ae34b 254 // Inputs:
255 // Int_t mod The module number. The location in TObjArray
256 // Int_t lay The layer where this module is
257 // Int_t lad On which ladder this module is
258 // Int_t det Which detector on this ladder this module is
259 // AliITSDetector idet The type of detector see AliITSgeom.h
260 // Double_t tran[3] The translation vector
261 // Double_t rot[10] The rotation matrix.
262 // Outputs:
263 // none
264 // Return:
265 // none.
8253cd9a 266 Int_t id[3];
267 Double_t r[3][3] = {{1.0,0.0,0.0},{0.0,1.0,0.0},{0.0,0.0,1.0}};
58005f18 268
023ae34b 269 if(mod<0||mod>=fGm.GetSize()){
270 Error("CreateMatrix","mod=%d is out of bounds max value=%d",mod,
271 fGm.GetSize());
272 return;
273 } // end if
274 delete fGm.At(mod);
8253cd9a 275 id[0] = lay; id[1] = lad; id[2] = det;
276 if(rot[9]!=0.0) { // null rotation
023ae34b 277 r[0][0] = rot[0]; r[0][1] = rot[1]; r[0][2] = rot[2];
278 r[1][0] = rot[3]; r[1][1] = rot[4]; r[1][2] = rot[5];
279 r[2][0] = rot[6]; r[2][1] = rot[7]; r[2][2] = rot[8];
8253cd9a 280 } // end if
023ae34b 281 fGm.AddAt(new AliITSgeomMatrix(idet,id,r,tran),mod);
8253cd9a 282}
85f1e34a 283//______________________________________________________________________
58005f18 284AliITSgeom::~AliITSgeom(){
85f1e34a 285 // The destructor for the AliITSgeom class. If the arrays fNlad,
286 // fNdet, or fGm have had memory allocated to them, there pointer values
287 // are non zero, then this memory space is freed and they are set
288 // to zero. In addition, fNlayers is set to zero. The destruction of
289 // TObjArray fShape is, by default, handled by the TObjArray destructor.
023ae34b 290 // Inputs:
291 // none.
292 // Outputs:
293 // none.
294 // Return:
295 // none.
85f1e34a 296
023ae34b 297 return;
58005f18 298}
269f57ed 299//______________________________________________________________________
300void AliITSgeom::ReadNewFile(const char *filename){
023ae34b 301 // It is generally preferred to define the geometry in AliITSgeom
85f1e34a 302 // directly from the GEANT geometry, see AliITSvPPRasymm.cxx for
303 // and example. Under some circumstances this may not be possible.
304 // This function will read in a formatted file for all of the
305 // information needed to define the geometry in AliITSgeom.
306 // Unlike the older file format, this file may contain comments
307 // and the order of the data does not need to be completely
308 // respected. A file can be created using the function WriteNewFile
309 // defined below.
023ae34b 310 // Inputs:
311 // const char *filename The file name of the file to be read in.
312 // Outputs:
313 // none
314 // Return:
315 // none.
8253cd9a 316 Int_t ncmd=9;
5c9c741e 317 const char *cmda[]={"Version" ,"fTrans" ,"fNmodules",
318 "fNlayers" ,"fNladers","fNdetectors",
319 "fNDetectorTypes","fShape" ,"Matrix"};
8253cd9a 320 Int_t i,j,lNdetTypes,ldet;
321 char cmd[20],c;
164da35c 322 AliITSgeomMatrix *m=0;
323 ifstream *fp=0;
324 char *filtmp=0;
023ae34b 325 Bool_t arrayGm = kFALSE, arrayShape = kFALSE;
8253cd9a 326
327 filtmp = gSystem->ExpandPathName(filename);
f77f13c8 328 AliInfo(Form("Reading New .det file %s",filtmp));
8253cd9a 329 fp = new ifstream(filtmp,ios::in); // open file to write
330 while(fp->get(c)!=NULL){ // for ever loop
023ae34b 331 if(c==' ') continue; // remove blanks
332 if(c=='\n') continue;
333 if(c=='#' || c=='!') {while(fp->get(c)) if(c=='\n') break; continue;}
334 if(c=='/'){
335 fp->get(c);{
336 if(c=='/') {while(fp->get(c)) if(c=='\n') break; continue;}
337 if(c=='*'){
338 NotYet:
339 while(fp->get(c)) if(c=='*') break;
340 fp->get(c);{
341 if(c=='/') continue;
342 goto NotYet;
343 } //
344 } // end if c=='*'
345 } // end if second /
346 } // end if first /
347 fp->putback(c);
348 *fp >> cmd;
349 for(i=0;i<ncmd;i++) if(strcmp(cmd,cmda[i])==0) break;
350 switch (i){
351 case 0: // Version
5cf690c1 352 while(isspace(fp->peek())) fp->get(); // skip spaces
353 if(isdigit(fp->peek())){ // new TString
354 *fp >> j;
355 fVersion.Resize(j);
356 for(j=0;j<fVersion.Length();j++) *fp >> fVersion[j];
357 }else{
358 fVersion.Resize(20);
359 for(j=0;isprint(fp->peek())&&j<20;j++) *fp >> fVersion[j];
360 } // end if isdigit
023ae34b 361 break;
362 case 1: // fTrans
363 *fp >> fTrans;
364 break;
365 case 2: // fNModules
366 *fp >> fNmodules;
367 fGm.Clear();
368 fGm.Expand(fNmodules);
369 fGm.SetOwner(kTRUE);
370 arrayGm = kTRUE;
371 break;
372 case 3: // fNlayers
373 *fp >> fNlayers;
374 fNlad.Set(fNlayers);
375 fNdet.Set(fNlayers);
376 break;
377 case 4: // fNladers
378 for(j=0;j<fNlayers;j++) *fp >> fNlad[j];
379 break;
380 case 5: // fNdetectors
381 for(j=0;j<fNlayers;j++) *fp >> fNdet[j];
382 break;
383 case 6: // fNDetectorTypes
384 *fp >> lNdetTypes;
385 fShape.Clear();
386 fShape.Expand(lNdetTypes);
387 fShape.SetOwner(kTRUE);
388 arrayShape = kTRUE;
389 break;
390 case 7: // fShape
391 *fp >> ldet;
392 if(!arrayShape) fShape.Expand(5);
393 fShape.SetOwner(kTRUE);
394 switch (ldet){
395 case kSPD :{
396 AliITSgeomSPD *spd = new AliITSgeomSPD();
397 *fp >> *spd;
398 ReSetShape(ldet,spd);
399 } break;
400 case kSDD : case kSDDp:{
401 AliITSgeomSDD *sdd = new AliITSgeomSDD();
402 *fp >> *sdd;
403 ReSetShape(ldet,sdd);
404 }break;
405 case kSSD : case kSSDp :{
406 AliITSgeomSSD *ssd = new AliITSgeomSSD();
407 *fp >> *ssd;
408 ReSetShape(ldet,ssd);
409 }break;
410 default:{
411 AliError(Form("Unknown fShape type number=%d c=%c",ldet,c));
412 while(fp->get(c)) if(c=='\n') break; // skip to end of line.
413 }break;
414 } // end switch
415 break;
416 case 8: // Matrix
417 *fp >> ldet;
418 if(!arrayGm){
419 fGm.Clear();
420 fGm.Expand(2270);
421 arrayGm = kTRUE;
422 } // end if
423 if(ldet<0||ldet>=fGm.GetSize()){
424 Error("ReadNewFile","ldet<0||ldet>=fGm.GetSize()=%d",
425 ldet,fGm.GetSize());
426 return;
8253cd9a 427 } // end if
023ae34b 428 delete fGm.At(ldet);
429 fGm.AddAt((TObject*)new AliITSgeomMatrix(),ldet);
430 m = (AliITSgeomMatrix*) fGm.At(ldet);
431 *fp >> *m;
432 m = 0;
433 break;
434 default:
435 AliError(Form("ReadNewFile","Data line i=%d c=%c",i,c));
436 while(fp->get(c)) if(c=='\n') break; // skip this line
437 break;
438 } // end switch i
8253cd9a 439 } // end while
440 delete fp;
441
442 return;
443}
444//______________________________________________________________________
5cf690c1 445void AliITSgeom::WriteNewFile(const char *filename)const{
023ae34b 446 // Writes AliITSgeom, AliITSgeomMatrix, and the defined
447 // AliITSgeomS*D classes to a file in a format that
448 // is more readable and commendable.
449 // Inputs:
450 // const char *filename The file name of the file to be write to.
451 // Outputs:
452 // none
453 // Return:
454 // none
8253cd9a 455 ofstream *fp;
456 Int_t i;
457 char *filtmp;
458
459 filtmp = gSystem->ExpandPathName(filename);
460 fp = new ofstream(filtmp,ios::out); // open file to write
461 *fp << "//Comment lines begin with two //, one #, or one !" << endl;
462 *fp << "#Blank lines are skipped including /* and */ sections." << endl;
463 *fp << "!and, in principle the order of the lines is not important" <<endl;
464 *fp << "/* In AliITSgeom.h are defined an enumerated type called" << endl;
465 *fp << " AliITSDetectors These are kSPD=" << (Int_t) kSPD ;
466 *fp << ", kSDD=" << (Int_t) kSDD << ", kSSD=" << (Int_t) kSSD;
5c9c741e 467 *fp << ", kSSDp=" << (Int_t) kSSDp << ", and kSDDp=" << (Int_t) kSDDp;
468 *fp << "*/" << endl;
023ae34b 469 *fp << "Version "<< fVersion.Length()<<" " << fVersion.Data() << endl;//This should be consistent
470 // with the geometry version.
8253cd9a 471 *fp << "fTrans " << fTrans << endl;
472 *fp << "fNmodules " << fNmodules << endl;
473 *fp << "fNlayers " << fNlayers << endl;
474 *fp << "fNladers ";
475 for(i=0;i<fNlayers;i++) *fp << fNlad[i] << " ";
476 *fp << endl;
477 *fp << "fNdetectors ";
478 for(i=0;i<fNlayers;i++) *fp << fNdet[i] << " ";
479 *fp << endl;
023ae34b 480 *fp << "fNDetectorTypes " << fShape.GetEntriesFast() << endl;
481 for(i=0;i<fShape.GetEntriesFast();i++){
8253cd9a 482 if(!IsShapeDefined(i)) continue; // only print out used shapes.
483 switch (i){
484 case kSPD :
485 *fp << "fShape " << (Int_t) kSPD << " ";
023ae34b 486 *fp << *((AliITSgeomSPD*)(fShape.At(i)));
8253cd9a 487 break;
488 case kSDD :
489 *fp << "fShape " << (Int_t) kSDD << " ";
023ae34b 490 *fp << *((AliITSgeomSDD*)(fShape.At(i)));
8253cd9a 491 break;
492 case kSSD : case kSSDp :
493 *fp << "fShape " << i << " ";
023ae34b 494 *fp << *((AliITSgeomSSD*)(fShape.At(i)));
8253cd9a 495 break;
496 default:
497 Error("AliITSgeom::WriteNewFile","Unknown Shape value");
498 } // end switch (i)
499 } // end for i
500 for(i=0;i<fNmodules;i++){
501 *fp << "Matrix " << i << " ";
502 *fp << *GetGeomMatrix(i);
503 } // end for i
504 *fp << "//End of File" << endl;;
505
506 delete fp;
269f57ed 507 return;
508}
85f1e34a 509//______________________________________________________________________
023ae34b 510AliITSgeom::AliITSgeom(const char *filename):
511TObject(),
512fVersion("test"),// Transformation version.
513fTrans(0), // Flag to keep track of which transformation
514fNmodules(0), // The total number of modules
515fNlayers(0), // The number of layers.
516fNlad(), // TArrayI of the number of ladders/layer(layer)
517fNdet(), // TArrayI of the number of detector/ladder(layer)
518fGm(0,0), // TObjArray Structure of translation. and rotation.
519fShape(0,0) // TObjArray of detector geom.
520{
85f1e34a 521 // The constructor for the AliITSgeom class. All of the data to fill
522 // this structure is read in from the file given my the input filename.
023ae34b 523 // Inputs:
524 // const char *filename The file name of the file to be read in.
525 // Outputs:
526 // none
527 // Return:
528 // An AliITSgeom class initialized from a file.
85f1e34a 529 FILE *pf=0;
530 Int_t i,lm=0,id[3];
531 Int_t l,a,d;
532 Float_t x,y,z,o,p,q,r,s,t;
533 Double_t rot6[6],tran[3];
534 char buf[200],*buff=0; // input character buffer;
023ae34b 535 char *filtmp;
58005f18 536
85f1e34a 537 filtmp = gSystem->ExpandPathName(filename);
023ae34b 538 Info("AliITSgeom","reading old .det file %s",filtmp);
539 fVersion="GEANT5";
85f1e34a 540 pf = fopen(filtmp,"r");
541
542 fNlayers = 6; // set default number of ladders
023ae34b 543 TryAgain:
544 fNlad.Set(fNlayers);
545 fNdet.Set(fNlayers);
85f1e34a 546 fNmodules = 0;
547 // find the number of ladders and detectors in this geometry.
548 for(i=0;i<fNlayers;i++){fNlad[i]=fNdet[i]=0;} // zero out arrays
549 while(fgets(buf,200,pf)!=NULL){ // for ever loop
023ae34b 550 for(i=0;i<200;i++)if(buf[i]!=' '){ // remove blank spaces.
551 buff = &(buf[i]);
552 break;
553 } // end for i
554 // remove blank lines and comments.
555 if(buff[0]=='\n'||buff[0]=='#'||buff[0]=='!'||
556 (buff[0]=='/'&&buff[1]=='/')) continue;
557 if(isalpha(buff[0])) { // must be the new file formated file.
269f57ed 558 fclose(pf);
269f57ed 559 ReadNewFile(filename);
560 return;
023ae34b 561 } // end if isalpha(buff[0])
562 sscanf(buff,"%d %d %d %f %f %f %f %f %f %f %f %f",
563 &l,&a,&d,&x,&y,&z,&o,&p,&q,&r,&s,&t);
564 if(l>lm) lm = l;
565 if(l<1 || l>fNlayers) {
5cf690c1 566 printf("error in file %s layer=%d min. is 1 max is %d Trying new format\n",
023ae34b 567 filename,l,fNlayers);
5cf690c1 568 fclose(pf);
569 ReadNewFile(filename);
570 return;
571 //continue;
023ae34b 572 }// end if l
573 fNmodules++;
574 if(l<=fNlayers&&fNlad[l-1]<a) fNlad[l-1] = a;
575 if(l<=fNlayers&&fNdet[l-1]<d) fNdet[l-1] = d;
85f1e34a 576 } // end while ever loop
577 if(lm>fNlayers){
023ae34b 578 fNlayers = lm;
579 goto TryAgain;
85f1e34a 580 } // end if lm>fNlayers
581 // counted the number of ladders and detectors now allocate space.
023ae34b 582 fGm.Expand(fNmodules);
583 fGm.SetOwner(kTRUE);
584 fShape.SetOwner(kTRUE);
58005f18 585
85f1e34a 586 // Set up Shapes for a default configuration of 6 layers.
587 fTrans = 0; // standard GEANT global/local coordinate system.
588 // prepare to read in transforms
589 lm = 0; // reuse lm as counter of modules.
590 rewind(pf); // start over reading file
591 while(fgets(buf,200,pf)!=NULL){ // for ever loop
023ae34b 592 for(i=0;i<200;i++)if(buf[i]!=' '){ // remove blank spaces.
593 buff = &(buf[i]);
594 break;
595 } // end for i
596 // remove blank lines and comments.
597 if(buff[0]=='\n'||buff[0]=='#'||buff[0]=='!'||
598 (buff[0]=='/'&&buff[1]=='/')) continue;
599 x = y = z = o = p = q = r = s = t = 0.0;
600 sscanf(buff,"%d %d %d %f %f %f %f %f %f %f %f %f",
601 &l,&a,&d,&x,&y,&z,&o,&p,&q,&r,&s,&t);
602 if(l<1 || l>fNlayers) {
603 Warning("AliITSgeom","error in file %s layer=%d min. is 1 max is %d",
604 filename,l,fNlayers);
605 continue;
606 }// end if l
607 id[0] = l;id[1] = a;id[2] = d;
608 tran[0] = tran[1] = tran[2] = 0.0;
609 tran[0] = (Double_t)x;tran[1] = (Double_t)y;tran[2] = (Double_t)z;
610 rot6[0] = rot6[1] = rot6[2] = rot6[3] = rot6[4] = rot6[5] =0.0;
611 rot6[0] = (Double_t)o;rot6[1] = (Double_t)p;rot6[2] = (Double_t)q;
612 rot6[3] = (Double_t)r;rot6[4] = (Double_t)s;rot6[5] = (Double_t)t;
613 if(lm<0||lm>=fGm.GetSize()){
614 Error("AliITSgeom(filename)","lm<0||lm>=fGm.GetSize()=%d",
615 lm,fGm.GetSize());
616 return;
617 } // end if
618 switch (l){
619 case 1: case 2: // layer 1 or2 SPD
620 fGm.AddAt(new AliITSgeomMatrix(rot6,kSPD,id,tran),lm++);
621 break;
622 case 3: case 4: // layer 3 or 4 SDD
623 fGm.AddAt(new AliITSgeomMatrix(rot6,kSDD,id,tran),lm++);
624 break;
625 case 5: case 6: // layer 5 or 6 SSD
626 fGm.AddAt(new AliITSgeomMatrix(rot6,kSSD,id,tran),lm++);
627 break;
628 } // end switch
85f1e34a 629 } // end while ever loop
630 fclose(pf);
58005f18 631}
5613046a 632
85f1e34a 633//______________________________________________________________________
e56160b8 634AliITSgeom::AliITSgeom(const AliITSgeom &source) : TObject(source),
635fVersion(source.fVersion),
636fTrans(source.fTrans),
637fNmodules(source.fNmodules),
638fNlayers(source.fNlayers),
639fNlad(source.fNlad),
640fNdet(source.fNdet),
641fGm(source.fGm),
642fShape(source.fShape)
643{
85f1e34a 644 // The copy constructor for the AliITSgeom class. It calls the
645 // = operator function. See the = operator function for more details.
023ae34b 646 // Inputs:
647 // AliITSgeom &source The AliITSgeom class with which to make this
648 // a copy of.
649 // Outputs:
650 // none.
651 // Return:
652 // none.
593e9459 653
e56160b8 654 *this = source; // Just use the = operator for now.
655 return;
58005f18 656}
5613046a 657
85f1e34a 658//______________________________________________________________________
7f6ab649 659AliITSgeom& AliITSgeom::operator=(const AliITSgeom &source){
85f1e34a 660 // The = operator function for the AliITSgeom class. It makes an
661 // independent copy of the class in such a way that any changes made
662 // to the copied class will not affect the source class in any way.
663 // This is required for many ITS alignment studies where the copied
664 // class is then modified by introducing some misalignment.
023ae34b 665 // Inputs:
666 // AliITSgeom &source The AliITSgeom class with which to make this
667 // a copy of.
668 // Outputs:
669 // none.
670 // Return:
671 // *this The a new copy of source.
672 Int_t i;
58005f18 673
023ae34b 674 if(this == &source) return *this; // don't assign to ones self.
58005f18 675
023ae34b 676 // if there is an old structure allocated delete it first.
677 this->fGm.Clear();
678 this->fShape.Clear();
085bb6ed 679
023ae34b 680 this->fVersion = source.fVersion;
681 this->fTrans = source.fTrans;
682 this->fNmodules = source.fNmodules;
683 this->fNlayers = source.fNlayers;
684 this->fNlad.Set(fNlayers,source.fNlad.GetArray());
685 this->fNdet.Set(fNlayers,source.fNdet.GetArray());
686 this->fShape.Expand(source.fShape.GetEntriesFast());
687 for(i=0;i<source.fShape.GetEntriesFast();i++)
688 this->fShape.AddAt(new TObject(*(source.fShape.At(i))),i);
689 this->fShape.SetOwner(kTRUE);
690 this->fGm.Expand(this->fNmodules);
691 this->fGm.SetOwner(kTRUE);
692 for(i=0;i<this->fNmodules;i++)
693 if(i<0||i>=fGm.GetSize()){
694 Error("ReadNewFile","i<0||i>=fGm.GetSize()=%d",
695 i,fGm.GetSize());
696 return *this;
697 } // end if
698 this->fGm.AddAt(new TObject(*(source.fGm.At(i))),i);
699 return *this;
85f1e34a 700}
5613046a 701
85f1e34a 702//______________________________________________________________________
5cf690c1 703Int_t AliITSgeom::GetModuleIndex(Int_t lay,Int_t lad,Int_t det)const{
85f1e34a 704 // This routine computes the module index number from the layer,
705 // ladder, and detector numbers. The number of ladders and detectors
706 // per layer is determined when this geometry package is constructed,
707 // see AliITSgeom(const char *filename) for specifics.
023ae34b 708 // Inputs:
709 // Int_t lay The layer number. Starting from 1.
710 // Int_t lad The ladder number. Starting from 1.
711 // Int_t det The detector number. Starting from 1.
712 // Outputs:
713 // none.
714 // Return:
715 // the module index number, starting from zero.
269f57ed 716 Int_t i,j,k,id[3];
593e9459 717
718 i = fNdet[lay-1] * (lad-1) + det - 1;
719 j = 0;
720 for(k=0;k<lay-1;k++) j += fNdet[k]*fNlad[k];
269f57ed 721 i = i+j;
7e932df0 722 if(i>=fNmodules) return -1;
8253cd9a 723 GetGeomMatrix(i)->GetIndex(id);
269f57ed 724 if(id[0]==lay&&id[1]==lad&&id[2]==det) return i;
725 // Array of modules fGm is not in expected order. Search for this index
726 for(i=0;i<fNmodules;i++){
023ae34b 727 GetGeomMatrix(i)->GetIndex(id);
728 if(id[0]==lay&&id[1]==lad&&id[2]==det) return i;
269f57ed 729 } // end for i
730 // This layer ladder and detector combination does not exist return -1.
731 return -1;
593e9459 732}
269f57ed 733//______________________________________________________________________
5cf690c1 734void AliITSgeom::GetModuleId(Int_t index,Int_t &lay,Int_t &lad,Int_t &det)const{
85f1e34a 735 // This routine computes the layer, ladder and detector number
736 // given the module index number. The number of ladders and detectors
737 // per layer is determined when this geometry package is constructed,
738 // see AliITSgeom(const char *filename) for specifics.
023ae34b 739 // Inputs:
740 // Int_t index The module index number, starting from zero.
741 // Outputs:
742 // Int_t lay The layer number. Starting from 1.
743 // Int_t lad The ladder number. Starting from 1.
744 // Int_t det The detector number. Starting from 1.
745 // Return:
746 // none.
269f57ed 747 Int_t id[3];
88cb7938 748 AliITSgeomMatrix *g = GetGeomMatrix(index);
269f57ed 749
023ae34b 750 if (g == 0x0){
751 Error("GetModuleId","Can not get GeoMatrix for index = %d",index);
752 lay = -1; lad = -1; det = -1;
753 }else{
754 g->GetIndex(id);
755 lay = id[0]; lad = id[1]; det = id[2];
756 }// End if
757 return;
269f57ed 758 // The old way kept for posterity.
759/*
760 Int_t i,j,k;
593e9459 761 j = 0;
762 for(k=0;k<fNlayers;k++){
58005f18 763 j += fNdet[k]*fNlad[k];
aa6248e2 764 if(j>index)break;
58005f18 765 } // end for k
766 lay = k+1;
767 i = index -j + fNdet[k]*fNlad[k];
768 j = 0;
769 for(k=0;k<fNlad[lay-1];k++){
aa6248e2 770 j += fNdet[lay-1];
771 if(j>i)break;
58005f18 772 } // end for k
773 lad = k+1;
774 det = 1+i-fNdet[lay-1]*k;
775 return;
269f57ed 776*/
58005f18 777}
85f1e34a 778//______________________________________________________________________
5cf690c1 779Int_t AliITSgeom::GetNDetTypes(Int_t &max)const{
023ae34b 780 // Finds and returns the number of detector types used and the
781 // maximum detector type value. Only counts id >=0 (no undefined
782 // values. See AliITSgeom.h for list of AliITSDetecor enumerated types.
783 // Inputs:
784 // none.
785 // Outputs:
786 // The maximum detector type used
787 // Return:
788 // The number of detector types used
789 Int_t i,*n,id;
790
791 max = -1;
792 for(i=0;i<GetIndexMax();i++){
793 id = GetModuleType(i);
794 if(id>max) max=id;
795 } // end for i
796 n = new Int_t[max+1];
797 for(i=0;i<max;i++) n[i] = 0;
798 for(i=0;i<GetIndexMax();i++){
799 id = GetModuleType(i);
800 if(id>-1)n[id]++; // note id=-1 => undefined.
801 } // end for i
802 id = 0;
803 for(i=0;i<max;i++) if(n[i]!=0) id++;
804 delete[] n;
805 return id+1;
806}
807//______________________________________________________________________
5cf690c1 808Int_t AliITSgeom::GetNDetTypes(TArrayI &maxs,AliITSDetector *types)const{
023ae34b 809 // Finds and returns the number of detector types used and the
810 // number of each detector type. Only counts id >=0 (no undefined
811 // values. See AliITSgeom.h for list of AliITSDetecor enumerated types.
812 // Inputs:
813 // none.
814 // Outputs:
815 // The maximum detector type used
816 // Return:
817 // The number of detector types used
818 Int_t i,j,*n,id,max;
819
820 max = -1;
821 for(i=0;i<GetIndexMax();i++){
822 id = GetModuleType(i);
823 if(id>max) max=id;
824 } // end for i
825 n = new Int_t[max+1];
826 for(i=0;i<max;i++) n[i] = 0;
827 for(i=0;i<GetIndexMax();i++){
828 id = GetModuleType(i);
829 if(id>-1)n[id]++; // note id=-1 => undefined.
830 } // end for i
831 id = 0;
832 for(i=0;i<=max;i++) if(n[i]!=0) id++;
833 maxs.Set(id);
834 j = 0;
835 for(i=0;i<=max;i++) if(n[i]!=0){
836 maxs[j] = n[i];
837 types[j++] = (AliITSDetector) i;
838 } // end for i/end if
839 delete[] n;
840 return id;
841}
842//______________________________________________________________________
5cf690c1 843Int_t AliITSgeom::GetStartDet(Int_t dtype)const{
85f1e34a 844 // returns the starting module index value for a give type of detector id.
845 // This assumes that the detector types are different on different layers
846 // and that they are not mixed up.
023ae34b 847 // Inputs:
848 // Int_t dtype A detector type number. 0 for SPD, 1 for SDD, and 2 for SSD.
849 // Outputs:
850 // none.
851 // Return:
852 // the module index for the first occurrence of that detector type.
85f1e34a 853
854 switch(dtype){
855 case 0:
023ae34b 856 return GetModuleIndex(1,1,1);
857 break;
85f1e34a 858 case 1:
023ae34b 859 return GetModuleIndex(3,1,1);
860 break;
85f1e34a 861 case 2:
023ae34b 862 return GetModuleIndex(5,1,1);
863 break;
85f1e34a 864 default:
023ae34b 865 Warning("GetStartDet","undefined detector type %d",dtype);
866 return 0;
85f1e34a 867 } // end switch
868
869 Warning("GetStartDet","undefined detector type %d",dtype);
870 return 0;
085bb6ed 871}
85f1e34a 872//______________________________________________________________________
5cf690c1 873Int_t AliITSgeom::GetLastDet(Int_t dtype)const{
85f1e34a 874 // returns the last module index value for a give type of detector id.
875 // This assumes that the detector types are different on different layers
876 // and that they are not mixed up.
023ae34b 877 // Inputs:
878 // Int_t dtype A detector type number. 0 for SPD, 1 for SDD, and 2 for SSD.
879 // Outputs:
880 // Return:
881 // the module index for the last occurrence of that detector type.
85f1e34a 882
a1e4be5b 883 switch((AliITSDetector)dtype){
884 case kSPD:
885 return GetModuleIndex(3,1,1)-1;
023ae34b 886 break;
a1e4be5b 887 case kSDD:
888 return GetModuleIndex(5,1,1)-1;
023ae34b 889 break;
a1e4be5b 890 case kSSD:
e8d3012e 891 return GetIndexMax()-1;
023ae34b 892 break;
a1e4be5b 893 case kSSDp: case kSDDp: case kND:
85f1e34a 894 default:
023ae34b 895 Warning("GetLastDet","undefined detector type %d",dtype);
896 return 0;
85f1e34a 897 } // end switch
898
899 Warning("GetLastDet","undefined detector type %d",dtype);
900 return 0;
085bb6ed 901}
85f1e34a 902//______________________________________________________________________
5cf690c1 903void AliITSgeom::PrintComparison(FILE *fp,AliITSgeom *other)const{
85f1e34a 904 // This function was primarily created for diagnostic reasons. It
905 // print to a file pointed to by the file pointer fp the difference
023ae34b 906 // between two AliITSgeom classes. The format of the file is basically,
85f1e34a 907 // define d? to be the difference between the same element of the two
908 // classes. For example dfrx = this->GetGeomMatrix(i)->frx
909 // - other->GetGeomMatrix(i)->frx.
910 // if(at least one of dfx0, dfy0, dfz0,dfrx,dfry,dfrz are non zero) then
911 // print layer ladder detector dfx0 dfy0 dfz0 dfrx dfry dfrz
912 // if(at least one of the 9 elements of dfr[] are non zero) then print
913 // layer ladder detector dfr[0] dfr[1] dfr[2]
914 // dfr[3] dfr[4] dfr[5]
915 // dfr[6] dfr[7] dfr[8]
916 // Only non zero values are printed to save space. The differences are
917 // typical written to a file because there are usually a lot of numbers
918 // printed out and it is usually easier to read them in some nice editor
919 // rather than zooming quickly past you on a screen. fprintf is used to
920 // do the printing. The fShapeIndex difference is not printed at this time.
023ae34b 921 // Inputs:
922 // FILE *fp A file pointer to an opened file for writing in which
923 // the results of the comparison will be written.
924 // AliITSgeom *other The other AliITSgeom class to which this one is
925 // being compared.
926 // Outputs:
927 // none.
928 // Return:
929 // none.
85f1e34a 930 Int_t i,j,idt[3],ido[3];
931 Double_t tt[3],to[3]; // translation
932 Double_t rt[3],ro[3]; // phi in radians
023ae34b 933 Double_t mt[3][3],mo[3][3]; // matrices
85f1e34a 934 AliITSgeomMatrix *gt,*go;
935 Bool_t t;
936
937 for(i=0;i<this->fNmodules;i++){
023ae34b 938 gt = this->GetGeomMatrix(i);
939 go = other->GetGeomMatrix(i);
940 gt->GetIndex(idt);
941 go->GetIndex(ido);
942 t = kFALSE;
943 for(i=0;i<3;i++) t = t&&idt[i]!=ido[i];
944 if(t) fprintf(fp,"%4.4d %1.1d %2.2d %2.2d %1.1d %2.2d %2.2d\n",i,
945 idt[0],idt[1],idt[2],ido[0],ido[1],ido[2]);
946 gt->GetTranslation(tt);
947 go->GetTranslation(to);
948 gt->GetAngles(rt);
949 go->GetAngles(ro);
950 t = kFALSE;
951 for(i=0;i<3;i++) t = t&&tt[i]!=to[i];
952 if(t) fprintf(fp,"%1.1d %2.2d %2.2d dTrans=%f %f %f drot=%f %f %f\n",
953 idt[0],idt[1],idt[2],
954 tt[0]-to[0],tt[1]-to[1],tt[2]-to[2],
955 rt[0]-ro[0],rt[1]-ro[1],rt[2]-ro[2]);
956 t = kFALSE;
957 gt->GetMatrix(mt);
958 go->GetMatrix(mo);
959 for(i=0;i<3;i++)for(j=0;j<3;j++) t = mt[i][j] != mo[i][j];
960 if(t){
961 fprintf(fp,"%1.1d %2.2d %2.2d dfr= %e %e %e\n",
962 idt[0],idt[1],idt[2],
963 mt[0][0]-mo[0][0],mt[0][1]-mo[0][1],mt[0][2]-mo[0][2]);
964 fprintf(fp," dfr= %e %e %e\n",
965 mt[1][0]-mo[1][0],mt[1][1]-mo[1][1],mt[1][2]-mo[1][2]);
966 fprintf(fp," dfr= %e %e %e\n",
967 mt[2][0]-mo[2][0],mt[2][1]-mo[2][1],mt[2][2]-mo[2][2]);
968 } // end if t
85f1e34a 969 } // end for i
970 return;
58005f18 971}
85f1e34a 972//______________________________________________________________________
5cf690c1 973void AliITSgeom::PrintData(FILE *fp,Int_t lay,Int_t lad,Int_t det)const{
85f1e34a 974 // This function prints out the coordinate transformations for
975 // the particular detector defined by layer, ladder, and detector
976 // to the file pointed to by the File pointer fp. fprintf statements
977 // are used to print out the numbers. The format is
978 // layer ladder detector Trans= fx0 fy0 fz0 rot= frx fry frz
979 // Shape=fShapeIndex
980 // dfr= fr[0] fr[1] fr[2]
981 // dfr= fr[3] fr[4] fr[5]
982 // dfr= fr[6] fr[7] fr[8]
983 // By indicating which detector, some control over the information
984 // is given to the user. The output it written to the file pointed
985 // to by the file pointer fp. This can be set to stdout if you want.
023ae34b 986 // Inputs:
987 // FILE *fp A file pointer to an opened file for writing in which
988 // the results of the comparison will be written.
989 // Int_t lay The layer number. Starting from 1.
990 // Int_t lad The ladder number. Starting from 1.
991 // Int_t det The detector number. Starting from 1.
992 // Outputs:
993 // none
994 // Return:
995 // none.
85f1e34a 996 AliITSgeomMatrix *gt;
997 Double_t t[3],r[3],m[3][3];
998
999 gt = this->GetGeomMatrix(GetModuleIndex(lay,lad,det));
1000 gt->GetTranslation(t);
1001 gt->GetAngles(r);
1002 fprintf(fp,"%1.1d %2.2d %2.2d Trans=%f %f %f rot=%f %f %f Shape=%d\n",
023ae34b 1003 lay,lad,det,t[0],t[1],t[2],r[0],r[1],r[2],
1004 gt->GetDetectorIndex());
85f1e34a 1005 gt->GetMatrix(m);
1006 fprintf(fp," dfr= %e %e %e\n",m[0][0],m[0][1],m[0][2]);
1007 fprintf(fp," dfr= %e %e %e\n",m[1][0],m[1][1],m[1][2]);
1008 fprintf(fp," dfr= %e %e %e\n",m[2][0],m[2][1],m[2][2]);
1009 return;
58005f18 1010}
85f1e34a 1011//______________________________________________________________________
5cf690c1 1012ofstream & AliITSgeom::PrintGeom(ofstream &rb)const{
85f1e34a 1013 // Stream out an object of class AliITSgeom to standard output.
023ae34b 1014 // Intputs:
1015 // ofstream &rb The output streaming buffer.
1016 // Outputs:
1017 // none.
1018 // Return:
1019 // ofstream &rb The output streaming buffer.
1020 Int_t i,nshapes;
593e9459 1021
85f1e34a 1022 rb.setf(ios::scientific);
1023 rb << fTrans << " ";
1024 rb << fNmodules << " ";
1025 rb << fNlayers << " ";
1026 for(i=0;i<fNlayers;i++) rb << fNlad[i] << " ";
1027 for(i=0;i<fNlayers;i++) rb << fNdet[i] << "\n";
269f57ed 1028 for(i=0;i<fNmodules;i++) {
023ae34b 1029 rb <<setprecision(16) << *(GetGeomMatrix(i)) << "\n";
269f57ed 1030 } // end for i
023ae34b 1031 nshapes = fShape.GetEntries();
1032 rb << nshapes <<endl;
1033 for(i=0;i<nshapes;i++) if(fShape.At(i)!=0) switch (i){
164da35c 1034 case kSPD:
023ae34b 1035 rb << kSPD <<","<< (AliITSgeomSPD*)(fShape.At(kSPD));
1036 break;
164da35c 1037 case kSDD:
023ae34b 1038 rb << kSDD <<","<< (AliITSgeomSDD*)(fShape.At(kSDD));
1039 break;
164da35c 1040 case kSSD:
023ae34b 1041 rb << kSSD <<","<< (AliITSgeomSSD*)(fShape.At(kSSD));
1042 break;
164da35c 1043 case kSSDp:
023ae34b 1044 rb << kSSDp <<","<< (AliITSgeomSSD*)(fShape.At(kSSDp));
1045 break;
164da35c 1046 case kSDDp:
023ae34b 1047 rb << kSDDp <<","<< (AliITSgeomSDD*)(fShape.At(kSDDp));
1048 break;
164da35c 1049 } // end for i / switch
85f1e34a 1050 return rb;
593e9459 1051}
85f1e34a 1052//______________________________________________________________________
1053ifstream & AliITSgeom::ReadGeom(ifstream &rb){
1054 // Stream in an object of class AliITSgeom from standard input.
023ae34b 1055 // Intputs:
1056 // ifstream &rb The input streaming buffer.
1057 // Outputs:
1058 // none.
1059 // Return:
1060 // ifstream &rb The input streaming buffer.
164da35c 1061 Int_t i,j;
269f57ed 1062
023ae34b 1063 fGm.Clear();
85f1e34a 1064
1065 rb >> fTrans >> fNmodules >> fNlayers;
023ae34b 1066 fNlad.Set(fNlayers);
1067 fNdet.Set(fNlayers);
85f1e34a 1068 for(i=0;i<fNlayers;i++) rb >> fNlad[i];
1069 for(i=0;i<fNlayers;i++) rb >> fNdet[i];
023ae34b 1070 fGm.Expand(fNmodules);
1071 fGm.SetOwner(kTRUE);
85f1e34a 1072 for(i=0;i<fNmodules;i++){
023ae34b 1073 if(i<0||i>=fGm.GetSize()){
1074 Error("ReadGeom","i<0||i>=fGm.GetSize()=%d",
1075 i,fGm.GetSize());
1076 return rb;
1077 } // end if
1078 fGm.AddAt(new AliITSgeomMatrix,i);
1079 rb >> *(GetGeomMatrix(i));
85f1e34a 1080 } // end for i
164da35c 1081 rb >> i;
023ae34b 1082 fShape.Expand(i);
1083 fShape.SetOwner(kTRUE);
1084 for(i=0;i<fShape.GetEntries();i++) {
1085 rb >> j;
1086 switch (j){
1087 case kSPD:{
1088 AliITSgeomSPD *s = new AliITSgeomSPD();
1089 rb >> *s;
1090 fShape.AddAt(s,kSPD);}
1091 break;
1092 case kSDD:{
1093 AliITSgeomSDD *s = new AliITSgeomSDD();
1094 rb >> *s;
1095 fShape.AddAt(s,kSDD);}
1096 break;
1097 case kSSD:{
1098 AliITSgeomSSD *s = new AliITSgeomSSD();
1099 rb >> *s;
1100 fShape.AddAt(s,kSSD);}
1101 break;
1102 case kSSDp:{
1103 AliITSgeomSSD *s = new AliITSgeomSSD();
1104 rb >> *s;
1105 fShape.AddAt(s,kSSDp);}
1106 break;
1107 case kSDDp:{
1108 AliITSgeomSDD *s = new AliITSgeomSDD();
1109 rb >> *s;
1110 fShape.AddAt(s,kSDDp);}
1111 break;
1112 } // end switch
164da35c 1113 } // end for i
85f1e34a 1114 return rb;
593e9459 1115}
593e9459 1116//______________________________________________________________________
269f57ed 1117// The following routines modify the transformation of "this"
1118// geometry transformations in a number of different ways.
593e9459 1119//______________________________________________________________________
269f57ed 1120void AliITSgeom::GlobalChange(const Float_t *tran,const Float_t *rot){
85f1e34a 1121 // This function performs a Cartesian translation and rotation of
1122 // the full ITS from its default position by an amount determined by
1123 // the three element arrays tran and rot. If every element
1124 // of tran and rot are zero then there is no change made
1125 // the geometry. The change is global in that the exact same translation
1126 // and rotation is done to every detector element in the exact same way.
1127 // The units of the translation are those of the Monte Carlo, usually cm,
1128 // and those of the rotation are in radians. The elements of tran
1129 // are tran[0] = x, tran[1] = y, and tran[2] = z.
1130 // The elements of rot are rot[0] = rx, rot[1] = ry, and
1131 // rot[2] = rz. A change in x will move the hole ITS in the ALICE
1132 // global x direction, the same for a change in y. A change in z will
1133 // result in a translation of the ITS as a hole up or down the beam line.
1134 // A change in the angles will result in the inclination of the ITS with
1135 // respect to the beam line, except for an effective rotation about the
1136 // beam axis which will just rotate the ITS as a hole about the beam axis.
023ae34b 1137 // Intputs:
1138 // Float_t *tran A 3 element array representing the global translations.
1139 // the elements are x,y,z in cm.
1140 // Float_t *rot A 3 element array representing the global rotation
1141 // angles about the three axis x,y,z in radians
1142 // Outputs:
1143 // none.
1144 // Return:
1145 // none.
85f1e34a 1146 Int_t i,j;
1147 Double_t t[3],r[3];
1148 AliITSgeomMatrix *g;
1149
1150 fTrans = (fTrans && 0xfffd) + 2; // set bit 1 true.
1151 for(i=0;i<fNmodules;i++){
023ae34b 1152 g = this->GetGeomMatrix(i);
1153 g->GetTranslation(t);
1154 g->GetAngles(r);
1155 for(j=0;j<3;j++){
1156 t[j] += tran[j];
1157 r[j] += rot[j];
1158 } // end for j
1159 g->SetTranslation(t);
1160 g->SetAngles(r);
85f1e34a 1161 } // end for i
1162 return;
593e9459 1163}
85f1e34a 1164//______________________________________________________________________
1165void AliITSgeom::GlobalCylindericalChange(const Float_t *tran,
1166 const Float_t *rot){
1167 // This function performs a cylindrical translation and rotation of
1168 // each ITS element by a fixed about in radius, rphi, and z from its
1169 // default position by an amount determined by the three element arrays
1170 // tran and rot. If every element of tran and
1171 // rot are zero then there is no change made the geometry. The
1172 // change is global in that the exact same distance change in translation
1173 // and rotation is done to every detector element in the exact same way.
1174 // The units of the translation are those of the Monte Carlo, usually cm,
1175 // and those of the rotation are in radians. The elements of tran
1176 // are tran[0] = r, tran[1] = rphi, and tran[2] = z.
1177 // The elements of rot are rot[0] = rx, rot[1] = ry, and
1178 // rot[2] = rz. A change in r will results in the increase of the
1179 // radius of each layer by the same about. A change in rphi will results in
1180 // the rotation of each layer by a different angle but by the same
1181 // circumferential distance. A change in z will result in a translation
1182 // of the ITS as a hole up or down the beam line. A change in the angles
1183 // will result in the inclination of the ITS with respect to the beam
1184 // line, except for an effective rotation about the beam axis which will
1185 // just rotate the ITS as a hole about the beam axis.
023ae34b 1186 // Intputs:
1187 // Float_t *tran A 3 element array representing the global translations.
1188 // the elements are r,theta,z in cm/radians.
1189 // Float_t *rot A 3 element array representing the global rotation
1190 // angles about the three axis x,y,z in radians
1191 // Outputs:
1192 // none.
1193 // Return:
1194 // none.
85f1e34a 1195 Int_t i,j;
1196 Double_t t[3],ro[3],r,r0,phi,rphi;
1197 AliITSgeomMatrix *g;
1198
1199 fTrans = (fTrans && 0xfffd) + 2; // set bit 1 true.
1200 for(i=0;i<fNmodules;i++){
023ae34b 1201 g = this->GetGeomMatrix(i);
1202 g->GetTranslation(t);
1203 g->GetAngles(ro);
1204 r = r0= TMath::Hypot(t[1],t[0]);
1205 phi = TMath::ATan2(t[1],t[0]);
1206 rphi = r0*phi;
1207 r += tran[0];
1208 rphi += tran[1];
1209 phi = rphi/r0;
1210 t[0] = r*TMath::Cos(phi);
1211 t[1] = r*TMath::Sin(phi);
1212 t[2] += tran[2];
1213 for(j=0;j<3;j++){
1214 ro[j] += rot[j];
1215 } // end for j
1216 g->SetTranslation(t);
1217 g->SetAngles(ro);
85f1e34a 1218 } // end for i
1219 return;
593e9459 1220}
85f1e34a 1221//______________________________________________________________________
269f57ed 1222void AliITSgeom::RandomChange(const Float_t *stran,const Float_t *srot){
85f1e34a 1223 // This function performs a Gaussian random displacement and/or
1224 // rotation about the present global position of each active
1225 // volume/detector of the ITS. The sigma of the random displacement
1226 // is determined by the three element array stran, for the
1227 // x y and z translations, and the three element array srot,
1228 // for the three rotation about the axis x y and z.
023ae34b 1229 // Intputs:
1230 // Float_t *stran A 3 element array representing the global translations
1231 // variances. The elements are x,y,z in cm.
1232 // Float_t *srot A 3 element array representing the global rotation
1233 // angles variances about the three axis x,y,z in radians.
1234 // Outputs:
1235 // none.
1236 // Return:
1237 // none.
85f1e34a 1238 Int_t i,j;
1239 Double_t t[3],r[3];
1240 AliITSgeomMatrix *g;
1241
1242 fTrans = (fTrans && 0xfffd) + 2; // set bit 1 true.
1243 for(i=0;i<fNmodules;i++){
023ae34b 1244 g = this->GetGeomMatrix(i);
1245 g->GetTranslation(t);
1246 g->GetAngles(r);
1247 for(j=0;j<3;j++){
1248 t[j] += gRandom->Gaus(0.0,stran[j]);
1249 r[j] += gRandom->Gaus(0.0, srot[j]);
1250 } // end for j
1251 g->SetTranslation(t);
1252 g->SetAngles(r);
85f1e34a 1253 } // end for i
1254 return;
593e9459 1255}
85f1e34a 1256//______________________________________________________________________
269f57ed 1257void AliITSgeom::RandomCylindericalChange(const Float_t *stran,
1258 const Float_t *srot){
85f1e34a 1259 // This function performs a Gaussian random displacement and/or
1260 // rotation about the present global position of each active
1261 // volume/detector of the ITS. The sigma of the random displacement
1262 // is determined by the three element array stran, for the
1263 // r rphi and z translations, and the three element array srot,
1264 // for the three rotation about the axis x y and z. This random change
1265 // in detector position allow for the simulation of a random uncertainty
1266 // in the detector positions of the ITS.
023ae34b 1267 // Intputs:
1268 // Float_t *stran A 3 element array representing the global translations
1269 // variances. The elements are r,theta,z in cm/radians.
1270 // Float_t *srot A 3 element array representing the global rotation
1271 // angles variances about the three axis x,y,z in radians.
1272 // Outputs:
1273 // none.
1274 // Return:
1275 // none.
85f1e34a 1276 Int_t i,j;
1277 Double_t t[3],ro[3],r,r0,phi,rphi;
1278 TRandom ran;
1279 AliITSgeomMatrix *g;
1280
1281 fTrans = (fTrans && 0xfffd) + 2; // set bit 1 true.
1282 for(i=0;i<fNmodules;i++){
023ae34b 1283 g = this->GetGeomMatrix(i);
1284 g->GetTranslation(t);
1285 g->GetAngles(ro);
1286 r = r0= TMath::Hypot(t[1],t[0]);
1287 phi = TMath::ATan2(t[1],t[0]);
1288 rphi = r0*phi;
1289 r += ran.Gaus(0.0,stran[0]);
1290 rphi += ran.Gaus(0.0,stran[1]);
1291 phi = rphi/r0;
1292 t[0] = r*TMath::Cos(phi);
1293 t[1] = r*TMath::Sin(phi);
1294 t[2] += ran.Gaus(0.0,stran[2]);
1295 for(j=0;j<3;j++){
1296 ro[j] += ran.Gaus(0.0, srot[j]);
1297 } // end for j
1298 g->SetTranslation(t);
1299 g->SetAngles(ro);
85f1e34a 1300 } // end for i
1301 return;
593e9459 1302}
1303//______________________________________________________________________
5cf690c1 1304void AliITSgeom::GeantToTracking(const AliITSgeom &source){
85f1e34a 1305 // Copy the geometry data but change it to go between the ALICE
1306 // Global coordinate system to that used by the ITS tracking. A slightly
1307 // different coordinate system is used when tracking. This coordinate
1308 // system is only relevant when the geometry represents the cylindrical
1309 // ALICE ITS geometry. For tracking the Z axis is left alone but X-> -Y
1310 // and Y-> X such that X always points out of the ITS cylinder for every
1311 // layer including layer 1 (where the detectors are mounted upside down).
85f1e34a 1312 //Begin_Html
1313 /*
1314 <img src="picts/ITS/AliITSgeomMatrix_T1.gif">
1315 */
1316 //End_Html
023ae34b 1317 // Input:
1318 // AliITSgeom &source The AliITSgeom class with which to make this
1319 // a copy of.
1320 // Output:
1321 // none.
1322 // Return:
1323 // none.
85f1e34a 1324 Int_t i,j,k,l,id[3];
1325 Double_t r0[3][3],r1[3][3];
1326 Double_t a0[3][3] = {{0.,+1.,0.},{-1.,0.,0.},{0.,0.,+1.}};
1327 Double_t a1[3][3] = {{0.,-1.,0.},{+1.,0.,0.},{0.,0.,+1.}};
1328
1329 *this = source; // copy everything
1330 for(i=0;i<GetIndexMax();i++){
023ae34b 1331 GetGeomMatrix(i)->GetIndex(id);
1332 GetGeomMatrix(i)->GetMatrix(r0);
1333 if(id[0]==1){ // Layer 1 is treated different from the others.
1334 for(j=0;j<3;j++) for(k=0;k<3;k++){
1335 r1[j][k] = 0.;
1336 for(l=0;l<3;l++) r1[j][k] += a0[j][l]*r0[l][k];
1337 } // end for j,k
1338 }else{
1339 for(j=0;j<3;j++) for(k=0;k<3;k++){
1340 r1[j][k] = 0.;
1341 for(l=0;l<3;l++) r1[j][k] += a1[j][l]*r0[l][k];
1342 } // end for j,k
1343 } // end if
1344 GetGeomMatrix(i)->SetMatrix(r1);
85f1e34a 1345 } // end for i
1346 this->fTrans = (this->fTrans && 0xfffe) + 1; // set bit 0 true.
1347 return;
58005f18 1348}
269f57ed 1349//______________________________________________________________________
5cf690c1 1350Int_t AliITSgeom::GetNearest(const Double_t g[3],Int_t lay)const{
85f1e34a 1351 // Finds the Detector (Module) that is nearest the point g [cm] in
1352 // ALICE Global coordinates. If layer !=0 then the search is restricted
1353 // to Detectors (Modules) in that particular layer.
023ae34b 1354 // Inputs:
1355 // Double_t g[3] The ALICE Cartesian global coordinate from which the
1356 // distance is to be calculated with.
1357 // Int_t lay The layer to restrict the search to. If layer=0 then
1358 // all layers are searched. Default is lay=0.
1359 // Output:
1360 // none.
1361 // Return:
1362 // The module number representing the nearest module.
85f1e34a 1363 Int_t i,l,a,e,in=0;
1364 Double_t d,dn=1.0e10;
1365 Bool_t t=lay!=0; // skip if lay = 0 default value check all layers.
085bb6ed 1366
85f1e34a 1367 for(i=0;i<fNmodules;i++){
023ae34b 1368 if(t){GetModuleId(i,l,a,e);if(l!=lay) continue;}
1369 if((d=GetGeomMatrix(i)->Distance2(g))<dn){
1370 dn = d;
1371 in = i;
1372 } // end if
85f1e34a 1373 } // end for i
1374 return in;
085bb6ed 1375}
269f57ed 1376//______________________________________________________________________
5cf690c1 1377void AliITSgeom::GetNearest27(const Double_t g[3],Int_t n[27],Int_t lay)const{
85f1e34a 1378 // Finds 27 Detectors (Modules) that are nearest the point g [cm] in
1379 // ALICE Global coordinates. If layer !=0 then the search is restricted
1380 // to Detectors (Modules) in that particular layer. The number 27 comes
1381 // from including the nearest detector and all those around it (up, down,
1382 // left, right, forwards, backwards, and the corners).
023ae34b 1383 // Input:
1384 // Double_t g[3] The ALICE Cartesian global coordinate from which the
1385 // distance is to be calculated with.
1386 // Int_t lay The layer to restrict the search to. If layer=0 then
1387 // all layers are searched. Default is lay=0.
1388 // Output:
1389 // Int_t n[27] The module number representing the nearest 27 modules
1390 // in order.
1391 // Return:
1392 // none.
85f1e34a 1393 Int_t i,l,a,e,in[27]={0,0,0,0,0,0,0,0,0,
023ae34b 1394 0,0,0,0,0,0,0,0,0,
1395 0,0,0,0,0,0,0,0,0,};
85f1e34a 1396 Double_t d,dn[27]={1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,
023ae34b 1397 1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,
1398 1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,
1399 1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,
1400 1.0e10,1.0e10,1.0e10};
85f1e34a 1401 Bool_t t=(lay!=0); // skip if lay = 0 default value check all layers.
269f57ed 1402
85f1e34a 1403 for(i=0;i<fNmodules;i++){
023ae34b 1404 if(t){GetModuleId(i,l,a,e);if(l!=lay) continue;}
1405 for(a=0;a<27;a++){
1406 d = GetGeomMatrix(i)->Distance2(g);
1407 if(d<dn[a]){
1408 for(e=26;e>a;e--){dn[e] = dn[e-1];in[e] = in[e-1];}
1409 dn[a] = d; in[a] = i;
1410 } // end if d<dn[i]
1411 } // end for a
85f1e34a 1412 } // end for i
1413 for(i=0;i<27;i++) n[i] = in[i];
269f57ed 1414}
023ae34b 1415//----------------------------------------------------------------------
5cf690c1 1416Double_t AliITSgeom::GetAverageRadiusOfLayer(Int_t layer,Double_t &range)const{
023ae34b 1417 // Loops over all modules for a given layer and computes the
1418 // average cylindrical radius (about the z axis) and the range of
1419 // radii covered by this layer. Units, [cm] the Alice default unit.
1420 // Input:
1421 // Int_t layer The layer for which the average radii is to be found
1422 // Output:
1423 // Double_t &range The range of radii covered by this layer
1424 // Return:
1425 // The average radii for this layer.
1426 Double_t r=0.0,rmin=1.0e6,rmax=-1.0,rp,t[3],l[3],dl[3];
1427 Int_t n=0,i,j,lay,lad,det;
5cf690c1 1428 AliITSDetector idet;
023ae34b 1429
1430 for(i=0;i<GetIndexMax();i++) {
1431 GetModuleId(i,lay,lad,det);
5cf690c1 1432 idet = GetModuleType(i);
023ae34b 1433 if(lay!=layer) continue;
1434 dl[0] = dl[1] = dl[2] = 0.0;
5cf690c1 1435 if(IsShapeDefined((Int_t)idet)) {
1436 switch(idet){
1437 case kSPD:{
1438 dl[0] = ((AliITSgeomSPD*)GetShape(idet))->GetDx();
1439 dl[1] = ((AliITSgeomSPD*)GetShape(idet))->GetDy();
1440 dl[2] = ((AliITSgeomSPD*)GetShape(idet))->GetDz();
023ae34b 1441 } break;
5cf690c1 1442 case kSDD: case kSDDp:{
1443 dl[0] = ((AliITSgeomSDD*)GetShape(idet))->GetDx();
1444 dl[1] = ((AliITSgeomSDD*)GetShape(idet))->GetDy();
1445 dl[2] = ((AliITSgeomSDD*)GetShape(idet))->GetDz();
023ae34b 1446 } break;
5cf690c1 1447 case kSSD: case kSSDp:{
1448 dl[0] = ((AliITSgeomSSD*)GetShape(idet))->GetDx();
1449 dl[1] = ((AliITSgeomSSD*)GetShape(idet))->GetDy();
1450 dl[2] = ((AliITSgeomSSD*)GetShape(idet))->GetDz();
023ae34b 1451 } break;
22e9f252 1452 case kND:{
1453 Warning("GetAverageRadiusOfLayer",
1454 "idet=kND undefined detector type");
1455 continue;
1456 }break;
1457 default:{
1458 Warning("GetAverageRadiusOfLayer",
1459 "idet=%d not a defined value",(Int_t)idet);
1460 continue;
1461 }break;
023ae34b 1462 }// end switch.
1463 } // end of
1464 n++;
1465 GetTransCyln(i,t);
1466 rp = t[0];
1467 r += rp;
1468 if(rmin>rp) rmin = rp;
1469 if(rmax<rp) rmax = rp;
1470 for(j=0;j<8;j++){ // loop over the corners
1471 l[0] = dl[0];if(j%2==0) l[0] = -dl[0];
1472 l[1] = dl[1];if(j==2||j==3||j==6||j==7) l[1] = -dl[1];
1473 l[2] = dl[2];if(j>3) l[2] = -dl[2];
1474 LtoG(i,l,t);
1475 rp = TMath::Sqrt(t[0]*t[0]+t[1]*t[1]);
1476 if(rmin>rp) rmin = rp;
1477 if(rmax<rp) rmax = rp;
1478 } // end for j
1479 } // end for i
1480 r /= (Double_t)n;
1481 range = TMath::Max(rmax-r,r-rmin);
1482 return r;
1483}
00a7cc50 1484//_______________________________________________________________________
1485void AliITSgeom::DetLToTrackingV2(Int_t md, Float_t xin, Float_t zin, Float_t &yout, Float_t &zout) {
1486
1487 //Conversion from local coordinates on detectors to local
1488 //coordinates used for tracking ("v2")
d7973d08 1489 Float_t x,y,z;
1490 Double_t rt[9];
1491 GetTrans(md,x,y,z);
1492 GetRotMatrix(md,rt);
00a7cc50 1493 Double_t al=TMath::ATan2(rt[1],rt[0])+TMath::Pi();
1494 yout=-(-xin+(x*TMath::Cos(al)+y*TMath::Sin(al)));
d7973d08 1495 if ( md<(GetModuleIndex(2,1,1)) ) yout*=-1;
1496 zout=-zin+(Double_t)z;
00a7cc50 1497}
1498
1499//_______________________________________________________________________
1500void AliITSgeom::TrackingV2ToDetL(Int_t md,Float_t yin,Float_t zin,Float_t &xout,Float_t &zout) {
1501 //Conversion from local coordinates used for tracking ("v2") to
1502 //local detector coordinates
1503
d7973d08 1504 Float_t x,y,z; Double_t rt[9];
1505 GetTrans(md,x,y,z);
1506 GetRotMatrix(md,rt);
00a7cc50 1507 Double_t al=TMath::ATan2(rt[1],rt[0])+TMath::Pi();
d7973d08 1508 xout=yin;
1509 if( md<(GetModuleIndex(2,1,1)) ) xout=-xout;
00a7cc50 1510 xout+=(x*TMath::Cos(al)+y*TMath::Sin(al));
1511 zout=-zin+(Double_t)z;
1512}