]> git.uio.no Git - u/mrichter/AliRoot.git/blame - MUON/AliMUONClusterSplitterMLEM.cxx
Added loading geometry and magnetic field
[u/mrichter/AliRoot.git] / MUON / AliMUONClusterSplitterMLEM.cxx
CommitLineData
c0a16418 1/**************************************************************************
2* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3* *
4* Author: The ALICE Off-line Project. *
5* Contributors are mentioned in the code where appropriate. *
6* *
7* Permission to use, copy, modify and distribute this software and its *
8* documentation strictly for non-commercial purposes is hereby granted *
9* without fee, provided that the above copyright notice appears in all *
10* copies and that both the copyright notice and this permission notice *
11* appear in the supporting documentation. The authors make no claims *
12* about the suitability of this software for any purpose. It is *
13* provided "as is" without express or implied warranty. *
14**************************************************************************/
15
16// $Id$
17
18/// \class AliMUONClusterSplitterMLEM
19///
20/// Splitter class for the MLEM algorithm...
21///
22/// FIXME: describe it a little bit more here...
23///
24/// \author Laurent Aphecetche (for the "new" C++ structure) and
25/// Alexander Zinchenko, JINR Dubna, for the hardcore of it ;-)
26
27#include "AliMUONClusterSplitterMLEM.h"
28
c0a16418 29#include "AliMUONCluster.h"
30#include "AliMUONPad.h"
31#include "AliMUONPad.h"
32#include "AliMpStationType.h"
33#include "AliMUONConstants.h"
34#include "AliMpDEManager.h"
35#include "AliMUONMathieson.h"
36
866c3232 37#include "AliLog.h"
38
39#include <TClonesArray.h>
40#include <TH2.h>
41#include <TMath.h>
42#include <TMatrixD.h>
43#include <TObjArray.h>
44#include <TROOT.h>
45#include <TRandom.h>
46
78649106 47/// \cond CLASSIMP
c0a16418 48ClassImp(AliMUONClusterSplitterMLEM)
78649106 49/// \endcond
c0a16418 50
51const Double_t AliMUONClusterSplitterMLEM::fgkCouplMin = 1.e-3; // threshold on coupling
52
53//_____________________________________________________________________________
54AliMUONClusterSplitterMLEM::AliMUONClusterSplitterMLEM(Int_t detElemId,
55 TObjArray* fPixArray)
56: TObject(),
57fPixArray(fPixArray),
58fMathieson(0x0),
59fDetElemId(detElemId),
60fNpar(0),
61fQtot(0),
62fnCoupled(0)
63{
64 /// Constructor
65
866c3232 66 AliMp::StationType stationType = AliMpDEManager::GetStationType(fDetElemId);
c0a16418 67
68 Float_t kx3 = AliMUONConstants::SqrtKx3();
69 Float_t ky3 = AliMUONConstants::SqrtKy3();
70 Float_t pitch = AliMUONConstants::Pitch();
71
866c3232 72 if ( stationType == AliMp::kStation1 )
c0a16418 73 {
74 kx3 = AliMUONConstants::SqrtKx3St1();
75 ky3 = AliMUONConstants::SqrtKy3St1();
76 pitch = AliMUONConstants::PitchSt1();
77 }
78
79 fMathieson = new AliMUONMathieson;
80
81 fMathieson->SetPitch(pitch);
82 fMathieson->SetSqrtKx3AndDeriveKx2Kx4(kx3);
83 fMathieson->SetSqrtKy3AndDeriveKy2Ky4(ky3);
84
85}
86
87//_____________________________________________________________________________
88AliMUONClusterSplitterMLEM::~AliMUONClusterSplitterMLEM()
89{
90 delete fMathieson;
91}
92
93//_____________________________________________________________________________
94void
95AliMUONClusterSplitterMLEM::AddBin(TH2 *mlem,
96 Int_t ic, Int_t jc, Int_t mode,
97 Bool_t *used, TObjArray *pix)
98{
99 /// Add a bin to the cluster
100
101 Int_t nx = mlem->GetNbinsX();
102 Int_t ny = mlem->GetNbinsY();
103 Double_t cont1, cont = mlem->GetCellContent(jc,ic);
104 AliMUONPad *pixPtr = 0;
105
106 for (Int_t i=TMath::Max(ic-1,1); i<=TMath::Min(ic+1,ny); i++) {
107 for (Int_t j=TMath::Max(jc-1,1); j<=TMath::Min(jc+1,nx); j++) {
108 if (i != ic && j != jc) continue;
109 if (used[(i-1)*nx+j-1]) continue;
110 cont1 = mlem->GetCellContent(j,i);
111 if (mode && cont1 > cont) continue;
112 used[(i-1)*nx+j-1] = kTRUE;
113 if (cont1 < 0.5) continue;
114 if (pix) pix->Add(BinToPix(mlem,j,i));
115 else {
116 pixPtr = new AliMUONPad (mlem->GetXaxis()->GetBinCenter(j),
117 mlem->GetYaxis()->GetBinCenter(i), 0, 0, cont1);
118 fPixArray->Add((TObject*)pixPtr);
119 }
120 AddBin(mlem, i, j, mode, used, pix); // recursive call
121 }
122 }
123}
124
125//_____________________________________________________________________________
126void
127AliMUONClusterSplitterMLEM::AddCluster(Int_t ic, Int_t nclust,
128 TMatrixD& aijcluclu,
129 Bool_t *used, Int_t *clustNumb, Int_t &nCoupled)
130{
131 /// Add a cluster to the group of coupled clusters
132
133 for (Int_t i=0; i<nclust; i++) {
134 if (used[i]) continue;
135 if (aijcluclu(i,ic) < fgkCouplMin) continue;
136 used[i] = kTRUE;
137 clustNumb[nCoupled++] = i;
138 AddCluster(i, nclust, aijcluclu, used, clustNumb, nCoupled);
139 }
140}
141
142//_____________________________________________________________________________
143TObject*
144AliMUONClusterSplitterMLEM::BinToPix(TH2 *mlem,
145 Int_t jc, Int_t ic)
146{
147 /// Translate histogram bin to pixel
148
149 Double_t yc = mlem->GetYaxis()->GetBinCenter(ic);
150 Double_t xc = mlem->GetXaxis()->GetBinCenter(jc);
151
152 Int_t nPix = fPixArray->GetEntriesFast();
153 AliMUONPad *pixPtr = NULL;
154
155 // Compare pixel and bin positions
156 for (Int_t i=0; i<nPix; i++) {
157 pixPtr = (AliMUONPad*) fPixArray->UncheckedAt(i);
158 if (pixPtr->Charge() < 0.5) continue;
159 if (TMath::Abs(pixPtr->Coord(0)-xc)<1.e-4 && TMath::Abs(pixPtr->Coord(1)-yc)<1.e-4)
160 {
161 return (TObject*) pixPtr;
162 }
163 }
164 AliError(Form(" Something wrong ??? %f %f ", xc, yc));
165 return NULL;
166}
167
168//_____________________________________________________________________________
169Float_t
170AliMUONClusterSplitterMLEM::ChargeIntegration(Double_t x, Double_t y,
171 const AliMUONPad& pad)
172{
173 /// Compute the Mathieson integral on pad area, assuming the center
174 /// of the Mathieson is at (x,y)
175
176 TVector2 lowerLeft(TVector2(x,y)-pad.Position()-pad.Dimensions());
177 TVector2 upperRight(lowerLeft + pad.Dimensions()*2.0);
178
179 return fMathieson->IntXY(lowerLeft.X(),lowerLeft.Y(),
180 upperRight.X(),upperRight.Y());
181}
182
183//_____________________________________________________________________________
184void
185AliMUONClusterSplitterMLEM::Fcn1(const AliMUONCluster& cluster,
186 Int_t & /*fNpar*/, Double_t * /*gin*/,
187 Double_t &f, Double_t *par, Int_t /*iflag*/)
188{
189 /// Fit for one track
190
191 Int_t indx, npads=0;
192 Double_t charge, delta, coef=0, chi2=0, qTot = 0;
193
194 for (Int_t j=0; j< cluster.Multiplicity(); ++j)
195 {
196 AliMUONPad* pad = cluster.Pad(j);
197 if ( pad->Status() != 1 ) continue;
198 if ( pad->DX() > 0 ) npads++; // exclude virtual pads
199 qTot += pad->Charge(); // c.fXyq[2][j];
200 charge = 0;
201 for (Int_t i=fNpar/3; i>=0; --i)
202 { // sum over tracks
203 indx = i<2 ? 2*i : 2*i+1;
204 if (fNpar == 2)
205 {
206 coef = 1;
207 }
208 else
209 {
210 coef = i==fNpar/3 ? par[indx+2] : 1-coef;
211 }
212 coef = TMath::Max (coef, 0.);
213 if ( fNpar == 8 && i < 2)
214 {
215 coef = i==1 ? coef*par[indx+2] : coef - par[7];
216 }
217 coef = TMath::Max (coef, 0.);
218 charge += ChargeIntegration(par[indx],par[indx+1],*pad);
219 }
220 charge *= fQtot;
221 delta = charge - pad->Charge(); //c.fXyq[2][j];
222 delta *= delta;
223 delta /= pad->Charge(); //c.fXyq[2][j];
224 chi2 += delta;
225 } // for (Int_t j=0;
226 f = chi2;
227 Double_t qAver = qTot/npads;
228 f = chi2/qAver;
229}
230
231//_____________________________________________________________________________
232Int_t
233AliMUONClusterSplitterMLEM::Fit(const AliMUONCluster& cluster,
234 Int_t iSimple, Int_t nfit,
235 Int_t *clustFit, TObjArray **clusters,
236 Double_t *parOk,
237 TObjArray& clusterList)
238{
239 /// Find selected clusters to selected pad charges
240
241 // AliDebug(2,Form("iSimple=%d nfit=%d",iSimple,nfit));
242
243 TH2D *mlem = (TH2D*) gROOT->FindObject("mlem");
244 Double_t xmin = mlem->GetXaxis()->GetXmin() - mlem->GetXaxis()->GetBinWidth(1);
245 Double_t xmax = mlem->GetXaxis()->GetXmax() + mlem->GetXaxis()->GetBinWidth(1);
246 Double_t ymin = mlem->GetYaxis()->GetXmin() - mlem->GetYaxis()->GetBinWidth(1);
247 Double_t ymax = mlem->GetYaxis()->GetXmax() + mlem->GetYaxis()->GetBinWidth(1);
248 Double_t step[3]={0.01,0.002,0.02}, xPad = 0, yPad = 99999;
249
250 // Number of pads to use and number of virtual pads
251 Int_t npads = 0, nVirtual = 0, nfit0 = nfit;
252 for (Int_t i=0; i<cluster.Multiplicity(); ++i )
253 {
254 AliMUONPad* pad = cluster.Pad(i);
255 if ( pad->DX() < 0 ) ++nVirtual;
256 if ( pad->Status() !=1 ) continue;
257 if ( pad->DX() > 0 )
258 {
259 ++npads;
260 if (yPad > 9999)
261 {
262 xPad = pad->X();//fXyq[0][i];
263 yPad = pad->Y();//fXyq[1][i];
264 }
265 else
266 {
267 if (pad->DY() < pad->DX() ) //fXyq[4][i] < fXyq[3][i])
268 {
269 yPad = pad->Y();//fXyq[1][i];
270 }
271 else
272 {
273 xPad = pad->X();//fXyq[0][i];
274 }
275 }
276 }
277 }
278
279 fNpar = 0;
280 fQtot = 0;
281
282 if (npads < 2) return 0;
283
284 // FIXME : AliWarning("Reconnect the following code for hit/track passing ?");
285
286 // Int_t tracks[3] = {-1, -1, -1};
287
288 /*
289 Int_t digit = 0;
290 AliMUONDigit *mdig = 0;
291 for (Int_t cath=0; cath<2; cath++) {
292 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
293 if (fPadIJ[0][i] != cath) continue;
294 if (fPadIJ[1][i] != 1) continue;
295 if (fXyq[3][i] < 0) continue; // exclude virtual pads
296 digit = TMath::Nint (fXyq[5][i]);
297 if (digit >= 0) mdig = fInput->Digit(cath,digit);
298 else mdig = fInput->Digit(TMath::Even(cath),-digit-1);
299 //if (!mdig) mdig = fInput->Digit(TMath::Even(cath),digit);
300 if (!mdig) continue; // protection for cluster display
301 if (mdig->Hit() >= 0) {
302 if (tracks[0] < 0) {
303 tracks[0] = mdig->Hit();
304 tracks[1] = mdig->Track(0);
305 } else if (mdig->Track(0) < tracks[1]) {
306 tracks[0] = mdig->Hit();
307 tracks[1] = mdig->Track(0);
308 }
309 }
310 if (mdig->Track(1) >= 0 && mdig->Track(1) != tracks[1]) {
311 if (tracks[2] < 0) tracks[2] = mdig->Track(1);
312 else tracks[2] = TMath::Min (tracks[2], mdig->Track(1));
313 }
314 } // for (Int_t i=0;
315 } // for (Int_t cath=0;
316 */
317
318 // Get number of pads in X and Y
319// Int_t nInX = 0, nInY;
320// PadsInXandY(cluster,nInX, nInY);
321 const Int_t kStatusToTest(1);
322
323 AliMpIntPair nofPads = cluster.NofPads(kStatusToTest);
324 Int_t nInX = nofPads.GetFirst();
325 Int_t nInY = nofPads.GetSecond();
326 //cout << " nInX and Y: " << nInX << " " << nInY << endl;
327
328 Int_t nfitMax = 3;
329 nfitMax = TMath::Min (nfitMax, (npads + 1) / 3);
330 if (nfitMax > 1) {
331 if (nInX < 3 && nInY < 3 || nInX == 3 && nInY < 3 || nInX < 3 && nInY == 3) nfitMax = 1; // not enough pads in each direction
332 }
333 if (nfit > nfitMax) nfit = nfitMax;
334
335 // Take cluster maxima as fitting seeds
336 TObjArray *pix;
337 AliMUONPad *pixPtr;
338 Int_t npxclu;
339 Double_t cont, cmax = 0, xseed = 0, yseed = 0, errOk[8], qq = 0;
340 Double_t xyseed[3][2], qseed[3], xyCand[3][2] = {{0},{0}}, sigCand[3][2] = {{0},{0}};
341
342 for (Int_t ifit=1; ifit<=nfit0; ifit++)
343 {
344 cmax = 0;
345 pix = clusters[clustFit[ifit-1]];
346 npxclu = pix->GetEntriesFast();
347 //qq = 0;
348 for (Int_t clu=0; clu<npxclu; ++clu)
349 {
350 pixPtr = (AliMUONPad*) pix->UncheckedAt(clu);
351 cont = pixPtr->Charge();
352 fQtot += cont;
353 if (cont > cmax)
354 {
355 cmax = cont;
356 xseed = pixPtr->Coord(0);
357 yseed = pixPtr->Coord(1);
358 }
359 qq += cont;
360 xyCand[0][0] += pixPtr->Coord(0) * cont;
361 xyCand[0][1] += pixPtr->Coord(1) * cont;
362 sigCand[0][0] += pixPtr->Coord(0) * pixPtr->Coord(0) * cont;
363 sigCand[0][1] += pixPtr->Coord(1) * pixPtr->Coord(1) * cont;
364 }
365 xyseed[ifit-1][0] = xseed;
366 xyseed[ifit-1][1] = yseed;
367 qseed[ifit-1] = cmax;
368 } // for (Int_t ifit=1;
369
370 xyCand[0][0] /= qq; // <x>
371 xyCand[0][1] /= qq; // <y>
372 sigCand[0][0] = sigCand[0][0]/qq - xyCand[0][0]*xyCand[0][0]; // <x^2> - <x>^2
373 sigCand[0][0] = sigCand[0][0] > 0 ? TMath::Sqrt (sigCand[0][0]) : 0;
374 sigCand[0][1] = sigCand[0][1]/qq - xyCand[0][1]*xyCand[0][1]; // <y^2> - <y>^2
375 sigCand[0][1] = sigCand[0][1] > 0 ? TMath::Sqrt (sigCand[0][1]) : 0;
376// if (fDebug) cout << xyCand[0][0] << " " << xyCand[0][1] << " " << sigCand[0][0] << " " << sigCand[0][1] << endl;
377
378 Int_t nDof, maxSeed[3];//, nMax = 0;
379 Double_t fmin, chi2o = 9999, chi2n;
380
381 TMath::Sort(nfit0, qseed, maxSeed, kTRUE); // in decreasing order
382
383 Double_t *gin = 0, func0, func1, param[8], step0[8];
384 Double_t param0[2][8]={{0},{0}}, deriv[2][8]={{0},{0}};
385 Double_t shift[8], stepMax, derMax, parmin[8], parmax[8], func2[2], shift0;
386 Double_t delta[8], scMax, dder[8], estim, shiftSave = 0;
387 Int_t min, max, nCall = 0, memory[8] = {0}, nLoop, idMax = 0, iestMax = 0, nFail;
388 Double_t rad, dist[3] = {0};
389
390 // Try to fit with one-track hypothesis, then 2-track. If chi2/dof is
391 // lower, try 3-track (if number of pads is sufficient).
392 for (Int_t iseed=0; iseed<nfit; iseed++)
393 {
394
395 if (iseed)
396 {
397 for (Int_t j=0; j<fNpar; j++)
398 {
399 param[j] = parOk[j];
400 }
401 } // for bounded params
402
403 for (Int_t j=0; j<3; j++)
404 {
405 step0[fNpar+j] = shift[fNpar+j] = step[j];
406 }
407
408 if (nfit == 1)
409 {
410 param[fNpar] = xyCand[0][0]; // take COG
411 }
412 else
413 {
414 param[fNpar] = xyseed[maxSeed[iseed]][0];
415 }
416 parmin[fNpar] = xmin;
417 parmax[fNpar++] = xmax;
418 if (nfit == 1)
419 {
420 param[fNpar] = xyCand[0][1]; // take COG
421 }
422 else
423 {
424 param[fNpar] = xyseed[maxSeed[iseed]][1];
425 }
426 parmin[fNpar] = ymin;
427 parmax[fNpar++] = ymax;
428 if (fNpar > 2)
429 {
430 param[fNpar] = fNpar == 4 ? 0.5 : 0.3;
431 parmin[fNpar] = 0;
432 parmax[fNpar++] = 1;
433 }
434 if (iseed)
435 {
436 for (Int_t j=0; j<fNpar; j++)
437 {
438 param0[1][j] = 0;
439 }
440 }
441
442 // Try new algorithm
443 min = nLoop = 1; stepMax = func2[1] = derMax = 999999; nFail = 0;
444
445 while (1)
446 {
447 max = !min;
448 Fcn1(cluster,fNpar, gin, func0, param, 1); nCall++;
449 //cout << " Func: " << func0 << endl;
450
451 func2[max] = func0;
452 for (Int_t j=0; j<fNpar; j++)
453 {
454 param0[max][j] = param[j];
455 delta[j] = step0[j];
456 param[j] += delta[j] / 10;
457 if (j > 0) param[j-1] -= delta[j-1] / 10;
458 Fcn1(cluster,fNpar, gin, func1, param, 1); nCall++;
459 deriv[max][j] = (func1 - func0) / delta[j] * 10; // first derivative
460 //cout << j << " " << deriv[max][j] << endl;
461 dder[j] = param0[0][j] != param0[1][j] ? (deriv[0][j] - deriv[1][j]) /
462 (param0[0][j] - param0[1][j]) : 0; // second derivative
463 }
464 param[fNpar-1] -= delta[fNpar-1] / 10;
465 if (nCall > 2000) break;
466
467 min = func2[0] < func2[1] ? 0 : 1;
468 nFail = min == max ? 0 : nFail + 1;
469
470 stepMax = derMax = estim = 0;
471 for (Int_t j=0; j<fNpar; j++)
472 {
473 // Estimated distance to minimum
474 shift0 = shift[j];
475 if (nLoop == 1)
476 {
477 shift[j] = TMath::Sign (step0[j], -deriv[max][j]); // first step
478 }
479 else if (TMath::Abs(deriv[0][j]) < 1.e-3 && TMath::Abs(deriv[1][j]) < 1.e-3)
480 {
481 shift[j] = 0;
482 }
483 else if (deriv[min][j]*deriv[!min][j] > 0 && TMath::Abs(deriv[min][j]) > TMath::Abs(deriv[!min][j])
484 || TMath::Abs(deriv[0][j]-deriv[1][j]) < 1.e-3 || TMath::Abs(dder[j]) < 1.e-6)
485 {
486 shift[j] = -TMath::Sign (shift[j], (func2[0]-func2[1]) * (param0[0][j]-param0[1][j]));
487 }
488 if (min == max)
489 {
490 if (memory[j] > 1)
491 {
492 shift[j] *= 2;
493 }
494 memory[j]++;
495 }
496 else
497 {
498 shift[j] = dder[j] != 0 ? -deriv[min][j] / dder[j] : 0;
499 memory[j] = 0;
500 }
501
502 if (TMath::Abs(shift[j])/step0[j] > estim)
503 {
504 estim = TMath::Abs(shift[j])/step0[j];
505 iestMax = j;
506 }
507
508 // Too big step
509 if (TMath::Abs(shift[j])/step0[j] > 10) shift[j] = TMath::Sign(10.,shift[j]) * step0[j]; //
510
511 // Failed to improve minimum
512 if (min != max)
513 {
514 memory[j] = 0;
515 param[j] = param0[min][j];
516 if (TMath::Abs(shift[j]+shift0) > 0.1*step0[j])
517 {
518 shift[j] = (shift[j] + shift0) / 2;
519 }
520 else
521 {
522 shift[j] /= -2;
523 }
524 }
525
526 // Too big step
527 if (TMath::Abs(shift[j]*deriv[min][j]) > func2[min])
528 {
529 shift[j] = TMath::Sign (func2[min]/deriv[min][j], shift[j]);
530 }
531
532 // Introduce step relaxation factor
533 if (memory[j] < 3)
534 {
535 scMax = 1 + 4 / TMath::Max(nLoop/2.,1.);
536 if (TMath::Abs(shift0) > 0 && TMath::Abs(shift[j]/shift0) > scMax)
537 {
538 shift[j] = TMath::Sign (shift0*scMax, shift[j]);
539 }
540 }
541 param[j] += shift[j];
542 //MLEM Check parameter limits 27-12-2004
543 if (param[j] < parmin[j])
544 {
545 shift[j] = parmin[j] - param[j];
546 param[j] = parmin[j];
547 }
548 else if (param[j] > parmax[j])
549 {
550 shift[j] = parmax[j] - param[j];
551 param[j] = parmax[j];
552 }
553 //cout << " xxx " << j << " " << shift[j] << " " << param[j] << endl;
554 stepMax = TMath::Max (stepMax, TMath::Abs(shift[j]/step0[j]));
555 if (TMath::Abs(deriv[min][j]) > derMax)
556 {
557 idMax = j;
558 derMax = TMath::Abs (deriv[min][j]);
559 }
560 } // for (Int_t j=0; j<fNpar;
561
562 if (estim < 1 && derMax < 2 || nLoop > 150) break; // minimum was found
563
564 nLoop++;
565
566 // Check for small step
567 if (shift[idMax] == 0)
568 {
569 shift[idMax] = step0[idMax]/10;
570 param[idMax] += shift[idMax];
571 continue;
572 }
573
574 if (!memory[idMax] && derMax > 0.5 && nLoop > 10)
575 {
576 if (dder[idMax] != 0 && TMath::Abs(deriv[min][idMax]/dder[idMax]/shift[idMax]) > 10)
577 {
578 if (min == max) dder[idMax] = -dder[idMax];
579 shift[idMax] = -deriv[min][idMax] / dder[idMax] / 10;
580 param[idMax] += shift[idMax];
581 stepMax = TMath::Max (stepMax, TMath::Abs(shift[idMax])/step0[idMax]);
582 if (min == max) shiftSave = shift[idMax];
583 }
584 if (nFail > 10)
585 {
586 param[idMax] -= shift[idMax];
587 shift[idMax] = 4 * shiftSave * (gRandom->Rndm(0) - 0.5);
588 param[idMax] += shift[idMax];
589 }
590 }
591 } // while (1)
592
593 fmin = func2[min];
594
595 nDof = npads - fNpar + nVirtual;
596 if (!nDof) nDof++;
597 chi2n = fmin / nDof;
598// if (fDebug) cout << " Chi2 " << chi2n << " " << fNpar << endl;
599
600 if (chi2n*1.2+1.e-6 > chi2o ) { fNpar -= 3; break; }
601
602 // Save parameters and errors
603
604 if (nInX == 1) {
605 // One pad per direction
606 for (Int_t i=0; i<fNpar; i++) if (i == 0 || i == 2 || i == 5) param0[min][i] = xPad;
607 }
608 if (nInY == 1) {
609 // One pad per direction
610 for (Int_t i=0; i<fNpar; i++) if (i == 1 || i == 3 || i == 6) param0[min][i] = yPad;
611 }
612
613 /*
614 if (iseed > 0) {
615 // Find distance to the nearest neighbour
616 dist[0] = dist[1] = TMath::Sqrt ((param0[min][0]-param0[min][2])*
617 (param0[min][0]-param0[min][2])
618 +(param0[min][1]-param0[min][3])*
619 (param0[min][1]-param0[min][3]));
620 if (iseed > 1) {
621 dist[2] = TMath::Sqrt ((param0[min][0]-param0[min][5])*
622 (param0[min][0]-param0[min][5])
623 +(param0[min][1]-param0[min][6])*
624 (param0[min][1]-param0[min][6]));
625 rad = TMath::Sqrt ((param0[min][2]-param0[min][5])*
626 (param0[min][2]-param0[min][5])
627 +(param0[min][3]-param0[min][6])*
628 (param0[min][3]-param0[min][6]));
629 if (dist[2] < dist[0]) dist[0] = dist[2];
630 if (rad < dist[1]) dist[1] = rad;
631 if (rad < dist[2]) dist[2] = rad;
632 }
633 cout << dist[0] << " " << dist[1] << " " << dist[2] << endl;
634 if (dist[TMath::LocMin(iseed+1,dist)] < 1.) { fNpar -= 3; break; }
635 }
636 */
637
638 for (Int_t i=0; i<fNpar; i++) {
639 parOk[i] = param0[min][i];
640 //errOk[i] = fmin;
641 errOk[i] = chi2n;
642 // Bounded params
643 parOk[i] = TMath::Max (parOk[i], parmin[i]);
644 parOk[i] = TMath::Min (parOk[i], parmax[i]);
645 }
646
647 chi2o = chi2n;
648 if (fmin < 0.1) break; // !!!???
649 } // for (Int_t iseed=0;
650
651// if (fDebug) {
652// for (Int_t i=0; i<fNpar; i++) {
653// if (i == 4 || i == 7) {
654// if (i == 7 || i == 4 && fNpar < 7) cout << parOk[i] << endl;
655// else cout << parOk[i] * (1-parOk[7]) << endl;
656// continue;
657// }
658// cout << parOk[i] << " " << errOk[i] << endl;
659// }
660// }
661 nfit = (fNpar + 1) / 3;
662 dist[0] = dist[1] = dist[2] = 0;
663
664 if (nfit > 1) {
665 // Find distance to the nearest neighbour
666 dist[0] = dist[1] = TMath::Sqrt ((parOk[0]-parOk[2])*
667 (parOk[0]-parOk[2])
668 +(parOk[1]-parOk[3])*
669 (parOk[1]-parOk[3]));
670 if (nfit > 2) {
671 dist[2] = TMath::Sqrt ((parOk[0]-parOk[5])*
672 (parOk[0]-parOk[5])
673 +(parOk[1]-parOk[6])*
674 (parOk[1]-parOk[6]));
675 rad = TMath::Sqrt ((parOk[2]-parOk[5])*
676 (parOk[2]-parOk[5])
677 +(parOk[3]-parOk[6])*
678 (parOk[3]-parOk[6]));
679 if (dist[2] < dist[0]) dist[0] = dist[2];
680 if (rad < dist[1]) dist[1] = rad;
681 if (rad < dist[2]) dist[2] = rad;
682 }
683 }
684
685 Int_t indx;
686
687 //if (!fDraw) {
688
689 Double_t coef = 0;
690 if (iSimple) fnCoupled = 0;
691 //for (Int_t j=0; j<nfit; j++) {
692 for (Int_t j=nfit-1; j>=0; j--) {
693 indx = j<2 ? j*2 : j*2+1;
694 if (nfit == 1) coef = 1;
695 else coef = j==nfit-1 ? parOk[indx+2] : 1-coef;
696 coef = TMath::Max (coef, 0.);
697 if (nfit == 3 && j < 2) coef = j==1 ? coef*parOk[indx+2] : coef - parOk[7];
698 coef = TMath::Max (coef, 0.);
699
700 //void AliMUONClusterFinderMLEM::AddRawCluster(Double_t x, Double_t y,
701 // Double_t qTot, Double_t fmin,
702 // Int_t nfit, Int_t *tracks,
703 // Double_t /*sigx*/,
704 // Double_t /*sigy*/,
705 // Double_t /*dist*/)
706
707 if ( coef*fQtot >= 14 )
708 {
709 AliMUONCluster* cluster = new AliMUONCluster();
710
711 cluster->SetCharge(coef*fQtot,coef*fQtot);
712 cluster->SetPosition(TVector2(parOk[indx],parOk[indx+1]),TVector2(sigCand[0][0],sigCand[0][1]));
713 cluster->SetChi2(dist[TMath::LocMin(nfit,dist)]);
714
715 // FIXME: we miss some information in this cluster, as compared to
716 // the original AddRawCluster code.
717
718 AliDebug(2,Form("Adding RawCluster detElemId %4d mult %2d charge %5d (xl,yl)=(%9.6g,%9.6g)",
719 fDetElemId,cluster->Multiplicity(),(Int_t)cluster->Charge(),
720 cluster->Position().X(),cluster->Position().Y()));
721
722 clusterList.Add(cluster);
723 }
724 // AddRawCluster (parOk[indx], // double x
725 // parOk[indx+1], // double y
726 // coef*qTot, // double charge
727 // errOk[indx], // double fmin
728 // nfit0+10*nfit+100*nMax+10000*fnCoupled, // int nfit
729 // tracks, // int* tracks
730 // sigCand[0][0], // double sigx
731 // sigCand[0][1], // double sigy
732 // dist[TMath::LocMin(nfit,dist)] // double dist
733 // );
734 }
735 return nfit;
736 }
737
738
739//_____________________________________________________________________________
740void
741AliMUONClusterSplitterMLEM::Split(const AliMUONCluster& cluster,
742 TH2 *mlem,
743 Double_t *coef,
744 TObjArray& clusterList)
745{
746 /// The main steering function to work with clusters of pixels in anode
747 /// plane (find clusters, decouple them from each other, merge them (if
748 /// necessary), pick up coupled pads, call the fitting function)
749
750 Int_t nx = mlem->GetNbinsX();
751 Int_t ny = mlem->GetNbinsY();
752 Int_t nPix = fPixArray->GetEntriesFast();
753
754 Bool_t *used = new Bool_t[ny*nx];
755 Double_t cont;
756 Int_t nclust = 0, indx, indx1;
757
758 for (Int_t i=0; i<ny*nx; i++) used[i] = kFALSE;
759
760 TObjArray *clusters[200]={0};
761 TObjArray *pix;
762
763 // Find clusters of histogram bins (easier to work in 2-D space)
764 for (Int_t i=1; i<=ny; i++)
765 {
766 for (Int_t j=1; j<=nx; j++)
767 {
768 indx = (i-1)*nx + j - 1;
769 if (used[indx]) continue;
770 cont = mlem->GetCellContent(j,i);
771 if (cont < 0.5) continue;
772 pix = new TObjArray(20);
773 used[indx] = 1;
774 pix->Add(BinToPix(mlem,j,i));
775 AddBin(mlem, i, j, 0, used, pix); // recursive call
776 if (nclust >= 200) AliFatal(" Too many clusters !!!");
777 clusters[nclust++] = pix;
778 } // for (Int_t j=1; j<=nx; j++) {
779 } // for (Int_t i=1; i<=ny;
780// if (fDebug) cout << nclust << endl;
781 delete [] used; used = 0;
782
783 // Compute couplings between clusters and clusters to pads
784 Int_t npad = cluster.Multiplicity();
785
786 // Exclude pads with overflows
787 for (Int_t j=0; j<npad; ++j)
788 {
789 AliMUONPad* pad = cluster.Pad(j);
790 if ( pad->IsSaturated() )
791 {
792 pad->SetStatus(-5);
793 }
794 else
795 {
796 pad->SetStatus(0);
797 }
798 }
799
800 // Compute couplings of clusters to pads
801 TMatrixD aijclupad(nclust,npad);
802 aijclupad = 0;
803 Int_t npxclu;
804 for (Int_t iclust=0; iclust<nclust; ++iclust)
805 {
806 pix = clusters[iclust];
807 npxclu = pix->GetEntriesFast();
808 for (Int_t i=0; i<npxclu; ++i)
809 {
810 indx = fPixArray->IndexOf(pix->UncheckedAt(i));
811 for (Int_t j=0; j<npad; ++j)
812 {
813 AliMUONPad* pad = cluster.Pad(j);
814 if ( pad->Status() < 0 && pad->Status() != -5) continue;
815 if (coef[j*nPix+indx] < fgkCouplMin) continue;
816 aijclupad(iclust,j) += coef[j*nPix+indx];
817 }
818 }
819 }
820
821 // Compute couplings between clusters
822 TMatrixD aijcluclu(nclust,nclust);
823 aijcluclu = 0;
824 for (Int_t iclust=0; iclust<nclust; ++iclust)
825 {
826 for (Int_t j=0; j<npad; ++j)
827 {
828 // Exclude overflows
829 if ( cluster.Pad(j)->Status() < 0) continue;
830 if (aijclupad(iclust,j) < fgkCouplMin) continue;
831 for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++)
832 {
833 if (aijclupad(iclust1,j) < fgkCouplMin) continue;
834 aijcluclu(iclust,iclust1) +=
835 TMath::Sqrt (aijclupad(iclust,j)*aijclupad(iclust1,j));
836 }
837 }
838 }
839 for (Int_t iclust=0; iclust<nclust; ++iclust)
840 {
841 for (Int_t iclust1=iclust+1; iclust1<nclust; ++iclust1)
842 {
843 aijcluclu(iclust1,iclust) = aijcluclu(iclust,iclust1);
844 }
845 }
846
847 // Find groups of coupled clusters
848 used = new Bool_t[nclust];
849 for (Int_t i=0; i<nclust; i++) used[i] = kFALSE;
850 Int_t *clustNumb = new Int_t[nclust];
851 Int_t nCoupled, nForFit, minGroup[3], clustFit[3], nfit = 0;
852 Double_t parOk[8];
853
854 for (Int_t igroup=0; igroup<nclust; igroup++)
855 {
856 if (used[igroup]) continue;
857 used[igroup] = kTRUE;
858 clustNumb[0] = igroup;
859 nCoupled = 1;
860 // Find group of coupled clusters
861 AddCluster(igroup, nclust, aijcluclu, used, clustNumb, nCoupled); // recursive
862
863 // if (fDebug) {
864 // cout << " nCoupled: " << nCoupled << endl;
865 // for (Int_t i=0; i<nCoupled; i++) cout << clustNumb[i] << " "; cout << endl;
866 // }
867
868 fnCoupled = nCoupled;
869
870 while (nCoupled > 0)
871 {
872 if (nCoupled < 4)
873 {
874 nForFit = nCoupled;
875 for (Int_t i=0; i<nCoupled; i++) clustFit[i] = clustNumb[i];
876 }
877 else
878 {
879 // Too many coupled clusters to fit - try to decouple them
880 // Find the lowest coupling of 1, 2, min(3,nLinks/2) pixels with
881 // all the others in the group
882 for (Int_t j=0; j<3; j++) minGroup[j] = -1;
883 /*Double_t coupl =*/ MinGroupCoupl(nCoupled, clustNumb, aijcluclu, minGroup);
884
885 // Flag clusters for fit
886 nForFit = 0;
887 while (minGroup[nForFit] >= 0 && nForFit < 3)
888 {
889 clustFit[nForFit] = clustNumb[minGroup[nForFit]];
890 clustNumb[minGroup[nForFit]] -= 999;
891 nForFit++;
892 }
893 } // else
894
895 // Select pads for fit.
896 if (SelectPad(cluster,nCoupled, nForFit, clustNumb, clustFit, aijclupad) < 3 && nCoupled > 1)
897 {
898 // Deselect pads
899 for (Int_t j=0; j<npad; ++j)
900 {
901 AliMUONPad* pad = cluster.Pad(j);
902 if ( pad->Status()==1 ) pad->SetStatus(0);
903 if ( pad->Status()==-9) pad->SetStatus(-5);
904 }
905 // Merge the failed cluster candidates (with too few pads to fit) with
906 // the one with the strongest coupling
907 Merge(cluster,nForFit, nCoupled, clustNumb, clustFit, clusters, aijcluclu, aijclupad);
908 }
909 else
910 {
911 // Do the fit
912 nfit = Fit(cluster,0, nForFit, clustFit, clusters, parOk, clusterList);
913 }
914
915 // Subtract the fitted charges from pads with strong coupling and/or
916 // return pads for further use
917 UpdatePads(cluster,nfit, parOk);
918
919 // Mark used pads
920 for (Int_t j=0; j<npad; ++j)
921 {
922 AliMUONPad* pad = cluster.Pad(j);
923 if ( pad->Status()==1 ) pad->SetStatus(-1);
924 if ( pad->Status()==-9) pad->SetStatus(-5);
925 }
926
927 // Sort the clusters (move to the right the used ones)
928 Int_t beg = 0, end = nCoupled - 1;
929 while (beg < end)
930 {
931 if (clustNumb[beg] >= 0) { ++beg; continue; }
932 for (Int_t j=end; j>beg; --j)
933 {
934 if (clustNumb[j] < 0) continue;
935 end = j - 1;
936 indx = clustNumb[beg];
937 clustNumb[beg] = clustNumb[j];
938 clustNumb[j] = indx;
939 break;
940 }
941 ++beg;
942 }
943
944 nCoupled -= nForFit;
945 if (nCoupled > 3)
946 {
947 // Remove couplings of used clusters
948 for (Int_t iclust=nCoupled; iclust<nCoupled+nForFit;++ iclust)
949 {
950 indx = clustNumb[iclust] + 999;
951 for (Int_t iclust1=0; iclust1<nCoupled; ++iclust1)
952 {
953 indx1 = clustNumb[iclust1];
954 aijcluclu(indx,indx1) = aijcluclu(indx1,indx) = 0;
955 }
956 }
957
958 // Update the remaining clusters couplings (exclude couplings from
959 // the used pads)
960 for (Int_t j=0; j<npad; ++j)
961 {
962 AliMUONPad* pad = cluster.Pad(j);
963 if ( pad->Status() != -1) continue;
964 for (Int_t iclust=0; iclust<nCoupled; ++iclust)
965 {
966 indx = clustNumb[iclust];
967 if (aijclupad(indx,j) < fgkCouplMin) continue;
968 for (Int_t iclust1=iclust+1; iclust1<nCoupled; ++iclust1)
969 {
970 indx1 = clustNumb[iclust1];
971 if (aijclupad(indx1,j) < fgkCouplMin) continue;
972 // Check this
973 aijcluclu(indx,indx1) -=
974 TMath::Sqrt (aijclupad(indx,j)*aijclupad(indx1,j));
975 aijcluclu(indx1,indx) = aijcluclu(indx,indx1);
976 }
977 }
978 pad->SetStatus(-8);
979 } // for (Int_t j=0; j<npad;
980 } // if (nCoupled > 3)
981 } // while (nCoupled > 0)
982 } // for (Int_t igroup=0; igroup<nclust;
983
984 for (Int_t iclust=0; iclust<nclust; iclust++)
985 {
986 pix = clusters[iclust];
987 pix->Clear();
988 delete pix;
989 pix = 0;
990 }
991 delete [] clustNumb;
992 clustNumb = 0;
993 delete [] used;
994 used = 0;
995
996}
997
998//_____________________________________________________________________________
999void
1000AliMUONClusterSplitterMLEM::Merge(const AliMUONCluster& cluster,
1001 Int_t nForFit, Int_t nCoupled,
1002 Int_t *clustNumb, Int_t *clustFit,
1003 TObjArray **clusters,
1004 TMatrixD& aijcluclu, TMatrixD& aijclupad)
1005{
1006 /// Merge the group of clusters with the one having the strongest coupling with them
1007
1008 Int_t indx, indx1, npxclu, npxclu1, imax=0;
1009 TObjArray *pix, *pix1;
1010 Double_t couplMax;
1011
1012 for (Int_t icl=0; icl<nForFit; ++icl)
1013 {
1014 indx = clustFit[icl];
1015 pix = clusters[indx];
1016 npxclu = pix->GetEntriesFast();
1017 couplMax = -1;
1018 for (Int_t icl1=0; icl1<nCoupled; ++icl1)
1019 {
1020 indx1 = clustNumb[icl1];
1021 if (indx1 < 0) continue;
1022 if ( aijcluclu(indx,indx1) > couplMax)
1023 {
1024 couplMax = aijcluclu(indx,indx1);
1025 imax = indx1;
1026 }
1027 } // for (Int_t icl1=0;
1028 // Add to it
1029 pix1 = clusters[imax];
1030 npxclu1 = pix1->GetEntriesFast();
1031 // Add pixels
1032 for (Int_t i=0; i<npxclu; ++i)
1033 {
1034 pix1->Add(pix->UncheckedAt(i));
1035 pix->RemoveAt(i);
1036 }
1037
1038 //Add cluster-to-cluster couplings
1039 for (Int_t icl1=0; icl1<nCoupled; ++icl1)
1040 {
1041 indx1 = clustNumb[icl1];
1042 if (indx1 < 0 || indx1 == imax) continue;
1043 aijcluclu(indx1,imax) += aijcluclu(indx,indx1);
1044 aijcluclu(imax,indx1) = aijcluclu(indx1,imax);
1045 }
1046 aijcluclu(indx,imax) = aijcluclu(imax,indx) = 0;
1047
1048 //Add cluster-to-pad couplings
1049 for (Int_t j=0; j<cluster.Multiplicity(); ++j)
1050 {
1051 AliMUONPad* pad = cluster.Pad(j);
1052 if ( pad->Status() < 0 && pad->Status() != -5 ) continue;// exclude used pads
1053 aijclupad(imax,j) += aijclupad(indx,j);
1054 aijclupad(indx,j) = 0;
1055 }
1056 } // for (Int_t icl=0; icl<nForFit;
1057}
1058
1059
1060//_____________________________________________________________________________
1061Double_t
1062AliMUONClusterSplitterMLEM::MinGroupCoupl(Int_t nCoupled, Int_t *clustNumb,
1063 TMatrixD& aijcluclu, Int_t *minGroup)
1064{
1065 /// Find group of clusters with minimum coupling to all the others
1066
1067 Int_t i123max = TMath::Min(3,nCoupled/2);
1068 Int_t indx, indx1, indx2, indx3, nTot = 0;
1069 Double_t *coupl1 = 0, *coupl2 = 0, *coupl3 = 0;
1070
1071 for (Int_t i123=1; i123<=i123max; i123++) {
1072
1073 if (i123 == 1) {
1074 coupl1 = new Double_t [nCoupled];
1075 for (Int_t i=0; i<nCoupled; i++) coupl1[i] = 0;
1076 }
1077 else if (i123 == 2) {
1078 nTot = nCoupled*nCoupled;
1079 coupl2 = new Double_t [nTot];
1080 for (Int_t i=0; i<nTot; i++) coupl2[i] = 9999;
1081 } else {
1082 nTot = nTot*nCoupled;
1083 coupl3 = new Double_t [nTot];
1084 for (Int_t i=0; i<nTot; i++) coupl3[i] = 9999;
1085 } // else
1086
1087 for (Int_t i=0; i<nCoupled; i++) {
1088 indx1 = clustNumb[i];
1089 for (Int_t j=i+1; j<nCoupled; j++) {
1090 indx2 = clustNumb[j];
1091 if (i123 == 1) {
1092 coupl1[i] += aijcluclu(indx1,indx2);
1093 coupl1[j] += aijcluclu(indx1,indx2);
1094 }
1095 else if (i123 == 2) {
1096 indx = i*nCoupled + j;
1097 coupl2[indx] = coupl1[i] + coupl1[j];
1098 coupl2[indx] -= 2 * (aijcluclu(indx1,indx2));
1099 } else {
1100 for (Int_t k=j+1; k<nCoupled; k++) {
1101 indx3 = clustNumb[k];
1102 indx = i*nCoupled*nCoupled + j*nCoupled + k;
1103 coupl3[indx] = coupl2[i*nCoupled+j] + coupl1[k];
1104 coupl3[indx] -= 2 * (aijcluclu(indx1,indx3)+aijcluclu(indx2,indx3));
1105 }
1106 } // else
1107 } // for (Int_t j=i+1;
1108 } // for (Int_t i=0;
1109 } // for (Int_t i123=1;
1110
1111 // Find minimum coupling
1112 Double_t couplMin = 9999;
1113 Int_t locMin = 0;
1114
1115 for (Int_t i123=1; i123<=i123max; i123++) {
1116 if (i123 == 1) {
1117 locMin = TMath::LocMin(nCoupled, coupl1);
1118 couplMin = coupl1[locMin];
1119 minGroup[0] = locMin;
1120 delete [] coupl1; coupl1 = 0;
1121 }
1122 else if (i123 == 2) {
1123 locMin = TMath::LocMin(nCoupled*nCoupled, coupl2);
1124 if (coupl2[locMin] < couplMin) {
1125 couplMin = coupl2[locMin];
1126 minGroup[0] = locMin/nCoupled;
1127 minGroup[1] = locMin%nCoupled;
1128 }
1129 delete [] coupl2; coupl2 = 0;
1130 } else {
1131 locMin = TMath::LocMin(nTot, coupl3);
1132 if (coupl3[locMin] < couplMin) {
1133 couplMin = coupl3[locMin];
1134 minGroup[0] = locMin/nCoupled/nCoupled;
1135 minGroup[1] = locMin%(nCoupled*nCoupled)/nCoupled;
1136 minGroup[2] = locMin%nCoupled;
1137 }
1138 delete [] coupl3; coupl3 = 0;
1139 } // else
1140 } // for (Int_t i123=1;
1141 return couplMin;
1142}
1143
1144//_____________________________________________________________________________
1145Int_t
1146AliMUONClusterSplitterMLEM::SelectPad(const AliMUONCluster& cluster,
1147 Int_t nCoupled, Int_t nForFit,
1148 Int_t *clustNumb, Int_t *clustFit,
1149 TMatrixD& aijclupad)
1150{
1151 /// Select pads for fit. If too many coupled clusters, find pads giving
1152 /// the strongest coupling with the rest of clusters and exclude them from the fit.
1153
1154 Int_t npad = cluster.Multiplicity();
1155 Double_t *padpix = 0;
1156
1157 if (nCoupled > 3)
1158 {
1159 padpix = new Double_t[npad];
1160 for (Int_t i=0; i<npad; i++) padpix[i] = 0;
1161 }
1162
1163 Int_t nOK = 0, indx, indx1;
1164 for (Int_t iclust=0; iclust<nForFit; ++iclust)
1165 {
1166 indx = clustFit[iclust];
1167 for (Int_t j=0; j<npad; j++)
1168 {
1169 if ( aijclupad(indx,j) < fgkCouplMin) continue;
1170 AliMUONPad* pad = cluster.Pad(j);
1171 if ( pad->Status() == -5 ) pad->SetStatus(-0); // flag overflow
1172 if ( pad->Status() < 0 ) continue; // exclude overflows and used pads
1173 if ( !pad->Status() )
1174 {
1175 pad->SetStatus(1);
1176 ++nOK; // pad to be used in fit
1177 }
1178 if (nCoupled > 3)
1179 {
1180 // Check other clusters
1181 for (Int_t iclust1=0; iclust1<nCoupled; ++iclust1)
1182 {
1183 indx1 = clustNumb[iclust1];
1184 if (indx1 < 0) continue;
1185 if ( aijclupad(indx1,j) < fgkCouplMin ) continue;
1186 padpix[j] += aijclupad(indx1,j);
1187 }
1188 } // if (nCoupled > 3)
1189 } // for (Int_t j=0; j<npad;
1190 } // for (Int_t iclust=0; iclust<nForFit
1191 if (nCoupled < 4) return nOK;
1192
1193 Double_t aaa = 0;
1194 for (Int_t j=0; j<npad; ++j)
1195 {
1196 if (padpix[j] < fgkCouplMin) continue;
1197 aaa += padpix[j];
1198 cluster.Pad(j)->SetStatus(-1); // exclude pads with strong coupling to the other clusters
1199 nOK--;
1200 }
1201 delete [] padpix;
1202 padpix = 0;
1203 return nOK;
1204}
1205
1206//_____________________________________________________________________________
1207void
1208AliMUONClusterSplitterMLEM::UpdatePads(const AliMUONCluster& cluster,
1209 Int_t /*nfit*/, Double_t *par)
1210{
1211 /// Subtract the fitted charges from pads with strong coupling
1212
1213 Int_t indx;
1214 Double_t charge, coef=0;
1215
1216 for (Int_t j=0; j<cluster.Multiplicity(); ++j)
1217 {
1218 AliMUONPad* pad = cluster.Pad(j);
1219 if ( pad->Status() != 1 ) continue;
1220 if (fNpar != 0)
1221 {
1222 charge = 0;
1223 for (Int_t i=fNpar/3; i>=0; --i)
1224 {
1225 // sum over tracks
1226 indx = i<2 ? 2*i : 2*i+1;
1227 if (fNpar == 2)
1228 {
1229 coef = 1;
1230 }
1231 else
1232 {
1233 coef = i==fNpar/3 ? par[indx+2] : 1-coef;
1234 }
1235 coef = TMath::Max (coef, 0.);
1236 if (fNpar == 8 && i < 2)
1237 {
1238 coef = i==1 ? coef*par[indx+2] : coef - par[7];
1239 }
1240 coef = TMath::Max (coef, 0.);
1241 charge += ChargeIntegration(par[indx],par[indx+1],*pad);
1242 }
1243 charge *= fQtot;
1244 pad->SetCharge(pad->Charge()-charge);
1245 } // if (fNpar != 0)
1246
1247 if (pad->Charge() > 6 /*fgkZeroSuppression*/) pad->SetStatus(0);
1248 // return pad for further using // FIXME: remove usage of zerosuppression here
1249
1250 } // for (Int_t j=0;
1251}
1252
1253