]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSv11GeometrySPD.cxx
New methods to query the trigger classes by name.
[u/mrichter/AliRoot.git] / ITS / AliITSv11GeometrySPD.cxx
CommitLineData
db486a6e 1/**************************************************************************
59da35b6 2 * Copyright(c) 2007-2009, ALICE Experiment at CERN, All rights reserved. *
db486a6e 3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
592651e2 15//
db486a6e 16// This class Defines the Geometry for the ITS services and support cones
17// outside of the ceneteral volume (except for the Ceneteral support
18// cylinders. Other classes define the rest of the ITS. Specificaly the ITS
bc3498f4 19// The SSD support cone, SSD Support central cylinder, SDD support cone,
20// The SDD cupport central cylinder, the SPD Thermal Sheald, The supports
db486a6e 21// and cable trays on both the RB26 (muon dump) and RB24 sides, and all of
592651e2 22// the cabling from the ladders/stave ends out past the TPC.
23//
db486a6e 24
543b7370 25/* $Id$ */
592651e2 26
db486a6e 27// General Root includes
28#include <Riostream.h>
29#include <TMath.h>
30#include <TLatex.h>
31#include <TCanvas.h>
32#include <TPolyLine.h>
297369a1 33#include <TPolyMarker.h>
bc3498f4 34
db486a6e 35// Root Geometry includes
db486a6e 36#include <TGeoVolume.h>
592651e2 37#include <TGeoTube.h> // contains TGeoTubeSeg
db486a6e 38#include <TGeoEltu.h>
39#include <TGeoXtru.h>
db486a6e 40#include <TGeoMatrix.h>
a53658c6 41#include <TGeoMaterial.h>
42#include <TGeoMedium.h>
592651e2 43#include <TGeoCompositeShape.h>
bc3498f4 44
592651e2 45// AliRoot includes
bc3498f4 46#include "AliLog.h"
a53658c6 47#include "AliMagF.h"
48#include "AliRun.h"
bc3498f4 49
592651e2 50// Declaration file
db486a6e 51#include "AliITSv11GeometrySPD.h"
52
7855ea93 53// Constants definition
54const Double_t AliITSv11GeometrySPD::fgkGapLadder = AliITSv11Geometry::fgkmm * 0.075; // 75 um (expressed in cm)
55const Double_t AliITSv11GeometrySPD::fgkGapHalfStave = AliITSv11Geometry::fgkmm * 0.120; // 120 um (expressed in cm)
56
db486a6e 57ClassImp(AliITSv11GeometrySPD)
58
bc3498f4 59//#define SQ(A) (A)*(A)
db486a6e 60
7855ea93 61AliITSv11GeometrySPD::AliITSv11GeometrySPD() :
62 AliITSv11Geometry(),
bc3498f4 63 fSPDsectorX0(0), fSPDsectorY0(0), fSPDsectorX1(0), fSPDsectorY1(0)
64{
65 //
66 // Default constructor.
67 // This does not initialize anything and is provided just for completeness.
68 // It is recommended to use the other one.
69 // The alignment gap is specified as argument (default = 0.0075 cm).
1b2b32e7 70 //
bc3498f4 71 Int_t i = 0;
72 for (i = 0; i < 6; i++) fAddStave[i] = kTRUE;
73}
74//
75//__________________________________________________________________________________________
7855ea93 76AliITSv11GeometrySPD::AliITSv11GeometrySPD(Int_t debug):
77 AliITSv11Geometry(debug),
bc3498f4 78 fSPDsectorX0(0), fSPDsectorY0(0), fSPDsectorX1(0), fSPDsectorY1(0)
79{
80 //
81 // Constructor with debug setting argument
82 // This is the constructor which is recommended to be used.
83 // It sets a debug level, and initializes the name of the object.
84 // The alignment gap is specified as argument (default = 0.0075 cm).
1b2b32e7 85 //
bc3498f4 86 Int_t i = 0;
87 for (i = 0; i < 6; i++) fAddStave[i] = kTRUE;
88}
89//
90//__________________________________________________________________________________________
91TGeoMedium* AliITSv11GeometrySPD::GetMedium(const char* mediumName, TGeoManager *mgr) const
92{
93 //
94 // This function is used to recovery any medium
95 // used to build the geometry volumes.
96 // If the required medium does not exists,
97 // a NULL pointer is returned, and an error message is written.
98 //
99
100 Char_t itsMediumName[30];
101 sprintf(itsMediumName, "ITS_%s", mediumName);
102 TGeoMedium* medium = mgr->GetMedium(itsMediumName);
103 if (!medium) AliError(Form("Medium <%s> not found", mediumName));
104
105 return medium;
106}
107//
108//__________________________________________________________________________________________
59da35b6 109Int_t AliITSv11GeometrySPD::CreateSPDCentralMaterials(Int_t &medOffset, Int_t &matOffset) const
592651e2 110{
bc3498f4 111 //
112 // Define the specific materials used for the ITS SPD central detectors.
113 // ---
114 // NOTE: These are the same old names.
115 // By the ALICE naming conventions, they start with "ITS SPD ...."
116 // Data taken from ** AliITSvPPRasymmFMD::CreateMaterials() **.
117 // ---
118 // Arguments [the ones passed by reference contain output values]:
119 // - medOffset --> (by ref) starting number of the list of media
120 // - matOffset --> (by ref) starting number of the list of Materials
121 // ---
122 // Return value:
123 // - the last material index used + 1 (= next avaiable material index)
124 // ---
125 // Begin_Html
126 /*
127 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.ps"
128 title="SPD Sector drawing with all cross sections defined">
129 <p>The SPD Sector definition. In
130 <a href="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.hpgl">HPGL</a> format.
131 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly-10-modules.ps"
132 titile="SPD All Sectors end view with thermal sheald">
133 <p>The SPD all sector end view with thermal sheald.
134 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.ps"
135 title="SPD side view cross section">
136 <p>SPD side view cross section with condes and thermal shealds.
137 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-A_A.jpg"
138 title="Cross section A-A"><p>Cross section A-A.
139 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-B_B.jpg"
140 title="Cross section B-B"><p>Cross section B-B.
141 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-C_C.jpg"
142 title-"Cross section C-C"><p>Cross section C-C.
143 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-D_D.jpg"
144 title="Cross section D-D"><p>Cross section D-D.
145 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-E_E.jpg"
146 title="Cross section E-E"><p>Cross section E-E.
147 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-F_F.jpg"
148 title="Cross section F-F"><p>Cross section F-F.
149 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-G_G.jpg"
150 title="Cross section G-G"><p>Cross section G-G.
151 */
152 // End_Html
153 //
154 const Double_t ktmaxfd = 0.1 * fgkDegree; // Degree
155 const Double_t kstemax = 1.0 * fgkcm; // cm
156 const Double_t kdeemax = 0.1;//Fraction of particle's energy 0<deemax<=1
157 const Double_t kepsil = 1.0E-4; //
158 const Double_t kstmin = 0.0 * fgkcm; // cm "Default value used"
159 const Double_t ktmaxfdAir = 0.1 * fgkDegree; // Degree
160 const Double_t kstemaxAir = 1.0000E+00 * fgkcm; // cm
161 const Double_t kdeemaxAir = 0.1; // Fraction of particle's energy 0<deemax<=1
162 const Double_t kepsilAir = 1.0E-4;//
163 const Double_t kstminAir = 0.0 * fgkcm; // cm "Default value used"
164 const Double_t ktmaxfdSi = 0.1 * fgkDegree; // .10000E+01; // Degree
165 const Double_t kstemaxSi = 0.0075 * fgkcm; // .10000E+01; // cm
166 const Double_t kdeemaxSi = 0.1; // Fraction of particle's energy 0<deemax<=1
167 const Double_t kepsilSi = 1.0E-4;//
168 const Double_t kstminSi = 0.0 * fgkcm; // cm "Default value used"
169
170 Int_t matindex = matOffset;
171 Int_t medindex = medOffset;
172 TGeoMaterial *mat;
173 TGeoMixture *mix;
174 TGeoMedium *med;
175
176 Int_t ifield = (gAlice->Field()->Integ());
177 Double_t fieldm = (gAlice->Field()->Max());
178 Double_t params[8] = {8 * 0.0};
179 params[1] = (Double_t) ifield;
180 params[2] = fieldm;
181 params[3] = ktmaxfdSi;
182 params[4] = kstemaxSi;
183 params[5] = kdeemaxSi;
184 params[6] = kepsilSi;
185 params[7] = kstminSi;
186
187 //
188 // Definition of materials and mediums.
189 // Last argument in material definition is its pressure,
190 // which is initialized to ZERO.
191 // For better readability, it is simply set to zero.
192 // Then the writing "0.0 * fgkPascal" is replaced by "0."
193 // (Alberto)
194 //
195
196 // silicon definition for ITS (overall)
197 mat = new TGeoMaterial("ITS_SI", 28.086, 14.0, 2.33 * fgkgcm3,
198 TGeoMaterial::kMatStateSolid, 25.0 * fgkCelsius, 0.);
199 mat->SetIndex(matindex);
200 med = new TGeoMedium("SI", medindex++, mat, params);
201
202 // silicon for ladder chips
203 mat = new TGeoMaterial("SPD SI CHIP", 28.086, 14.0, 2.33 * fgkgcm3,
204 TGeoMaterial::kMatStateSolid, 25.0 * fgkCelsius, 0.);
205 mat->SetIndex(matindex);
206 med = new TGeoMedium("SPD SI CHIP", medindex++, mat, params);
207
208 // silicon for pixel bus
209 mat = new TGeoMaterial("SPD SI BUS", 28.086, 14.0, 2.33 * fgkgcm3,
210 TGeoMaterial::kMatStateSolid, 25.0 * fgkCelsius, 0.);
211 mat->SetIndex(matindex);
212 med = new TGeoMedium("SPD SI BUS", medindex++, mat, params);
213
214 // carbon fiber material is defined as a mix of C-O-N-H
215 // defined in terms of fractional weights according to 'C (M55J)'
216 // it is used for the support and clips
217 mix = new TGeoMixture("C (M55J)", 4, 1.9866 * fgkgcm3);
218 mix->SetIndex(matindex);
219 mix->DefineElement(0, 12.01070, 6.0, 0.908508078); // C by fractional weight
220 mix->DefineElement(1, 14.00670, 7.0, 0.010387573); // N by fractional weight
221 mix->DefineElement(2, 15.99940, 8.0, 0.055957585); // O by fractional weight
222 mix->DefineElement(3, 1.00794, 1.0, 0.025146765); // H by fractional weight
223 mix->SetPressure(0.0 * fgkPascal);
224 mix->SetTemperature(25.0 * fgkCelsius);
225 mix->SetState(TGeoMaterial::kMatStateSolid);
226 params[3] = ktmaxfd;
227 params[4] = kstemax;
228 params[5] = kdeemax;
229 params[6] = kepsil;
230 params[7] = kstmin;
231 med = new TGeoMedium("ITSspdCarbonFiber", medindex++, mix, params);
232
233 // air defined as a mixture of C-N-O-Ar:
234 // it is used to fill all containers
235 mix = new TGeoMixture("Air", 4, 1.20479E-3 * fgkgcm3);
236 mix->SetIndex(matindex);
237 mix->DefineElement(0, 12.0107, 6.0, 0.000124); // C by fractional weight
238 mix->DefineElement(1, 14.0067, 7.0, 0.755267); // N by fractional weight
239 mix->DefineElement(2, 15.9994, 8.0, 0.231781); // O by fractional weight
240 mix->DefineElement(3, 39.9480, 18.0, 0.012827); // Ar by fractional weight
241 mix->SetPressure(101325.0 * fgkPascal); // = 1 atmosphere
242 mix->SetTemperature(25.0 * fgkCelsius);
243 mix->SetState(TGeoMaterial::kMatStateGas);
244 params[3] = ktmaxfdAir;
245 params[4] = kstemaxAir;
246 params[5] = kdeemaxAir;
247 params[6] = kepsilAir;
248 params[7] = kstminAir;
249 med = new TGeoMedium("ITSspdAir", medindex++, mix, params);
250
251 // inox stainless steel, defined as a mixture
252 // used for all metallic parts
253 mix = new TGeoMixture("INOX", 9, 8.03 * fgkgcm3);
254 mix->SetIndex(matindex);
255 mix->DefineElement(0, 12.0107, 6., .0003); // C by fractional weight
256 mix->DefineElement(1, 54.9380, 25., .02); // Fe by fractional weight
257 mix->DefineElement(2, 28.0855, 14., .01); // Na by fractional weight
258 mix->DefineElement(3, 30.9738, 15., .00045); // P by fractional weight
259 mix->DefineElement(4, 32.066 , 16., .0003); // S by fractional weight
260 mix->DefineElement(5, 58.6928, 28., .12); // Ni by fractional weight
261 mix->DefineElement(6, 55.9961, 24., .17); // by fractional weight
262 mix->DefineElement(7, 95.84 , 42., .025); // by fractional weight
263 mix->DefineElement(8, 55.845 , 26., .654); // by fractional weight
264 mix->SetPressure(0.0 * fgkPascal);
265 mix->SetTemperature(25.0 * fgkCelsius);
266 mix->SetState(TGeoMaterial::kMatStateSolid);
267 params[3] = ktmaxfdAir;
268 params[4] = kstemaxAir;
269 params[5] = kdeemaxAir;
270 params[6] = kepsilAir;
271 params[7] = kstminAir;
272 med = new TGeoMedium("ITSspdStainlessSteel", medindex++, mix, params);
273
274 // freon gas which fills the cooling system (C+F)
275 mix = new TGeoMixture("Freon", 2, 1.63 * fgkgcm3);
276 mix->SetIndex(matindex);
277 mix->DefineElement(0, 12.0107 , 6.0, 4); // C by fractional weight
278 mix->DefineElement(1, 18.9984032, 9.0, 10); // F by fractional weight
279 mix->SetPressure(101325.0 * fgkPascal); // = 1 atmosphere
280 mix->SetTemperature(25.0 * fgkCelsius);
281 mix->SetState(TGeoMaterial::kMatStateLiquid);
282 params[3] = ktmaxfdAir;
283 params[4] = kstemaxAir;
284 params[5] = kdeemaxAir;
285 params[6] = kepsilAir;
286 params[7] = kstminAir;
287 med = new TGeoMedium("ITSspdCoolingFluid", medindex++, mix, params);
288
289 // return the next index to be used in case of adding new materials
290 medOffset = medindex;
291 matOffset = matindex;
292 return matOffset;
a53658c6 293}
bc3498f4 294//
295//__________________________________________________________________________________________
296void AliITSv11GeometrySPD::InitSPDCentral(Int_t offset, TVirtualMC *vmc) const
297{
298 //
299 // Do all SPD Central detector initializations (e.g.: transport cuts).
300 // ---
301 // Here follow some GEANT3 physics switches, which are interesting
302 // for these settings to be defined:
303 // - "MULTS" (MULtiple Scattering):
304 // the variable IMULS controls this process. See [PHYS320/325/328]
305 // 0 - No multiple scattering.
306 // 1 - (DEFAULT) Multiple scattering according to Moliere theory.
307 // 2 - Same as 1. Kept for backward compatibility.
308 // 3 - Pure Gaussian scattering according to the Rossi formula.
309 // - "DRAY" (Delta RAY production)
310 // The variable IDRAY controls this process. See [PHYS430]
311 // 0 - No delta rays production.
312 // 1 - (DEFAULT) Delta rays production with generation of.
313 // 2 - Delta rays production without generation of.
314 // - "LOSS" (continuous energy loss)
315 // The variable ILOSS controls this process.
316 // 0 - No continuous energy loss, IDRAY is set to 0.
317 // 1 - Continuous energy loss with generation of delta rays above
318 // DCUTE (common/GCUTS/) and restricted Landau fluctuations below DCUTE.
319 // 2 - (DEFAULT) Continuous energy loss without generation of delta rays
320 // and full Landau-Vavilov-Gauss fluctuations.
321 // In this case the variable IDRAY is forced to 0 to avoid
322 // double counting of fluctuations.
323 // 3 - Same as 1, kept for backward compatibility.
324 // 4 - Energy loss without fluctuation.
325 // The value obtained from the tables is used directly.
326 // ---
327 // Arguments:
328 // Int_t offset --> the material/medium index offset
329 // TVirtualMC *vmc --> pointer to the virtual Monte Carlo default gMC
330 //
a53658c6 331
bc3498f4 332 Int_t i, n = 4;
333
334 for(i=0;i<n;i++) {
335 vmc->Gstpar(i+offset, "CUTGAM", 30.0 * fgkKeV);
336 vmc->Gstpar(i+offset, "CUTELE", 30.0 * fgkKeV);
337 vmc->Gstpar(i+offset, "CUTNEU", 30.0 * fgkKeV);
338 vmc->Gstpar(i+offset, "CUTHAD", 30.0 * fgkKeV);
339 vmc->Gstpar(i+offset, "CUTMUO", 30.0 * fgkKeV);
340 vmc->Gstpar(i+offset, "BCUTE", 30.0 * fgkKeV);
341 vmc->Gstpar(i+offset, "BCUTM", 30.0 * fgkKeV);
342 vmc->Gstpar(i+offset, "DCUTE", 30.0 * fgkKeV);
343 vmc->Gstpar(i+offset, "DCUTM", 30.0 * fgkKeV);
344 //vmc->Gstpar(i+offset, "PPCUTM", );
345 //vmc->Gstpar(i+offset, "PAIR", );
346 //vmc->Gstpar(i+offset, "COMPT", );
347 //vmc->Gstpar(i+offset, "PHOT", );
348 //vmc->Gstpar(i+offset, "PFIS", );
349 vmc->Gstpar(i+offset, "DRAY", 1);
350 //vmc->Gstpar(i+offset, "ANNI", );
351 //vmc->Gstpar(i+offset, "BREM", );
352 //vmc->Gstpar(i+offset, "HADR", );
353 //vmc->Gstpar(i+offset, "MUNU", );
354 //vmc->Gstpar(i+offset, "DCAY", );
355 vmc->Gstpar(i+offset, "LOSS", 1);
356 //vmc->Gstpar(i+offset, "MULS", );
357 //vmc->Gstpar(i+offset, "GHCOR1", );
358 //vmc->Gstpar(i+offset, "BIRK1", );
359 //vmc->Gstpar(i+offset, "BRIK2", );
360 //vmc->Gstpar(i+offset, "BRIK3", );
361 //vmc->Gstpar(i+offset, "LABS", );
362 //vmc->Gstpar(i+offset, "SYNC", );
363 //vmc->Gstpar(i+offset, "STRA", );
364 }
a53658c6 365}
bc3498f4 366//
367//__________________________________________________________________________________________
368void AliITSv11GeometrySPD::SPDSector(TGeoVolume *moth, TGeoManager *mgr)
369{
370 //
371 // Creates a single SPD carbon fiber sector and places it
372 // in a container volume passed as first argument ('moth').
373 // Second argument points to the TGeoManager which coordinates
374 // the overall volume creation.
375 // The position of the sector is based on distance of
376 // closest point of SPD stave to beam pipe
377 // (figures all-sections-modules.ps) of 7.22mm at section A-A.
378 //
a53658c6 379
bc3498f4 380 const Double_t kSPDclossesStaveAA = 7.22 * fgkmm;
381 const Double_t kSectorStartingAngle = -72.0 * fgkDegree;
382 const Double_t kNSectorsTotal = 10.0;
383 const Double_t kSectorRelativeAngle = 360.0 / kNSectorsTotal * fgkDegree;
384 const Double_t kBeamPipeRadius = 0.5 * 60.0 * fgkmm;
385
386 Int_t i;
387 Double_t angle, radiusSector, xAAtubeCenter0, yAAtubeCenter0;
388 Double_t staveThicknessAA = 1.03 * fgkmm; // get from stave geometry.
389 TGeoCombiTrans *secRot = new TGeoCombiTrans();
390 TGeoVolume *vCarbonFiberSector;
391 TGeoMedium *medSPDcf;
392
393 // define an assembly and fill it with the support of
394 // a single carbon fiber sector and staves in it
395 medSPDcf = GetMedium("SPD C (M55J)$", mgr);
396 vCarbonFiberSector = new TGeoVolumeAssembly("ITSSPDCarbonFiberSectorV");
397 vCarbonFiberSector->SetMedium(medSPDcf);
398 CarbonFiberSector(vCarbonFiberSector, xAAtubeCenter0, yAAtubeCenter0, mgr);
399 vCarbonFiberSector->SetVisibility(kTRUE); // logical volume
400
401 // Compute the radial shift out of the sectors
402 radiusSector = kBeamPipeRadius + kSPDclossesStaveAA + staveThicknessAA;
403 radiusSector *= radiusSector; // squaring;
404 radiusSector -= xAAtubeCenter0 * xAAtubeCenter0;
405 radiusSector = -yAAtubeCenter0 + TMath::Sqrt(radiusSector);
406
407 // add 10 single sectors, by replicating the virtual sector defined above
408 // and placing at different angles
409 Double_t shiftX, shiftY;
410 angle = kSectorStartingAngle;
411 secRot->RotateZ(angle);
412 for(i = 0; i < (Int_t)kNSectorsTotal; i++) {
413 shiftX = -radiusSector * TMath::Sin(angle/fgkRadian);
414 shiftY = radiusSector * TMath::Cos(angle/fgkRadian);
415 secRot->SetDx(shiftX);
416 secRot->SetDy(shiftY);
417 moth->AddNode(vCarbonFiberSector, i+1, new TGeoCombiTrans(*secRot));
418 if(GetDebug(5)) {
419 AliInfo(Form("i=%d angle=%g angle[rad]=%g radiusSector=%g x=%g y=%g \n",
420 i, angle, angle/fgkRadian, radiusSector, shiftX, shiftY));
421 }
422 angle += kSectorRelativeAngle;
423 secRot->RotateZ(kSectorRelativeAngle);
424 }
425 if(GetDebug(3)) moth->PrintNodes();
426
427 delete secRot;
a53658c6 428}
bc3498f4 429//
430//__________________________________________________________________________________________
431void AliITSv11GeometrySPD::CarbonFiberSector
432(TGeoVolume *moth, Double_t &xAAtubeCenter0, Double_t &yAAtubeCenter0, TGeoManager *mgr)
433{
434 //
435 // Define the detail SPD Carbon fiber support Sector geometry.
436 // Based on the drawings:
437 // - ALICE-Pixel "Costruzione Profilo Modulo" (march 25 2004)
438 // - ALICE-SUPPORTO "Costruzione Profilo Modulo"
439 // ---
440 // Define outside radii as negative, where "outside" means that the
441 // center of the arc is outside of the object (feb 16 2004).
442 // ---
443 // Arguments [the one passed by ref contain output values]:
444 // TGeoVolume *moth --> the voulme which will contain this object
445 // Double_t &xAAtubeCenter0 --> (by ref) x location of the outer surface
446 // of the cooling tube center for tube 0.
447 // Double_t &yAAtubeCenter0 --> (by ref) y location of the outer surface
448 // of the cooling tube center for tube 0.
449 // TGeoManager *mgr --> TGeo builder
450 // ---
451 // Int the two variables passed by reference values will be stored
452 // which will then be used to correctly locate this sector.
453 // The information used for this is the distance between the
454 // center of the #0 detector and the beam pipe.
455 // Measurements are taken at cross section A-A.
456 //
457
458 //TGeoMedium *medSPDfs = 0; // SPD support cone inserto stesalite 4411w.
459 //TGeoMedium *medSPDfo = 0; // SPD support cone foam, Rohacell 50A.
460 //TGeoMedium *medSPDal = 0; // SPD support cone SDD mounting bracket Al
461 TGeoMedium *medSPDcf = GetMedium("SPD C (M55J)$", mgr);
462 TGeoMedium *medSPDss = GetMedium("INOX$", mgr);
463 TGeoMedium *medSPDair = GetMedium("AIR$", mgr);
464 TGeoMedium *medSPDcoolfl = GetMedium("Freon$", mgr); //ITSspdCoolingFluid
465
466 const Double_t ksecDz = 0.5 * 500.0 * fgkmm;
467 const Double_t ksecLen = 30.0 * fgkmm;
468 const Double_t ksecCthick = 0.2 * fgkmm;
469 const Double_t ksecDipLength = 3.2 * fgkmm;
470 const Double_t ksecDipRadii = 0.4 * fgkmm;
471 //const Double_t ksecCoolingTubeExtraDepth = 0.86 * fgkmm;
db486a6e 472
bc3498f4 473 // The following positions ('ksecX#' and 'ksecY#') and radii ('ksecR#')
474 // are the centers and radii of curvature of all the rounded corners
475 // between the straight borders of the SPD sector shape.
476 // To draw this SPD sector, the following steps are followed:
477 // 1) the (ksecX, ksecY) points are plotted
478 // and circles of the specified radii are drawn around them.
479 // 2) each pair of consecutive circles is connected by a line
480 // tangent to them, in accordance with the radii being "internal" or "external"
481 // with respect to the closed shape which describes the sector itself.
482 // The resulting connected shape is the section
483 // of the SPD sector surface in the transverse plane (XY).
484
485 const Double_t ksecX0 = -10.725 * fgkmm;
486 const Double_t ksecY0 = -14.853 * fgkmm;
487 const Double_t ksecR0 = -0.8 * fgkmm; // external
488 const Double_t ksecX1 = -13.187 * fgkmm;
489 const Double_t ksecY1 = -19.964 * fgkmm;
490 const Double_t ksecR1 = +0.6 * fgkmm; // internal
491 // const Double_t ksecDip0 = 5.9 * fgkmm;
492
493 const Double_t ksecX2 = -3.883 * fgkmm;
494 const Double_t ksecY2 = -17.805 * fgkmm;
495 const Double_t ksecR2 = +0.80 * fgkmm; // internal (guess)
496 const Double_t ksecX3 = -3.123 * fgkmm;
497 const Double_t ksecY3 = -14.618 * fgkmm;
498 const Double_t ksecR3 = -0.6 * fgkmm; // external
499 //const Double_t ksecDip1 = 8.035 * fgkmm;
500
501 const Double_t ksecX4 = +11.280 * fgkmm;
502 const Double_t ksecY4 = -14.473 * fgkmm;
503 const Double_t ksecR4 = +0.8 * fgkmm; // internal
504 const Double_t ksecX5 = +19.544 * fgkmm;
505 const Double_t ksecY5 = +10.961 * fgkmm;
506 const Double_t ksecR5 = +0.8 * fgkmm; // internal
507 //const Double_t ksecDip2 = 4.553 * fgkmm;
508
509 const Double_t ksecX6 = +10.830 * fgkmm;
510 const Double_t ksecY6 = +16.858 * fgkmm;
511 const Double_t ksecR6 = +0.6 * fgkmm; // internal
512 const Double_t ksecX7 = +11.581 * fgkmm;
513 const Double_t ksecY7 = +13.317 * fgkmm;
514 const Double_t ksecR7 = -0.6 * fgkmm; // external
515 //const Double_t ksecDip3 = 6.978 * fgkmm;
516
517 const Double_t ksecX8 = -0.733 * fgkmm;
518 const Double_t ksecY8 = +17.486 * fgkmm;
519 const Double_t ksecR8 = +0.6 * fgkmm; // internal
520 const Double_t ksecX9 = +0.562 * fgkmm;
521 //const Double_t ksecY9 = +14.486 * fgkmm; // correction by
522 const Double_t ksecY9 = +14.107 * fgkmm; // Alberto
523 const Double_t ksecR9 = -0.6 * fgkmm; // external
524 //const Double_t ksecDip4 = 6.978 * fgkmm;
db486a6e 525
bc3498f4 526 const Double_t ksecX10 = -12.252 * fgkmm;
527 const Double_t ksecY10 = +16.298 * fgkmm;
528 const Double_t ksecR10 = +0.6 * fgkmm; // internal
529 const Double_t ksecX11 = -10.445 * fgkmm;
530 const Double_t ksecY11 = +13.162 * fgkmm;
531 const Double_t ksecR11 = -0.6 * fgkmm; // external
532 //const Double_t ksecDip5 = 6.978 * fgkmm;
533
534 const Double_t ksecX12 = -22.276 * fgkmm;
535 const Double_t ksecY12 = +12.948 * fgkmm;
536 const Double_t ksecR12 = +0.85 * fgkmm; // internal
537 const Double_t ksecR13 = -0.8 * fgkmm; // external
538 const Double_t ksecAngleSide13 = 36.0 * fgkDegree;
539
540 const Int_t ksecNRadii = 20;
541 const Int_t ksecNPointsPerRadii = 4;
542 const Int_t ksecNCoolingTubeDips = 6;
543
544 // Since the rounded parts are approximated by a regular polygon
545 // and a cooling tube of the propper diameter must fit, a scaling factor
546 // increases the size of the polygon for the tube to fit.
547 //const Double_t ksecRCoolScale = 1./TMath::Cos(TMath::Pi()/(Double_t)ksecNPointsPerRadii);
548 const Double_t ksecZEndLen = 30.000 * fgkmm;
549 //const Double_t ksecZFlangLen = 45.000 * fgkmm;
550 const Double_t ksecTl = 0.860 * fgkmm;
551 const Double_t ksecCthick2 = 0.600 * fgkmm;
552 //const Double_t ksecCthick3 = 1.80 * fgkmm;
553 //const Double_t ksecSidelen = 22.0 * fgkmm;
554 //const Double_t ksecSideD5 = 3.679 * fgkmm;
555 //const Double_t ksecSideD12 = 7.066 * fgkmm;
556 const Double_t ksecRCoolOut = 2.400 * fgkmm;
557 const Double_t ksecRCoolIn = 2.000 * fgkmm;
558 const Double_t ksecDl1 = 5.900 * fgkmm;
559 const Double_t ksecDl2 = 8.035 * fgkmm;
560 const Double_t ksecDl3 = 4.553 * fgkmm;
561 const Double_t ksecDl4 = 6.978 * fgkmm;
562 const Double_t ksecDl5 = 6.978 * fgkmm;
563 const Double_t ksecDl6 = 6.978 * fgkmm;
564 const Double_t ksecCoolTubeThick = 0.04 * fgkmm;
565 const Double_t ksecCoolTubeROuter = 2.6 * fgkmm;
566 const Double_t ksecCoolTubeFlatX = 3.696 * fgkmm;
567 const Double_t ksecCoolTubeFlatY = 0.68 * fgkmm;
568 //const Double_t ksecBeamX0 = 0.0 * fgkmm; // guess
569 //const Double_t ksecBeamY0 = (15.223 + 40.) * fgkmm; // guess
297369a1 570
bc3498f4 571 // redefine some of the points already defined above
572 // in the format of arrays (???)
573 const Int_t ksecNPoints = (ksecNPointsPerRadii + 1) * ksecNRadii + 8;
574 Double_t secX[ksecNRadii] = {
575 ksecX0, ksecX1, -1000.0,
576 ksecX2, ksecX3, -1000.0,
577 ksecX4, ksecX5, -1000.0,
578 ksecX6, ksecX7, -1000.0,
579 ksecX8, ksecX9, -1000.0,
580 ksecX10, ksecX11, -1000.0,
581 ksecX12, -1000.0
582 };
583 Double_t secY[ksecNRadii] = {
584 ksecY0, ksecY1, -1000.0,
585 ksecY2, ksecY3, -1000.0,
586 ksecY4, ksecY5, -1000.0,
587 ksecY6, ksecY7, -1000.0,
588 ksecY8, ksecY9, -1000.0,
589 ksecY10, ksecY11, -1000.0,
590 ksecY12, -1000.0
591 };
592 Double_t secR[ksecNRadii] = {
593 ksecR0, ksecR1, -.5 * ksecDipLength - ksecDipRadii,
594 ksecR2, ksecR3, -.5 * ksecDipLength - ksecDipRadii,
595 ksecR4, ksecR5, -.5 * ksecDipLength - ksecDipRadii,
596 ksecR6, ksecR7, -.5 * ksecDipLength - ksecDipRadii,
597 ksecR8, ksecR9, -.5 * ksecDipLength - ksecDipRadii,
598 ksecR10, ksecR11, -.5 * ksecDipLength - ksecDipRadii,
599 ksecR12, ksecR13
600 };
601 /*
602 Double_t secDip[ksecNRadii] = {
603 0., 0., ksecDip0, 0., 0., ksecDip1,
604 0., 0., ksecDip2, 0., 0., ksecDip3,
605 0., 0., ksecDip4, 0., 0., ksecDip5,
606 0., 0.
607 };
608 */
609 Double_t secX2[ksecNRadii];
610 Double_t secY2[ksecNRadii];
611 Double_t secR2[ksecNRadii] = {
612 ksecR0, ksecR1, ksecRCoolOut,
613 ksecR2, ksecR3, ksecRCoolOut,
614 ksecR4, ksecR5, ksecRCoolOut,
615 ksecR6, ksecR7, ksecRCoolOut,
616 ksecR8, ksecR9, ksecRCoolOut,
617 ksecR10, ksecR11, ksecRCoolOut,
618 ksecR12, ksecR13
619 };
620 Double_t secDip2[ksecNCoolingTubeDips] = {
621 ksecDl1, ksecDl2, ksecDl3,
622 ksecDl4, ksecDl5, ksecDl6
623 };
624 Double_t secX3[ksecNRadii];
625 Double_t secY3[ksecNRadii];
626 const Int_t ksecDipIndex[ksecNCoolingTubeDips] = {2, 5, 8, 11, 14, 17};
627 Double_t secAngleStart[ksecNRadii];
628 Double_t secAngleEnd[ksecNRadii];
629 Double_t secAngleStart2[ksecNRadii];
630 Double_t secAngleEnd2[ksecNRadii];
631 Double_t secAngleTurbo[ksecNCoolingTubeDips] = {0., 0., 0., 0., 0., 0.0};
632 //Double_t secAngleStart3[ksecNRadii];
633 //Double_t secAngleEnd3[ksecNRadii];
634 Double_t xpp[ksecNPoints], ypp[ksecNPoints];
635 Double_t xpp2[ksecNPoints], ypp2[ksecNPoints];
636 Double_t *xp[ksecNRadii], *xp2[ksecNRadii];
637 Double_t *yp[ksecNRadii], *yp2[ksecNRadii];
638 TGeoXtru *sA0, *sA1, *sB0, *sB1;
639 TGeoEltu *sTA0, *sTA1;
640 TGeoTube *sTB0, *sTB1; //,*sM0;
641 TGeoRotation *rot;
642 TGeoTranslation *trans;
643 TGeoCombiTrans *rotrans;
644 Double_t t, t0, t1, a, b, x0, y0, x1, y1;
645 Int_t i, j, k, m;
646 Bool_t tst;
a53658c6 647
bc3498f4 648 if(!moth) {
649 AliError("Container volume (argument) is NULL");
650 return;
651 }
652 for(i = 0; i < ksecNRadii; i++) {
653 xp[i] = &(xpp[i*(ksecNPointsPerRadii+1)]);
654 yp[i] = &(ypp[i*(ksecNPointsPerRadii+1)]);
655 xp2[i] = &(xpp2[i*(ksecNPointsPerRadii+1)]);
656 yp2[i] = &(ypp2[i*(ksecNPointsPerRadii+1)]);
657 secX2[i] = secX[i];
658 secY2[i] = secY[i];
659 secX3[i] = secX[i];
660 secY3[i] = secY[i];
661 }
662
663 // find starting and ending angles for all but cooling tube sections
664 secAngleStart[0] = 0.5 * ksecAngleSide13;
665 for(i = 0; i < ksecNRadii - 2; i++) {
666 tst = kFALSE;
667 for(j = 0; j < ksecNCoolingTubeDips; j++) tst = (tst || i == ksecDipIndex[j]);
668 if (tst) continue;
669 tst = kFALSE;
670 for(j = 0; j < ksecNCoolingTubeDips; j++) tst = (tst || (i+1) == ksecDipIndex[j]);
671 if (tst) j = i+2; else j = i+1;
672 AnglesForRoundedCorners(secX[i], secY[i], secR[i], secX[j], secY[j], secR[j], t0, t1);
673 secAngleEnd[i] = t0;
674 secAngleStart[j] = t1;
675 if(secR[i] > 0.0 && secR[j] > 0.0) {
676 if(secAngleStart[i] > secAngleEnd[i]) secAngleEnd[i] += 360.0;
677 }
678 secAngleStart2[i] = secAngleStart[i];
679 secAngleEnd2[i] = secAngleEnd[i];
680 } // end for i
681 secAngleEnd[ksecNRadii-2] = secAngleStart[ksecNRadii-2]
682 + (secAngleEnd[ksecNRadii-5] - secAngleStart[ksecNRadii-5]);
683 if (secAngleEnd[ksecNRadii-2] < 0.0) secAngleEnd[ksecNRadii-2] += 360.0;
684 secAngleStart[ksecNRadii-1] = secAngleEnd[ksecNRadii-2] - 180.0;
685 secAngleEnd[ksecNRadii-1] = secAngleStart[0];
686 secAngleStart2[ksecNRadii-2] = secAngleStart[ksecNRadii-2];
687 secAngleEnd2[ksecNRadii-2] = secAngleEnd[ksecNRadii-2];
688 secAngleStart2[ksecNRadii-1] = secAngleStart[ksecNRadii-1];
689 secAngleEnd2[ksecNRadii-1] = secAngleEnd[ksecNRadii-1];
690
691 // find location of circle last rounded corner.
692 i = 0;
693 j = ksecNRadii - 2;
694 t0 = TanD(secAngleStart[i]-90.);
695 t1 = TanD(secAngleEnd[j]-90.);
696 t = secY[i] - secY[j];
697 // NOTE: secR[i=0] < 0; secR[j=18] > 0; and secR[j+1=19] < 0
698 t += (-secR[i]+secR[j+1]) * SinD(secAngleStart[i]);
699 t -= (secR[j]-secR[j+1]) * SinD(secAngleEnd[j]);
700 t += t1 * secX[j] - t0*secX[i];
701 t += t1 * (secR[j] - secR[j+1]) * CosD(secAngleEnd[j]);
702 t -= t0 * (-secR[i]+secR[j+1]) * CosD(secAngleStart[i]);
703 secX[ksecNRadii-1] = t / (t1-t0);
704 secY[ksecNRadii-1] = TanD(90. + 0.5*ksecAngleSide13) * (secX[ksecNRadii-1] - secX[0]) + secY[0];
705 secX2[ksecNRadii-1] = secX[ksecNRadii-1];
706 secY2[ksecNRadii-1] = secY[ksecNRadii-1];
707 secX3[ksecNRadii-1] = secX[ksecNRadii-1];
708 secY3[ksecNRadii-1] = secY[ksecNRadii-1];
709
710 // find location of cooling tube centers
711 for(i = 0; i < ksecNCoolingTubeDips; i++) {
712 j = ksecDipIndex[i];
713 x0 = secX[j-1] + TMath::Abs(secR[j-1]) * CosD(secAngleEnd[j-1]);
714 y0 = secY[j-1] + TMath::Abs(secR[j-1]) * SinD(secAngleEnd[j-1]);
715 x1 = secX[j+1] + TMath::Abs(secR[j+1]) * CosD(secAngleStart[j+1]);
716 y1 = secY[j+1] + TMath::Abs(secR[j+1]) * SinD(secAngleStart[j+1]);
717 t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1));
718 t = secDip2[i] / t0;
719 a = x0+(x1-x0) * t;
720 b = y0+(y1-y0) * t;
721 if(i == 0) {
722 // get location of tube center->Surface for locating
723 // this sector around the beam pipe.
724 // This needs to be double checked, but I need my notes for that.
725 // (Bjorn Nilsen)
726 xAAtubeCenter0 = x0 + (x1 - x0) * t * 0.5;
727 yAAtubeCenter0 = y0 + (y1 - y0) * t * 0.5;
728 }
729 if(a + b*(a - x0) / (b - y0) > 0.0) {
730 secX[j] = a + TMath::Abs(y1-y0) * 2.0 * ksecDipRadii/t0;
731 secY[j] = b - TMath::Sign(2.0*ksecDipRadii,y1-y0) * (x1-x0)/t0;
732 secX2[j] = a + TMath::Abs(y1-y0) * ksecTl/t0;
733 secY2[j] = b - TMath::Sign(ksecTl,y1-y0) * (x1-x0) / t0;
734 secX3[j] = a + TMath::Abs(y1-y0) * (2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY)/t0;
735 secY3[j] = b - TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,y1-y0)*(x1-x0)/t0;
736 }
737 else {
738 secX[j] = a - TMath::Abs(y1-y0)*2.0*ksecDipRadii/t0;
739 secY[j] = b + TMath::Sign(2.0*ksecDipRadii,y1-y0)*(x1-x0)/t0;
740 secX2[j] = a - TMath::Abs(y1-y0)*ksecTl/t0;
741 secY2[j] = b + TMath::Sign(ksecTl,y1-y0)*(x1-x0)/t0;
742 secX3[j] = a - TMath::Abs(y1-y0)*(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY)/t0;
743 secY3[j] = b + TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,y1-y0)*(x1-x0)/t0;
744 }
745
746 // Set up Start and End angles to correspond to start/end of dips.
747 t1 = (secDip2[i]-TMath::Abs(secR[j])) / t0;
748 secAngleStart[j] = TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],x0+(x1-x0)*t1-secX[j]);
749 if (secAngleStart[j]<0.0) secAngleStart[j] += 360.0;
750 secAngleStart2[j] = secAngleStart[j];
751 t1 = (secDip2[i]+TMath::Abs(secR[j]))/t0;
752 secAngleEnd[j] = TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],x0+(x1-x0)*t1-secX[j]);
753 if (secAngleEnd[j]<0.0) secAngleEnd[j] += 360.0;
754 secAngleEnd2[j] = secAngleEnd[j];
755 if (secAngleEnd[j]>secAngleStart[j]) secAngleEnd[j] -= 360.0;
756 secR[j] = TMath::Sqrt(secR[j]*secR[j]+4.0*ksecDipRadii*ksecDipRadii);
757 } // end for i
758
759 // Special cases
760 secAngleStart2[8] -= 360.;
761 secAngleStart2[11] -= 360.;
762
763 SPDsectorShape(ksecNRadii, secX, secY, secR, secAngleStart, secAngleEnd,
764 ksecNPointsPerRadii, m, xp, yp);
765
766 // Fix up dips to be square.
767 for(i = 0; i < ksecNCoolingTubeDips; i++) {
768 j = ksecDipIndex[i];
769 t = 0.5*ksecDipLength+ksecDipRadii;
770 t0 = TMath::RadToDeg()*TMath::ATan(2.0*ksecDipRadii/t);
771 t1 = secAngleEnd[j] + t0;
772 t0 = secAngleStart[j] - t0;
773 x0 = xp[j][1] = secX[j] + t*CosD(t0);
774 y0 = yp[j][1] = secY[j] + t*SinD(t0);
775 x1 = xp[j][ksecNPointsPerRadii-1] = secX[j] + t*CosD(t1);
776 y1 = yp[j][ksecNPointsPerRadii-1] = secY[j] + t*SinD(t1);
777 t0 = 1./((Double_t)(ksecNPointsPerRadii-2));
778 for(k = 2; k < ksecNPointsPerRadii - 1; k++) {
779 // extra points spread them out.
780 t = ((Double_t)(k-1)) * t0;
781 xp[j][k] = x0+(x1-x0) * t;
782 yp[j][k] = y0+(y1-y0) * t;
783 } // end for k
784 secAngleTurbo[i] = -TMath::RadToDeg() * TMath::ATan2(y1-y0, x1-x0);
785 if(GetDebug(3)) {
786 AliInfo(Form("i=%d -- angle=%f -- x0,y0=(%f, %f) -- x1,y1=(%f, %f)", i, secAngleTurbo[i], x0, y0, x1, y1));
787 }
788 } // end for i
789 sA0 = new TGeoXtru(2);
790 sA0->SetName("ITS SPD Carbon fiber support Sector A0");
791 sA0->DefinePolygon(m, xpp, ypp);
792 sA0->DefineSection(0, -ksecDz);
793 sA0->DefineSection(1, ksecDz);
794
795 // store the edges of each XY segment which defines
796 // one of the plane zones where staves will have to be placed
797 fSPDsectorX0.Set(ksecNCoolingTubeDips);
798 fSPDsectorY0.Set(ksecNCoolingTubeDips);
799 fSPDsectorX1.Set(ksecNCoolingTubeDips);
800 fSPDsectorY1.Set(ksecNCoolingTubeDips);
801 Int_t ixy0, ixy1;
802 for(i = 0; i < ksecNCoolingTubeDips; i++) {
803 // Find index in xpp[] and ypp[] corresponding to where the
804 // SPD ladders are to be attached. Order them according to
805 // the ALICE numbering schema. Using array of indexes (+-1 for
806 // cooling tubes. For any "bend/dip/edge, there are
807 // ksecNPointsPerRadii+1 points involved.
808 if(i == 0) j = 1;
809 else if (i == 1) j = 0;
810 else j = i;
811 ixy0 = (ksecDipIndex[j]-1) * (ksecNPointsPerRadii+1) + (ksecNPointsPerRadii);
812 ixy1 = (ksecDipIndex[j]+1) * (ksecNPointsPerRadii+1);
813 fSPDsectorX0[i] = sA0->GetX(ixy0);
814 fSPDsectorY0[i] = sA0->GetY(ixy0);
815 fSPDsectorX1[i] = sA0->GetX(ixy1);
816 fSPDsectorY1[i] = sA0->GetY(ixy1);
817 }
818
819 //printf("SectorA#%d ",0);
820 InsidePoint(xpp[m-1], ypp[m-1], xpp[0], ypp[0], xpp[1], ypp[1], ksecCthick, xpp2[0], ypp2[0]);
821 for(i = 1; i < m - 1; i++) {
822 j = i / (ksecNPointsPerRadii+1);
823 //printf("SectorA#%d ",i);
824 InsidePoint(xpp[i-1], ypp[i-1], xpp[i], ypp[i], xpp[i+1], ypp[i+1], ksecCthick, xpp2[i], ypp2[i]);
825 }
826 //printf("SectorA#%d ",m);
827 InsidePoint(xpp[m-2], ypp[m-2], xpp[m-1], ypp[m-1], xpp[0], ypp[0], ksecCthick, xpp2[m-1], ypp2[m-1]);
828 // Fix center value of cooling tube dip and
829 // find location of cooling tube centers
830 for(i = 0; i < ksecNCoolingTubeDips; i++) {
831 j = ksecDipIndex[i];
832 x0 = xp2[j][1];
833 y0 = yp2[j][1];
834 x1 = xp2[j][ksecNPointsPerRadii-1];
835 y1 = yp2[j][ksecNPointsPerRadii-1];
836 t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1));
837 t = secDip2[i]/t0;
838 for(k = 2; k < ksecNPointsPerRadii - 1; k++) {
839 // extra points spread them out.
840 t = ((Double_t)(k-1)) * t0;
841 xp2[j][k] = x0+(x1-x0) * t;
842 yp2[j][k] = y0+(y1-y0) * t;
843 }
844 } // end for i
845 sA1 = new TGeoXtru(2);
846 sA1->SetName("ITS SPD Carbon fiber support Sector Air A1");
847 sA1->DefinePolygon(m, xpp2, ypp2);
848 sA1->DefineSection(0, -ksecDz);
849 sA1->DefineSection(1, ksecDz);
850
851 // Error in TGeoEltu. Semi-axis X must be < Semi-axis Y (?).
852 sTA0 = new TGeoEltu("ITS SPD Cooling Tube TA0", 0.5 * ksecCoolTubeFlatY, 0.5 * ksecCoolTubeFlatX, ksecDz);
853 sTA1 = new TGeoEltu("ITS SPD Cooling Tube coolant TA1",
854 sTA0->GetA() - ksecCoolTubeThick,
855 sTA0->GetB()-ksecCoolTubeThick,ksecDz);
856
857 SPDsectorShape(ksecNRadii, secX2, secY2, secR2, secAngleStart2, secAngleEnd2,
858 ksecNPointsPerRadii, m, xp, yp);
db486a6e 859
bc3498f4 860 sB0 = new TGeoXtru(2);
861 sB0->SetName("ITS SPD Carbon fiber support Sector End B0");
862 sB0->DefinePolygon(m, xpp, ypp);
863 sB0->DefineSection(0, ksecDz);
864 sB0->DefineSection(1, ksecDz + ksecZEndLen);
592651e2 865
bc3498f4 866 //printf("SectorB#%d ",0);
867 InsidePoint(xpp[m-1], ypp[m-1], xpp[0], ypp[0], xpp[1], ypp[1], ksecCthick2, xpp2[0], ypp2[0]);
868 for(i = 1; i < m - 1; i++) {
869 t = ksecCthick2;
870 for(k = 0; k < ksecNCoolingTubeDips; k++)
871 if((i/(ksecNPointsPerRadii+1))==ksecDipIndex[k])
872 if(!(ksecDipIndex[k]*(ksecNPointsPerRadii+1) == i ||
873 ksecDipIndex[k]*(ksecNPointsPerRadii+1) + ksecNPointsPerRadii == i))
874 t = ksecRCoolOut-ksecRCoolIn;
875 //printf("SectorB#%d ",i);
876 InsidePoint(xpp[i-1], ypp[i-1], xpp[i], ypp[i], xpp[i+1], ypp[i+1], t, xpp2[i], ypp2[i]);
877 }
878 //printf("SectorB#%d ",m);
879 InsidePoint(xpp[m-2], ypp[m-2], xpp[m-1], ypp[m-1], xpp[0], ypp[0], ksecCthick2, xpp2[m-1], ypp2[m-1]);
880 sB1 = new TGeoXtru(2);
881 sB1->SetName("ITS SPD Carbon fiber support Sector Air End B1");
882 sB1->DefinePolygon(m, xpp2, ypp2);
883 sB1->DefineSection(0, ksecDz);
884 sB1->DefineSection(1, ksecDz + ksecLen);
885 sTB0 = new TGeoTube("ITS SPD Cooling Tube End TB0", 0.0,
886 0.5 * ksecCoolTubeROuter, 0.5 * ksecLen);
887 sTB1 = new TGeoTube("ITS SPD Cooling Tube End coolant TB0", 0.0,
888 sTB0->GetRmax() - ksecCoolTubeThick, 0.5 * ksecLen);
889
890 if(GetDebug(3)) {
891 if(medSPDcf) medSPDcf->Dump(); else AliInfo("medSPDcf = 0");
892 if(medSPDss) medSPDss->Dump(); else AliInfo("medSPDss = 0");
893 if(medSPDair) medSPDair->Dump(); else AliInfo("medSPDAir = 0");
894 if(medSPDcoolfl) medSPDcoolfl->Dump(); else AliInfo("medSPDcoolfl = 0");
895 sA0->InspectShape();
896 sA1->InspectShape();
897 sB0->InspectShape();
898 sB1->InspectShape();
899 }
900
901 // create the assembly of the support and place staves on it
902 TGeoVolumeAssembly *vM0 = new TGeoVolumeAssembly("ITSSPDSensitiveVirtualvolumeM0");
903 StavesInSector(vM0);
904 // create other volumes with some graphical settings
905 TGeoVolume *vA0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorA0", sA0, medSPDcf);
906 vA0->SetVisibility(kTRUE);
907 vA0->SetLineColor(4); // Blue
908 vA0->SetLineWidth(1);
909 vA0->SetFillColor(vA0->GetLineColor());
910 vA0->SetFillStyle(4010); // 10% transparent
911 TGeoVolume *vA1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorAirA1", sA1, medSPDair);
912 vA1->SetVisibility(kTRUE);
913 vA1->SetLineColor(7); // light Blue
914 vA1->SetLineWidth(1);
915 vA1->SetFillColor(vA1->GetLineColor());
916 vA1->SetFillStyle(4090); // 90% transparent
917 TGeoVolume *vTA0 = new TGeoVolume("ITSSPDCoolingTubeTA0", sTA0, medSPDss);
918 vTA0->SetVisibility(kTRUE);
919 vTA0->SetLineColor(1); // Black
920 vTA0->SetLineWidth(1);
921 vTA0->SetFillColor(vTA0->GetLineColor());
922 vTA0->SetFillStyle(4000); // 0% transparent
923 TGeoVolume *vTA1 = new TGeoVolume("ITSSPDCoolingTubeFluidTA1", sTA1, medSPDcoolfl);
924 vTA1->SetVisibility(kTRUE);
925 vTA1->SetLineColor(6); // Purple
926 vTA1->SetLineWidth(1);
927 vTA1->SetFillColor(vTA1->GetLineColor());
928 vTA1->SetFillStyle(4000); // 0% transparent
929 TGeoVolume *vB0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndB0", sB0, medSPDcf);
930 vB0->SetVisibility(kTRUE);
931 vB0->SetLineColor(4); // Blue
932 vB0->SetLineWidth(1);
933 vB0->SetFillColor(vB0->GetLineColor());
934 vB0->SetFillStyle(4010); // 10% transparent
935 TGeoVolume *vB1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB1", sB1, medSPDair);
936 vB1->SetVisibility(kTRUE);
937 vB1->SetLineColor(7); // light Blue
938 vB1->SetLineWidth(1);
939 vB1->SetFillColor(vB1->GetLineColor());
940 vB1->SetFillStyle(4090); // 90% transparent
941 TGeoVolume *vTB0 = new TGeoVolume("ITSSPDCoolingTubeEndTB0", sTB0, medSPDss);
942 vTB0->SetVisibility(kTRUE);
943 vTB0->SetLineColor(1); // Black
944 vTB0->SetLineWidth(1);
945 vTB0->SetFillColor(vTB0->GetLineColor());
946 vTB0->SetFillStyle(4000); // 0% transparent
947 TGeoVolume *vTB1 = new TGeoVolume("ITSSPDCoolingTubeEndFluidTB1", sTB1, medSPDcoolfl);
948 vTB1->SetVisibility(kTRUE);
949 vTB1->SetLineColor(6); // Purple
950 vTB1->SetLineWidth(1);
951 vTB1->SetFillColor(vTB1->GetLineColor());
952 vTB1->SetFillStyle(4000); // 0% transparent
953
954 // add volumes to mother container passed as argument of this method
955 moth->AddNode(vM0,1,0); // Add virtual volume to mother
956 vA0->AddNode(vA1,1,0); // Put air inside carbon fiber.
957 vB0->AddNode(vB1,1,0); // Put air inside carbon fiber.
958 vTA0->AddNode(vTA1,1,0); // Put air inside carbon fiber.
959 vTB0->AddNode(vTB1,1,0); // Put air inside carbon fiber.
960 for(i = 0; i < ksecNCoolingTubeDips; i++) {
961 x0 = secX3[ksecDipIndex[i]];
962 y0 = secY3[ksecDipIndex[i]];
963 t = 90.0 - secAngleTurbo[i];
964 trans = new TGeoTranslation("", x0, y0, 0.5 * (sB1->GetZ(0) + sB1->GetZ(1)));
965 vB1->AddNode(vTB0, i+1, trans);
966 rot = new TGeoRotation("", 0.0, 0.0, t);
967 rotrans = new TGeoCombiTrans("", x0, y0, 0.0, rot);
968 vM0->AddNode(vTA0, i+1, rotrans);
969 } // end for i
970 vM0->AddNode(vA0, 1, 0);
971 vM0->AddNode(vB0, 1, 0);
972 // Reflection.
973 vM0->AddNode(vB0, 2, new TGeoRotation("", 90., 0., 90., 90., 180., 0.));
974 if(GetDebug(3)){
975 vM0->PrintNodes();
976 vA0->PrintNodes();
977 vA1->PrintNodes();
978 vB0->PrintNodes();
979 vB1->PrintNodes();
980 vTA0->PrintNodes();
981 vTA1->PrintNodes();
982 vTB0->PrintNodes();
983 vTB1->PrintNodes();
984 }
985}
986//
987//__________________________________________________________________________________________
988Bool_t AliITSv11GeometrySPD::GetSectorMountingPoints
989(Int_t index, Double_t &x0, Double_t &y0, Double_t &x1, Double_t &y1) const
990{
991 //
992 // Returns the edges of the straight borders in the SPD sector shape,
993 // which are used to mount staves on them.
994 // Coordinate system is that of the carbon fiber sector volume.
592651e2 995 // ---
bc3498f4 996 // Index numbering is as follows:
997 // /5
998 // /\/4
999 // 1\ \/3
1000 // 0|___\/2
592651e2 1001 // ---
bc3498f4 1002 // Arguments [the ones passed by reference contain output values]:
1003 // Int_t index --> location index according to above scheme [0-5]
1004 // Double_t &x0 --> (by ref) x0 location or the ladder sector [cm]
1005 // Double_t &y0 --> (by ref) y0 location of the ladder sector [cm]
1006 // Double_t &x1 --> (by ref) x1 location or the ladder sector [cm]
1007 // Double_t &y1 --> (by ref) y1 location of the ladder sector [cm]
1008 // TGeoManager *mgr --> The TGeo builder
592651e2 1009 // ---
bc3498f4 1010 // The location is described by a line going from (x0, y0) to (x1, y1)
592651e2 1011 // ---
bc3498f4 1012 // Returns kTRUE if no problems encountered.
1013 // Returns kFALSE if a problem was encountered (e.g.: shape not found).
1014 //
592651e2 1015
bc3498f4 1016 Int_t isize = fSPDsectorX0.GetSize();
1017 x0 = x1 = y0 = y1 = 0.0;
1018 if(index < 0 || index > isize) {
1019 AliError(Form("index = %d: allowed 0 --> %", index, isize));
1020 return kFALSE;
1021 }
1022
1023 x0 = fSPDsectorX0[index];
1024 x1 = fSPDsectorX1[index];
1025 y0 = fSPDsectorY0[index];
1026 y1 = fSPDsectorY1[index];
1027
1028 return kTRUE;
1029}
1030//
1031//__________________________________________________________________________________________
1032void AliITSv11GeometrySPD::SPDsectorShape
1033(Int_t n,
1034 const Double_t *xc, const Double_t *yc, const Double_t *r,
1035 const Double_t *ths, const Double_t *the,
1036 Int_t npr, Int_t &m, Double_t **xp, Double_t **yp) const
1037{
1038
1039 // Code to compute the points that make up the shape of the SPD
1040 // Carbon fiber support sections
1041 // Inputs:
1042 // Int_t n size of arrays xc,yc, and r.
1043 // Double_t *xc array of x values for radii centers.
1044 // Double_t *yc array of y values for radii centers.
1045 // Double_t *r array of signed radii values.
1046 // Double_t *ths array of starting angles [degrees].
1047 // Double_t *the array of ending angles [degrees].
1048 // Int_t npr the number of lines segments to aproximate the arc.
1049 // Outputs (arguments passed by reference):
1050 // Int_t m the number of enetries in the arrays *xp[npr+1] and *yp[npr+1].
1051 // Double_t **xp array of x coordinate values of the line segments
1052 // which make up the SPD support sector shape.
1053 // Double_t **yp array of y coordinate values of the line segments
1054 // which make up the SPD support sector shape.
1055 //
1056
1057 Int_t i, k;
1058 Double_t t, t0, t1;
1059
1060 m = n*(npr + 1);
1061 if(GetDebug(2)) {
1062 cout <<" X \t Y \t R \t S \t E" << m << endl;
1063 for(i = 0; i < n; i++) {
1064 cout << "{" << xc[i] << ", ";
1065 cout << yc[i] << ", ";
1066 cout << r[i] << ", ";
1067 cout << ths[i] << ", ";
1068 cout << the[i] << "}, " << endl;
1069 }
1070 }
1071
1072 if (GetDebug(3)) cout << "Double_t sA0 = [" << n*(npr+1)+1<<"][";
1073 if (GetDebug(4)) cout << "3] {";
1074 else if(GetDebug(3)) cout <<"2] {";
1075 t0 = (Double_t)npr;
1076 for(i = 0; i < n; i++) {
1077 t1 = (the[i] - ths[i]) / t0;
1078 if(GetDebug(5)) cout << "t1 = " << t1 << endl;
1079 for(k = 0; k <= npr; k++) {
1080 t = ths[i] + ((Double_t)k) * t1;
1081 xp[i][k] = TMath::Abs(r[i]) * CosD(t) + xc[i];
1082 yp[i][k] = TMath::Abs(r[i]) * SinD(t) + yc[i];
1083 if(GetDebug(3)) {
1084 cout << "{" << xp[i][k] << "," << yp[i][k];
1085 if (GetDebug(4)) cout << "," << t;
1086 cout << "},";
1087 } // end if GetDebug
1088 } // end for k
1089 if(GetDebug(3)) cout << endl;
1090 } // end of i
1091 if(GetDebug(3)) cout << "{" << xp[0][0] << ", " << yp[0][0];
1092 if(GetDebug(4)) cout << "," << ths[0];
1093 if(GetDebug(3)) cout << "}}" << endl;
1094}
1095//
1096//__________________________________________________________________________________________
1097TGeoVolume* AliITSv11GeometrySPD::CreateLadder
7855ea93 1098(Int_t layer, TArrayD &sizes, TGeoManager *mgr) const
bc3498f4 1099{
1100 // Creates the "ladder" = silicon sensor + 5 chips.
1101 // Returns a TGeoVolume containing the following components:
1102 // - the sensor (TGeoBBox), whose name depends on the layer
1103 // - 5 identical chips (TGeoBBox)
1104 // - a guard ring around the sensor (subtraction of TGeoBBoxes),
7855ea93 1105 // which is separated from the rest of sensor because it is not
bc3498f4 1106 // a sensitive part
7855ea93 1107 // - bump bondings (TGeoBBox stripes for the whole width of the
bc3498f4 1108 // sensor, one per column).
1109 // ---
1110 // Arguments:
1111 // 1 - the owner layer (MUST be 1 or 2 or a fatal error is raised)
7855ea93 1112 // 2 - a TArrayD passed by reference, which will contain relevant
1113 // dimensions related to this object:
1114 // size[0] = 'thickness' (the smallest dimension)
bc3498f4 1115 // size[1] = 'length' (the direction along the ALICE Z axis)
7855ea93 1116 // size[2] = 'width' (extension in the direction perp. to the above ones)
bc3498f4 1117 // 3 - the used TGeoManager
1118
1119 // ** CRITICAL CHECK **
7855ea93 1120
592651e2 1121 // layer number can be ONLY 1 or 2
32b9c3dd 1122 if (layer != 1 && layer != 2) AliFatal("Layer number MUST be 1 or 2");
592651e2 1123
bc3498f4 1124 // ** MEDIA **
7855ea93 1125
bc3498f4 1126 TGeoMedium *medAir = GetMedium("AIR$",mgr);
7855ea93 1127 TGeoMedium *medSPDSiChip = GetMedium("SPD SI CHIP$",mgr); // SPD SI CHIP
bc3498f4 1128 TGeoMedium *medSi = GetMedium("SI$",mgr);
7855ea93 1129 TGeoMedium *medBumpBond = GetMedium("COPPER$",mgr); // ??? BumpBond
bc3498f4 1130
1131 // ** SIZES **
7855ea93 1132
32b9c3dd 1133 Double_t chipThickness = fgkmm * 0.150;
1134 Double_t chipWidth = fgkmm * 15.950;
1135 Double_t chipLength = fgkmm * 13.600;
7855ea93 1136 Double_t chipSpacing = fgkmm * 0.400; // separation of chips along Z
1137
32b9c3dd 1138 Double_t sensThickness = fgkmm * 0.200;
1139 Double_t sensLength = fgkmm * 69.600;
bc3498f4 1140 Double_t sensWidth = fgkmm * 12.800;
7855ea93 1141 Double_t guardRingWidth = fgkmm * 0.560; // a border of this thickness all around the sensor
bc3498f4 1142
7855ea93 1143 Double_t bbLength = fgkmm * 0.042;
1144 Double_t bbWidth = sensWidth;
1145 Double_t bbThickness = fgkmm * 0.012;
1146 Double_t bbPos = 0.080; // Z position w.r. to left pixel edge
1147
1148 // compute the size of the container volume which
1149 // will also be returned in the referenced TArrayD;
1150 // for readability, they are linked by reference to a more meaningful name
1151 sizes.Set(3);
bc3498f4 1152 Double_t &thickness = sizes[0];
1153 Double_t &length = sizes[1];
7855ea93 1154 Double_t &width = sizes[2];
bc3498f4 1155 // the container is a box which exactly enclose all the stuff;
32b9c3dd 1156 width = chipWidth;
1157 length = sensLength + 2.0*guardRingWidth;
1158 thickness = sensThickness + chipThickness + bbThickness;
7855ea93 1159
1160 // ** VOLUMES **
1161
1162 // While creating this volume, since it is a sensitive volume,
1163 // we must respect some standard criteria for its local reference frame.
1164 // Local X must correspond to x coordinate of the sensitive volume:
1165 // this means that we are going to create the container with a local reference system
1166 // that is **not** in the middle of the box.
1167 // This is accomplished by calling the shape constructor with an additional option ('originShift'):
bc3498f4 1168 Double_t xSens = 0.5 * (width - sensWidth - 2.0*guardRingWidth);
1169 Double_t originShift[3] = {-xSens, 0., 0.};
1170 TGeoBBox *shapeContainer = new TGeoBBox(0.5*width, 0.5*thickness, 0.5*length, originShift);
7855ea93 1171 // then the volume is made of air, and using this shape
bc3498f4 1172 TGeoVolume *container = new TGeoVolume(Form("LAY%d_LADDER",layer), shapeContainer, medAir);
7855ea93 1173 // the chip is a common box
bc3498f4 1174 TGeoVolume *volChip = mgr->MakeBox
1175 ("CHIP", medSPDSiChip, 0.5*chipWidth, 0.5*chipThickness, 0.5*chipLength);
7855ea93 1176 // the sensor as well
bc3498f4 1177 TGeoVolume *volSens = mgr->MakeBox
1178 (GetSenstiveVolumeName(layer), medSi, 0.5*sensWidth, 0.5*sensThickness, 0.5*sensLength);
1179 // the guard ring shape is the subtraction of two boxes with the same center.
1180 TGeoBBox *shIn = new TGeoBBox(0.5*sensWidth, sensThickness, 0.5*sensLength);
1181 TGeoBBox *shOut = new TGeoBBox
1182 (0.5*sensWidth + guardRingWidth, 0.5*sensThickness, 0.5*sensLength + guardRingWidth);
32b9c3dd 1183 shIn->SetName("innerBox");
1184 shOut->SetName("outerBox");
bc3498f4 1185 TGeoCompositeShape *shBorder = new TGeoCompositeShape("", "outerBox-innerBox");
32b9c3dd 1186 TGeoVolume *volBorder = new TGeoVolume("GUARD_RING", shBorder, medSi);
bc3498f4 1187 // bump bonds for one whole column
7855ea93 1188 TGeoVolume *volBB = mgr->MakeBox("BB", medBumpBond, 0.5*bbWidth, 0.5*bbThickness, 0.5*bbLength);
32b9c3dd 1189 // set colors of all objects for visualization
592651e2 1190 volSens->SetLineColor(kYellow + 1);
1191 volChip->SetLineColor(kGreen);
32b9c3dd 1192 volBorder->SetLineColor(kYellow + 3);
7855ea93 1193 volBB->SetLineColor(kGray);
32b9c3dd 1194
bc3498f4 1195 // ** MOVEMENTS **
7855ea93 1196
1197 // sensor is translated along thickness (X) and width (Y)
bc3498f4 1198 Double_t ySens = 0.5 * (thickness - sensThickness);
1199 Double_t zSens = 0.0;
7855ea93 1200 // we want that the x of the ladder is the same as the one of its sensitive volume
1201 TGeoTranslation *trSens = new TGeoTranslation(0.0, ySens, zSens);
1202 // bump bonds are translated along all axes:
1203 // keep same Y used for sensors, but change the Z
32b9c3dd 1204 TGeoTranslation *trBB[160];
7855ea93 1205 Double_t x = 0.0;
1206 Double_t y = 0.5 * (thickness - bbThickness) - sensThickness;
bc3498f4 1207 Double_t z = -0.5 * sensLength + guardRingWidth + fgkmm*0.425 - bbPos;
1208 Int_t i;
32b9c3dd 1209 for (i = 0; i < 160; i++) {
1210 trBB[i] = new TGeoTranslation(x, y, z);
1211 switch(i) {
7855ea93 1212 case 31:
1213 case 63:
1214 case 95:
1215 case 127:
1216 z += fgkmm * 0.625 + fgkmm * 0.2;
1217 break;
1218 default:
1219 z += fgkmm * 0.425;
1220 }
1221 }
1222 // the chips are translated along the length (Z) and thickness (X)
bc3498f4 1223 TGeoTranslation *trChip[5] = {0, 0, 0, 0, 0};
1224 x = -xSens;
1225 y = 0.5 * (chipThickness - thickness);
1226 z = 0.0;
1227 for (i = 0; i < 5; i++) {
1228 z = -0.5*length + guardRingWidth
1229 + (Double_t)i*chipSpacing + ((Double_t)(i) + 0.5)*chipLength;
1230 trChip[i] = new TGeoTranslation(x, y, z);
7855ea93 1231 }
bc3498f4 1232
592651e2 1233 // add nodes to container
1234 container->AddNode(volSens, 1, trSens);
32b9c3dd 1235 container->AddNode(volBorder, 1, trSens);
1236 for (i = 0; i < 160; i++) container->AddNode(volBB, i, trBB[i]);
bc3498f4 1237 for (i = 0; i < 5; i++) container->AddNode(volChip, i + 2, trChip[i]);
592651e2 1238
1239 // return the container
1240 return container;
1241}
bc3498f4 1242//
1243//__________________________________________________________________________________________
1244TGeoVolume* AliITSv11GeometrySPD::CreateClip
7855ea93 1245(TArrayD &sizes, Bool_t isDummy, TGeoManager *mgr) const
bc3498f4 1246{
592651e2 1247 //
bc3498f4 1248 // Creates the carbon fiber clips which are added to the central ladders.
1249 // They have a complicated shape which is approximated by a TGeoXtru
1250 // Implementation of a single clip over an half-stave.
1251 // It has a complicated shape which is approximated to a section like this:
1252 //
1253 // 6
1254 // /\ .
1255 // 7 //\\ 5
1256 // / 1\\___________________4
1257 // 0 \___________________
1258 // 2 3
1259 // with a finite thickness for all the shape
1260 // Its local reference frame is such that point A corresponds to origin.
592651e2 1261 //
1262
bc3498f4 1263 Double_t fullLength = fgkmm * 12.6; // = x4 - x0
1264 Double_t flatLength = fgkmm * 5.4; // = x4 - x3
1265 Double_t inclLongLength = fgkmm * 5.0; // = 5-6
1266 Double_t inclShortLength = fgkmm * 2.0; // = 6-7
1267 Double_t fullHeight = fgkmm * 2.8; // = y6 - y3
1268 Double_t thickness = fgkmm * 0.2; // thickness
1269 Double_t totalLength = fgkmm * 52.0; // total length in Z
1270 Double_t holeSize = fgkmm * 4.0; // dimension of cubic hole inserted for pt1000
1271 Double_t angle1 = 27.0; // supplementary of angle DCB
1272 Double_t angle2; // angle DCB
1273 Double_t angle3; // angle of GH with vertical
1274
1275 angle2 = 0.5 * (180.0 - angle1);
1276 angle3 = 90.0 - TMath::ACos(fullLength - flatLength - inclLongLength*TMath::Cos(angle1)) * TMath::RadToDeg();
1277
1278 angle1 *= TMath::DegToRad();
1279 angle2 *= TMath::DegToRad();
1280 angle3 *= TMath::DegToRad();
592651e2 1281
bc3498f4 1282 Double_t x[8], y[8];
592651e2 1283
bc3498f4 1284 x[0] = 0.0;
1285 x[1] = x[0] + fullLength - flatLength - inclLongLength*TMath::Cos(angle1);
1286 x[2] = x[0] + fullLength - flatLength;
1287 x[3] = x[0] + fullLength;
1288 x[4] = x[3];
1289 x[5] = x[4] - flatLength + thickness * TMath::Cos(angle2);
1290 x[6] = x[1];
1291 x[7] = x[0];
1292
1293 y[0] = 0.0;
1294 y[1] = y[0] + inclShortLength * TMath::Cos(angle3);
1295 y[2] = y[1] - inclLongLength * TMath::Sin(angle1);
1296 y[3] = y[2];
1297 y[4] = y[3] + thickness;
1298 y[5] = y[4];
1299 y[6] = y[1] + thickness;
1300 y[7] = y[0] + thickness;
1301
1302 sizes.Set(7);
1303 sizes[0] = totalLength;
1304 sizes[1] = fullHeight;
1305 sizes[2] = y[2];
1306 sizes[3] = y[6];
1307 sizes[4] = x[0];
1308 sizes[5] = x[3];
1309 sizes[6] = x[2];
1310
7855ea93 1311 if (isDummy) {
1312 // use this argument when one wants just the positions
1313 // without creating any volume
1314 return NULL;
1315 }
1316
bc3498f4 1317 TGeoXtru *shClip = new TGeoXtru(2);
7855ea93 1318 shClip->SetName("SHCLIPSPD");
bc3498f4 1319 shClip->DefinePolygon(8, x, y);
1320 shClip->DefineSection(0, -0.5*totalLength, 0., 0., 1.0);
1321 shClip->DefineSection(1, 0.5*totalLength, 0., 0., 1.0);
1322
7855ea93 1323 TGeoBBox *shHole = new TGeoBBox("SH_CLIPSPDHOLE", 0.5*holeSize, 0.5*holeSize, 0.5*holeSize);
1324 TGeoTranslation *tr1 = new TGeoTranslation("TR_CLIPSPDHOLE1", x[2], 0.0, fgkmm*14.);
1325 TGeoTranslation *tr2 = new TGeoTranslation("TR_CLIPSPDHOLE2", x[2], 0.0, 0.0);
1326 TGeoTranslation *tr3 = new TGeoTranslation("TR_CLIPSPDHOLE3", x[2], 0.0, -fgkmm*14.);
bc3498f4 1327 tr1->RegisterYourself();
1328 tr2->RegisterYourself();
1329 tr3->RegisterYourself();
1330
7855ea93 1331 TString strExpr("SHCLIPSPD-(");
bc3498f4 1332 strExpr.Append(Form("%s:%s+", shHole->GetName(), tr1->GetName()));
1333 strExpr.Append(Form("%s:%s+", shHole->GetName(), tr2->GetName()));
1334 strExpr.Append(Form("%s:%s)", shHole->GetName(), tr3->GetName()));
7855ea93 1335 TGeoCompositeShape *shClipHole = new TGeoCompositeShape("SHCLIPSPDHOLES", strExpr.Data());
bc3498f4 1336
7855ea93 1337 TGeoMedium *medSPDcf = GetMedium("SPD C (M55J)$", mgr);
1338 TGeoVolume *vClip = new TGeoVolume("VOLCLIPSPD", shClipHole, medSPDcf);
bc3498f4 1339 vClip->SetLineColor(kGray + 2);
1340 return vClip;
592651e2 1341}
bc3498f4 1342//
7855ea93 1343//______________________________________________________________________
1344TGeoCompositeShape* AliITSv11GeometrySPD::CreateGroundingFoilShape
1345(Int_t itype, Double_t &length, Double_t &width, Double_t thickness, TArrayD &sizes)
bc3498f4 1346{
7855ea93 1347 //
1348 // Creates the typical composite shape of the grounding foil:
1349 //
1350 // +---------------------------------------------------------------------------------------------------+
1351 // | 5 6 9 |
1352 // | +--------------+ +----------------+ 10
1353 // | O | | |
1354 // | 3 /-----+ 4 +------+
1355 // | 1 / 7 8
1356 // | /--------------/
1357 // +------------------------------------/ 2 +
1358 // 0
1359 // Z + 11
1360 //
1361 // This shape is used 4 times: two layers of glue, one in kapton and one in aluminum,
1362 // taking into account that the aliminum layer has small differences in the size of some parts.
bc3498f4 1363 // ---
7855ea93 1364 // In order to overcome problems apparently due to a large number of points, the shape creation
1365 // is done according the following steps:
1366 // 1) a TGeoBBox is created with a size right enough to contain the whole shape (0-1-X-13)
1367 // 2) holes are defined as other TGeoBBox which are subtracted from the main shape
1368 // 3) a TGeoXtru is defined connecting the points (0-->11-->0) and is also subtracted from the main shape
1369 // ---
1370 // The argument ("type") is used to choose between all these
bc3498f4 1371 // possibilities:
1372 // - type = 0 --> kapton layer
1373 // - type = 1 --> aluminum layer
1374 // - type = 2 --> glue layer between support and GF
1375 // - type = 3 --> glue layer between GF and ladders
7855ea93 1376 // Returns: a TGeoCompositeShape which will then be used to shape several volumes.
1377 // Since TGeoXtru is used, the local reference frame of this object has X horizontal and Y vertical w.r to
1378 // the shape drawn above, and Z axis going perpendicularly to the screen.
1379 // This is not the correct reference for the half stave, for which the "long" dimension is Z and the "short"
1380 // is X, while Y goes in the direction of thickness.
1381 // This will imply some rotations when using the volumes created with this shape.
1382 //
1383
1384 // suffix to differentiate names
1385 Char_t type[10];
1386
1387 // size of the virtual box containing exactly this volume
1388 length = fgkmm * 243.18;
1389 width = fgkmm * 15.95;
1390 if (itype == 1) {
1391 length -= fgkmm * 0.4;
1392 width -= fgkmm * 0.4;
1393 }
1394 switch (itype) {
1395 case 0:
1396 sprintf(type, "KAP");
1397 break;
1398 case 1:
1399 sprintf(type, "ALU");
1400 break;
1401 case 2:
1402 sprintf(type, "GLUE1");
1403 break;
1404 case 3:
1405 sprintf(type, "GLUE2");
1406 break;
1407 }
1408 // we divide the shape in several slices along the horizontal direction (local X)
1409 // here we define define the length of all sectors (from leftmost to rightmost)
1410 Int_t i;
1411 Double_t sliceLength[] = { 140.71, 2.48, 26.78, 4.00, 10.00, 24.40, 10.00, 24.81 };
1412 for (i = 0; i < 8; i++) sliceLength[i] *= fgkmm;
1413 if (itype == 1) {
1414 sliceLength[0] -= fgkmm * 0.2;
1415 sliceLength[4] -= fgkmm * 0.2;
1416 sliceLength[5] += fgkmm * 0.4;
1417 sliceLength[6] -= fgkmm * 0.4;
1418 }
1419
1420 // as shown in the drawing, we have four different widths (along local Y) in this shape:
1421 Double_t widthMax = fgkmm * 15.95;
1422 Double_t widthMed1 = fgkmm * 15.00;
1423 Double_t widthMed2 = fgkmm * 11.00;
1424 Double_t widthMin = fgkmm * 4.40;
1425 if (itype == 1) {
1426 widthMax -= fgkmm * 0.4;
1427 widthMed1 -= fgkmm * 0.4;
1428 widthMed2 -= fgkmm * 0.4;
1429 widthMin -= fgkmm * 0.4;
1430 }
1431
1432 // create the main shape
1433 TGeoBBox *shGroundFull = 0;
1434 shGroundFull = new TGeoBBox(Form("SH_GFOIL_%s_FULL", type), 0.5*length, 0.5*width, 0.5*thickness);
1435
1436 // create the polygonal shape to be subtracted to give the correct shape to the borders
1437 // its vertices are defined in sugh a way that this polygonal will be placed in the correct place
1438 // considered that the origin of the local reference frame is in the center of the main box:
1439 // we fix the starting point at the lower-left edge of the shape (point 12),
1440 // and add all points in order, following a clockwise rotation
1441
1442 Double_t x[13], y[13];
1443 x[ 0] = -0.5 * length + sliceLength[0];
1444 y[ 0] = -0.5 * widthMax;
1445
1446 x[ 1] = x[0] + sliceLength[1];
1447 y[ 1] = y[0] + (widthMax - widthMed1);
1448
1449 x[ 2] = x[1] + sliceLength[2];
1450 y[ 2] = y[1];
1451
1452 x[ 3] = x[2] + sliceLength[3];
1453 y[ 3] = y[2] + (widthMed1 - widthMed2);
1454
1455 x[ 4] = x[3] + sliceLength[4];
1456 y[ 4] = y[3];
1457
1458 x[ 5] = x[4];
1459 y[ 5] = y[4] + (widthMed2 - widthMin);
1460
1461 x[ 6] = x[5] + sliceLength[5];
1462 y[ 6] = y[5];
1463
1464 x[ 7] = x[6];
1465 y[ 7] = y[4];
1466
1467 x[ 8] = x[7] + sliceLength[6];
1468 y[ 8] = y[7];
1469
1470 x[ 9] = x[8];
1471 y[ 9] = y[6];
1472
1473 x[10] = x[9] + sliceLength[7] + 0.5;
1474 y[10] = y[9];
1475
1476 x[11] = x[10];
1477 y[11] = y[0] - 0.5;
1478
1479 x[12] = x[0];
1480 y[12] = y[11];
1481
1482 // create the shape
1483 TGeoXtru *shGroundXtru = new TGeoXtru(2);
1484 shGroundXtru->SetName(Form("SH_GFOIL_%s_XTRU", type));
1485 shGroundXtru->DefinePolygon(13, x, y);
1486 shGroundXtru->DefineSection(0, -thickness, 0., 0., 1.0);
1487 shGroundXtru->DefineSection(1, thickness, 0., 0., 1.0);
1488
1489 // define a string which will express the algebric operations among volumes
1490 // and add the subtraction of this shape from the main one
1491 TString strComposite(Form("SH_GFOIL_%s_FULL - (%s + ", type, shGroundXtru->GetName()));
1492
1493 // define the holes according to size information coming from drawings:
1494 Double_t holeLength = fgkmm * 10.00;
1495 Double_t holeWidth = fgkmm * 7.50;
1496 Double_t holeSepX0 = fgkmm * 7.05; // separation between center of first hole and left border
1497 Double_t holeSepXC = fgkmm * 14.00; // separation between the centers of two consecutive holes
1498 Double_t holeSepX1 = fgkmm * 15.42; // separation between centers of 5th and 6th hole
1499 Double_t holeSepX2 = fgkmm * 22.00; // separation between centers of 10th and 11th hole
1500 if (itype == 1) {
1501 holeSepX0 -= fgkmm * 0.2;
1502 holeLength += fgkmm * 0.4;
1503 holeWidth += fgkmm * 0.4;
1504 }
1505 sizes.Set(7);
1506 sizes[0] = holeLength;
1507 sizes[1] = holeWidth;
1508 sizes[2] = holeSepX0;
1509 sizes[3] = holeSepXC;
1510 sizes[4] = holeSepX1;
1511 sizes[5] = holeSepX2;
1512 sizes[6] = fgkmm * 4.40;
1513
1514 // X position of hole center (will change for each hole)
1515 Double_t holeX = -0.5*length;
1516 // Y position of center of all holes (= 4.4 mm from upper border)
1517 Double_t holeY = 0.5*(width - holeWidth) - widthMin;
1518
1519 // create a shape for the holes (common)
1520 TGeoBBox *shHole = 0;
1521 shHole = new TGeoBBox(Form("%sGFOIL_HOLE", type), 0.5*holeLength, 0.5*holeWidth, thickness);
1522
1523 // insert the holes in the XTRU shape:
1524 // starting from the first value of X, they are simply shifted along this axis
1525 char name[200];
1526 TGeoTranslation *transHole[11];
1527 for (Int_t i = 0; i < 11; i++) {
1528 // set the position of the hole, depending on index
1529 if (i == 0) {
1530 holeX += holeSepX0;
1531 }
1532 else if (i < 5) {
1533 holeX += holeSepXC;
1534 }
1535 else if (i == 5) {
1536 holeX += holeSepX1;
1537 }
1538 else if (i < 10) {
1539 holeX += holeSepXC;
1540 }
1541 else {
1542 holeX += holeSepX2;
1543 }
1544 //cout << i << " --> X = " << holeX << endl;
1545 sprintf(name, "TR_GFOIL_%s_HOLE%d", type, i);
1546 transHole[i] = new TGeoTranslation(name, holeX, holeY, 0.0);
592651e2 1547 transHole[i]->RegisterYourself();
7855ea93 1548 strComposite.Append(Form("%sGFOIL_HOLE:%s", type, name));
1549 if (i < 10) strComposite.Append("+"); else strComposite.Append(")");
1550 }
1551
592651e2 1552 // create composite shape
7855ea93 1553 TGeoCompositeShape *shGround = new TGeoCompositeShape(Form("SH_GFOIL_%s", type), strComposite.Data());
1554
1555 return shGround;
592651e2 1556}
bc3498f4 1557//
1558//__________________________________________________________________________________________
1559TGeoVolume* AliITSv11GeometrySPD::CreateGroundingFoil
7855ea93 1560(Bool_t isRight, TArrayD &sizes, TGeoManager *mgr)
bc3498f4 1561{
7855ea93 1562 //
1563 // Create a volume containing all parts of the grounding foil a for a half-stave.
1564 // It consists of 4 layers with the same shape but different thickness:
1565 // 1) a layer of glue
1566 // 2) the aluminum layer
1567 // 3) the kapton layer
1568 // 4) another layer of glue
592651e2 1569 // ---
1570 // Arguments:
bc3498f4 1571 // 1: a boolean value to know if it is the grounding foir for
1572 // the right or left side
1573 // 2: a TArrayD which will contain the dimension of the container box:
1574 // - size[0] = length along Z (the beam line direction)
1575 // - size[1] = the 'width' of the stave, which defines, together
1576 // with Z, the plane of the carbon fiber support
1577 // - size[2] = 'thickness' (= the direction along which all
1578 // stave components are superimposed)
1579 // 3: the TGeoManager
592651e2 1580 // ---
bc3498f4 1581 // The return value is a TGeoBBox volume containing all grounding
1582 // foil components.
7855ea93 1583
bc3498f4 1584 // to avoid strange behaviour of the geometry manager,
1585 // create a suffix to be used in the names of all shapes
1586 char suf[5];
1587 if (isRight) strcpy(suf, "R"); else strcpy(suf, "L");
7855ea93 1588
bc3498f4 1589 // this volume will be created in order to ease its placement in
1590 // the half-stave; then, it is added here the small distance of
1591 // the "central" edge of each volume from the Z=0 plane in the stave
1592 // reference (which coincides with ALICE one)
7855ea93 1593 Double_t dist = fgkmm * 0.71;
1594
1595 // define materials
1596 TGeoMedium *medKap = GetMedium("SPD KAPTON(POLYCH2)$", mgr);
1597 TGeoMedium *medAlu = GetMedium("AL$", mgr);
1598 TGeoMedium *medGlue = GetMedium("EPOXY$", mgr); //??? GLUE_GF_SUPPORT
1599
1600 // compute the volume shapes (thicknesses change from one to the other)
1601 Double_t kpLength, kpWidth, alLength, alWidth;
1602 TArrayD kpSize, alSize, glSize;
1603 Double_t kpThickness = fgkmm * 0.05;
1604 Double_t alThickness = fgkmm * 0.025;
1605 Double_t glThickness = fgkmm * 0.1175 - fgkGapLadder;
1606 TGeoCompositeShape *kpShape = CreateGroundingFoilShape(0, kpLength, kpWidth, kpThickness, kpSize);
1607 TGeoCompositeShape *alShape = CreateGroundingFoilShape(1, alLength, alWidth, alThickness, alSize);
1608 TGeoCompositeShape *glShape = CreateGroundingFoilShape(2, kpLength, kpWidth, glThickness, glSize);
1609
bc3498f4 1610 // create the component volumes and register their sizes in the
1611 // passed arrays for readability reasons, some reference variables
1612 // explicit the meaning of the array slots
7855ea93 1613 TGeoVolume *kpVol = new TGeoVolume(Form("GFOIL_KAP_%s", suf), kpShape, medKap);
1614 TGeoVolume *alVol = new TGeoVolume(Form("GFOIL_ALU_%s", suf), alShape, medAlu);
1615 TGeoVolume *glVol = new TGeoVolume(Form("GFOIL_GLUE_%s", suf), glShape, medGlue);
1616
1617 // set colors for the volumes
1618 kpVol->SetLineColor(kRed);
1619 alVol->SetLineColor(kGray);
1620 glVol->SetLineColor(kYellow);
1621
bc3498f4 1622 // create references for the final size object
1623 if (sizes.GetSize() != 3) sizes.Set(3);
1624 Double_t &fullThickness = sizes[0];
1625 Double_t &fullLength = sizes[1];
7855ea93 1626 Double_t &fullWidth = sizes[2];
bc3498f4 1627 // kapton leads the larger dimensions of the foil
1628 // (including the cited small distance from Z=0 stave reference plane)
1629 // the thickness is the sum of the ones of all components
7855ea93 1630 fullLength = kpLength + dist;
1631 fullWidth = kpWidth;
1632 fullThickness = kpThickness + alThickness + 2.0 * glThickness;
592651e2 1633 // create the container
bc3498f4 1634 TGeoMedium *air = GetMedium("AIR$", mgr);
7855ea93 1635 TGeoVolume *container = mgr->MakeBox(Form("GFOIL_%s", suf), air, 0.5*fullThickness, 0.5*fullWidth, 0.5*fullLength);
1636 // create the common correction rotation (which depends of what side we are building)
bc3498f4 1637 TGeoRotation *rotCorr = new TGeoRotation(*gGeoIdentity);
1638 if (isRight) rotCorr->RotateY(90.0);
1639 else rotCorr->RotateY(-90.0);
7855ea93 1640 // compute the translations, which are in the length and thickness directions
bc3498f4 1641 Double_t x, y, z, shift = 0.0;
1642 if (isRight) shift = dist;
1643 // glue (bottom)
7855ea93 1644 x = -0.5*(fullThickness - glThickness);
bc3498f4 1645 z = 0.5*(fullLength - kpLength) - shift;
7855ea93 1646 TGeoCombiTrans *glTrans0 = new TGeoCombiTrans(x, 0.0, z, rotCorr);
bc3498f4 1647 // kapton
7855ea93 1648 x += 0.5*(glThickness + kpThickness);
bc3498f4 1649 TGeoCombiTrans *kpTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr);
1650 // aluminum
1651 x += 0.5*(kpThickness + alThickness);
1652 z = 0.5*(fullLength - alLength) - shift - 0.5*(kpLength - alLength);
1653 TGeoCombiTrans *alTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr);
1654 // glue (top)
7855ea93 1655 x += 0.5*(alThickness + glThickness);
bc3498f4 1656 z = 0.5*(fullLength - kpLength) - shift;
7855ea93 1657 TGeoCombiTrans *glTrans1 = new TGeoCombiTrans(x, 0.0, z, rotCorr);
592651e2 1658
1659 // add to container
bc3498f4 1660 container->AddNode(kpVol, 0, kpTrans);
1661 container->AddNode(alVol, 0, alTrans);
7855ea93 1662 container->AddNode(glVol, 0, glTrans0);
1663 container->AddNode(glVol, 1, glTrans1);
bc3498f4 1664 // to add the grease we remember the sizes of the holes, stored as
1665 // additional parameters in the kapton layer size:
1666 // - sizes[3] = hole length
1667 // - sizes[4] = hole width
1668 // - sizes[5] = position of first hole center
1669 // - sizes[6] = standard separation between holes
1670 // - sizes[7] = separation between 5th and 6th hole
1671 // - sizes[8] = separation between 10th and 11th hole
1672 // - sizes[9] = separation between the upper hole border and
1673 // the foil border
7855ea93 1674 Double_t holeLength = kpSize[0];
1675 Double_t holeWidth = kpSize[1];
1676 Double_t holeFirstZ = kpSize[2];
1677 Double_t holeSepZ = kpSize[3];
1678 Double_t holeSep5th6th = kpSize[4];
1679 Double_t holeSep10th11th = kpSize[5];
1680 Double_t holeSepY = kpSize[6];
bc3498f4 1681 // volume (common)
1682 TGeoMedium *grease = GetMedium("SPD KAPTON(POLYCH2)$", mgr); // ??? GREASE
7855ea93 1683 TGeoVolume *hVol = mgr->MakeBox("GREASE", grease, 0.5*fullThickness, 0.5*holeWidth, 0.5*holeLength);
bc3498f4 1684 hVol->SetLineColor(kBlue);
1685 // displacement of volumes in the container
1686 Int_t idx = 0;
1687 x = 0.0;
1688 y = 0.5*(fullWidth - holeWidth) - holeSepY;
1689 if (isRight) z = holeFirstZ - 0.5*fullLength + dist;
1690 else z = 0.5*fullLength - holeFirstZ - dist;
1691 for (Int_t i = 0; i < 11; i++) {
1692 TGeoTranslation *t = 0;
1693 t = new TGeoTranslation(x, y, -z);
1694 container->AddNode(hVol, idx++, t);
1695 if (i < 4) shift = holeSepZ;
1696 else if (i == 4) shift = holeSep5th6th;
1697 else if (i < 9) shift = holeSepZ;
1698 else shift = holeSep10th11th;
1699 if (isRight) z += shift;
1700 else z -= shift;
7855ea93 1701 }
592651e2 1702 return container;
1703}
bc3498f4 1704//
1705//__________________________________________________________________________________________
1706TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateMCM
1707(Bool_t isRight, TArrayD &sizes, TGeoManager *mgr) const
1708{
7855ea93 1709 //
1710 // Create a TGeoAssembly containing all the components of the MCM.
1711 // The TGeoVolume container is rejected due to the possibility of overlaps
1712 // when placing this object on the carbon fiber sector.
1713 // The assembly contains:
1714 // - the thin part of the MCM (integrated circuit)
1715 // - the MCM chips (specifications from EDMS)
1716 // - the cap which covers the zone where chips are bound to MCM
592651e2 1717 // ---
7855ea93 1718 // The local reference frame of this assembly is defined in such a way
1719 // that all volumes are contained in a virtual box whose center
1720 // is placed exactly in the middle of the occupied space w.r to all directions.
1721 // This will ease the positioning of this object in the half-stave.
1722 // The sizes of this virtual box are stored in
bc3498f4 1723 // the array passed by reference.
592651e2 1724 // ---
bc3498f4 1725 // Arguments:
7855ea93 1726 // - a boolean flag to know if this is the "left" or "right" MCM, when
bc3498f4 1727 // looking at the stave from above (i.e. the direction from which
7855ea93 1728 // one sees bus over ladders over grounding foil) and keeping the continuous border
1729 // in the upper part, one sees the thicker part on the left or right.
1730 // - an array passed by reference which will contain the size of the virtual container.
bc3498f4 1731 // - a pointer to the used TGeoManager.
7855ea93 1732 //
1733
1734 // to distinguish the "left" and "right" objects, a suffix is created
bc3498f4 1735 char suf[5];
7855ea93 1736 if (isRight) strcpy(suf, "R"); else strcpy(suf, "L");
1737
bc3498f4 1738 // ** MEDIA **
1739 TGeoMedium *medBase = GetMedium("SPD KAPTON(POLYCH2)$",mgr);// ??? MCM BASE
bc3498f4 1740 TGeoMedium *medChip = GetMedium("SPD SI CHIP$",mgr);
1741 TGeoMedium *medCap = GetMedium("AL$",mgr);
7855ea93 1742
bc3498f4 1743 // The shape of the MCM is divided into 3 sectors with different
1744 // widths (Y) and lengths (X), like in this sketch:
592651e2 1745 //
bc3498f4 1746 // 0 1 2
1747 // +---------------------+-----------------------------------+
1748 // | 4 sect 2 |
1749 // | 6 sect 1 /-------------------+
1750 // | sect 0 /--------------/ 3
1751 // +--------------------/ 5
1752 // 8 7
592651e2 1753 //
bc3498f4 1754 // the inclination of all oblique borders (6-7, 4-5) is always 45 degrees.
1755 // From drawings we can parametrize the dimensions of all these sectors,
7855ea93 1756 // then the shape of this part of the MCM is implemented as a
1757 // TGeoXtru centerd in the virtual XY space.
1758 // The first step is definig the relevant sizes of this shape:
bc3498f4 1759 Int_t i, j;
1760 Double_t mcmThickness = fgkmm * 0.35;
7855ea93 1761 Double_t sizeXtot = fgkmm * 105.6; // total distance (0-2)
bc3498f4 1762 // resp. 7-8, 5-6 and 3-4
1763 Double_t sizeXsector[3] = {fgkmm * 28.4, fgkmm * 41.4, fgkmm * 28.8};
1764 // resp. 0-8, 1-6 and 2-3
1765 Double_t sizeYsector[3] = {fgkmm * 15.0, fgkmm * 11.0, fgkmm * 8.0};
1766 Double_t sizeSep01 = fgkmm * 4.0; // x(6)-x(7)
1767 Double_t sizeSep12 = fgkmm * 3.0; // x(4)-x(5)
7855ea93 1768
bc3498f4 1769 // define sizes of chips (last is the thickest)
1770 Double_t chipLength[5] = { 4.00, 6.15, 3.85, 5.60, 18.00 };
1771 Double_t chipWidth[5] = { 3.00, 4.10, 3.85, 5.60, 5.45 };
1772 Double_t chipThickness[5] = { 0.60, 0.30, 0.30, 1.00, 1.20 };
1773 TString name[5];
1774 name[0] = "ANALOG";
1775 name[1] = "PILOT";
1776 name[2] = "GOL";
1777 name[3] = "RX40";
1778 name[4] = "OPTICAL";
1779 Color_t color[5] = { kCyan, kGreen, kYellow, kBlue, kOrange };
297369a1 1780
bc3498f4 1781 // define the sizes of the cover
1782 Double_t capThickness = fgkmm * 0.3;
1783 Double_t capHeight = fgkmm * 1.7;
7855ea93 1784
bc3498f4 1785 // compute the total size of the virtual container box
7855ea93 1786 sizes.Set(3);
bc3498f4 1787 Double_t &thickness = sizes[0];
1788 Double_t &length = sizes[1];
1789 Double_t &width = sizes[2];
1790 length = sizeXtot;
1791 width = sizeYsector[0];
7855ea93 1792 thickness = mcmThickness + capHeight;
1793
bc3498f4 1794 // define all the relevant vertices of the polygon
1795 // which defines the transverse shape of the MCM.
1796 // These values are used to several purposes, and
1797 // for each one, some points must be excluded
1798 Double_t xRef[9], yRef[9];
1799 xRef[0] = -0.5*sizeXtot;
1800 yRef[0] = 0.5*sizeYsector[0];
1801 xRef[1] = xRef[0] + sizeXsector[0] + sizeSep01;
1802 yRef[1] = yRef[0];
1803 xRef[2] = -xRef[0];
1804 yRef[2] = yRef[0];
1805 xRef[3] = xRef[2];
1806 yRef[3] = yRef[2] - sizeYsector[2];
1807 xRef[4] = xRef[3] - sizeXsector[2];
1808 yRef[4] = yRef[3];
1809 xRef[5] = xRef[4] - sizeSep12;
1810 yRef[5] = yRef[4] - sizeSep12;
1811 xRef[6] = xRef[5] - sizeXsector[1];
1812 yRef[6] = yRef[5];
1813 xRef[7] = xRef[6] - sizeSep01;
1814 yRef[7] = yRef[6] - sizeSep01;
1815 xRef[8] = xRef[0];
1816 yRef[8] = -yRef[0];
7855ea93 1817
bc3498f4 1818 // the above points are defined for the "right" MCM (if ve view the
1819 // stave from above) in order to change to the "left" one, we must
1820 // change the sign to all X values:
1821 if (isRight) for (i = 0; i < 9; i++) xRef[i] = -xRef[i];
7855ea93 1822
bc3498f4 1823 // the shape of the MCM and glue layer are done excluding point 1,
1824 // which is not necessary and cause the geometry builder to get confused
1825 j = 0;
1826 Double_t xBase[8], yBase[8];
1827 for (i = 0; i < 9; i++) {
1828 if (i == 1) continue;
1829 xBase[j] = xRef[i];
1830 yBase[j] = yRef[i];
1831 j++;
7855ea93 1832 }
592651e2 1833
7855ea93 1834 // the MCM cover is superimposed over the zones 1 and 2 only
bc3498f4 1835 Double_t xCap[6], yCap[6];
1836 j = 0;
1837 for (i = 1; i <= 6; i++) {
1838 xCap[j] = xRef[i];
1839 yCap[j] = yRef[i];
1840 j++;
7855ea93 1841 }
592651e2 1842
bc3498f4 1843 // define positions of chips,
1844 // which must be added to the bottom-left corner of MCM
1845 // and divided by 1E4;
1846 Double_t chipX[5], chipY[5];
1847 if (isRight) {
1848 chipX[0] = 666320.;
1849 chipX[1] = 508320.;
1850 chipX[2] = 381320.;
1851 chipX[3] = 295320.;
1852 chipX[4] = 150320.;
1853 chipY[0] = 23750.;
1854 chipY[1] = 27750.;
1855 chipY[2] = 20750.;
1856 chipY[3] = 42750.;
1857 chipY[4] = 39750.;
7855ea93 1858 }
1859 else {
bc3498f4 1860 chipX[0] = 389730.;
1861 chipX[1] = 548630.;
1862 chipX[2] = 674930.;
1863 chipX[3] = 761430.;
1864 chipX[4] = 905430.;
1865 chipY[0] = 96250.;
1866 chipY[1] = 91950.;
1867 chipY[2] = 99250.;
1868 chipY[3] = 107250.;
1869 chipY[4] = 109750.;
7855ea93 1870 }
bc3498f4 1871 for (i = 0; i < 5; i++) {
1872 chipX[i] *= 0.00001;
1873 chipY[i] *= 0.00001;
1874 if (isRight) {
1875 chipX[i] += xRef[3];
1876 chipY[i] += yRef[3];
1877 } else {
1878 chipX[i] += xRef[8];
1879 chipY[i] += yRef[8];
1880 } // end for isRight
1881 chipLength[i] *= fgkmm;
1882 chipWidth[i] *= fgkmm;
1883 chipThickness[i] *= fgkmm;
7855ea93 1884 }
1885
bc3498f4 1886 // create shapes for MCM
1887 Double_t z1, z2;
1888 TGeoXtru *shBase = new TGeoXtru(2);
bc3498f4 1889 z1 = -0.5*thickness;
bc3498f4 1890 z2 = z1 + mcmThickness;
1891 shBase->DefinePolygon(8, xBase, yBase);
1892 shBase->DefineSection(0, z1, 0., 0., 1.0);
1893 shBase->DefineSection(1, z2, 0., 0., 1.0);
1894
1895 // create volumes of MCM
1896 TGeoVolume *volBase = new TGeoVolume("BASE", shBase, medBase);
1897 volBase->SetLineColor(kRed);
bc3498f4 1898
1899 // to create the border of the MCM cover, it is required the
1900 // subtraction of two shapes the outer is created using the
1901 // reference points defined here
1902 TGeoXtru *shCapOut = new TGeoXtru(2);
1903 shCapOut->SetName(Form("SHCAPOUT%s", suf));
1904 z1 = z2;
1905 z2 = z1 + capHeight - capThickness;
1906 shCapOut->DefinePolygon(6, xCap, yCap);
1907 shCapOut->DefineSection(0, z1, 0., 0., 1.0);
1908 shCapOut->DefineSection(1, z2, 0., 0., 1.0);
1909 // the inner is built similarly but subtracting the thickness
1910 Double_t angle, cs;
1911 Double_t xin[6], yin[6];
1912 if (!isRight) {
1913 angle = 45.0;
1914 cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) );
1915 xin[0] = xCap[0] + capThickness;
1916 yin[0] = yCap[0] - capThickness;
1917 xin[1] = xCap[1] - capThickness;
1918 yin[1] = yin[0];
1919 xin[2] = xin[1];
1920 yin[2] = yCap[2] + capThickness;
1921 xin[3] = xCap[3] - capThickness*cs;
1922 yin[3] = yin[2];
1923 xin[4] = xin[3] - sizeSep12;
1924 yin[4] = yCap[4] + capThickness;
1925 xin[5] = xin[0];
1926 yin[5] = yin[4];
7855ea93 1927 }
1928 else {
bc3498f4 1929 angle = 45.0;
1930 cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) );
1931 xin[0] = xCap[0] - capThickness;
1932 yin[0] = yCap[0] - capThickness;
1933 xin[1] = xCap[1] + capThickness;
1934 yin[1] = yin[0];
1935 xin[2] = xin[1];
1936 yin[2] = yCap[2] + capThickness;
1937 xin[3] = xCap[3] - capThickness*cs;
1938 yin[3] = yin[2];
1939 xin[4] = xin[3] + sizeSep12;
1940 yin[4] = yCap[4] + capThickness;
1941 xin[5] = xin[0];
1942 yin[5] = yin[4];
7855ea93 1943 }
bc3498f4 1944 TGeoXtru *shCapIn = new TGeoXtru(2);
1945 shCapIn->SetName(Form("SHCAPIN%s", suf));
1946 shCapIn->DefinePolygon(6, xin, yin);
1947 shCapIn->DefineSection(0, z1 - 0.01, 0., 0., 1.0);
1948 shCapIn->DefineSection(1, z2 + 0.01, 0., 0., 1.0);
1949 // compose shapes
7855ea93 1950 TGeoCompositeShape *shCapBorder = new TGeoCompositeShape(Form("SHBORDER%s", suf),
bc3498f4 1951 Form("%s-%s", shCapOut->GetName(),
7855ea93 1952 shCapIn->GetName()));
bc3498f4 1953 // create volume
1954 TGeoVolume *volCapBorder = new TGeoVolume("CAPBORDER",shCapBorder,medCap);
1955 volCapBorder->SetLineColor(kGreen);
1956 // finally, we create the top of the cover, which has the same
1957 // shape of outer border and a thickness equal of the one othe
1958 // cover border one
1959 TGeoXtru *shCapTop = new TGeoXtru(2);
1960 z1 = z2;
1961 z2 = z1 + capThickness;
1962 shCapTop->DefinePolygon(6, xCap, yCap);
1963 shCapTop->DefineSection(0, z1, 0., 0., 1.0);
1964 shCapTop->DefineSection(1, z2, 0., 0., 1.0);
1965 TGeoVolume *volCapTop = new TGeoVolume("CAPTOP", shCapTop, medCap);
1966 volCapTop->SetLineColor(kBlue);
1967
7855ea93 1968 // create container assembly with right suffix
1969 TGeoVolumeAssembly *mcmAssembly = new TGeoVolumeAssembly(Form("MCM_%", suf));
bc3498f4 1970
7855ea93 1971 // add mcm layer
bc3498f4 1972 mcmAssembly->AddNode(volBase, 0, gGeoIdentity);
7855ea93 1973 // add chips
bc3498f4 1974 for (i = 0; i < 5; i++) {
7855ea93 1975 TGeoVolume *box = gGeoManager->MakeBox(name[i], medChip, 0.5*chipLength[i], 0.5*chipWidth[i], 0.5*chipThickness[i]);
1976 TGeoTranslation *tr = new TGeoTranslation(chipX[i], chipY[i], 0.5*(-thickness + chipThickness[i]) + mcmThickness);
bc3498f4 1977 box->SetLineColor(color[i]);
1978 mcmAssembly->AddNode(box, 0, tr);
7855ea93 1979 }
1980 // add cap border
bc3498f4 1981 mcmAssembly->AddNode(volCapBorder, 0, gGeoIdentity);
7855ea93 1982 // add cap top
bc3498f4 1983 mcmAssembly->AddNode(volCapTop, 0, gGeoIdentity);
7855ea93 1984
bc3498f4 1985 return mcmAssembly;
592651e2 1986}
bc3498f4 1987//
1988//__________________________________________________________________________________________
1989TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBus
1990(Bool_t isRight, TArrayD &sizes, TGeoManager *mgr) const
1991{
1992 //
1993 // The pixel bus is implemented as a TGeoBBox with some objects on it,
1994 // which could affect the particle energy loss.
592651e2 1995 // ---
bc3498f4 1996 // In order to avoid confusion, the bus is directly displaced
1997 // according to the axis orientations which are used in the final stave:
1998 // X --> thickness direction
1999 // Y --> width direction
2000 // Z --> length direction
592651e2 2001 //
bc3498f4 2002
592651e2 2003
bc3498f4 2004 // ** MEDIA **
2005
2006 //PIXEL BUS
2007 TGeoMedium *medBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr);
2008 TGeoMedium *medPt1000 = GetMedium("CERAMICS$",mgr); // ??? PT1000
2009 // Capacity
2010 TGeoMedium *medCap = GetMedium("SDD X7R capacitors$",mgr);
2011 // ??? Resistance
2012 TGeoMedium *medRes = GetMedium("SDD X7R capacitors$",mgr);
2013 // ** SIZES & POSITIONS **
2014 Double_t busLength = 170.501 * fgkmm; // length of plane part
2015 Double_t busWidth = 13.800 * fgkmm; // width
2016 Double_t busThickness = 0.280 * fgkmm; // thickness
2017 Double_t pt1000Length = fgkmm * 1.50;
2018 Double_t pt1000Width = fgkmm * 3.10;
2019 Double_t pt1000Thickness = fgkmm * 0.60;
2020 Double_t pt1000Y, pt1000Z[10];// position of the pt1000's along the bus
2021 Double_t capLength = fgkmm * 2.55;
2022 Double_t capWidth = fgkmm * 1.50;
2023 Double_t capThickness = fgkmm * 1.35;
2024 Double_t capY[2], capZ[2];
2025
2026 Double_t resLength = fgkmm * 2.20;
2027 Double_t resWidth = fgkmm * 0.80;
2028 Double_t resThickness = fgkmm * 0.35;
2029 Double_t resY[2], resZ[2];
2030
2031 // position of pt1000, resistors and capacitors depends on the
2032 // bus if it's left or right one
2033 if (!isRight) {
2034 pt1000Y = 64400.;
2035 pt1000Z[0] = 66160.;
2036 pt1000Z[1] = 206200.;
2037 pt1000Z[2] = 346200.;
2038 pt1000Z[3] = 486200.;
2039 pt1000Z[4] = 626200.;
2040 pt1000Z[5] = 776200.;
2041 pt1000Z[6] = 916200.;
2042 pt1000Z[7] = 1056200.;
2043 pt1000Z[8] = 1196200.;
2044 pt1000Z[9] = 1336200.;
2045 resZ[0] = 1397500.;
2046 resY[0] = 26900.;
2047 resZ[1] = 682500.;
2048 resY[1] = 27800.;
2049 capZ[0] = 1395700.;
2050 capY[0] = 45700.;
2051 capZ[1] = 692600.;
2052 capY[1] = 45400.;
2053 } else {
2054 pt1000Y = 66100.;
2055 pt1000Z[0] = 319700.;
2056 pt1000Z[1] = 459700.;
2057 pt1000Z[2] = 599700.;
2058 pt1000Z[3] = 739700.;
2059 pt1000Z[4] = 879700.;
2060 pt1000Z[5] = 1029700.;
2061 pt1000Z[6] = 1169700.;
2062 pt1000Z[7] = 1309700.;
2063 pt1000Z[8] = 1449700.;
2064 pt1000Z[9] = 1589700.;
2065 capY[0] = 44500.;
2066 capZ[0] = 266700.;
2067 capY[1] = 44300.;
2068 capZ[1] = 974700.;
2069 resZ[0] = 266500.;
2070 resY[0] = 29200.;
2071 resZ[1] = 974600.;
2072 resY[1] = 29900.;
2073 } // end if isRight
2074 Int_t i;
2075 pt1000Y *= 1E-4 * fgkmm;
2076 for (i = 0; i < 10; i++) {
2077 pt1000Z[i] *= 1E-4 * fgkmm;
2078 if (i < 2) {
2079 capZ[i] *= 1E-4 * fgkmm;
2080 capY[i] *= 1E-4 * fgkmm;
2081 resZ[i] *= 1E-4 * fgkmm;
2082 resY[i] *= 1E-4 * fgkmm;
2083 } // end if iM2
2084 } // end for i
2085
2086 Double_t &fullLength = sizes[1];
2087 Double_t &fullWidth = sizes[2];
2088 Double_t &fullThickness = sizes[0];
2089 fullLength = busLength;
2090 fullWidth = busWidth;
2091 // add the thickness of the thickest component on bus (capacity)
2092 fullThickness = busThickness + capThickness;
2093 // ** VOLUMES **
2094 TGeoVolumeAssembly *container = new TGeoVolumeAssembly("PixelBus");
2095 TGeoVolume *bus = mgr->MakeBox("Bus", medBus, 0.5*busThickness,
2096 0.5*busWidth, 0.5*busLength);
2097 TGeoVolume *pt1000 = mgr->MakeBox("PT1000", medPt1000,
2098 0.5*pt1000Thickness, 0.5*pt1000Width, 0.5*pt1000Length);
2099 TGeoVolume *res = mgr->MakeBox("Resistor", medRes, 0.5*resThickness,
2100 0.5*resWidth, 0.5*resLength);
2101 TGeoVolume *cap = mgr->MakeBox("Capacitor", medCap, 0.5*capThickness,
2102 0.5*capWidth, 0.5*capLength);
2103 bus->SetLineColor(kYellow + 2);
2104 pt1000->SetLineColor(kGreen + 3);
2105 res->SetLineColor(kRed + 1);
2106 cap->SetLineColor(kBlue - 7);
2107 // ** MOVEMENTS AND POSITIONEMENT **
2108 // bus
2109 TGeoTranslation *trBus = new TGeoTranslation(0.5 * (busThickness -
2110 fullThickness), 0.0, 0.0);
2111 container->AddNode(bus, 0, trBus);
2112 Double_t zRef, yRef, x, y, z;
2113 if (isRight) {
2114 zRef = -0.5*fullLength;
2115 yRef = -0.5*fullWidth;
2116 } else {
2117 zRef = -0.5*fullLength;
2118 yRef = -0.5*fullWidth;
2119 } // end if isRight
2120 // pt1000
2121 x = 0.5*(pt1000Thickness - fullThickness) + busThickness;
2122 for (i = 0; i < 10; i++) {
2123 y = yRef + pt1000Y;
2124 z = zRef + pt1000Z[i];
2125 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2126 container->AddNode(pt1000, i, tr);
2127 } // end for i
2128 // capacitors
2129 x = 0.5*(capThickness - fullThickness) + busThickness;
2130 for (i = 0; i < 2; i++) {
2131 y = yRef + capY[i];
2132 z = zRef + capZ[i];
2133 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2134 container->AddNode(cap, i, tr);
2135 } // end for i
2136 // resistors
2137 x = 0.5*(resThickness - fullThickness) + busThickness;
2138 for (i = 0; i < 2; i++) {
2139 y = yRef + resY[i];
2140 z = zRef + resZ[i];
2141 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2142 container->AddNode(res, i, tr);
2143 } // end for i
2144
2145 sizes[3] = yRef + pt1000Y;
2146 sizes[4] = zRef + pt1000Z[2];
2147 sizes[5] = zRef + pt1000Z[7];
592651e2 2148
2149 return container;
2150}
bc3498f4 2151//
2152//__________________________________________________________________________________________
2153TGeoVolume* AliITSv11GeometrySPD::CreateExtender
2154(const Double_t *extenderParams, const TGeoMedium *extenderMedium, TArrayD& sizes) const
2155{
2156 // ------------------ CREATE AN EXTENDER ------------------------
2157 //
2158 // This function creates the following picture (in plane xOy)
2159 // Should be useful for the definition of the pixel bus and MCM extenders
2160 // The origin corresponds to point 0 on the picture, at half-width in Z direction
2161 //
2162 // Y 7 6 5
2163 // ^ +---+---------------------+
2164 // | / |
2165 // | / |
2166 // 0------> X / +---------------------+
2167 // / / 3 4
2168 // / /
2169 // 9 8 / /
2170 // +-----------+ /
2171 // | /
2172 // | /
2173 // ---> +-----------+---+
2174 // | 0 1 2
2175 // |
2176 // origin (0,0,0)
2177 //
2178 //
2179 // Takes 6 parameters in the following order :
2180 // |--> par 0 : inner length [0-1] / [9-8]
2181 // |--> par 1 : thickness ( = [0-9] / [4-5])
2182 // |--> par 2 : angle of the slope
2183 // |--> par 3 : total height in local Y direction
2184 // |--> par 4 : outer length [3-4] / [6-5]
2185 // |--> par 5 : width in local Z direction
2186 //
592651e2 2187
592651e2 2188
bc3498f4 2189 Double_t slopeDeltaX = (extenderParams[3] - extenderParams[1] * TMath::Cos(extenderParams[2])) / TMath::Tan(extenderParams[2]);
592651e2 2190
bc3498f4 2191 Double_t extenderXtruX[10] = {
2192 0 ,
2193 extenderParams[0] ,
2194 extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) ,
2195 extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX ,
2196 extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX + extenderParams[4],
2197 extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX + extenderParams[4],
2198 extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX ,
2199 extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX - extenderParams[1] * TMath::Sin(extenderParams[2]) ,
2200 extenderParams[0] ,
2201 0
2202 } ;
592651e2 2203
bc3498f4 2204 Double_t extenderXtruY[10] = {
2205 0 ,
2206 0 ,
2207 extenderParams[1] * (1-TMath::Cos(extenderParams[2])) ,
2208 extenderParams[3] - extenderParams[1] ,
2209 extenderParams[3] - extenderParams[1] ,
2210 extenderParams[3] ,
2211 extenderParams[3] ,
2212 extenderParams[3] - extenderParams[1] * (1-TMath::Cos(extenderParams[2])) ,
2213 extenderParams[1] ,
2214 extenderParams[1]
2215 } ;
592651e2 2216
bc3498f4 2217 if (sizes.GetSize() != 3) sizes.Set(3);
2218 Double_t &thickness = sizes[0] ;
2219 Double_t &length = sizes[1] ;
2220 Double_t &width = sizes[2] ;
592651e2 2221
bc3498f4 2222 thickness = extenderParams[3] ;
2223 width = extenderParams[5] ;
2224 length = extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX + extenderParams[4] ;
592651e2 2225
bc3498f4 2226 // creation of the volume
2227 TGeoXtru *extenderXtru = new TGeoXtru(2);
2228 TGeoVolume *extenderXtruVol = new TGeoVolume("EXTENDER",extenderXtru,extenderMedium) ;
2229 extenderXtru->DefinePolygon(10,extenderXtruX,extenderXtruY);
2230 extenderXtru->DefineSection(0,-0.5*extenderParams[4]);
2231 extenderXtru->DefineSection(1, 0.5*extenderParams[4]);
2232 return extenderXtruVol ;
2233}
592651e2 2234
bc3498f4 2235//______________________________________________________________________
2236TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBusAndExtensions
2237(Bool_t /*zpos*/, TGeoManager *mgr) const
2238{
2239 //
2240 // Creates an assembly which contains the pixel bus and its extension
2241 // and the extension of the MCM.
2242 // By: Renaud Vernet
2243 // NOTE: to be defined its material and its extension in the outside direction
2244 //
2245
2246 // ==== constants =====
592651e2 2247
bc3498f4 2248 //get the media
2249 //TGeoMedium *medPixelBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr) ; // ??? PIXEL BUS
2250 TGeoMedium *medPBExtender = GetMedium("SDDKAPTON (POLYCH2)$",mgr) ; // ??? IXEL BUS EXTENDER
2251 TGeoMedium *medMCMExtender = GetMedium("SDDKAPTON (POLYCH2)$",mgr) ; // ??? MCM EXTENDER
2252
2253 // //geometrical constants
2254 const Double_t kPbextenderThickness = 0.07 * fgkmm ;
2255 const Double_t kPbExtenderSlopeAngle = 70.0 * TMath::Pi()/180. ; //design=?? 70 deg. seems OK
2256 const Double_t kPbExtenderHeight = 1.92 * fgkmm ; // = 2.6 - (0.28+0.05+0.35) cf design
2257 const Double_t kPbExtenderWidthY = 11.0 * fgkmm ;
2258 const Double_t kMcmExtenderSlopeAngle = 70.0 * TMath::Pi()/180. ; //design=?? 70 deg. seems OK
2259 const Double_t kMcmExtenderThickness = 0.10 * fgkmm ;
2260 const Double_t kMcmExtenderHeight = 1.8 * fgkmm ;
2261 const Double_t kMcmExtenderWidthY = kPbExtenderWidthY ;
2262 // const Double_t groundingThickness = 0.07 * fgkmm ;
2263 // const Double_t grounding2pixelBusDz = 0.625 * fgkmm ;
2264 // const Double_t pixelBusThickness = 0.28 * fgkmm ;
2265 // const Double_t groundingWidthX = 170.501 * fgkmm ;
2266 // const Double_t pixelBusContactDx = 1.099 * fgkmm ;
2267 // const Double_t pixelBusWidthY = 13.8 * fgkmm ;
2268 // const Double_t pixelBusContactPhi = 20.0 * TMath::Pi()/180. ; //design=20 deg.
2269 // const Double_t pbExtenderTopZ = 2.72 * fgkmm ;
2270 // const Double_t mcmThickness = 0.35 * fgkmm ;
2271 // const Double_t halfStaveTotalLength = 247.64 * fgkmm ;
2272 // const Double_t deltaYOrigin = 15.95/2.* fgkmm ;
2273 // const Double_t deltaXOrigin = 1.1 * fgkmm ;
2274 // const Double_t deltaZOrigin = halfStaveTotalLength / 2. ;
2275 // const Double_t grounding2pixelBusDz2 = grounding2pixelBusDz+groundingThickness/2. + pixelBusThickness/2. ;
2276 // const Double_t pixelBusWidthX = groundingWidthX ;
2277 // const Double_t pixelBusRaiseLength = (pixelBusContactDx-pixelBusThickness*TMath::Sin(pixelBusContactPhi))/TMath::Cos(pixelBusContactPhi) ;
592651e2 2278
bc3498f4 2279 // const Double_t pbExtenderBaseZ = grounding2pixelBusDz2 + pixelBusRaiseLength*TMath::Sin(pixelBusContactPhi) + 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi)*TMath::Tan(pixelBusContactPhi) ;
2280 // const Double_t pbExtenderDeltaZ = pbExtenderTopZ-pbExtenderBaseZ ;
2281 // const Double_t pbExtenderEndPointX = 2*deltaZOrigin - groundingWidthX - 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi) ;
2282 // const Double_t pbExtenderXtru3L = 1.5 * fgkmm ; //arbitrary ?
2283 // const Double_t pbExtenderXtru4L = (pbExtenderDeltaZ + pixelBusThickness*(TMath::Cos(extenderSlope)-2))/TMath::Sin(extenderSlope) ;
592651e2 2284
bc3498f4 2285 // const Double_t kMcmExtenderEndPointX = deltaZOrigin - 48.2 * fgkmm ;
2286 // const Double_t kMcmExtenderXtru3L = 1.5 * fgkmm ;
592651e2 2287
bc3498f4 2288 // //===== end constants =====
592651e2 2289
592651e2 2290
bc3498f4 2291 const Double_t kPbExtenderInnerLength = 10. * fgkmm ;
2292 const Double_t kPbExtenderOuterLength = 15. * fgkmm ;
2293 const Double_t kMcmExtenderInnerLength = 10. * fgkmm ;
2294 const Double_t kMcmExtenderOuterLength = 15. * fgkmm ;
592651e2 2295
bc3498f4 2296 Double_t pbExtenderParams[6] = {kPbExtenderInnerLength, //0
2297 kPbextenderThickness, //1
2298 kPbExtenderSlopeAngle, //2
2299 kPbExtenderHeight, //3
2300 kPbExtenderOuterLength, //4
2301 kPbExtenderWidthY}; //5
2302
2303 Double_t mcmExtenderParams[6] = {kMcmExtenderInnerLength, //0
2304 kMcmExtenderThickness, //1
2305 kMcmExtenderSlopeAngle, //2
2306 kMcmExtenderHeight, //3
2307 kMcmExtenderOuterLength, //4
2308 kMcmExtenderWidthY}; //5
592651e2 2309
bc3498f4 2310 TArrayD sizes(3);
2311 TGeoVolume* pbExtender = CreateExtender(pbExtenderParams, medPBExtender, sizes) ;
2312 printf("CREATED AN EXTENDER : THICKNESS = %5.5f cm\tLENGTH=%5.5f cm\tWIDTH=%5.5f cm\n",sizes[0],sizes[1],sizes[2]);
2313 TGeoVolume* mcmExtender = CreateExtender(mcmExtenderParams, medMCMExtender, sizes) ;
2314 printf("CREATED AN EXTENDER : THICKNESS = %5.5f cm\tLENGTH=%5.5f cm\tWIDTH=%5.5f cm\n",sizes[0],sizes[1],sizes[2]);
592651e2 2315
2316
592651e2 2317
bc3498f4 2318 // Double_t pixelBusValues[5] = {pixelBusWidthX, //0
2319 // pixelBusThickness, //1
2320 // pixelBusContactPhi, //2
2321 // pixelBusRaiseLength, //3
2322 // pixelBusWidthY} ; //4
592651e2 2323
bc3498f4 2324 // Double_t pbExtenderValues[8] = {pixelBusRaiseLength, //0
2325 // pixelBusContactPhi, //1
2326 // pbExtenderXtru3L, //2
2327 // pixelBusThickness, //3
2328 // extenderSlope, //4
2329 // pbExtenderXtru4L, //5
2330 // pbExtenderEndPointX, //6
2331 // kPbExtenderWidthY} ; //7
592651e2 2332
bc3498f4 2333 // Double_t mcmExtenderValues[6] = {mcmExtenderXtru3L, //0
2334 // mcmExtenderThickness, //1
2335 // extenderSlope, //2
2336 // deltaMcmMcmExtender, //3
2337 // mcmExtenderEndPointX, //4
2338 // mcmExtenderWidthY}; //5
2339
2340 // TGeoVolumeAssembly *pixelBus = new TGeoVolumeAssembly("PIXEL BUS");
2341 // CreatePixelBus(pixelBus,pixelBusValues,medPixelBus) ;
2342 // TGeoVolumeAssembly *pbExtender = new TGeoVolumeAssembly("PIXEL BUS EXTENDER");
2343 // CreatePixelBusExtender(pbExtender,pbExtenderValues,medPBExtender) ;
2344 // TGeoVolumeAssembly *mcmExtender = new TGeoVolumeAssembly("MCM EXTENDER");
2345 // CreateMCMExtender(mcmExtender,mcmExtenderValues,medMCMExtender) ;
2346
2347 // //-------------- DEFINITION OF GEOMETRICAL TRANSFORMATIONS -------------------
2348 // TGeoRotation * commonRot = new TGeoRotation("commonRot",0,90,0);
2349 // commonRot->MultiplyBy(new TGeoRotation("rot",-90,0,0)) ;
2350 // TGeoTranslation * pixelBusTrans = new TGeoTranslation(pixelBusThickness/2. - deltaXOrigin + 0.52*fgkmm ,
2351 // -pixelBusWidthY/2. + deltaYOrigin ,
2352 // -groundingWidthX/2. + deltaZOrigin) ;
2353 // TGeoRotation * pixelBusRot = new TGeoRotation(*commonRot);
2354 // TGeoTranslation * pbExtenderTrans = new TGeoTranslation(*pixelBusTrans) ;
2355 // TGeoRotation * pbExtenderRot = new TGeoRotation(*pixelBusRot) ;
2356 // pbExtenderTrans->SetDz(*(pbExtenderTrans->GetTranslation()+2) - pixelBusWidthX/2. - 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi)) ;
2357 // if (!zpos) {
2358 // pbExtenderTrans->SetDy(*(pbExtenderTrans->GetTranslation()+1) - (pixelBusWidthY - kPbExtenderWidthY)/2.);
2359 // }
2360 // else {
2361 // pbExtenderTrans->SetDy(*(pbExtenderTrans->GetTranslation()+1) + (pixelBusWidthY - kPbExtenderWidthY)/2.);
2362 // }
2363 // pbExtenderTrans->SetDx(*(pbExtenderTrans->GetTranslation()) + pixelBusThickness/2 + 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi)*TMath::Tan(pixelBusContactPhi)) ;
2364 // TGeoTranslation * mcmExtenderTrans = new TGeoTranslation(0.12*fgkmm + mcmThickness - deltaXOrigin,
2365 // pbExtenderTrans->GetTranslation()[1],
2366 // -4.82);
2367 // TGeoRotation * mcmExtenderRot = new TGeoRotation(*pbExtenderRot);
2368
2369 // // add pt1000 components
2370 // Double_t pt1000Z = fgkmm * 64400. * 1E-4;
2371 // //Double_t pt1000X[10] = {319700., 459700., 599700., 739700., 879700., 1029700., 1169700., 1309700., 1449700., 1589700.};
2372 // Double_t pt1000X[10] = {66160., 206200., 346200., 486200., 626200., 776200., 916200., 1056200., 1196200., 1336200.};
2373 // Double_t pt1000size[3] = {fgkmm*1.5, fgkmm*0.6, fgkmm*3.1};
2374 // Int_t i;
2375 // for (i = 0; i < 10; i++) {
2376 // pt1000X[i] *= fgkmm * 1E-4;
2377 // }
2378 // TGeoVolume *pt1000 = mgr->MakeBox("PT1000", 0, 0.5*pt1000size[0], 0.5*pt1000size[1], 0.5*pt1000size[2]);
2379 // pt1000->SetLineColor(kGray);
2380 // Double_t refThickness = - pixelBusThickness ;
2381 // for (i = 0; i < 10; i++) {
2382 // TGeoTranslation *tr = new TGeoTranslation(pt1000X[i]-0.5*pixelBusWidthX, 0.002+0.5*(-3.*refThickness+pt1000size[3]), pt1000Z -0.5*pixelBusWidthY);
2383 // pixelBus->AddNode(pt1000, i, tr);
2384 // }
2385
2386 //CREATE FINAL VOLUME ASSEMBLY AND ROTATE IT
2387 TGeoVolumeAssembly *assembly = new TGeoVolumeAssembly("EXTENDERS");
2388 // assembly->AddNode((TGeoVolume*)pixelBus ,0, new TGeoCombiTrans(*pixelBusTrans,*pixelBusRot));
2389 // assembly->AddNode((TGeoVolume*)pbExtender ,0, new TGeoCombiTrans(*pbExtenderTrans,*pbExtenderRot));
2390 // assembly->AddNode((TGeoVolume*)mcmExtender ,0, new TGeoCombiTrans(*mcmExtenderTrans,*mcmExtenderRot));
2391 // assembly->AddNode(mcmExtender,0,new TGeoIdentity());
2392 assembly->AddNode(pbExtender,0);
2393 assembly->AddNode(mcmExtender,0);
2394 // assembly->SetTransparency(50);
2395
2396 return assembly ;
592651e2 2397}
bc3498f4 2398//
2399//__________________________________________________________________________________________
2400TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateHalfStave
7855ea93 2401(Bool_t isRight, Int_t layer, Int_t idxCentral, Int_t idxSide, TArrayD &sizes, TGeoManager *mgr)
bc3498f4 2402{
2403 //
2404 // Implementation of an half-stave, which depends on the side where we are on the stave.
2405 // The convention for "left" and "right" is the same as for the MCM.
2406 // The return value is a TGeoAssembly which is structured in such a way that the origin
2407 // of its local reference frame coincides with the origin of the whole stave.
7855ea93 2408 // The TArrayD passed by reference will contain details of the shape:
2409 // - sizes[0] = thickness
2410 // - sizes[1] = length
2411 // - sizes[2] = width
2412 // - sizes[3] = common 'x' position for eventual clips
2413 // - sizes[4] = common 'y' position for eventual clips
2414 // - sizes[5] = 'z' position of first clip
2415 // - sizes[6] = 'z' position of second clip
592651e2 2416 //
592651e2 2417
bc3498f4 2418 // ** CHECK **
592651e2 2419
bc3498f4 2420 // idxCentral and idxSide must be different
2421 if (idxCentral == idxSide) {
2422 AliInfo("Ladders must be inserted in half-stave with different indexes.");
2423 idxSide = idxCentral + 1;
2424 AliInfo(Form("Central ladder will be inserted with index %d", idxCentral));
2425 AliInfo(Form("Side ladder will be inserted with index %d", idxSide));
2426 }
592651e2 2427
bc3498f4 2428 // define the separations along Z direction between the objects
2429 Double_t sepLadderLadder = fgkmm * 0.2; // sep. btw the 2 ladders
2430 Double_t sepLadderCenter = fgkmm * 0.4; // sep. btw the "central" ladder and the Z=0 plane in stave ref.
2431 Double_t sepLadderMCM = fgkmm * 0.3; // sep. btw the "external" ladder and MCM
2432 Double_t sepBusCenter = fgkmm * 0.3; // sep. btw the bus central edge and the Z=0 plane in stave ref.
2433
2434 // ** VOLUMES **
2435
2436 // grounding foil
2437 TArrayD grndSize(3);
2438 // This one line repalces the 3 bellow, BNS.
7855ea93 2439 TGeoVolume *grndVol = CreateGroundingFoil(isRight, grndSize, mgr);
bc3498f4 2440 Double_t &grndThickness = grndSize[0];
2441 Double_t &grndLength = grndSize[1];
2442
2443 // ladder
2444 TArrayD ladderSize(3);
2445 TGeoVolume *ladder = CreateLadder(layer, ladderSize, mgr);
2446 Double_t ladderThickness = ladderSize[0];
2447 Double_t ladderLength = ladderSize[1];
2448 Double_t ladderWidth = ladderSize[2];
2449
bc3498f4 2450 // MCM
2451 TArrayD mcmSize(3);
2452 TGeoVolumeAssembly *mcm = CreateMCM(!isRight,mcmSize,mgr);
bc3498f4 2453 Double_t mcmThickness = mcmSize[0];
2454 Double_t mcmLength = mcmSize[1];
2455 Double_t mcmWidth = mcmSize[2];
2456
2457 // bus
2458 TArrayD busSize(6);
2459 TGeoVolumeAssembly *bus = CreatePixelBus(isRight, busSize, mgr);
bc3498f4 2460 Double_t busThickness = busSize[0];
2461 Double_t busLength = busSize[1];
2462 Double_t busWidth = busSize[2];
2463
7855ea93 2464 // glue between ladders and pixel bus
2465 TGeoMedium *medLadGlue = GetMedium("EPOXY$", mgr);
2466 Double_t ladGlueThickness = fgkmm * 0.1175 - fgkGapLadder;
2467 TGeoVolume *ladderGlue = mgr->MakeBox("LADDER_GLUE", medLadGlue, 0.5*ladGlueThickness, 0.5*busWidth, 0.5*busLength);
2468 ladderGlue->SetLineColor(kYellow + 5);
2469
bc3498f4 2470 // create references for the whole object, as usual
7855ea93 2471 sizes.Set(7);
bc3498f4 2472 Double_t &fullThickness = sizes[0];
2473 Double_t &fullLength = sizes[1];
2474 Double_t &fullWidth = sizes[2];
2475
2476 // compute the full size of the container
2477 fullLength = sepLadderCenter + 2.0*ladderLength + sepLadderMCM + sepLadderLadder + mcmLength;
2478 fullWidth = ladderWidth;
7855ea93 2479 fullThickness = grndThickness + fgkGapLadder + mcmThickness + busThickness;
592651e2 2480
bc3498f4 2481 // ** MOVEMENTS **
2482
2483 // grounding foil (shifted only along thickness)
592651e2 2484 Double_t xGrnd = -0.5*fullThickness + 0.5*grndThickness;
bc3498f4 2485 Double_t zGrnd = -0.5*grndLength;
2486 if (!isRight) zGrnd = -zGrnd;
2487 TGeoTranslation *grndTrans = new TGeoTranslation(xGrnd, 0.0, zGrnd);
592651e2 2488
bc3498f4 2489 // ladders (translations along thickness and length)
2490 // layers must be sorted going from the one at largest Z to the one at smallest Z:
592651e2 2491 // -|Zmax| ------> |Zmax|
bc3498f4 2492 // 3 2 1 0
2493 // then, for layer 1 ladders they must be placed exactly this way, and in layer 2 at the opposite.
2494 // In order to remember the placements, we define as "inner" and "outer" ladder respectively
2495 // the one close to barrel center, and the one closer to MCM, respectively.
2496 Double_t xLad, zLadIn, zLadOut;
7855ea93 2497 xLad = xGrnd + 0.5*(grndThickness + ladderThickness) + 0.01175 - fgkGapLadder;
bc3498f4 2498 zLadIn = -sepLadderCenter - 0.5*ladderLength;
2499 zLadOut = zLadIn - sepLadderLadder - ladderLength;
2500 if (!isRight) {
2501 zLadIn = -zLadIn;
2502 zLadOut = -zLadOut;
2503 }
2504 TGeoRotation *rotLad = new TGeoRotation(*gGeoIdentity);
2505 rotLad->RotateZ(90.0);
2506 rotLad->RotateY(180.0);
2507 Double_t sensWidth = fgkmm * 12.800;
2508 Double_t chipWidth = fgkmm * 15.950;
2509 Double_t guardRingWidth = fgkmm * 0.560;
2510 Double_t ladderShift = 0.5 * (chipWidth - sensWidth - 2.0*guardRingWidth);
2511 TGeoCombiTrans *trLadIn = new TGeoCombiTrans(xLad, ladderShift, zLadIn, rotLad);
2512 TGeoCombiTrans *trLadOut = new TGeoCombiTrans(xLad, ladderShift, zLadOut, rotLad);
2513
bc3498f4 2514 // MCM (length and thickness direction, placing at same level as the ladder, which implies to
2515 // recompute the position of center, because ladder and MCM have NOT the same thickness)
2516 // the two copies of the MCM are placed at the same distance from the center, on both sides
7855ea93 2517 Double_t xMCM = xGrnd + 0.5*grndThickness + 0.5*mcmThickness + 0.01175 - fgkGapLadder;
bc3498f4 2518 Double_t yMCM = 0.5*(fullWidth - mcmWidth);
2519 Double_t zMCM = zLadOut - 0.5*ladderLength - 0.5*mcmLength - sepLadderMCM;
2520 if (!isRight) zMCM = zLadOut + 0.5*ladderLength + 0.5*mcmLength + sepLadderMCM;
2521
2522 // create the correction rotations
2523 TGeoRotation *rotMCM = new TGeoRotation(*gGeoIdentity);
2524 rotMCM->RotateY(90.0);
2525 TGeoCombiTrans *trMCM = new TGeoCombiTrans(xMCM, yMCM, zMCM, rotMCM);
2526
7855ea93 2527 // glue between ladders and pixel bus
2528 Double_t xLadGlue = xLad + 0.5*ladderThickness + 0.01175 - fgkGapLadder + 0.5*ladGlueThickness;
2529
bc3498f4 2530 // bus (length and thickness direction)
7855ea93 2531 Double_t xBus = xLadGlue + 0.5*ladGlueThickness + 0.5*busThickness;
bc3498f4 2532 Double_t yBus = 0.5*(fullWidth - busWidth);
2533 Double_t zBus = -0.5*busLength - sepBusCenter;
2534 if (!isRight) zBus = -zBus;
2535 TGeoTranslation *trBus = new TGeoTranslation(xBus, yBus, zBus);
2536
7855ea93 2537 TGeoTranslation *trLadGlue = new TGeoTranslation(xLadGlue, 0.0, zBus);
2538
bc3498f4 2539 // create the container
2540 TGeoVolumeAssembly *container = 0;
2541 if (idxCentral+idxSide==5) {
2542 container = new TGeoVolumeAssembly("HALF-STAVE1");
2543 } else {
2544 container = new TGeoVolumeAssembly("HALF-STAVE0");
2545 }
2546
2547 // add to container all objects
2548 container->AddNode(grndVol, 1, grndTrans);
2549 // ladders are inserted in different order to respect numbering scheme
2550 // which is inverted when going from outer to inner layer
2551 container->AddNode(ladder, idxCentral, trLadIn);
2552 container->AddNode(ladder, idxSide, trLadOut);
7855ea93 2553 container->AddNode(ladderGlue, 0, trLadGlue);
bc3498f4 2554 container->AddNode(mcm, 0, trMCM);
2555 container->AddNode(bus, 0, trBus);
2556
7855ea93 2557 // since the clips are placed in correspondence of two pt1000s,
2558 // their position is computed here, but they are not added by default
2559 // it will be the StavesInSector method which will decide to add them
2560 // anyway, to recovery some size informations on the clip, it must be created
2561 TArrayD clipSize;
2562 // TGeoVolume *clipDummy = CreateClip(clipSize, kTRUE, mgr);
2563 CreateClip(clipSize, kTRUE, mgr);
bc3498f4 2564 // define clip movements (width direction)
7855ea93 2565 sizes[3] = xBus + 0.5*busThickness;
2566 sizes[4] = 0.5 * (fullWidth - busWidth) - clipSize[6] - fgkmm*0.48;
2567 sizes[5] = zBus + busSize[4];
2568 sizes[6] = zBus + busSize[5];
2569
592651e2 2570 return container;
2571}
bc3498f4 2572//
2573//__________________________________________________________________________________________
2574TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateStave
7855ea93 2575(Int_t layer, TArrayD &sizes, TGeoManager *mgr)
2576{
2577 //
bc3498f4 2578 // This method uses all other ones which create pieces of the stave
2579 // and assemblies everything together, in order to return the whole
2580 // stave implementation, which is returned as a TGeoVolumeAssembly,
2581 // due to the presence of some parts which could generate fake overlaps
2582 // when put on the sector.
2583 // This assembly contains, going from bottom to top in the thickness direction:
2584 // - the complete grounding foil, defined by the "CreateGroundingFoil" method which
2585 // already joins some glue and real groudning foil layers for the whole stave (left + right);
2586 // - 4 ladders, which are sorted according to the ALICE numbering scheme, which depends
2587 // on the layer we are building this stave for;
2588 // - 2 MCMs (a left and a right one);
2589 // - 2 pixel buses (a left and a right one);
2590 // ---
2591 // Arguments:
2592 // - the layer number, which determines the displacement and naming of sensitive volumes
7855ea93 2593 // - a TArrayD passed by reference which will contain the size of virtual box containing the stave:
2594 // - sizes[0] = thickness;
2595 // - sizes[1] = length;
2596 // - sizes[2] = width;
2597 // - sizes[3] = common X position of clips
2598 // - sizes[4] = common Y position of clips
2599 // - sizes[5] = Z position of first clip
2600 // - sizes[6] = Z position of second clip
2601 // - sizes[7] = Z position of third clip
2602 // - sizes[8] = Z position of fourth clip
bc3498f4 2603 // - the TGeoManager
2604 //
2605
2606 // create the container
2607 TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form("LAY%d_STAVE", layer));
2608
2609 // define the indexes of the ladders in order to have the correct order
2610 // keeping in mind that the staves will be inserted as they are on layer 2, while
2611 // they are rotated around their local Y axis when inserted on layer 1, so in this case
2612 // they must be put in the "wrong" order to turn out to be right at the end
2613 // The convention is:
2614 // -|Zmax| ------> |Zmax|
2615 // 3 2 1 0
2616 // with respect to the "native" stave reference frame, "left" is in the positive Z
2617 // this leads the definition of these indexes:
2618
2619 Int_t idxCentralL, idxSideL, idxCentralR, idxSideR;
2620 if (layer == 1) {
2621 idxSideL = 3;
2622 idxCentralL = 2;
2623 idxCentralR = 1;
2624 idxSideR = 0;
2625 }
2626 else {
2627 idxSideL = 0;
2628 idxCentralL = 1;
2629 idxCentralR = 2;
2630 idxSideR = 3;
2631 }
2632
2633 // create the two half-staves
7855ea93 2634 TArrayD sizeL, sizeR;
2635 TGeoVolumeAssembly *hstaveL = CreateHalfStave(kFALSE, layer, idxCentralL, idxSideL, sizeL, mgr);
2636 TGeoVolumeAssembly *hstaveR = CreateHalfStave(kTRUE, layer, idxCentralR, idxSideR, sizeR, mgr);
bc3498f4 2637
2638 // copy the size to the stave's one
7855ea93 2639 sizes.Set(9);
bc3498f4 2640 sizes[0] = sizeL[0];
2641 sizes[1] = sizeR[1] + sizeL[1];
2642 sizes[2] = sizeL[2];
7855ea93 2643 sizes[3] = sizeL[3];
2644 sizes[4] = sizeL[4];
2645 sizes[5] = sizeL[5];
2646 sizes[6] = sizeL[6];
2647 sizes[7] = sizeR[5];
2648 sizes[8] = sizeR[6];
bc3498f4 2649
2650 // add to container all objects
2651 container->AddNode(hstaveL, 1);
2652 container->AddNode(hstaveR, 1);
2653
2654 return container;
2655}
2656//
2657//__________________________________________________________________________________________
2658void AliITSv11GeometrySPD::SetAddStave(Bool_t *mask)
2659{
2660 //
2661 // Define a mask which states qhich staves must be placed.
2662 // It is a string which must contain '0' or '1' depending if
2663 // a stave must be placed or not.
2664 // Each place is referred to one of the staves, so the first
2665 // six characters of the string will be checked.
2666 //
2667
2668 Int_t i;
2669 for (i = 0; i < 6; i++) fAddStave[i] = mask[i];
2670}
2671//
2672//__________________________________________________________________________________________
2673void AliITSv11GeometrySPD::StavesInSector(TGeoVolume *moth, TGeoManager *mgr) {
2674 //
592651e2 2675 // Unification of essentially two methods:
2676 // - the one which creates the sector structure
2677 // - the one which returns the complete stave
2678 // ---
2679 // For compatibility, this method requires the same arguments
2680 // asked by "CarbonFiberSector" method, which is recalled here.
2681 // Like this cited method, this one does not return any value,
2682 // but it inserts in the mother volume (argument 'moth') all the stuff
2683 // which composes the complete SPD sector.
2684 // ---
bc3498f4 2685 // In the following, the stave numbering order used for arrays is the same as
2686 // defined in the GetSectorMountingPoints():
2687 // /5
2688 // /\/4
2689 // 1\ \/3
2690 // 0|___\/2
2691 // ---
592651e2 2692 // Arguments: see description of "CarbonFiberSector" method.
2693 //
2694
bc3498f4 2695 Double_t shift[6]; // shift from the innermost position in the sector placement plane
2696 // (where the stave edge is in the point where the rounded corner begins)
2697
2698 shift[0] = fgkmm * -0.691;
7855ea93 2699 shift[1] = fgkmm * 5.041;
bc3498f4 2700 shift[2] = fgkmm * 1.816;
2701 shift[3] = fgkmm * -0.610;
2702 shift[4] = fgkmm * -0.610;
2703 shift[5] = fgkmm * -0.610;
2704
2705 // create stave volumes (different for layer 1 and 2)
7855ea93 2706 TArrayD staveSizes1(9), staveSizes2(9), clipSize(5);
bc3498f4 2707 Double_t &staveHeight = staveSizes1[2], &staveThickness = staveSizes1[0];
7855ea93 2708 TGeoVolume *stave1 = CreateStave(1, staveSizes1, mgr);
2709 TGeoVolume *stave2 = CreateStave(2, staveSizes2, mgr);
2710 TGeoVolume *clip = CreateClip(clipSize, kFALSE, mgr);
2711
bc3498f4 2712 Double_t xL, yL; // leftmost edge of mounting point (XY projection)
2713 Double_t xR, yR; // rightmost edge of mounting point (XY projection)
2714 Double_t xM, yM; // middle point of the segment L-R
2715 Double_t dx, dy; // (xL - xR) and (yL - yR)
2716 Double_t widthLR; // width of the segment L-R
2717 Double_t angle; // stave rotation angle in degrees
2718 Double_t diffWidth; // difference between mounting plane width and stave width (smaller)
2719 Double_t xPos, yPos; // final translation of the stave
2720 Double_t parMovement; // translation in the LR plane direction
2721
7855ea93 2722 staveThickness += fgkGapHalfStave;
2723
bc3498f4 2724 // loop on staves
7855ea93 2725 Int_t i, iclip = 0;
2726 for (i = 0; i < 6; i++) {
bc3498f4 2727 // in debug mode, if this stave is not required, it is skipped
2728 if (!fAddStave[i]) continue;
2729 // retrieve reference points
2730 GetSectorMountingPoints(i, xL, yL, xR, yR);
2731 xM = 0.5 * (xL + xR);
2732 yM = 0.5 * (yL + yR);
2733 dx = xL - xR;
2734 dy = yL - yR;
2735 angle = TMath::ATan2(dy, dx);
2736 widthLR = TMath::Sqrt(dx*dx + dy*dy);
2737 diffWidth = 0.5*(widthLR - staveHeight);
2738 // first, a movement along this plane must be done
2739 // by an amount equal to the width difference
2740 // and then the fixed shift must also be added
2741 parMovement = diffWidth + shift[i];
2742 // due to stave thickness, another movement must be done
2743 // in the direction normal to the mounting plane
2744 // which is computed using an internal method, in a reference frame where the LR segment
2745 // has its middle point in the origin and axes parallel to the master reference frame
2746 if (i == 0) {
2747 ParallelPosition(-0.5*staveThickness, -parMovement, angle, xPos, yPos);
2748 }
2749 if (i == 1) {
2750 ParallelPosition( 0.5*staveThickness, -parMovement, angle, xPos, yPos);
2751 }
2752 else {
2753 ParallelPosition( 0.5*staveThickness, parMovement, angle, xPos, yPos);
592651e2 2754 }
2755 // then we go into the true reference frame
bc3498f4 2756 xPos += xM;
2757 yPos += yM;
592651e2 2758 // using the parameters found here, compute the
2759 // translation and rotation of this stave:
2760 TGeoRotation *rot = new TGeoRotation(*gGeoIdentity);
bc3498f4 2761 if (i == 0 || i == 1) rot->RotateX(180.0);
2762 rot->RotateZ(90.0 + angle * TMath::RadToDeg());
2763 TGeoCombiTrans *trans = new TGeoCombiTrans(xPos, yPos, 0.0, rot);
2764 if (i == 0 || i == 1) {
2765 moth->AddNode(stave1, i, trans);
2766 }
2767 else {
7855ea93 2768 moth->AddNode(stave2, i - 2, trans);
2769 if (i != 2) {
2770 // except in the case of stave #2,
2771 // clips must be added, and this is done directly on the sector
2772 Int_t j;
2773 TArrayD clipSize;
2774 TGeoRotation *rotClip = new TGeoRotation(*gGeoIdentity);
2775 rotClip->RotateZ(-90.0);
2776 rotClip->RotateX(180.0);
2777 Double_t x = staveSizes2[3] + fgkGapHalfStave;
2778 Double_t y = staveSizes2[4];
2779 Double_t z[4] = { staveSizes2[5], staveSizes2[6], staveSizes2[7], staveSizes2[8] };
2780 for (j = 0; j < 4; j++) {
2781 TGeoCombiTrans *trClip = new TGeoCombiTrans(x, y, z[j], rotClip);
2782 *trClip = *trans * *trClip;
2783 moth->AddNode(clip, iclip++, trClip);
2784 }
bc3498f4 2785 }
2786 }
2787 }
592651e2 2788}
bc3498f4 2789//
2790//__________________________________________________________________________________________
2791void AliITSv11GeometrySPD::ParallelPosition(Double_t dist1, Double_t dist2,
2792 Double_t phi, Double_t &x, Double_t &y) const {
592651e2 2793 // Performs the following steps:
bc3498f4 2794 // 1 - finds a straight line parallel to the one passing through the origin and with angle 'phi' with X axis
2795 // (phi in RADIANS);
2796 // 2 - finds another line parallel to the previous one, with a distance 'dist1' from it
2797 // 3 - takes a reference point in the second line in the intersection between the normal to both lines
2798 // passing through the origin
2799 // 4 - finds a point whith has distance 'dist2' from this reference, in the second line (point 2)
592651e2 2800 // ----
bc3498f4 2801 // According to the signs given to dist1 and dist2, the point is found in different position w.r. to the origin
2802 //
2803
592651e2 2804 // compute the point
2805 Double_t cs = TMath::Cos(phi);
2806 Double_t sn = TMath::Sin(phi);
2807
2808 x = dist2*cs - dist1*sn;
2809 y = dist1*cs + dist2*sn;
2810}
bc3498f4 2811//
2812//__________________________________________________________________________________________
2813void AliITSv11GeometrySPD::CreateFigure0(const Char_t *filepath,
2814 const Char_t *type,
2815 TGeoManager *mgr) const {
2816 // Creates Figure 0 for the documentation of this class. In this
2817 // specific case, it creates the X,Y cross section of the SPD suport
2818 // section, center and ends. The output is written to a standard
2819 // file name to the path specificed.
2820 // Inputs:
2821 // const Char_t *filepath Path where the figure is to be drawn
2822 // const Char_t *type The type of file, default is gif.
2823 // TGeoManager *mgr The TGeoManager default gGeoManager
2824 // Output:
2825 // none.
2826 // Return:
2827 // none.
2828 TGeoXtru *sA0,*sA1,*sB0,*sB1;
2829 //TPolyMarker *pmA,*pmB;
2830 TPolyLine plA0,plA1,plB0,plB1;
2831 TCanvas *canvas;
2832 TLatex txt;
2833 Double_t x=0.0,y=0.0;
2834 Int_t i,kNRadii=6;
2835
2836 if(strcmp(filepath,"")){
2837 Error("CreateFigure0","filepath=%s type=%s",filepath,type);
2838 } // end if
2839 //
2840 sA0 = (TGeoXtru*) mgr->GetVolume(
2841 "ITSSPDCarbonFiberSupportSectorA0_1")->GetShape();
2842 sA1 = (TGeoXtru*) mgr->GetVolume(
2843 "ITSSPDCarbonFiberSupportSectorAirA1_1")->GetShape();
2844 sB0 = (TGeoXtru*) mgr->GetVolume(
2845 "ITSSPDCarbonFiberSupportSectorEndB0_1")->GetShape();
2846 sB1 = (TGeoXtru*) mgr->GetVolume(
2847 "ITSSPDCarbonFiberSupportSectorEndAirB1_1")->GetShape();
2848 //pmA = new TPolyMarker();
2849 //pmA.SetMarkerStyle(2); // +
2850 //pmA.SetMarkerColor(7); // light blue
2851 //pmB = new TPolyMarker();
2852 //pmB.SetMarkerStyle(5); // X
2853 //pmB.SetMarkerColor(6); // purple
2854 plA0.SetPolyLine(sA0->GetNvert());
2855 plA0.SetLineColor(1); // black
2856 plA0.SetLineStyle(1);
2857 plA1.SetPolyLine(sA1->GetNvert());
2858 plA1.SetLineColor(2); // red
2859 plA1.SetLineStyle(1);
2860 plB0.SetPolyLine(sB0->GetNvert());
2861 plB0.SetLineColor(3); // Green
2862 plB0.SetLineStyle(2);
2863 plB1.SetPolyLine(sB1->GetNvert());
2864 plB1.SetLineColor(4); // Blue
2865 plB1.SetLineStyle(2);
2866 //for(i=0;i<kNRadii;i++) pmA.SetPoint(i,xyB1p[i][0],xyB1p[i][1]);
2867 //for(i=0;i<kNRadii;i++) pmB.SetPoint(i,xyB1p[i][0],xyB1p[i][1]);
2868 for(i=0;i<sA0->GetNvert();i++) plA0.SetPoint(i,sA0->GetX(i),sA0->GetY(i));
2869 for(i=0;i<sA1->GetNvert();i++) plA1.SetPoint(i,sA1->GetX(i),sA1->GetY(i));
2870 for(i=0;i<sB0->GetNvert();i++) plB0.SetPoint(i,sB0->GetX(i),sB0->GetY(i));
2871 for(i=0;i<sB1->GetNvert();i++) plB1.SetPoint(i,sB1->GetX(i),sB1->GetY(i));
2872 canvas = new TCanvas("AliITSv11GeometrySPDFig0","",1000,1000);
2873 canvas->Range(-3.,-3.,3.,3.);
2874 txt.SetTextSize(0.05);
2875 txt.SetTextAlign(33);
2876 txt.SetTextColor(1);
2877 txt.DrawLatex(2.9,2.9,"Section A-A outer Carbon Fiber surface");
2878 txt.SetTextColor(2);
2879 txt.DrawLatex(2.9,2.5,"Section A-A Inner Carbon Fiber surface");
2880 txt.SetTextColor(3);
2881 txt.DrawLatex(2.9,2.1,"Section E-E outer Carbon Fiber surface");
2882 txt.SetTextColor(4);
2883 txt.DrawLatex(2.9,1.7,"Section E-E Inner Carbon Fiber surface");
2884 plA0.Draw();
2885 plA1.Draw();
2886 plB0.Draw();
2887 plB1.Draw();
2888 //pmA.Draw();
2889 //pmB.Draw();
2890 //
2891 x = 1.0;
2892 y = -2.5;
2893 Char_t chr[3];
2894 for(i=0;i<kNRadii;i++){
2895 sprintf(chr,"%2d",i);txt.DrawLatex(x-0.1,y,chr);
2896 sprintf(chr,"%8.4f",5.000);txt.DrawLatex(x,y,chr);
2897 sprintf(chr,"%8.4f",5.000);txt.DrawLatex(x+0.5,y,chr);
2898 sprintf(chr,"%8.4f",5.000);txt.DrawLatex(x+1.0,y,chr);
2899 sprintf(chr,"%8.4f",5.000);txt.DrawLatex(x+1.5,y,chr);
2900 sprintf(chr,"%8.4f",5.000);txt.DrawLatex(x+2.0,y,chr);
2901 if(kTRUE) txt.DrawLatex(x+2.5,y,"A-A/E-E");
2902 else txt.DrawLatex(x+2.5,y,"E-E");
2903 } // end for i
2904 txt.DrawLatex(x,y,"x_{c} mm");
2905 txt.DrawLatex(x+0.5,y,"y_{c} mm");
2906 txt.DrawLatex(x+1.0,y,"R mm");
2907 txt.DrawLatex(x+1.5,y,"#theta_{start}^{#circle}");
2908 txt.DrawLatex(x+2.0,y,"#theta_{end}^{#circle}");
2909 txt.DrawLatex(x+2.5,y,"Section");
2910 //
2911}
2912//
2913//__________________________________________________________________________________________
2914void AliITSv11GeometrySPD::PrintAscii(ostream *os)const{
2915 // Print out class data values in Ascii Form to output stream
2916 // Inputs:
2917 // ostream *os Output stream where Ascii data is to be writen
2918 // Outputs:
2919 // none.
2920 // Return:
2921 // none.
2922#if defined __GNUC__
2923#if __GNUC__ > 2
2924 ios::fmtflags fmt = cout.flags();
2925#else
2926 Int_t fmt;
2927#endif
2928#else
2929#if defined __ICC || defined __ECC || defined __xlC__
2930 ios::fmtflags fmt;
2931#else
2932 Int_t fmt;
2933#endif
2934#endif
2935 os->flags(fmt); // reset back to old Formating.
2936 return;
2937}
2938//
2939//__________________________________________________________________________________________
2940void AliITSv11GeometrySPD::ReadAscii(istream* /* is */){
2941 // Read in class data values in Ascii Form to output stream
2942 // Inputs:
2943 // istream *is Input stream where Ascii data is to be read in from
2944 // Outputs:
2945 // none.
2946 // Return:
2947 // none.
2948}
2949//
2950//__________________________________________________________________________________________
2951ostream &operator<<(ostream &os,const AliITSv11GeometrySPD &s){
2952 // Standard output streaming function
2953 // Inputs:
2954 // ostream &os output steam
2955 // AliITSvPPRasymmFMD &s class to be streamed.
2956 // Output:
2957 // none.
2958 // Return:
2959 // ostream &os The stream pointer
2960
2961 s.PrintAscii(&os);
2962 return os;
2963}
2964//
2965//__________________________________________________________________________________________
2966istream &operator>>(istream &is,AliITSv11GeometrySPD &s){
2967 // Standard inputput streaming function
2968 // Inputs:
2969 // istream &is input steam
2970 // AliITSvPPRasymmFMD &s class to be streamed.
2971 // Output:
2972 // none.
2973 // Return:
2974 // ostream &os The stream pointer
2975
2976 s.ReadAscii(&is);
2977 return is;
2978}
2979//
2980//__________________________________________________________________________________________
2981Bool_t AliITSv11GeometrySPD::Make2DCrossSections(TPolyLine &a0,TPolyLine &a1,
2982 TPolyLine &b0,TPolyLine &b1,TPolyMarker &p)const{
297369a1 2983 // Fill the objects with the points representing
2984 // a0 the outer carbon fiber SPD sector shape Cross Section A
2985 // a1 the inner carbon fiber SPD sector shape Cross Section A
2986 // b0 the outer carbon fiber SPD sector shape Cross Section B
2987 // b1 the inner carbon fiber SPD sector shape Cross Section B
2988 //
2989 // Inputs:
2990 // TPolyLine &a0 The outer carbon fiber SPD sector shape
2991 // TPolyLine &a1 The Inner carbon fiber SPD sector shape
2992 // TPolyLine &b0 The outer carbon fiber SPD sector shape
2993 // TPolyLine &b1 The Inner carbon fiber SPD sector shape
2994 // TPolyMarker &p The points where the ladders are to be placed
2995 // Outputs:
2996 // TPolyLine &a0 The shape filled with the points
2997 // TPolyLine &a1 The shape filled with the points
2998 // TPolyLine &b0 The shape filled with the points
2999 // TPolyLine &b1 The shape filled with the points
3000 // TPolyMarker &p The filled array of points
3001 // Return:
3002 // An error flag.
3003 Int_t n0,n1,i;
3004 Double_t x,y;
3005 TGeoVolume *a0V,*a1V,*b0V,*b1V;
3006 TGeoXtru *a0S,*a1S,*b0S,*b1S;
3007 TGeoManager *mgr = gGeoManager;
3008
bc3498f4 3009 a0V = mgr->GetVolume("ITS SPD Carbon fiber support Sector A0");
297369a1 3010 a0S = dynamic_cast<TGeoXtru*>(a0V->GetShape());
3011 n0 = a0S->GetNvert();
3012 a0.SetPolyLine(n0+1);
3013 //for(i=0;i<fSPDsectorPoints0.GetSize();i++)
3014 // printf("%d %d %d\n",i,fSPDsectorPoints0[i],fSPDsectorPoints1[i]);
3015 for(i=0;i<n0;i++){
3016 x = a0S->GetX(i);
bc3498f4 3017 y = a0S->GetY(i);
3018 //printf("%d %g %g\n",i,x,y);
297369a1 3019 a0.SetPoint(i,x,y);
bc3498f4 3020 if(i==0) a0.SetPoint(n0,x,y);
297369a1 3021 } // end for i
3022 a1V = mgr->GetVolume("ITSSPDCarbonFiberSupportSectorAirA1");
3023 a1S = dynamic_cast<TGeoXtru*>(a1V->GetShape());
3024 n1 = a1S->GetNvert();
3025 a1.SetPolyLine(n1+1);
3026 for(i=0;i<n1;i++){
3027 x = a1S->GetX(i);
bc3498f4 3028 y = a1S->GetY(i);
297369a1 3029 a1.SetPoint(i,x,y);
bc3498f4 3030 if(i==0) a1.SetPoint(n1,x,y);
297369a1 3031 } // end for i
3032 // Cross Section B
3033 b0V = mgr->GetVolume("ITSSPDCarbonFiberSupportSectorEndB0");
3034 b0S = dynamic_cast<TGeoXtru*>(b0V->GetShape());
3035 n0 = b0S->GetNvert();
3036 b0.SetPolyLine(n0+1);
3037 for(i=0;i<n0;i++){
3038 x = b0S->GetX(i);
bc3498f4 3039 y = b0S->GetY(i);
297369a1 3040 b0.SetPoint(i,x,y);
bc3498f4 3041 if(i==0) b0.SetPoint(n0,x,y);
297369a1 3042 } // end for i
3043 b1V = mgr->GetVolume("ITSSPDCarbonFiberSupportSectorEndAirB1");
3044 b1S = dynamic_cast<TGeoXtru*>(b1V->GetShape());
3045 n1 = b1S->GetNvert();
3046 b1.SetPolyLine(n1+1);
3047 for(i=0;i<n1;i++){
3048 x = b1S->GetX(i);
bc3498f4 3049 y = b1S->GetY(i);
297369a1 3050 b1.SetPoint(i,x,y);
bc3498f4 3051 if(i==0) b1.SetPoint(n1,x,y);
297369a1 3052 } // end for i
3053 //
3054 Double_t x0,y0,x1,y1;
bc3498f4 3055 p.SetPolyMarker(2*fSPDsectorX0.GetSize());
3056 for(i=0;i<fSPDsectorX0.GetSize();i++){
3057 GetSectorMountingPoints(i,x0,y0,x1,y1);
3058 p.SetPoint(2*i,x0,y0);
3059 p.SetPoint(2*i+1,x1,y1);
297369a1 3060 } // end for i
3061 return kTRUE;
3062}