Reimplementation of AZ algorithm in new clustering scheme
[u/mrichter/AliRoot.git] / MUON / AliMUONClusterSplitterMLEM.cxx
CommitLineData
c0a16418 1/**************************************************************************
2* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3* *
4* Author: The ALICE Off-line Project. *
5* Contributors are mentioned in the code where appropriate. *
6* *
7* Permission to use, copy, modify and distribute this software and its *
8* documentation strictly for non-commercial purposes is hereby granted *
9* without fee, provided that the above copyright notice appears in all *
10* copies and that both the copyright notice and this permission notice *
11* appear in the supporting documentation. The authors make no claims *
12* about the suitability of this software for any purpose. It is *
13* provided "as is" without express or implied warranty. *
14**************************************************************************/
15
16// $Id$
17
18/// \class AliMUONClusterSplitterMLEM
19///
20/// Splitter class for the MLEM algorithm...
21///
22/// FIXME: describe it a little bit more here...
23///
24/// \author Laurent Aphecetche (for the "new" C++ structure) and
25/// Alexander Zinchenko, JINR Dubna, for the hardcore of it ;-)
26
27#include "AliMUONClusterSplitterMLEM.h"
28
29#include "AliLog.h"
30#include "AliMUONCluster.h"
31#include "AliMUONPad.h"
32#include "AliMUONPad.h"
33#include "AliMpStationType.h"
34#include "AliMUONConstants.h"
35#include "AliMpDEManager.h"
36#include "AliMUONMathieson.h"
37
38#include "TClonesArray.h"
39#include "TH2.h"
40#include "TMath.h"
41#include "TObjArray.h"
42#include "TMatrixD.h"
43#include "TRandom.h"
44
45ClassImp(AliMUONClusterSplitterMLEM)
46
47const Double_t AliMUONClusterSplitterMLEM::fgkCouplMin = 1.e-3; // threshold on coupling
48
49//_____________________________________________________________________________
50AliMUONClusterSplitterMLEM::AliMUONClusterSplitterMLEM(Int_t detElemId,
51 TObjArray* fPixArray)
52: TObject(),
53fPixArray(fPixArray),
54fMathieson(0x0),
55fDetElemId(detElemId),
56fNpar(0),
57fQtot(0),
58fnCoupled(0)
59{
60 /// Constructor
61
62 AliMpStationType stationType = AliMpDEManager::GetStationType(fDetElemId);
63
64 Float_t kx3 = AliMUONConstants::SqrtKx3();
65 Float_t ky3 = AliMUONConstants::SqrtKy3();
66 Float_t pitch = AliMUONConstants::Pitch();
67
68 if ( stationType == kStation1 )
69 {
70 kx3 = AliMUONConstants::SqrtKx3St1();
71 ky3 = AliMUONConstants::SqrtKy3St1();
72 pitch = AliMUONConstants::PitchSt1();
73 }
74
75 fMathieson = new AliMUONMathieson;
76
77 fMathieson->SetPitch(pitch);
78 fMathieson->SetSqrtKx3AndDeriveKx2Kx4(kx3);
79 fMathieson->SetSqrtKy3AndDeriveKy2Ky4(ky3);
80
81}
82
83//_____________________________________________________________________________
84AliMUONClusterSplitterMLEM::~AliMUONClusterSplitterMLEM()
85{
86 delete fMathieson;
87}
88
89//_____________________________________________________________________________
90void
91AliMUONClusterSplitterMLEM::AddBin(TH2 *mlem,
92 Int_t ic, Int_t jc, Int_t mode,
93 Bool_t *used, TObjArray *pix)
94{
95 /// Add a bin to the cluster
96
97 Int_t nx = mlem->GetNbinsX();
98 Int_t ny = mlem->GetNbinsY();
99 Double_t cont1, cont = mlem->GetCellContent(jc,ic);
100 AliMUONPad *pixPtr = 0;
101
102 for (Int_t i=TMath::Max(ic-1,1); i<=TMath::Min(ic+1,ny); i++) {
103 for (Int_t j=TMath::Max(jc-1,1); j<=TMath::Min(jc+1,nx); j++) {
104 if (i != ic && j != jc) continue;
105 if (used[(i-1)*nx+j-1]) continue;
106 cont1 = mlem->GetCellContent(j,i);
107 if (mode && cont1 > cont) continue;
108 used[(i-1)*nx+j-1] = kTRUE;
109 if (cont1 < 0.5) continue;
110 if (pix) pix->Add(BinToPix(mlem,j,i));
111 else {
112 pixPtr = new AliMUONPad (mlem->GetXaxis()->GetBinCenter(j),
113 mlem->GetYaxis()->GetBinCenter(i), 0, 0, cont1);
114 fPixArray->Add((TObject*)pixPtr);
115 }
116 AddBin(mlem, i, j, mode, used, pix); // recursive call
117 }
118 }
119}
120
121//_____________________________________________________________________________
122void
123AliMUONClusterSplitterMLEM::AddCluster(Int_t ic, Int_t nclust,
124 TMatrixD& aijcluclu,
125 Bool_t *used, Int_t *clustNumb, Int_t &nCoupled)
126{
127 /// Add a cluster to the group of coupled clusters
128
129 for (Int_t i=0; i<nclust; i++) {
130 if (used[i]) continue;
131 if (aijcluclu(i,ic) < fgkCouplMin) continue;
132 used[i] = kTRUE;
133 clustNumb[nCoupled++] = i;
134 AddCluster(i, nclust, aijcluclu, used, clustNumb, nCoupled);
135 }
136}
137
138//_____________________________________________________________________________
139TObject*
140AliMUONClusterSplitterMLEM::BinToPix(TH2 *mlem,
141 Int_t jc, Int_t ic)
142{
143 /// Translate histogram bin to pixel
144
145 Double_t yc = mlem->GetYaxis()->GetBinCenter(ic);
146 Double_t xc = mlem->GetXaxis()->GetBinCenter(jc);
147
148 Int_t nPix = fPixArray->GetEntriesFast();
149 AliMUONPad *pixPtr = NULL;
150
151 // Compare pixel and bin positions
152 for (Int_t i=0; i<nPix; i++) {
153 pixPtr = (AliMUONPad*) fPixArray->UncheckedAt(i);
154 if (pixPtr->Charge() < 0.5) continue;
155 if (TMath::Abs(pixPtr->Coord(0)-xc)<1.e-4 && TMath::Abs(pixPtr->Coord(1)-yc)<1.e-4)
156 {
157 return (TObject*) pixPtr;
158 }
159 }
160 AliError(Form(" Something wrong ??? %f %f ", xc, yc));
161 return NULL;
162}
163
164//_____________________________________________________________________________
165Float_t
166AliMUONClusterSplitterMLEM::ChargeIntegration(Double_t x, Double_t y,
167 const AliMUONPad& pad)
168{
169 /// Compute the Mathieson integral on pad area, assuming the center
170 /// of the Mathieson is at (x,y)
171
172 TVector2 lowerLeft(TVector2(x,y)-pad.Position()-pad.Dimensions());
173 TVector2 upperRight(lowerLeft + pad.Dimensions()*2.0);
174
175 return fMathieson->IntXY(lowerLeft.X(),lowerLeft.Y(),
176 upperRight.X(),upperRight.Y());
177}
178
179//_____________________________________________________________________________
180void
181AliMUONClusterSplitterMLEM::Fcn1(const AliMUONCluster& cluster,
182 Int_t & /*fNpar*/, Double_t * /*gin*/,
183 Double_t &f, Double_t *par, Int_t /*iflag*/)
184{
185 /// Fit for one track
186
187 Int_t indx, npads=0;
188 Double_t charge, delta, coef=0, chi2=0, qTot = 0;
189
190 for (Int_t j=0; j< cluster.Multiplicity(); ++j)
191 {
192 AliMUONPad* pad = cluster.Pad(j);
193 if ( pad->Status() != 1 ) continue;
194 if ( pad->DX() > 0 ) npads++; // exclude virtual pads
195 qTot += pad->Charge(); // c.fXyq[2][j];
196 charge = 0;
197 for (Int_t i=fNpar/3; i>=0; --i)
198 { // sum over tracks
199 indx = i<2 ? 2*i : 2*i+1;
200 if (fNpar == 2)
201 {
202 coef = 1;
203 }
204 else
205 {
206 coef = i==fNpar/3 ? par[indx+2] : 1-coef;
207 }
208 coef = TMath::Max (coef, 0.);
209 if ( fNpar == 8 && i < 2)
210 {
211 coef = i==1 ? coef*par[indx+2] : coef - par[7];
212 }
213 coef = TMath::Max (coef, 0.);
214 charge += ChargeIntegration(par[indx],par[indx+1],*pad);
215 }
216 charge *= fQtot;
217 delta = charge - pad->Charge(); //c.fXyq[2][j];
218 delta *= delta;
219 delta /= pad->Charge(); //c.fXyq[2][j];
220 chi2 += delta;
221 } // for (Int_t j=0;
222 f = chi2;
223 Double_t qAver = qTot/npads;
224 f = chi2/qAver;
225}
226
227//_____________________________________________________________________________
228Int_t
229AliMUONClusterSplitterMLEM::Fit(const AliMUONCluster& cluster,
230 Int_t iSimple, Int_t nfit,
231 Int_t *clustFit, TObjArray **clusters,
232 Double_t *parOk,
233 TObjArray& clusterList)
234{
235 /// Find selected clusters to selected pad charges
236
237 // AliDebug(2,Form("iSimple=%d nfit=%d",iSimple,nfit));
238
239 TH2D *mlem = (TH2D*) gROOT->FindObject("mlem");
240 Double_t xmin = mlem->GetXaxis()->GetXmin() - mlem->GetXaxis()->GetBinWidth(1);
241 Double_t xmax = mlem->GetXaxis()->GetXmax() + mlem->GetXaxis()->GetBinWidth(1);
242 Double_t ymin = mlem->GetYaxis()->GetXmin() - mlem->GetYaxis()->GetBinWidth(1);
243 Double_t ymax = mlem->GetYaxis()->GetXmax() + mlem->GetYaxis()->GetBinWidth(1);
244 Double_t step[3]={0.01,0.002,0.02}, xPad = 0, yPad = 99999;
245
246 // Number of pads to use and number of virtual pads
247 Int_t npads = 0, nVirtual = 0, nfit0 = nfit;
248 for (Int_t i=0; i<cluster.Multiplicity(); ++i )
249 {
250 AliMUONPad* pad = cluster.Pad(i);
251 if ( pad->DX() < 0 ) ++nVirtual;
252 if ( pad->Status() !=1 ) continue;
253 if ( pad->DX() > 0 )
254 {
255 ++npads;
256 if (yPad > 9999)
257 {
258 xPad = pad->X();//fXyq[0][i];
259 yPad = pad->Y();//fXyq[1][i];
260 }
261 else
262 {
263 if (pad->DY() < pad->DX() ) //fXyq[4][i] < fXyq[3][i])
264 {
265 yPad = pad->Y();//fXyq[1][i];
266 }
267 else
268 {
269 xPad = pad->X();//fXyq[0][i];
270 }
271 }
272 }
273 }
274
275 fNpar = 0;
276 fQtot = 0;
277
278 if (npads < 2) return 0;
279
280 // FIXME : AliWarning("Reconnect the following code for hit/track passing ?");
281
282 // Int_t tracks[3] = {-1, -1, -1};
283
284 /*
285 Int_t digit = 0;
286 AliMUONDigit *mdig = 0;
287 for (Int_t cath=0; cath<2; cath++) {
288 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
289 if (fPadIJ[0][i] != cath) continue;
290 if (fPadIJ[1][i] != 1) continue;
291 if (fXyq[3][i] < 0) continue; // exclude virtual pads
292 digit = TMath::Nint (fXyq[5][i]);
293 if (digit >= 0) mdig = fInput->Digit(cath,digit);
294 else mdig = fInput->Digit(TMath::Even(cath),-digit-1);
295 //if (!mdig) mdig = fInput->Digit(TMath::Even(cath),digit);
296 if (!mdig) continue; // protection for cluster display
297 if (mdig->Hit() >= 0) {
298 if (tracks[0] < 0) {
299 tracks[0] = mdig->Hit();
300 tracks[1] = mdig->Track(0);
301 } else if (mdig->Track(0) < tracks[1]) {
302 tracks[0] = mdig->Hit();
303 tracks[1] = mdig->Track(0);
304 }
305 }
306 if (mdig->Track(1) >= 0 && mdig->Track(1) != tracks[1]) {
307 if (tracks[2] < 0) tracks[2] = mdig->Track(1);
308 else tracks[2] = TMath::Min (tracks[2], mdig->Track(1));
309 }
310 } // for (Int_t i=0;
311 } // for (Int_t cath=0;
312 */
313
314 // Get number of pads in X and Y
315// Int_t nInX = 0, nInY;
316// PadsInXandY(cluster,nInX, nInY);
317 const Int_t kStatusToTest(1);
318
319 AliMpIntPair nofPads = cluster.NofPads(kStatusToTest);
320 Int_t nInX = nofPads.GetFirst();
321 Int_t nInY = nofPads.GetSecond();
322 //cout << " nInX and Y: " << nInX << " " << nInY << endl;
323
324 Int_t nfitMax = 3;
325 nfitMax = TMath::Min (nfitMax, (npads + 1) / 3);
326 if (nfitMax > 1) {
327 if (nInX < 3 && nInY < 3 || nInX == 3 && nInY < 3 || nInX < 3 && nInY == 3) nfitMax = 1; // not enough pads in each direction
328 }
329 if (nfit > nfitMax) nfit = nfitMax;
330
331 // Take cluster maxima as fitting seeds
332 TObjArray *pix;
333 AliMUONPad *pixPtr;
334 Int_t npxclu;
335 Double_t cont, cmax = 0, xseed = 0, yseed = 0, errOk[8], qq = 0;
336 Double_t xyseed[3][2], qseed[3], xyCand[3][2] = {{0},{0}}, sigCand[3][2] = {{0},{0}};
337
338 for (Int_t ifit=1; ifit<=nfit0; ifit++)
339 {
340 cmax = 0;
341 pix = clusters[clustFit[ifit-1]];
342 npxclu = pix->GetEntriesFast();
343 //qq = 0;
344 for (Int_t clu=0; clu<npxclu; ++clu)
345 {
346 pixPtr = (AliMUONPad*) pix->UncheckedAt(clu);
347 cont = pixPtr->Charge();
348 fQtot += cont;
349 if (cont > cmax)
350 {
351 cmax = cont;
352 xseed = pixPtr->Coord(0);
353 yseed = pixPtr->Coord(1);
354 }
355 qq += cont;
356 xyCand[0][0] += pixPtr->Coord(0) * cont;
357 xyCand[0][1] += pixPtr->Coord(1) * cont;
358 sigCand[0][0] += pixPtr->Coord(0) * pixPtr->Coord(0) * cont;
359 sigCand[0][1] += pixPtr->Coord(1) * pixPtr->Coord(1) * cont;
360 }
361 xyseed[ifit-1][0] = xseed;
362 xyseed[ifit-1][1] = yseed;
363 qseed[ifit-1] = cmax;
364 } // for (Int_t ifit=1;
365
366 xyCand[0][0] /= qq; // <x>
367 xyCand[0][1] /= qq; // <y>
368 sigCand[0][0] = sigCand[0][0]/qq - xyCand[0][0]*xyCand[0][0]; // <x^2> - <x>^2
369 sigCand[0][0] = sigCand[0][0] > 0 ? TMath::Sqrt (sigCand[0][0]) : 0;
370 sigCand[0][1] = sigCand[0][1]/qq - xyCand[0][1]*xyCand[0][1]; // <y^2> - <y>^2
371 sigCand[0][1] = sigCand[0][1] > 0 ? TMath::Sqrt (sigCand[0][1]) : 0;
372// if (fDebug) cout << xyCand[0][0] << " " << xyCand[0][1] << " " << sigCand[0][0] << " " << sigCand[0][1] << endl;
373
374 Int_t nDof, maxSeed[3];//, nMax = 0;
375 Double_t fmin, chi2o = 9999, chi2n;
376
377 TMath::Sort(nfit0, qseed, maxSeed, kTRUE); // in decreasing order
378
379 Double_t *gin = 0, func0, func1, param[8], step0[8];
380 Double_t param0[2][8]={{0},{0}}, deriv[2][8]={{0},{0}};
381 Double_t shift[8], stepMax, derMax, parmin[8], parmax[8], func2[2], shift0;
382 Double_t delta[8], scMax, dder[8], estim, shiftSave = 0;
383 Int_t min, max, nCall = 0, memory[8] = {0}, nLoop, idMax = 0, iestMax = 0, nFail;
384 Double_t rad, dist[3] = {0};
385
386 // Try to fit with one-track hypothesis, then 2-track. If chi2/dof is
387 // lower, try 3-track (if number of pads is sufficient).
388 for (Int_t iseed=0; iseed<nfit; iseed++)
389 {
390
391 if (iseed)
392 {
393 for (Int_t j=0; j<fNpar; j++)
394 {
395 param[j] = parOk[j];
396 }
397 } // for bounded params
398
399 for (Int_t j=0; j<3; j++)
400 {
401 step0[fNpar+j] = shift[fNpar+j] = step[j];
402 }
403
404 if (nfit == 1)
405 {
406 param[fNpar] = xyCand[0][0]; // take COG
407 }
408 else
409 {
410 param[fNpar] = xyseed[maxSeed[iseed]][0];
411 }
412 parmin[fNpar] = xmin;
413 parmax[fNpar++] = xmax;
414 if (nfit == 1)
415 {
416 param[fNpar] = xyCand[0][1]; // take COG
417 }
418 else
419 {
420 param[fNpar] = xyseed[maxSeed[iseed]][1];
421 }
422 parmin[fNpar] = ymin;
423 parmax[fNpar++] = ymax;
424 if (fNpar > 2)
425 {
426 param[fNpar] = fNpar == 4 ? 0.5 : 0.3;
427 parmin[fNpar] = 0;
428 parmax[fNpar++] = 1;
429 }
430 if (iseed)
431 {
432 for (Int_t j=0; j<fNpar; j++)
433 {
434 param0[1][j] = 0;
435 }
436 }
437
438 // Try new algorithm
439 min = nLoop = 1; stepMax = func2[1] = derMax = 999999; nFail = 0;
440
441 while (1)
442 {
443 max = !min;
444 Fcn1(cluster,fNpar, gin, func0, param, 1); nCall++;
445 //cout << " Func: " << func0 << endl;
446
447 func2[max] = func0;
448 for (Int_t j=0; j<fNpar; j++)
449 {
450 param0[max][j] = param[j];
451 delta[j] = step0[j];
452 param[j] += delta[j] / 10;
453 if (j > 0) param[j-1] -= delta[j-1] / 10;
454 Fcn1(cluster,fNpar, gin, func1, param, 1); nCall++;
455 deriv[max][j] = (func1 - func0) / delta[j] * 10; // first derivative
456 //cout << j << " " << deriv[max][j] << endl;
457 dder[j] = param0[0][j] != param0[1][j] ? (deriv[0][j] - deriv[1][j]) /
458 (param0[0][j] - param0[1][j]) : 0; // second derivative
459 }
460 param[fNpar-1] -= delta[fNpar-1] / 10;
461 if (nCall > 2000) break;
462
463 min = func2[0] < func2[1] ? 0 : 1;
464 nFail = min == max ? 0 : nFail + 1;
465
466 stepMax = derMax = estim = 0;
467 for (Int_t j=0; j<fNpar; j++)
468 {
469 // Estimated distance to minimum
470 shift0 = shift[j];
471 if (nLoop == 1)
472 {
473 shift[j] = TMath::Sign (step0[j], -deriv[max][j]); // first step
474 }
475 else if (TMath::Abs(deriv[0][j]) < 1.e-3 && TMath::Abs(deriv[1][j]) < 1.e-3)
476 {
477 shift[j] = 0;
478 }
479 else if (deriv[min][j]*deriv[!min][j] > 0 && TMath::Abs(deriv[min][j]) > TMath::Abs(deriv[!min][j])
480 || TMath::Abs(deriv[0][j]-deriv[1][j]) < 1.e-3 || TMath::Abs(dder[j]) < 1.e-6)
481 {
482 shift[j] = -TMath::Sign (shift[j], (func2[0]-func2[1]) * (param0[0][j]-param0[1][j]));
483 }
484 if (min == max)
485 {
486 if (memory[j] > 1)
487 {
488 shift[j] *= 2;
489 }
490 memory[j]++;
491 }
492 else
493 {
494 shift[j] = dder[j] != 0 ? -deriv[min][j] / dder[j] : 0;
495 memory[j] = 0;
496 }
497
498 if (TMath::Abs(shift[j])/step0[j] > estim)
499 {
500 estim = TMath::Abs(shift[j])/step0[j];
501 iestMax = j;
502 }
503
504 // Too big step
505 if (TMath::Abs(shift[j])/step0[j] > 10) shift[j] = TMath::Sign(10.,shift[j]) * step0[j]; //
506
507 // Failed to improve minimum
508 if (min != max)
509 {
510 memory[j] = 0;
511 param[j] = param0[min][j];
512 if (TMath::Abs(shift[j]+shift0) > 0.1*step0[j])
513 {
514 shift[j] = (shift[j] + shift0) / 2;
515 }
516 else
517 {
518 shift[j] /= -2;
519 }
520 }
521
522 // Too big step
523 if (TMath::Abs(shift[j]*deriv[min][j]) > func2[min])
524 {
525 shift[j] = TMath::Sign (func2[min]/deriv[min][j], shift[j]);
526 }
527
528 // Introduce step relaxation factor
529 if (memory[j] < 3)
530 {
531 scMax = 1 + 4 / TMath::Max(nLoop/2.,1.);
532 if (TMath::Abs(shift0) > 0 && TMath::Abs(shift[j]/shift0) > scMax)
533 {
534 shift[j] = TMath::Sign (shift0*scMax, shift[j]);
535 }
536 }
537 param[j] += shift[j];
538 //MLEM Check parameter limits 27-12-2004
539 if (param[j] < parmin[j])
540 {
541 shift[j] = parmin[j] - param[j];
542 param[j] = parmin[j];
543 }
544 else if (param[j] > parmax[j])
545 {
546 shift[j] = parmax[j] - param[j];
547 param[j] = parmax[j];
548 }
549 //cout << " xxx " << j << " " << shift[j] << " " << param[j] << endl;
550 stepMax = TMath::Max (stepMax, TMath::Abs(shift[j]/step0[j]));
551 if (TMath::Abs(deriv[min][j]) > derMax)
552 {
553 idMax = j;
554 derMax = TMath::Abs (deriv[min][j]);
555 }
556 } // for (Int_t j=0; j<fNpar;
557
558 if (estim < 1 && derMax < 2 || nLoop > 150) break; // minimum was found
559
560 nLoop++;
561
562 // Check for small step
563 if (shift[idMax] == 0)
564 {
565 shift[idMax] = step0[idMax]/10;
566 param[idMax] += shift[idMax];
567 continue;
568 }
569
570 if (!memory[idMax] && derMax > 0.5 && nLoop > 10)
571 {
572 if (dder[idMax] != 0 && TMath::Abs(deriv[min][idMax]/dder[idMax]/shift[idMax]) > 10)
573 {
574 if (min == max) dder[idMax] = -dder[idMax];
575 shift[idMax] = -deriv[min][idMax] / dder[idMax] / 10;
576 param[idMax] += shift[idMax];
577 stepMax = TMath::Max (stepMax, TMath::Abs(shift[idMax])/step0[idMax]);
578 if (min == max) shiftSave = shift[idMax];
579 }
580 if (nFail > 10)
581 {
582 param[idMax] -= shift[idMax];
583 shift[idMax] = 4 * shiftSave * (gRandom->Rndm(0) - 0.5);
584 param[idMax] += shift[idMax];
585 }
586 }
587 } // while (1)
588
589 fmin = func2[min];
590
591 nDof = npads - fNpar + nVirtual;
592 if (!nDof) nDof++;
593 chi2n = fmin / nDof;
594// if (fDebug) cout << " Chi2 " << chi2n << " " << fNpar << endl;
595
596 if (chi2n*1.2+1.e-6 > chi2o ) { fNpar -= 3; break; }
597
598 // Save parameters and errors
599
600 if (nInX == 1) {
601 // One pad per direction
602 for (Int_t i=0; i<fNpar; i++) if (i == 0 || i == 2 || i == 5) param0[min][i] = xPad;
603 }
604 if (nInY == 1) {
605 // One pad per direction
606 for (Int_t i=0; i<fNpar; i++) if (i == 1 || i == 3 || i == 6) param0[min][i] = yPad;
607 }
608
609 /*
610 if (iseed > 0) {
611 // Find distance to the nearest neighbour
612 dist[0] = dist[1] = TMath::Sqrt ((param0[min][0]-param0[min][2])*
613 (param0[min][0]-param0[min][2])
614 +(param0[min][1]-param0[min][3])*
615 (param0[min][1]-param0[min][3]));
616 if (iseed > 1) {
617 dist[2] = TMath::Sqrt ((param0[min][0]-param0[min][5])*
618 (param0[min][0]-param0[min][5])
619 +(param0[min][1]-param0[min][6])*
620 (param0[min][1]-param0[min][6]));
621 rad = TMath::Sqrt ((param0[min][2]-param0[min][5])*
622 (param0[min][2]-param0[min][5])
623 +(param0[min][3]-param0[min][6])*
624 (param0[min][3]-param0[min][6]));
625 if (dist[2] < dist[0]) dist[0] = dist[2];
626 if (rad < dist[1]) dist[1] = rad;
627 if (rad < dist[2]) dist[2] = rad;
628 }
629 cout << dist[0] << " " << dist[1] << " " << dist[2] << endl;
630 if (dist[TMath::LocMin(iseed+1,dist)] < 1.) { fNpar -= 3; break; }
631 }
632 */
633
634 for (Int_t i=0; i<fNpar; i++) {
635 parOk[i] = param0[min][i];
636 //errOk[i] = fmin;
637 errOk[i] = chi2n;
638 // Bounded params
639 parOk[i] = TMath::Max (parOk[i], parmin[i]);
640 parOk[i] = TMath::Min (parOk[i], parmax[i]);
641 }
642
643 chi2o = chi2n;
644 if (fmin < 0.1) break; // !!!???
645 } // for (Int_t iseed=0;
646
647// if (fDebug) {
648// for (Int_t i=0; i<fNpar; i++) {
649// if (i == 4 || i == 7) {
650// if (i == 7 || i == 4 && fNpar < 7) cout << parOk[i] << endl;
651// else cout << parOk[i] * (1-parOk[7]) << endl;
652// continue;
653// }
654// cout << parOk[i] << " " << errOk[i] << endl;
655// }
656// }
657 nfit = (fNpar + 1) / 3;
658 dist[0] = dist[1] = dist[2] = 0;
659
660 if (nfit > 1) {
661 // Find distance to the nearest neighbour
662 dist[0] = dist[1] = TMath::Sqrt ((parOk[0]-parOk[2])*
663 (parOk[0]-parOk[2])
664 +(parOk[1]-parOk[3])*
665 (parOk[1]-parOk[3]));
666 if (nfit > 2) {
667 dist[2] = TMath::Sqrt ((parOk[0]-parOk[5])*
668 (parOk[0]-parOk[5])
669 +(parOk[1]-parOk[6])*
670 (parOk[1]-parOk[6]));
671 rad = TMath::Sqrt ((parOk[2]-parOk[5])*
672 (parOk[2]-parOk[5])
673 +(parOk[3]-parOk[6])*
674 (parOk[3]-parOk[6]));
675 if (dist[2] < dist[0]) dist[0] = dist[2];
676 if (rad < dist[1]) dist[1] = rad;
677 if (rad < dist[2]) dist[2] = rad;
678 }
679 }
680
681 Int_t indx;
682
683 //if (!fDraw) {
684
685 Double_t coef = 0;
686 if (iSimple) fnCoupled = 0;
687 //for (Int_t j=0; j<nfit; j++) {
688 for (Int_t j=nfit-1; j>=0; j--) {
689 indx = j<2 ? j*2 : j*2+1;
690 if (nfit == 1) coef = 1;
691 else coef = j==nfit-1 ? parOk[indx+2] : 1-coef;
692 coef = TMath::Max (coef, 0.);
693 if (nfit == 3 && j < 2) coef = j==1 ? coef*parOk[indx+2] : coef - parOk[7];
694 coef = TMath::Max (coef, 0.);
695
696 //void AliMUONClusterFinderMLEM::AddRawCluster(Double_t x, Double_t y,
697 // Double_t qTot, Double_t fmin,
698 // Int_t nfit, Int_t *tracks,
699 // Double_t /*sigx*/,
700 // Double_t /*sigy*/,
701 // Double_t /*dist*/)
702
703 if ( coef*fQtot >= 14 )
704 {
705 AliMUONCluster* cluster = new AliMUONCluster();
706
707 cluster->SetCharge(coef*fQtot,coef*fQtot);
708 cluster->SetPosition(TVector2(parOk[indx],parOk[indx+1]),TVector2(sigCand[0][0],sigCand[0][1]));
709 cluster->SetChi2(dist[TMath::LocMin(nfit,dist)]);
710
711 // FIXME: we miss some information in this cluster, as compared to
712 // the original AddRawCluster code.
713
714 AliDebug(2,Form("Adding RawCluster detElemId %4d mult %2d charge %5d (xl,yl)=(%9.6g,%9.6g)",
715 fDetElemId,cluster->Multiplicity(),(Int_t)cluster->Charge(),
716 cluster->Position().X(),cluster->Position().Y()));
717
718 clusterList.Add(cluster);
719 }
720 // AddRawCluster (parOk[indx], // double x
721 // parOk[indx+1], // double y
722 // coef*qTot, // double charge
723 // errOk[indx], // double fmin
724 // nfit0+10*nfit+100*nMax+10000*fnCoupled, // int nfit
725 // tracks, // int* tracks
726 // sigCand[0][0], // double sigx
727 // sigCand[0][1], // double sigy
728 // dist[TMath::LocMin(nfit,dist)] // double dist
729 // );
730 }
731 return nfit;
732 }
733
734
735//_____________________________________________________________________________
736void
737AliMUONClusterSplitterMLEM::Split(const AliMUONCluster& cluster,
738 TH2 *mlem,
739 Double_t *coef,
740 TObjArray& clusterList)
741{
742 /// The main steering function to work with clusters of pixels in anode
743 /// plane (find clusters, decouple them from each other, merge them (if
744 /// necessary), pick up coupled pads, call the fitting function)
745
746 Int_t nx = mlem->GetNbinsX();
747 Int_t ny = mlem->GetNbinsY();
748 Int_t nPix = fPixArray->GetEntriesFast();
749
750 Bool_t *used = new Bool_t[ny*nx];
751 Double_t cont;
752 Int_t nclust = 0, indx, indx1;
753
754 for (Int_t i=0; i<ny*nx; i++) used[i] = kFALSE;
755
756 TObjArray *clusters[200]={0};
757 TObjArray *pix;
758
759 // Find clusters of histogram bins (easier to work in 2-D space)
760 for (Int_t i=1; i<=ny; i++)
761 {
762 for (Int_t j=1; j<=nx; j++)
763 {
764 indx = (i-1)*nx + j - 1;
765 if (used[indx]) continue;
766 cont = mlem->GetCellContent(j,i);
767 if (cont < 0.5) continue;
768 pix = new TObjArray(20);
769 used[indx] = 1;
770 pix->Add(BinToPix(mlem,j,i));
771 AddBin(mlem, i, j, 0, used, pix); // recursive call
772 if (nclust >= 200) AliFatal(" Too many clusters !!!");
773 clusters[nclust++] = pix;
774 } // for (Int_t j=1; j<=nx; j++) {
775 } // for (Int_t i=1; i<=ny;
776// if (fDebug) cout << nclust << endl;
777 delete [] used; used = 0;
778
779 // Compute couplings between clusters and clusters to pads
780 Int_t npad = cluster.Multiplicity();
781
782 // Exclude pads with overflows
783 for (Int_t j=0; j<npad; ++j)
784 {
785 AliMUONPad* pad = cluster.Pad(j);
786 if ( pad->IsSaturated() )
787 {
788 pad->SetStatus(-5);
789 }
790 else
791 {
792 pad->SetStatus(0);
793 }
794 }
795
796 // Compute couplings of clusters to pads
797 TMatrixD aijclupad(nclust,npad);
798 aijclupad = 0;
799 Int_t npxclu;
800 for (Int_t iclust=0; iclust<nclust; ++iclust)
801 {
802 pix = clusters[iclust];
803 npxclu = pix->GetEntriesFast();
804 for (Int_t i=0; i<npxclu; ++i)
805 {
806 indx = fPixArray->IndexOf(pix->UncheckedAt(i));
807 for (Int_t j=0; j<npad; ++j)
808 {
809 AliMUONPad* pad = cluster.Pad(j);
810 if ( pad->Status() < 0 && pad->Status() != -5) continue;
811 if (coef[j*nPix+indx] < fgkCouplMin) continue;
812 aijclupad(iclust,j) += coef[j*nPix+indx];
813 }
814 }
815 }
816
817 // Compute couplings between clusters
818 TMatrixD aijcluclu(nclust,nclust);
819 aijcluclu = 0;
820 for (Int_t iclust=0; iclust<nclust; ++iclust)
821 {
822 for (Int_t j=0; j<npad; ++j)
823 {
824 // Exclude overflows
825 if ( cluster.Pad(j)->Status() < 0) continue;
826 if (aijclupad(iclust,j) < fgkCouplMin) continue;
827 for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++)
828 {
829 if (aijclupad(iclust1,j) < fgkCouplMin) continue;
830 aijcluclu(iclust,iclust1) +=
831 TMath::Sqrt (aijclupad(iclust,j)*aijclupad(iclust1,j));
832 }
833 }
834 }
835 for (Int_t iclust=0; iclust<nclust; ++iclust)
836 {
837 for (Int_t iclust1=iclust+1; iclust1<nclust; ++iclust1)
838 {
839 aijcluclu(iclust1,iclust) = aijcluclu(iclust,iclust1);
840 }
841 }
842
843 // Find groups of coupled clusters
844 used = new Bool_t[nclust];
845 for (Int_t i=0; i<nclust; i++) used[i] = kFALSE;
846 Int_t *clustNumb = new Int_t[nclust];
847 Int_t nCoupled, nForFit, minGroup[3], clustFit[3], nfit = 0;
848 Double_t parOk[8];
849
850 for (Int_t igroup=0; igroup<nclust; igroup++)
851 {
852 if (used[igroup]) continue;
853 used[igroup] = kTRUE;
854 clustNumb[0] = igroup;
855 nCoupled = 1;
856 // Find group of coupled clusters
857 AddCluster(igroup, nclust, aijcluclu, used, clustNumb, nCoupled); // recursive
858
859 // if (fDebug) {
860 // cout << " nCoupled: " << nCoupled << endl;
861 // for (Int_t i=0; i<nCoupled; i++) cout << clustNumb[i] << " "; cout << endl;
862 // }
863
864 fnCoupled = nCoupled;
865
866 while (nCoupled > 0)
867 {
868 if (nCoupled < 4)
869 {
870 nForFit = nCoupled;
871 for (Int_t i=0; i<nCoupled; i++) clustFit[i] = clustNumb[i];
872 }
873 else
874 {
875 // Too many coupled clusters to fit - try to decouple them
876 // Find the lowest coupling of 1, 2, min(3,nLinks/2) pixels with
877 // all the others in the group
878 for (Int_t j=0; j<3; j++) minGroup[j] = -1;
879 /*Double_t coupl =*/ MinGroupCoupl(nCoupled, clustNumb, aijcluclu, minGroup);
880
881 // Flag clusters for fit
882 nForFit = 0;
883 while (minGroup[nForFit] >= 0 && nForFit < 3)
884 {
885 clustFit[nForFit] = clustNumb[minGroup[nForFit]];
886 clustNumb[minGroup[nForFit]] -= 999;
887 nForFit++;
888 }
889 } // else
890
891 // Select pads for fit.
892 if (SelectPad(cluster,nCoupled, nForFit, clustNumb, clustFit, aijclupad) < 3 && nCoupled > 1)
893 {
894 // Deselect pads
895 for (Int_t j=0; j<npad; ++j)
896 {
897 AliMUONPad* pad = cluster.Pad(j);
898 if ( pad->Status()==1 ) pad->SetStatus(0);
899 if ( pad->Status()==-9) pad->SetStatus(-5);
900 }
901 // Merge the failed cluster candidates (with too few pads to fit) with
902 // the one with the strongest coupling
903 Merge(cluster,nForFit, nCoupled, clustNumb, clustFit, clusters, aijcluclu, aijclupad);
904 }
905 else
906 {
907 // Do the fit
908 nfit = Fit(cluster,0, nForFit, clustFit, clusters, parOk, clusterList);
909 }
910
911 // Subtract the fitted charges from pads with strong coupling and/or
912 // return pads for further use
913 UpdatePads(cluster,nfit, parOk);
914
915 // Mark used pads
916 for (Int_t j=0; j<npad; ++j)
917 {
918 AliMUONPad* pad = cluster.Pad(j);
919 if ( pad->Status()==1 ) pad->SetStatus(-1);
920 if ( pad->Status()==-9) pad->SetStatus(-5);
921 }
922
923 // Sort the clusters (move to the right the used ones)
924 Int_t beg = 0, end = nCoupled - 1;
925 while (beg < end)
926 {
927 if (clustNumb[beg] >= 0) { ++beg; continue; }
928 for (Int_t j=end; j>beg; --j)
929 {
930 if (clustNumb[j] < 0) continue;
931 end = j - 1;
932 indx = clustNumb[beg];
933 clustNumb[beg] = clustNumb[j];
934 clustNumb[j] = indx;
935 break;
936 }
937 ++beg;
938 }
939
940 nCoupled -= nForFit;
941 if (nCoupled > 3)
942 {
943 // Remove couplings of used clusters
944 for (Int_t iclust=nCoupled; iclust<nCoupled+nForFit;++ iclust)
945 {
946 indx = clustNumb[iclust] + 999;
947 for (Int_t iclust1=0; iclust1<nCoupled; ++iclust1)
948 {
949 indx1 = clustNumb[iclust1];
950 aijcluclu(indx,indx1) = aijcluclu(indx1,indx) = 0;
951 }
952 }
953
954 // Update the remaining clusters couplings (exclude couplings from
955 // the used pads)
956 for (Int_t j=0; j<npad; ++j)
957 {
958 AliMUONPad* pad = cluster.Pad(j);
959 if ( pad->Status() != -1) continue;
960 for (Int_t iclust=0; iclust<nCoupled; ++iclust)
961 {
962 indx = clustNumb[iclust];
963 if (aijclupad(indx,j) < fgkCouplMin) continue;
964 for (Int_t iclust1=iclust+1; iclust1<nCoupled; ++iclust1)
965 {
966 indx1 = clustNumb[iclust1];
967 if (aijclupad(indx1,j) < fgkCouplMin) continue;
968 // Check this
969 aijcluclu(indx,indx1) -=
970 TMath::Sqrt (aijclupad(indx,j)*aijclupad(indx1,j));
971 aijcluclu(indx1,indx) = aijcluclu(indx,indx1);
972 }
973 }
974 pad->SetStatus(-8);
975 } // for (Int_t j=0; j<npad;
976 } // if (nCoupled > 3)
977 } // while (nCoupled > 0)
978 } // for (Int_t igroup=0; igroup<nclust;
979
980 for (Int_t iclust=0; iclust<nclust; iclust++)
981 {
982 pix = clusters[iclust];
983 pix->Clear();
984 delete pix;
985 pix = 0;
986 }
987 delete [] clustNumb;
988 clustNumb = 0;
989 delete [] used;
990 used = 0;
991
992}
993
994//_____________________________________________________________________________
995void
996AliMUONClusterSplitterMLEM::Merge(const AliMUONCluster& cluster,
997 Int_t nForFit, Int_t nCoupled,
998 Int_t *clustNumb, Int_t *clustFit,
999 TObjArray **clusters,
1000 TMatrixD& aijcluclu, TMatrixD& aijclupad)
1001{
1002 /// Merge the group of clusters with the one having the strongest coupling with them
1003
1004 Int_t indx, indx1, npxclu, npxclu1, imax=0;
1005 TObjArray *pix, *pix1;
1006 Double_t couplMax;
1007
1008 for (Int_t icl=0; icl<nForFit; ++icl)
1009 {
1010 indx = clustFit[icl];
1011 pix = clusters[indx];
1012 npxclu = pix->GetEntriesFast();
1013 couplMax = -1;
1014 for (Int_t icl1=0; icl1<nCoupled; ++icl1)
1015 {
1016 indx1 = clustNumb[icl1];
1017 if (indx1 < 0) continue;
1018 if ( aijcluclu(indx,indx1) > couplMax)
1019 {
1020 couplMax = aijcluclu(indx,indx1);
1021 imax = indx1;
1022 }
1023 } // for (Int_t icl1=0;
1024 // Add to it
1025 pix1 = clusters[imax];
1026 npxclu1 = pix1->GetEntriesFast();
1027 // Add pixels
1028 for (Int_t i=0; i<npxclu; ++i)
1029 {
1030 pix1->Add(pix->UncheckedAt(i));
1031 pix->RemoveAt(i);
1032 }
1033
1034 //Add cluster-to-cluster couplings
1035 for (Int_t icl1=0; icl1<nCoupled; ++icl1)
1036 {
1037 indx1 = clustNumb[icl1];
1038 if (indx1 < 0 || indx1 == imax) continue;
1039 aijcluclu(indx1,imax) += aijcluclu(indx,indx1);
1040 aijcluclu(imax,indx1) = aijcluclu(indx1,imax);
1041 }
1042 aijcluclu(indx,imax) = aijcluclu(imax,indx) = 0;
1043
1044 //Add cluster-to-pad couplings
1045 for (Int_t j=0; j<cluster.Multiplicity(); ++j)
1046 {
1047 AliMUONPad* pad = cluster.Pad(j);
1048 if ( pad->Status() < 0 && pad->Status() != -5 ) continue;// exclude used pads
1049 aijclupad(imax,j) += aijclupad(indx,j);
1050 aijclupad(indx,j) = 0;
1051 }
1052 } // for (Int_t icl=0; icl<nForFit;
1053}
1054
1055
1056//_____________________________________________________________________________
1057Double_t
1058AliMUONClusterSplitterMLEM::MinGroupCoupl(Int_t nCoupled, Int_t *clustNumb,
1059 TMatrixD& aijcluclu, Int_t *minGroup)
1060{
1061 /// Find group of clusters with minimum coupling to all the others
1062
1063 Int_t i123max = TMath::Min(3,nCoupled/2);
1064 Int_t indx, indx1, indx2, indx3, nTot = 0;
1065 Double_t *coupl1 = 0, *coupl2 = 0, *coupl3 = 0;
1066
1067 for (Int_t i123=1; i123<=i123max; i123++) {
1068
1069 if (i123 == 1) {
1070 coupl1 = new Double_t [nCoupled];
1071 for (Int_t i=0; i<nCoupled; i++) coupl1[i] = 0;
1072 }
1073 else if (i123 == 2) {
1074 nTot = nCoupled*nCoupled;
1075 coupl2 = new Double_t [nTot];
1076 for (Int_t i=0; i<nTot; i++) coupl2[i] = 9999;
1077 } else {
1078 nTot = nTot*nCoupled;
1079 coupl3 = new Double_t [nTot];
1080 for (Int_t i=0; i<nTot; i++) coupl3[i] = 9999;
1081 } // else
1082
1083 for (Int_t i=0; i<nCoupled; i++) {
1084 indx1 = clustNumb[i];
1085 for (Int_t j=i+1; j<nCoupled; j++) {
1086 indx2 = clustNumb[j];
1087 if (i123 == 1) {
1088 coupl1[i] += aijcluclu(indx1,indx2);
1089 coupl1[j] += aijcluclu(indx1,indx2);
1090 }
1091 else if (i123 == 2) {
1092 indx = i*nCoupled + j;
1093 coupl2[indx] = coupl1[i] + coupl1[j];
1094 coupl2[indx] -= 2 * (aijcluclu(indx1,indx2));
1095 } else {
1096 for (Int_t k=j+1; k<nCoupled; k++) {
1097 indx3 = clustNumb[k];
1098 indx = i*nCoupled*nCoupled + j*nCoupled + k;
1099 coupl3[indx] = coupl2[i*nCoupled+j] + coupl1[k];
1100 coupl3[indx] -= 2 * (aijcluclu(indx1,indx3)+aijcluclu(indx2,indx3));
1101 }
1102 } // else
1103 } // for (Int_t j=i+1;
1104 } // for (Int_t i=0;
1105 } // for (Int_t i123=1;
1106
1107 // Find minimum coupling
1108 Double_t couplMin = 9999;
1109 Int_t locMin = 0;
1110
1111 for (Int_t i123=1; i123<=i123max; i123++) {
1112 if (i123 == 1) {
1113 locMin = TMath::LocMin(nCoupled, coupl1);
1114 couplMin = coupl1[locMin];
1115 minGroup[0] = locMin;
1116 delete [] coupl1; coupl1 = 0;
1117 }
1118 else if (i123 == 2) {
1119 locMin = TMath::LocMin(nCoupled*nCoupled, coupl2);
1120 if (coupl2[locMin] < couplMin) {
1121 couplMin = coupl2[locMin];
1122 minGroup[0] = locMin/nCoupled;
1123 minGroup[1] = locMin%nCoupled;
1124 }
1125 delete [] coupl2; coupl2 = 0;
1126 } else {
1127 locMin = TMath::LocMin(nTot, coupl3);
1128 if (coupl3[locMin] < couplMin) {
1129 couplMin = coupl3[locMin];
1130 minGroup[0] = locMin/nCoupled/nCoupled;
1131 minGroup[1] = locMin%(nCoupled*nCoupled)/nCoupled;
1132 minGroup[2] = locMin%nCoupled;
1133 }
1134 delete [] coupl3; coupl3 = 0;
1135 } // else
1136 } // for (Int_t i123=1;
1137 return couplMin;
1138}
1139
1140//_____________________________________________________________________________
1141Int_t
1142AliMUONClusterSplitterMLEM::SelectPad(const AliMUONCluster& cluster,
1143 Int_t nCoupled, Int_t nForFit,
1144 Int_t *clustNumb, Int_t *clustFit,
1145 TMatrixD& aijclupad)
1146{
1147 /// Select pads for fit. If too many coupled clusters, find pads giving
1148 /// the strongest coupling with the rest of clusters and exclude them from the fit.
1149
1150 Int_t npad = cluster.Multiplicity();
1151 Double_t *padpix = 0;
1152
1153 if (nCoupled > 3)
1154 {
1155 padpix = new Double_t[npad];
1156 for (Int_t i=0; i<npad; i++) padpix[i] = 0;
1157 }
1158
1159 Int_t nOK = 0, indx, indx1;
1160 for (Int_t iclust=0; iclust<nForFit; ++iclust)
1161 {
1162 indx = clustFit[iclust];
1163 for (Int_t j=0; j<npad; j++)
1164 {
1165 if ( aijclupad(indx,j) < fgkCouplMin) continue;
1166 AliMUONPad* pad = cluster.Pad(j);
1167 if ( pad->Status() == -5 ) pad->SetStatus(-0); // flag overflow
1168 if ( pad->Status() < 0 ) continue; // exclude overflows and used pads
1169 if ( !pad->Status() )
1170 {
1171 pad->SetStatus(1);
1172 ++nOK; // pad to be used in fit
1173 }
1174 if (nCoupled > 3)
1175 {
1176 // Check other clusters
1177 for (Int_t iclust1=0; iclust1<nCoupled; ++iclust1)
1178 {
1179 indx1 = clustNumb[iclust1];
1180 if (indx1 < 0) continue;
1181 if ( aijclupad(indx1,j) < fgkCouplMin ) continue;
1182 padpix[j] += aijclupad(indx1,j);
1183 }
1184 } // if (nCoupled > 3)
1185 } // for (Int_t j=0; j<npad;
1186 } // for (Int_t iclust=0; iclust<nForFit
1187 if (nCoupled < 4) return nOK;
1188
1189 Double_t aaa = 0;
1190 for (Int_t j=0; j<npad; ++j)
1191 {
1192 if (padpix[j] < fgkCouplMin) continue;
1193 aaa += padpix[j];
1194 cluster.Pad(j)->SetStatus(-1); // exclude pads with strong coupling to the other clusters
1195 nOK--;
1196 }
1197 delete [] padpix;
1198 padpix = 0;
1199 return nOK;
1200}
1201
1202//_____________________________________________________________________________
1203void
1204AliMUONClusterSplitterMLEM::UpdatePads(const AliMUONCluster& cluster,
1205 Int_t /*nfit*/, Double_t *par)
1206{
1207 /// Subtract the fitted charges from pads with strong coupling
1208
1209 Int_t indx;
1210 Double_t charge, coef=0;
1211
1212 for (Int_t j=0; j<cluster.Multiplicity(); ++j)
1213 {
1214 AliMUONPad* pad = cluster.Pad(j);
1215 if ( pad->Status() != 1 ) continue;
1216 if (fNpar != 0)
1217 {
1218 charge = 0;
1219 for (Int_t i=fNpar/3; i>=0; --i)
1220 {
1221 // sum over tracks
1222 indx = i<2 ? 2*i : 2*i+1;
1223 if (fNpar == 2)
1224 {
1225 coef = 1;
1226 }
1227 else
1228 {
1229 coef = i==fNpar/3 ? par[indx+2] : 1-coef;
1230 }
1231 coef = TMath::Max (coef, 0.);
1232 if (fNpar == 8 && i < 2)
1233 {
1234 coef = i==1 ? coef*par[indx+2] : coef - par[7];
1235 }
1236 coef = TMath::Max (coef, 0.);
1237 charge += ChargeIntegration(par[indx],par[indx+1],*pad);
1238 }
1239 charge *= fQtot;
1240 pad->SetCharge(pad->Charge()-charge);
1241 } // if (fNpar != 0)
1242
1243 if (pad->Charge() > 6 /*fgkZeroSuppression*/) pad->SetStatus(0);
1244 // return pad for further using // FIXME: remove usage of zerosuppression here
1245
1246 } // for (Int_t j=0;
1247}
1248
1249