]> git.uio.no Git - u/mrichter/AliRoot.git/blame - MUON/AliMUONSlatGeometryBuilder.cxx
- Reordering includes from most specific to more general ones
[u/mrichter/AliRoot.git] / MUON / AliMUONSlatGeometryBuilder.cxx
CommitLineData
e118b27e 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
d1cd2474 16// $Id$
17//
18// Class AliMUONSlatGeometryBuilder
19// -------------------------------
20// Abstract base class for geometry construction per chamber.
21//
f4a7360f 22
2057e0cc 23
24
c10e6eaf 25// This Builder is designed according to the enveloppe methode. The basic idea is to be able to allow moves
26// of the slats on the support panels.
27// Those moves can be described with a simple set of parameters. The next step should be now to describe all
28// the slats and their places by a unique
29// class, which would make the SlatBuilder far more compact since now only three parameters can define a slat
30// and its position, like:
2057e0cc 31// * Bool_t rounded_shape_slat
32// * Float_t slat_length
33// * Float_t slat_number or Float_t slat_position
34
d1cd2474 35#include <TVirtualMC.h>
d1cd2474 36#include <TGeoMatrix.h>
30178c30 37#include <Riostream.h>
d1cd2474 38
e118b27e 39#include "AliRun.h"
40#include "AliLog.h"
41
d1cd2474 42#include "AliMUONSlatGeometryBuilder.h"
43#include "AliMUON.h"
b7ef3c96 44#include "AliMUONConstants.h"
e118b27e 45#include "AliMUONGeometryModule.h"
a432117a 46#include "AliMUONGeometryEnvelopeStore.h"
e516b01d 47#include "AliMUONConstants.h"
d1cd2474 48
49ClassImp(AliMUONSlatGeometryBuilder)
50
d1cd2474 51
52//______________________________________________________________________________
53AliMUONSlatGeometryBuilder::AliMUONSlatGeometryBuilder(AliMUON* muon)
b7ef3c96 54 : AliMUONVGeometryBuilder(4, 5, 6, 7, 8, 9),
d1cd2474 55 fMUON(muon)
56{
57// Standard constructor
58
59}
60
61//______________________________________________________________________________
62AliMUONSlatGeometryBuilder::AliMUONSlatGeometryBuilder()
63 : AliMUONVGeometryBuilder(),
64 fMUON(0)
65{
66// Default constructor
67}
68
69
70//______________________________________________________________________________
71AliMUONSlatGeometryBuilder::AliMUONSlatGeometryBuilder(const AliMUONSlatGeometryBuilder& rhs)
72 : AliMUONVGeometryBuilder(rhs)
73{
8c343c7c 74 AliFatal("Copy constructor is not implemented.");
d1cd2474 75}
76
77//______________________________________________________________________________
78AliMUONSlatGeometryBuilder::~AliMUONSlatGeometryBuilder() {
79//
80}
81
82//______________________________________________________________________________
83AliMUONSlatGeometryBuilder&
84AliMUONSlatGeometryBuilder::operator = (const AliMUONSlatGeometryBuilder& rhs)
85{
86 // check assignement to self
87 if (this == &rhs) return *this;
88
8c343c7c 89 AliFatal("Assignment operator is not implemented.");
d1cd2474 90
91 return *this;
92}
93
94//
95// public methods
96//
97
98//______________________________________________________________________________
99void AliMUONSlatGeometryBuilder::CreateGeometry()
100{
e516b01d 101 // CreateGeometry is the method containing all the informations concerning Stations 345 geometry.
102 // It includes description and placements of support panels and slats.
103 // The code comes directly from what was written in AliMUONv1.cxx before, with modifications concerning
104 // the use of Enveloppe method to place the Geant volumes.
105 // Now, few changes would allow the creation of a Slat methode where slat could be described by few parameters,
106 // and this builder would then be dedicated only to the
107 // placements of the slats. Those modifications could shorten the Station 345 geometry by a non-negligeable factor...
d1cd2474 108
e516b01d 109 Int_t *idtmed = fMUON->GetIdtmed()->GetArray()-1099;
110
111 Float_t angle;
112 Float_t *dum=0;
113
114 // define the id of tracking media:
115 Int_t idAir = idtmed[1100]; // medium 1
116 Int_t idGas = idtmed[1108]; // medium 9 = Ar-CO2 gas (80%+20%)
117 Int_t idCopper = idtmed[1110];
118 Int_t idG10 = idtmed[1111];
119 Int_t idCarbon = idtmed[1112];
120 Int_t idRoha = idtmed[1113];
121 Int_t idNomex = idtmed[1114]; // honey comb
122 Int_t idNoryl = idtmed[1115];
123 Int_t idNomexB = idtmed[1116]; // bulk material
124
125 // sensitive area: 40*40 cm**2
126 const Float_t kSensLength = 40.;
127 const Float_t kSensHeight = 40.;
1c334adf 128 const Float_t kSensWidth = AliMUONConstants::Pitch()*2;// 0.5 cm, according to TDR fig 2.120
e516b01d 129 const Int_t kSensMaterial = idGas;
130 // const Float_t kYoverlap = 1.5;
131
132 // PCB dimensions in cm; width: 30 mum copper
133 const Float_t kPcbLength = kSensLength;
134 const Float_t kPcbHeight = 58.; // updated Ch. Finck
135 const Float_t kPcbWidth = 0.003;
136 const Int_t kPcbMaterial = idCopper;
137
138 // Insulating material: 220 mum G10 fiber glued to pcb
139 const Float_t kInsuLength = kPcbLength;
140 const Float_t kInsuHeight = kPcbHeight;
141 const Float_t kInsuWidth = 0.022; // updated Ch. Finck
142 const Int_t kInsuMaterial = idG10;
143
144 // Carbon fiber panels: 200mum carbon/epoxy skin
145 const Float_t kCarbonWidth = 0.020;
146 const Int_t kCarbonMaterial = idCarbon;
147
148 // Nomex (honey comb) between the two panel carbon skins
149 const Float_t kNomexLength = kSensLength;
150 const Float_t kNomexHeight = kSensHeight;
151 const Float_t kNomexWidth = 0.8; // updated Ch. Finck
152 const Int_t kNomexMaterial = idNomex;
153
154 // Bulk Nomex under panel sandwich Ch. Finck
155 const Float_t kNomexBWidth = 0.025;
156 const Int_t kNomexBMaterial = idNomexB;
157
158 // Panel sandwich 0.02 carbon*2 + 0.8 nomex
159 const Float_t kPanelLength = kSensLength;
160 const Float_t kPanelHeight = kSensHeight;
161 const Float_t kPanelWidth = 2 * kCarbonWidth + kNomexWidth;
162
f4a7360f 163 // Frame along the rounded (spacers) slats
164 const Float_t kRframeHeight = 2.00;
165
e516b01d 166 // spacer around the slat: 2 sticks along length,2 along height
167 // H: the horizontal ones
168 const Float_t kHframeLength = kPcbLength;
169 const Float_t kHframeHeight = 1.95; // updated Ch. Finck
170 const Float_t kHframeWidth = kSensWidth;
171 const Int_t kHframeMaterial = idNoryl;
172
173 // V: the vertical ones; vertical spacers
174 const Float_t kVframeLength = 2.5;
175 const Float_t kVframeHeight = kSensHeight + kHframeHeight;
176 const Float_t kVframeWidth = kSensWidth;
177 const Int_t kVframeMaterial = idNoryl;
178
179 // B: the horizontal border filled with rohacell: ok Ch. Finck
180 const Float_t kBframeLength = kHframeLength;
181 const Float_t kBframeHeight = (kPcbHeight - kSensHeight)/2. - kHframeHeight;
182 const Float_t kBframeWidth = kHframeWidth;
183 const Int_t kBframeMaterial = idRoha;
184
185 // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper) for electronics
186 const Float_t kNulocLength = 2.5;
187 const Float_t kNulocHeight = kBframeHeight;
188 const Float_t kNulocWidth = 0.0030 + 0.0014; // equivalent copper width of vetronite;
189 const Int_t kNulocMaterial = idCopper;
190
191 // Slat parameters
192 const Float_t kSlatHeight = kPcbHeight;
193 const Float_t kSlatWidth = kSensWidth + 2.*(kPcbWidth + kInsuWidth + kPanelWidth
194 + kNomexBWidth); //replaced rohacell with Nomex Ch. Finck
eb1c3e3a 195 // const Int_t kSlatMaterial = idAir;
e516b01d 196 const Float_t kDslatLength = -1.25; // position of the slat respect to the beam plane (half vertical spacer) Ch. Finck
197 Float_t zSlat = AliMUONConstants::DzSlat();// implemented Ch. Finck
198 Float_t dzCh = AliMUONConstants::DzCh();
199
200 Float_t spar[3];
201 Int_t i, j;
202 Int_t detElemId;
203
204 // the panel volume contains the nomex
205 Float_t panelpar[3] = { kPanelLength/2., kPanelHeight/2., kPanelWidth/2. };
206 Float_t nomexpar[3] = { kNomexLength/2., kNomexHeight/2., kNomexWidth/2. };
207 Float_t twidth = kPanelWidth + kNomexBWidth;
208 Float_t nomexbpar[3] = {kNomexLength/2., kNomexHeight/2.,twidth/2. };// bulk nomex
209
210 // insulating material contains PCB-> gas
211 twidth = 2*(kInsuWidth + kPcbWidth) + kSensWidth ;
212 Float_t insupar[3] = {kInsuLength/2., kInsuHeight/2., twidth/2. };
213 twidth -= 2 * kInsuWidth;
214 Float_t pcbpar[3] = {kPcbLength/2., kPcbHeight/2., twidth/2. };
215 Float_t senspar[3] = {kSensLength/2., kSensHeight/2., kSensWidth/2. };
216 Float_t theight = 2 * kHframeHeight + kSensHeight;
217 Float_t hFramepar[3] = {kHframeLength/2., theight/2., kHframeWidth/2.};
218 Float_t bFramepar[3] = {kBframeLength/2., kBframeHeight/2., kBframeWidth/2.};
219 Float_t vFramepar[3] = {kVframeLength/2., kVframeHeight/2., kVframeWidth/2.};
220 Float_t nulocpar[3] = {kNulocLength/2., kNulocHeight/2., kNulocWidth/2.};
221
222 Float_t xx;
223 Float_t xxmax = (kBframeLength - kNulocLength)/2.;
224 Int_t index=0;
d1cd2474 225
e516b01d 226 AliMUONChamber *iChamber, *iChamber1, *iChamber2;
d12a7158 227
e516b01d 228 Int_t* fStations = new Int_t[5];
229 for (Int_t i=0; i<5; i++) fStations[i] = 1;
230 fStations[2] = 1;
231
232 if (fStations[2])
d1cd2474 233 {
e516b01d 234 //********************************************************************
e118b27e 235 // Station 3 **
236 //********************************************************************
237 // indices 1 and 2 for first and second chambers in the station
238 // iChamber (first chamber) kept for other quanties than Z,
239 // assumed to be the same in both chambers
e516b01d 240
e118b27e 241 iChamber = &fMUON->Chamber(4);
e516b01d 242 iChamber1 = iChamber;
e118b27e 243 iChamber2 = &fMUON->Chamber(5);
d1cd2474 244
b7ef3c96 245 //GetGeometry(4)->SetDebug(kTRUE);
246 //GetGeometry(5)->SetDebug(kTRUE);
e118b27e 247
6ffd4cb7 248 if (!gAlice->GetModule("DIPO")) {
249 // Mother volume for each chamber in st3 are only defined if Dipole volue is there.
250 // Outer excess and inner recess for mother volume radius
251 // with respect to ROuter and RInner
f29ba3e1 252 Float_t dframepIn = kRframeHeight;
253 Float_t dframepOut= kVframeLength + 37.0; // Additional 37 cm gap is needed to wrap the corners of the slats
6ffd4cb7 254 Float_t tpar[3];
b7ef3c96 255 Double_t dstation = ( (-AliMUONConstants::DefaultChamberZ(5)) -
256 (-AliMUONConstants::DefaultChamberZ(4)) ) /2.1;
257 tpar[0] = AliMUONConstants::Rmin(2)-dframepIn;
258 tpar[1] = AliMUONConstants::Rmax(2)+dframepOut;
6ffd4cb7 259 tpar[2] = dstation;
260 gMC->Gsvolu("CH05", "TUBE", idAir, tpar, 3);
261 gMC->Gsvolu("CH06", "TUBE", idAir, tpar, 3);
6ffd4cb7 262 }
e516b01d 263 // volumes for slat geometry (xx=5,..,10 chamber id):
264 // Sxx0 Sxx1 Sxx2 Sxx3 --> Slat Mother volumes
265 // SxxG --> Sensitive volume (gas)
266 // SxxP --> PCB (copper)
267 // SxxI --> Insulator (G10)
268 // SxxC --> Carbon panel
269 // SxxN --> Nomex comb
270 // SxxX --> Nomex bulk
271 // SxxH, SxxV --> Horizontal and Vertical frames (Noryl)
272 // SB5x --> Volumes for the 35 cm long PCB
273 // slat dimensions: slat is a MOTHER volume!!! made of air
274
275 // only for chamber 5: slat 1 has a PCB shorter by 5cm!
276
277 Float_t tlength = 35.;
278 Float_t panelpar2[3] = { tlength/2., panelpar[1], panelpar[2]};
279 Float_t nomexpar2[3] = { tlength/2., nomexpar[1], nomexpar[2]};
280 Float_t nomexbpar2[3] = { tlength/2., nomexbpar[1], nomexbpar[2]};
281 Float_t insupar2[3] = { tlength/2., insupar[1], insupar[2]};
282 Float_t pcbpar2[3] = { tlength/2., pcbpar[1], pcbpar[2]};
283 Float_t senspar2[3] = { tlength/2., senspar[1], senspar[2]};
284 Float_t hFramepar2[3] = { tlength/2., hFramepar[1], hFramepar[2]};
285 Float_t bFramepar2[3] = { tlength/2., bFramepar[1], bFramepar[2]};
286 Float_t *dum=0;
287 Float_t pcbDLength3 = (kPcbLength - tlength);
288
289 const Int_t kNslats3 = 5; // number of slats per quadrant
290 const Int_t kNPCB3[kNslats3] = {4, 4, 4, 3, 2}; // n PCB per slat
291 const Float_t kXpos3[kNslats3] = {0., 0., 0., 0., 0.};//{31., 0., 0., 0., 0.};
292 const Float_t kYpos3[kNslats3] = {0, 37.8, 37.7, 37.3, 33.7};
293 Float_t slatLength3[kNslats3];
294
295 // create and position the slat (mother) volumes
296
297 char idSlatCh5[5];
298 char idSlatCh6[5];
299 Float_t xSlat3;
300 Float_t ySlat3 = 0;
301 Float_t angle = 0.;
302 Float_t spar2[3];
303 for (i = 0; i < kNslats3; i++){
304
305 slatLength3[i] = kPcbLength * kNPCB3[i] + 2.* kVframeLength;
306 xSlat3 = slatLength3[i]/2. + kDslatLength + kXpos3[i];
307 ySlat3 += kYpos3[i];
308
309 spar[0] = slatLength3[i]/2.;
310 spar[1] = kSlatHeight/2.;
311 spar[2] = kSlatWidth/2.;
312 // take away 5 cm from the first slat in chamber 5
7ddb761c 313 if (i == 0 || i == 1 || i == 2) { // 1 pcb is shortened by 5cm
e516b01d 314 spar2[0] = spar[0] - pcbDLength3/2.;
315 } else {
316 spar2[0] = spar[0];
317 }
318 spar2[1] = spar[1];
319 spar2[2] = spar[2];
320 Float_t dzCh3 = dzCh;
321 Float_t zSlat3 = (i%2 ==0)? -zSlat : zSlat; // seems not that zSlat3 = zSlat4 & 5 refering to plan PQ7EN345-6 ?
322
e856ab99 323 sprintf(idSlatCh5,"LA%d",i+kNslats3-1);
eb1c3e3a 324 //gMC->Gsvolu(idSlatCh5,"BOX",kSlatMaterial,spar2,3);
e856ab99 325 detElemId = 509 - (i + kNslats3-1-4);
e516b01d 326 GetEnvelopes(4)->AddEnvelope(idSlatCh5, detElemId, true, TGeoTranslation(xSlat3, ySlat3, -zSlat3 + dzCh3),
327 TGeoRotation("rot1",90,angle,90,90+angle,0,0) );
328
329 sprintf(idSlatCh5,"LA%d",3*kNslats3-2+i);
eb1c3e3a 330 //gMC->Gsvolu(idSlatCh5,"BOX",kSlatMaterial,spar2,3);
e856ab99 331 detElemId = 500 + (i + kNslats3-1-4);
e516b01d 332 GetEnvelopes(4)->AddEnvelope(idSlatCh5, detElemId, true, TGeoTranslation(-xSlat3, ySlat3, zSlat3 - dzCh3),
333 TGeoRotation("rot2",90,180+angle,90,90+angle,180,0) );
334
335 if (i > 0) {
336 sprintf(idSlatCh5,"LA%d",kNslats3-1-i);
eb1c3e3a 337 // gMC->Gsvolu(idSlatCh5,"BOX",kSlatMaterial,spar2,3);
e856ab99 338 detElemId = 509 + (i + kNslats3-1-4);
e516b01d 339 GetEnvelopes(4)->AddEnvelope(idSlatCh5, detElemId, true, TGeoTranslation(xSlat3, -ySlat3, -zSlat3 + dzCh3),
340 TGeoRotation("rot3",90,angle,90,270+angle,180,0) );
341
342 sprintf(idSlatCh5,"LA%d",3*kNslats3-2-i);
eb1c3e3a 343 // gMC->Gsvolu(idSlatCh5,"BOX",kSlatMaterial,spar2,3);
e856ab99 344 detElemId = 518 - (i + kNslats3-1-4);
e516b01d 345 GetEnvelopes(4)->AddEnvelope(idSlatCh5, detElemId, true, TGeoTranslation(-xSlat3, -ySlat3, zSlat3 - dzCh3),
346 TGeoRotation("rot4",90,180+angle,90,270+angle,0,0) );
347 }
348
349 sprintf(idSlatCh6,"LB%d",kNslats3-1+i);
eb1c3e3a 350 // gMC->Gsvolu(idSlatCh6,"BOX",kSlatMaterial,spar,3);
e856ab99 351 detElemId = 609 - (i + kNslats3-1-4);
e516b01d 352 GetEnvelopes(5)->AddEnvelope(idSlatCh6, detElemId, true, TGeoTranslation(xSlat3, ySlat3, -zSlat3 + dzCh3),
353 TGeoRotation("rot5",90,angle,90,90+angle,0,0) );
354 sprintf(idSlatCh6,"LB%d",3*kNslats3-2+i);
eb1c3e3a 355 // gMC->Gsvolu(idSlatCh6,"BOX",kSlatMaterial,spar,3);
e856ab99 356 detElemId = 600 + (i + kNslats3-1-4);
e516b01d 357 GetEnvelopes(5)->AddEnvelope(idSlatCh6, detElemId, true, TGeoTranslation(-xSlat3, ySlat3, zSlat3 - dzCh3),
358 TGeoRotation("rot6",90,180+angle,90,90+angle,180,0) );
359
360 if (i > 0) {
361 sprintf(idSlatCh6,"LB%d",kNslats3-1-i);
eb1c3e3a 362 //gMC->Gsvolu(idSlatCh6,"BOX",kSlatMaterial,spar,3);
e856ab99 363 detElemId = 609 + (i + kNslats3-1-4);
e516b01d 364 GetEnvelopes(5)->AddEnvelope(idSlatCh6, detElemId, true, TGeoTranslation(xSlat3, -ySlat3, -zSlat3 + dzCh3),
365 TGeoRotation("rot7",90,angle,90,270+angle,180,0) );
366
367 sprintf(idSlatCh6,"LB%d",3*kNslats3-2-i);
eb1c3e3a 368 //gMC->Gsvolu(idSlatCh6,"BOX",kSlatMaterial,spar,3);
e856ab99 369 detElemId = 618 - (i + kNslats3-1-4);
e516b01d 370 GetEnvelopes(5)->AddEnvelope(idSlatCh6, detElemId, true, TGeoTranslation(-xSlat3, -ySlat3, zSlat3 - dzCh3),
371 TGeoRotation("rot8",90,180+angle,90,270+angle,0,0) );
372 }
373 }
d1cd2474 374
e516b01d 375 // create the panel volume
d1cd2474 376
e516b01d 377 gMC->Gsvolu("S05C","BOX",kCarbonMaterial,panelpar,3);
378 gMC->Gsvolu("SB5C","BOX",kCarbonMaterial,panelpar2,3);
379 gMC->Gsvolu("S06C","BOX",kCarbonMaterial,panelpar,3);
4846c3ab 380
e516b01d 381 // create the nomex volume (honey comb)
d1cd2474 382
e516b01d 383 gMC->Gsvolu("S05N","BOX",kNomexMaterial,nomexpar,3);
384 gMC->Gsvolu("SB5N","BOX",kNomexMaterial,nomexpar2,3);
385 gMC->Gsvolu("S06N","BOX",kNomexMaterial,nomexpar,3);
4846c3ab 386
e516b01d 387 // create the nomex volume (bulk)
388
389 gMC->Gsvolu("S05X","BOX",kNomexBMaterial,nomexbpar,3);
390 gMC->Gsvolu("SB5X","BOX",kNomexBMaterial,nomexbpar2,3);
391 gMC->Gsvolu("S06X","BOX",kNomexBMaterial,nomexbpar,3);
d1cd2474 392
e516b01d 393 // create the insulating material volume
394
395 gMC->Gsvolu("S05I","BOX",kInsuMaterial,insupar,3);
396 gMC->Gsvolu("SB5I","BOX",kInsuMaterial,insupar2,3);
397 gMC->Gsvolu("S06I","BOX",kInsuMaterial,insupar,3);
4846c3ab 398
e516b01d 399 // create the PCB volume
d1cd2474 400
e516b01d 401 gMC->Gsvolu("S05P","BOX",kPcbMaterial,pcbpar,3);
402 gMC->Gsvolu("SB5P","BOX",kPcbMaterial,pcbpar2,3);
403 gMC->Gsvolu("S06P","BOX",kPcbMaterial,pcbpar,3);
d1cd2474 404
e516b01d 405 // create the sensitive volumes,
4846c3ab 406
e516b01d 407 gMC->Gsvolu("S05G","BOX",kSensMaterial,dum,0);
408 gMC->Gsvolu("S06G","BOX",kSensMaterial,dum,0);
d1cd2474 409
e516b01d 410 // create the vertical frame volume
d1cd2474 411
e516b01d 412 gMC->Gsvolu("S05V","BOX",kVframeMaterial,vFramepar,3);
413 gMC->Gsvolu("S06V","BOX",kVframeMaterial,vFramepar,3);
d1cd2474 414
e516b01d 415 // create the horizontal frame volume
d1cd2474 416
e516b01d 417 gMC->Gsvolu("S05H","BOX",kHframeMaterial,hFramepar,3);
418 gMC->Gsvolu("SB5H","BOX",kHframeMaterial,hFramepar2,3);
419 gMC->Gsvolu("S06H","BOX",kHframeMaterial,hFramepar,3);
4846c3ab 420
e516b01d 421 // create the horizontal border volume
d1cd2474 422
e516b01d 423 gMC->Gsvolu("S05B","BOX",kBframeMaterial,bFramepar,3);
424 gMC->Gsvolu("SB5B","BOX",kBframeMaterial,bFramepar2,3);
425 gMC->Gsvolu("S06B","BOX",kBframeMaterial,bFramepar,3);
4846c3ab 426
e516b01d 427 index = 0;
428 for (i = 0; i<kNslats3; i++){
429 for (Int_t quadrant = 1; quadrant <= 4; quadrant++) {
430
431 if (i == 0 && quadrant == 2) continue;
432 if (i == 0 && quadrant == 4) continue;
433
434 sprintf(idSlatCh5,"LA%d",ConvertSlatNum(i,quadrant,kNslats3-1));
435 sprintf(idSlatCh6,"LB%d",ConvertSlatNum(i,quadrant,kNslats3-1));
436 Float_t xvFrame = (slatLength3[i] - kVframeLength)/2.;
437 Float_t xvFrame2 = xvFrame;
438
439 if (i == 0 || i == 1 || i == 2) xvFrame2 -= pcbDLength3/2.;
440
441 // position the vertical frames
442 if ( i > 2) {
443 GetEnvelopes(4)->AddEnvelopeConstituent("S05V", idSlatCh5,
444 (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
445 GetEnvelopes(4)->AddEnvelopeConstituent("S05V", idSlatCh5,
446 (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
447 GetEnvelopes(5)->AddEnvelopeConstituent("S06V", idSlatCh6,
448 (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
449 GetEnvelopes(5)->AddEnvelopeConstituent("S06V", idSlatCh6,
450 (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
451 }
452
453 if (i == 2) {
454 GetEnvelopes(4)->AddEnvelopeConstituent("S05V", idSlatCh5,
455 (2*i-1)*10+quadrant,TGeoTranslation(xvFrame2,0.,0.));
456 GetEnvelopes(4)->AddEnvelopeConstituent("S05V", idSlatCh5,
457 (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
458 GetEnvelopes(5)->AddEnvelopeConstituent("S06V", idSlatCh6,
459 (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
460 GetEnvelopes(5)->AddEnvelopeConstituent("S06V", idSlatCh6,
461 (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
462 }
463
464 if (i == 0 || i == 1) { // no rounded spacer for the moment (Ch. Finck)
465 GetEnvelopes(4)->AddEnvelopeConstituent("S05V", idSlatCh5,
466 (2*i-1)*10+quadrant,TGeoTranslation(xvFrame2,0.,0.));
467 GetEnvelopes(5)->AddEnvelopeConstituent("S06V", idSlatCh6,
468 (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
469 }
470
471 // position the panels and the insulating material
472 for (j = 0; j < kNPCB3[i]; j++){
473 if (i == 1 && j == 0) continue;
474 if (i == 0 && j == 0) continue;
475 index++;
476 Float_t xx = kSensLength * (-kNPCB3[i]/2. + j + 0.5);
477 Float_t xx2 = xx - pcbDLength3/2.;
d1cd2474 478
e516b01d 479 Float_t zPanel = spar[2] - nomexbpar[2];
480
481 if ( (i == 0 || i == 1 || i == 2) && j == kNPCB3[i]-1) { // 1 pcb is shortened by 5cm
482 GetEnvelopes(4)->AddEnvelopeConstituent("SB5X", idSlatCh5, 2*index-1,TGeoTranslation(xx2,0.,zPanel));
483 GetEnvelopes(4)->AddEnvelopeConstituent("SB5X", idSlatCh5, 2*index,TGeoTranslation(xx2,0.,-zPanel));
484 GetEnvelopes(4)->AddEnvelopeConstituent("SB5I", idSlatCh5, index,TGeoTranslation(xx2,0.,0.));
485 } else {
486 GetEnvelopes(4)->AddEnvelopeConstituent("S05X", idSlatCh5, 2*index-1,TGeoTranslation(xx,0.,zPanel));
487 GetEnvelopes(4)->AddEnvelopeConstituent("S05X", idSlatCh5, 2*index,TGeoTranslation(xx,0.,-zPanel));
488 GetEnvelopes(4)->AddEnvelopeConstituent("S05I", idSlatCh5, index,TGeoTranslation(xx,0.,0.));
489 }
490 GetEnvelopes(5)->AddEnvelopeConstituent("S06X", idSlatCh6, 2*index-1,TGeoTranslation(xx,0.,zPanel));
491 GetEnvelopes(5)->AddEnvelopeConstituent("S06X", idSlatCh6, 2*index,TGeoTranslation(xx,0.,-zPanel));
492 GetEnvelopes(5)->AddEnvelopeConstituent("S06I", idSlatCh6, index,TGeoTranslation(xx,0.,0.));
d1cd2474 493
e516b01d 494 }
495 }
496 }
497
498 // position the nomex volume inside the panel volume
499 gMC->Gspos("S05N",1,"S05C",0.,0.,0.,0,"ONLY");
500 gMC->Gspos("SB5N",1,"SB5C",0.,0.,0.,0,"ONLY");
501 gMC->Gspos("S06N",1,"S06C",0.,0.,0.,0,"ONLY");
4846c3ab 502
e516b01d 503 // position panel volume inside the bulk nomex material volume
504 gMC->Gspos("S05C",1,"S05X",0.,0.,kNomexBWidth/2.,0,"ONLY");
505 gMC->Gspos("SB5C",1,"SB5X",0.,0.,kNomexBWidth/2.,0,"ONLY");
506 gMC->Gspos("S06C",1,"S06X",0.,0.,kNomexBWidth/2.,0,"ONLY");
507
508 // position the PCB volume inside the insulating material volume
509 gMC->Gspos("S05P",1,"S05I",0.,0.,0.,0,"ONLY");
510 gMC->Gspos("SB5P",1,"SB5I",0.,0.,0.,0,"ONLY");
511 gMC->Gspos("S06P",1,"S06I",0.,0.,0.,0,"ONLY");
4846c3ab 512
e516b01d 513 // position the horizontal frame volume inside the PCB volume
514 gMC->Gspos("S05H",1,"S05P",0.,0.,0.,0,"ONLY");
515 gMC->Gspos("SB5H",1,"SB5P",0.,0.,0.,0,"ONLY");
516 gMC->Gspos("S06H",1,"S06P",0.,0.,0.,0,"ONLY");
4846c3ab 517
e516b01d 518 // position the sensitive volume inside the horizontal frame volume
519 gMC->Gsposp("S05G",1,"S05H",0.,0.,0.,0,"ONLY",senspar,3);
520 gMC->Gsposp("S05G",1,"SB5H",0.,0.,0.,0,"ONLY",senspar2,3);
521 gMC->Gsposp("S06G",1,"S06H",0.,0.,0.,0,"ONLY",senspar,3);
4846c3ab 522
523
e516b01d 524 // position the border volumes inside the PCB volume
525 Float_t yborder = ( kPcbHeight - kBframeHeight ) / 2.;
526 gMC->Gspos("S05B",1,"S05P",0., yborder,0.,0,"ONLY");
527 gMC->Gspos("S05B",2,"S05P",0.,-yborder,0.,0,"ONLY");
528 gMC->Gspos("SB5B",1,"SB5P",0., yborder,0.,0,"ONLY");
529 gMC->Gspos("SB5B",2,"SB5P",0.,-yborder,0.,0,"ONLY");
530
531 gMC->Gspos("S06B",1,"S06P",0., yborder,0.,0,"ONLY");
532 gMC->Gspos("S06B",2,"S06P",0.,-yborder,0.,0,"ONLY");
4846c3ab 533
e516b01d 534 // create the NULOC volume and position it in the horizontal frame
535 gMC->Gsvolu("S05E","BOX",kNulocMaterial,nulocpar,3);
536 gMC->Gsvolu("S06E","BOX",kNulocMaterial,nulocpar,3);
537 index = 0;
538 Float_t xxmax2 = xxmax - pcbDLength3/2.;
539 for (xx = -xxmax; xx <= xxmax; xx += 2*kNulocLength) {
540 index++;
541 gMC->Gspos("S05E",2*index-1,"S05B", xx, 0.,-kBframeWidth/2. + kNulocWidth/2, 0, "ONLY");
542 gMC->Gspos("S05E",2*index ,"S05B", xx, 0., kBframeWidth/2. - kNulocWidth/2, 0, "ONLY");
543 gMC->Gspos("S06E",2*index-1,"S06B", xx, 0.,-kBframeWidth/2. + kNulocWidth/2, 0, "ONLY");
544 gMC->Gspos("S06E",2*index ,"S06B", xx, 0., kBframeWidth/2.- kNulocWidth/2, 0, "ONLY");
545 if (xx > -xxmax2 && xx< xxmax2) {
546 gMC->Gspos("S05E",2*index-1,"SB5B", xx, 0.,-kBframeWidth/2.+ kNulocWidth/2, 0, "ONLY");
547 gMC->Gspos("S05E",2*index ,"SB5B", xx, 0., kBframeWidth/2.- kNulocWidth/2, 0, "ONLY");
548 }
549 }
550
551 // position the volumes approximating the circular section of the pipe
552 Float_t epsilon = 0.001;
553 Int_t ndiv = 6;
554 Int_t imax = 1;
555 Double_t divpar[3];
556 Double_t dydiv = kSensHeight/ndiv;
557 Double_t ydiv = (kSensHeight - dydiv)/2.;
b7ef3c96 558 Double_t rmin = AliMUONConstants::Rmin(2);// Same radius for both chamber in St3
e516b01d 559 Double_t xdiv = 0.;
560 Float_t xvol;
561 Float_t yvol;
562
563 for (Int_t idiv = 0; idiv < ndiv; idiv++){
564 ydiv += dydiv;
565 xdiv = 0.;
6f7aa53f 566 if (ydiv < rmin) xdiv = rmin * TMath::Sin( TMath::ACos((ydiv-dydiv/2.)/rmin) );
e516b01d 567 divpar[0] = (kPcbLength - xdiv)/2.;
568 divpar[1] = dydiv/2. - epsilon;
569 divpar[2] = kSensWidth/2.;
570 xvol = (kPcbLength + xdiv)/2.;
571 yvol = ydiv;
572
573 // Volumes close to the beam pipe for slat i=1 so 4 slats per chamber
574 for (Int_t quadrant = 1; quadrant <= 4; quadrant++) {
575 sprintf(idSlatCh5,"LA%d",ConvertSlatNum(1,quadrant,kNslats3-1));
576 sprintf(idSlatCh6,"LB%d",ConvertSlatNum(1,quadrant,kNslats3-1));
577
578 GetEnvelopes(4)->AddEnvelopeConstituentParam("S05G", idSlatCh5, quadrant*100+imax+4*idiv+1,
579 TGeoTranslation(xvol-(kPcbLength * kNPCB3[1]/2.),yvol-kPcbLength,0.),3,divpar);
580
581 GetEnvelopes(5)->AddEnvelopeConstituentParam("S06G", idSlatCh6, quadrant*100+imax+4*idiv+1,
582 TGeoTranslation(xvol-(kPcbLength * kNPCB3[1]/2.),yvol-kPcbLength,0.),3,divpar);
583 }
584 }
585
586 // Volumes close to the beam pipe for slat i=0 so 2 slats per chamber (central slat for station 3)
587 // Gines Martinez, Subatech sep 04
588 // 9 box volumes are used to define the PCB closed to the beam pipe of the slat 122000SR1 of chamber 5 and 6 of St3
589 // Accordingly to plan PQ-LAT-SR1 of CEA-DSM-DAPNIA-SIS/BE ph HARDY 8-Oct-2002
590 // Rmin = 31.5 cm
b7ef3c96 591 rmin = AliMUONConstants::Rmin(2); // Same radius for both chamber in St3
e516b01d 592 ndiv = 9;
593 dydiv = kSensHeight/ndiv; // Vertical size of the box volume approximating the rounded PCB
594 ydiv = -kSensHeight/2 + dydiv/2.; // Initializing vertical position of the volume from bottom
595 xdiv = 0.; // Initializing horizontal position of the box volumes
596
597 for (Int_t idiv = 0; idiv < ndiv; idiv++){
598 xdiv = TMath::Abs( rmin * TMath::Sin( TMath::ACos(ydiv/rmin) ) );
599 divpar[0] = (kPcbLength - xdiv)/2.; // Dimension of the box volume
600 divpar[1] = dydiv/2. - epsilon;
601 divpar[2] = kSensWidth/2.;
602 xvol = (kPcbLength + xdiv)/2.; //2D traslition for positionning of box volume
603 yvol = ydiv;
604 Int_t side;
605 for (side = 1; side <= 2; side++) {
606 sprintf(idSlatCh5,"LA%d",4);
607 sprintf(idSlatCh6,"LB%d",4);
608 if(side == 2) {
609 sprintf(idSlatCh5,"LA%d",13);
610 sprintf(idSlatCh6,"LB%d",13);
611 }
612 GetEnvelopes(4)->AddEnvelopeConstituentParam("S05G", idSlatCh5,500+side*100+imax+4*idiv+1,
613 TGeoTranslation(xvol-(kPcbLength * kNPCB3[0]/2.),yvol,0.),3,divpar);
614
615 GetEnvelopes(5)->AddEnvelopeConstituentParam("S06G", idSlatCh6,500+side*100+imax+4*idiv+1,
616 TGeoTranslation(xvol-(kPcbLength * kNPCB3[0]/2.),yvol,0.),3,divpar);
617 }
618 ydiv += dydiv; // Going from bottom to top
619 }
620 // cout << "Geometry for Station 3...... done" << endl;
d1cd2474 621 }
622
e516b01d 623 if (fStations[3]) {
d1cd2474 624
625
e516b01d 626 // //********************************************************************
627 // // Station 4 **
628 // //********************************************************************
629 // // indices 1 and 2 for first and second chambers in the station
630 // // iChamber (first chamber) kept for other quanties than Z,
631 // // assumed to be the same in both chambers
632 // corrected geometry (JP. Cussonneau, Ch. Finck)
d1cd2474 633
e118b27e 634 iChamber = &fMUON->Chamber(6);
e516b01d 635 iChamber1 = iChamber;
e118b27e 636 iChamber2 = &fMUON->Chamber(7);
e516b01d 637
638 const Int_t kNslats4 = 7; // number of slats per quadrant
639 const Int_t kNPCB4[kNslats4] = {5, 6, 5, 5, 4, 3, 2}; // n PCB per slat
640 const Float_t kXpos4[kNslats4] = {38.2, 0., 0., 0., 0., 0., 0.};
641 const Float_t kYpos41[kNslats4] = {0., 38.2, 34.40, 36.60, 29.3, 37.0, 28.6};
642 const Float_t kYpos42[kNslats4] = {0., 38.2, 37.85, 37.55, 29.4, 37.0, 28.6};
643
644 Float_t slatLength4[kNslats4];
645
6ffd4cb7 646
647 // Mother volume for each chamber
648 // Outer excess and inner recess for mother volume radius
649 // with respect to ROuter and RInner
f29ba3e1 650 Float_t dframepIn = kRframeHeight;
651 Float_t dframepOut= kVframeLength + 40.0; // Additional 30 cm gap is needed to wrap the corners of the slats
6ffd4cb7 652 Float_t tpar[3];
b7ef3c96 653 Double_t dstation = ( (-AliMUONConstants::DefaultChamberZ(7)) -
2c9844e7 654 (-AliMUONConstants::DefaultChamberZ(6)) ) /2.2;
b7ef3c96 655 tpar[0] = AliMUONConstants::Rmin(3)-dframepIn;
656 tpar[1] = AliMUONConstants::Rmax(3)+dframepOut;
6ffd4cb7 657 tpar[2] = dstation;
658 gMC->Gsvolu("CH07", "TUBE", idAir, tpar, 3);
659 gMC->Gsvolu("CH08", "TUBE", idAir, tpar, 3);
6ffd4cb7 660
e516b01d 661 // create and position the slat (mother) volumes
662
663 char idSlatCh7[5];
664 char idSlatCh8[5];
665 Float_t xSlat4;
666 Float_t ySlat41 = 0;
667 Float_t ySlat42 = 0;
668
669 angle = 0.;
670
671 for (i = 0; i<kNslats4; i++){
672 slatLength4[i] = kPcbLength * kNPCB4[i] + 2. * kVframeLength;
673 xSlat4 = slatLength4[i]/2. + kDslatLength + kXpos4[i];
674 ySlat41 += kYpos41[i];
675 ySlat42 += kYpos42[i];
676
677 spar[0] = slatLength4[i]/2.;
678 spar[1] = kSlatHeight/2.;
679 spar[2] = kSlatWidth/2.;
680 Float_t dzCh4 = dzCh;
681 Float_t zSlat4 = (i%2 ==0)? -zSlat : zSlat;
682
683 sprintf(idSlatCh7,"LC%d",kNslats4-1+i);
eb1c3e3a 684 //gMC->Gsvolu(idSlatCh7,"BOX",kSlatMaterial,spar,3);
e856ab99 685 detElemId = 713 - (i + kNslats4-1-6);
e516b01d 686 GetEnvelopes(6)->AddEnvelope(idSlatCh7, detElemId, true, TGeoTranslation(xSlat4, ySlat41, -zSlat4 + dzCh4),
687 TGeoRotation("rot1",90,angle,90,90+angle,0,0) );
688
689 sprintf(idSlatCh7,"LC%d",3*kNslats4-2+i);
eb1c3e3a 690 //gMC->Gsvolu(idSlatCh7,"BOX",kSlatMaterial,spar,3);
e856ab99 691 detElemId = 700 + (i + kNslats4-1-6);
e516b01d 692 GetEnvelopes(6)->AddEnvelope(idSlatCh7, detElemId, true, TGeoTranslation(-xSlat4, ySlat41, zSlat4 - dzCh4),
693 TGeoRotation("rot2",90,180+angle,90,90+angle,180,0) );
d1cd2474 694
e516b01d 695 if (i > 0) {
696 sprintf(idSlatCh7,"LC%d",kNslats4-1-i);
eb1c3e3a 697 //gMC->Gsvolu(idSlatCh7,"BOX",kSlatMaterial,spar,3);
e856ab99 698 detElemId = 713 + (i + kNslats4-1-6);
e516b01d 699 GetEnvelopes(6)->AddEnvelope(idSlatCh7, detElemId, true, TGeoTranslation(xSlat4, -ySlat41, -zSlat4 + dzCh4),
700 TGeoRotation("rot3",90,angle,90,270+angle,180,0) );
701
702 sprintf(idSlatCh7,"LC%d",3*kNslats4-2-i);
e856ab99 703 detElemId = 726 - (i + kNslats4-1-6);
eb1c3e3a 704 //gMC->Gsvolu(idSlatCh7,"BOX",kSlatMaterial,spar,3);
e516b01d 705 GetEnvelopes(6)->AddEnvelope(idSlatCh7, detElemId, true,
706 TGeoTranslation(-xSlat4, -ySlat41, zSlat4 - dzCh4),
707 TGeoRotation("rot4",90,180+angle,90,270+angle,0,0) );
708 }
709
710 sprintf(idSlatCh8,"LD%d",kNslats4-1+i);
eb1c3e3a 711 //gMC->Gsvolu(idSlatCh8,"BOX",kSlatMaterial,spar,3);
e856ab99 712 detElemId = 813 - (i + kNslats4-1-6);
e516b01d 713 GetEnvelopes(7)->AddEnvelope(idSlatCh8, detElemId, true, TGeoTranslation(xSlat4, ySlat42, -zSlat4 + dzCh4),
714 TGeoRotation("rot5",90,angle,90,90+angle,0,0) );
715
716 sprintf(idSlatCh8,"LD%d",3*kNslats4-2+i);
e856ab99 717 detElemId = 800 + (i + kNslats4-1-6);
eb1c3e3a 718 //gMC->Gsvolu(idSlatCh8,"BOX",kSlatMaterial,spar,3);
e516b01d 719 GetEnvelopes(7)->AddEnvelope(idSlatCh8, detElemId, true, TGeoTranslation(-xSlat4, ySlat42, zSlat4 - dzCh4),
720 TGeoRotation("rot6",90,180+angle,90,90+angle,180,0) );
721 if (i > 0) {
722 sprintf(idSlatCh8,"LD%d",kNslats4-1-i);
e856ab99 723 detElemId = 813 + (i + kNslats4-1-6);
eb1c3e3a 724 //gMC->Gsvolu(idSlatCh8,"BOX",kSlatMaterial,spar,3);
e516b01d 725 GetEnvelopes(7)->AddEnvelope(idSlatCh8, detElemId, true, TGeoTranslation(xSlat4, -ySlat42, -zSlat4 + dzCh4),
726 TGeoRotation("rot7",90,angle,90,270+angle,180,0) );
727 sprintf(idSlatCh8,"LD%d",3*kNslats4-2-i);
e856ab99 728 detElemId = 826 - (i + kNslats4-1-6);
eb1c3e3a 729 //gMC->Gsvolu(idSlatCh8,"BOX",kSlatMaterial,spar,3);
e516b01d 730 GetEnvelopes(7)->AddEnvelope(idSlatCh8, detElemId, true, TGeoTranslation(-xSlat4, -ySlat42, zSlat4 - dzCh4),
731 TGeoRotation("rot8",90,180+angle,90,270+angle,0,0) );
732 }
733 }
d1cd2474 734
e516b01d 735 // create the panel volume
d1cd2474 736
e516b01d 737 gMC->Gsvolu("S07C","BOX",kCarbonMaterial,panelpar,3);
738 gMC->Gsvolu("S08C","BOX",kCarbonMaterial,panelpar,3);
d1cd2474 739
e516b01d 740 // create the nomex volume
d1cd2474 741
e516b01d 742 gMC->Gsvolu("S07N","BOX",kNomexMaterial,nomexpar,3);
743 gMC->Gsvolu("S08N","BOX",kNomexMaterial,nomexpar,3);
d1cd2474 744
d1cd2474 745
e516b01d 746 // create the nomex volume (bulk)
d1cd2474 747
e516b01d 748 gMC->Gsvolu("S07X","BOX",kNomexBMaterial,nomexbpar,3);
749 gMC->Gsvolu("S08X","BOX",kNomexBMaterial,nomexbpar,3);
d1cd2474 750
e516b01d 751 // create the insulating material volume
752
753 gMC->Gsvolu("S07I","BOX",kInsuMaterial,insupar,3);
754 gMC->Gsvolu("S08I","BOX",kInsuMaterial,insupar,3);
755
756 // create the PCB volume
757
758 gMC->Gsvolu("S07P","BOX",kPcbMaterial,pcbpar,3);
759 gMC->Gsvolu("S08P","BOX",kPcbMaterial,pcbpar,3);
d1cd2474 760
e516b01d 761 // create the sensitive volumes,
762
763 gMC->Gsvolu("S07G","BOX",kSensMaterial,dum,0);
764 gMC->Gsvolu("S08G","BOX",kSensMaterial,dum,0);
765
766 // create the vertical frame volume
767
768 gMC->Gsvolu("S07V","BOX",kVframeMaterial,vFramepar,3);
769 gMC->Gsvolu("S08V","BOX",kVframeMaterial,vFramepar,3);
770
771 // create the horizontal frame volume
772
773 gMC->Gsvolu("S07H","BOX",kHframeMaterial,hFramepar,3);
774 gMC->Gsvolu("S08H","BOX",kHframeMaterial,hFramepar,3);
775
776 // create the horizontal border volume
777
778 gMC->Gsvolu("S07B","BOX",kBframeMaterial,bFramepar,3);
779 gMC->Gsvolu("S08B","BOX",kBframeMaterial,bFramepar,3);
780
781 index = 0;
782 for (i = 0; i < kNslats4; i++){
783 for (Int_t quadrant = 1; quadrant <= 4; quadrant++) {
784
785 if (i == 0 && quadrant == 2) continue;
786 if (i == 0 && quadrant == 4) continue;
787
788 sprintf(idSlatCh7,"LC%d",ConvertSlatNum(i,quadrant,kNslats4-1));
789 sprintf(idSlatCh8,"LD%d",ConvertSlatNum(i,quadrant,kNslats4-1));
790 Float_t xvFrame = (slatLength4[i] - kVframeLength)/2.;
791
792 // position the vertical frames
793 if (i != 1) {
794 GetEnvelopes(6)->AddEnvelopeConstituent("S07V", idSlatCh7, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
795 GetEnvelopes(6)->AddEnvelopeConstituent("S07V", idSlatCh7, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
796 GetEnvelopes(7)->AddEnvelopeConstituent("S08V", idSlatCh8, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
797 GetEnvelopes(7)->AddEnvelopeConstituent("S08V", idSlatCh8, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
798 } else { // no rounded spacer yet
799 GetEnvelopes(6)->AddEnvelopeConstituent("S07V", idSlatCh7, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
800 // GetEnvelopes(6)->AddEnvelopeConstituent("S07V", idSlatCh7, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
801 GetEnvelopes(7)->AddEnvelopeConstituent("S08V", idSlatCh8, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
802 // GetEnvelopes(7)->AddEnvelopeConstituent("S08V", idSlatCh8, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
803 }
804 // position the panels and the insulating material
805 for (j = 0; j < kNPCB4[i]; j++){
806 if (i == 1 && j == 0) continue;
807 index++;
808 Float_t xx = kSensLength * (-kNPCB4[i]/2.+j+.5);
809
810 Float_t zPanel = spar[2] - nomexbpar[2];
811 GetEnvelopes(6)->AddEnvelopeConstituent("S07X", idSlatCh7, 2*index-1,TGeoTranslation(xx,0.,zPanel));
812 GetEnvelopes(6)->AddEnvelopeConstituent("S07X", idSlatCh7, 2*index,TGeoTranslation(xx,0.,-zPanel));
813 GetEnvelopes(6)->AddEnvelopeConstituent("S07I", idSlatCh7, index,TGeoTranslation(xx,0.,0.));
814 GetEnvelopes(7)->AddEnvelopeConstituent("S08X", idSlatCh8, 2*index-1,TGeoTranslation(xx,0.,zPanel));
815 GetEnvelopes(7)->AddEnvelopeConstituent("S08X", idSlatCh8, 2*index,TGeoTranslation(xx,0.,-zPanel));
816 GetEnvelopes(7)->AddEnvelopeConstituent("S08I", idSlatCh8, index,TGeoTranslation(xx,0.,0.));
817 }
818 }
819 }
820
821 // position the nomex volume inside the panel volume
822 gMC->Gspos("S07N",1,"S07C",0.,0.,0.,0,"ONLY");
823 gMC->Gspos("S08N",1,"S08C",0.,0.,0.,0,"ONLY");
824
825 // position panel volume inside the bulk nomex material volume
826 gMC->Gspos("S07C",1,"S07X",0.,0.,kNomexBWidth/2.,0,"ONLY");
827 gMC->Gspos("S08C",1,"S08X",0.,0.,kNomexBWidth/2.,0,"ONLY");
828
829 // position the PCB volume inside the insulating material volume
830 gMC->Gspos("S07P",1,"S07I",0.,0.,0.,0,"ONLY");
831 gMC->Gspos("S08P",1,"S08I",0.,0.,0.,0,"ONLY");
832
833 // position the horizontal frame volume inside the PCB volume
834 gMC->Gspos("S07H",1,"S07P",0.,0.,0.,0,"ONLY");
835 gMC->Gspos("S08H",1,"S08P",0.,0.,0.,0,"ONLY");
836
837 // position the sensitive volume inside the horizontal frame volume
838 gMC->Gsposp("S07G",1,"S07H",0.,0.,0.,0,"ONLY",senspar,3);
839 gMC->Gsposp("S08G",1,"S08H",0.,0.,0.,0,"ONLY",senspar,3);
840
841 // position the border volumes inside the PCB volume
842 Float_t yborder = ( kPcbHeight - kBframeHeight ) / 2.;
843 gMC->Gspos("S07B",1,"S07P",0., yborder,0.,0,"ONLY");
844 gMC->Gspos("S07B",2,"S07P",0.,-yborder,0.,0,"ONLY");
845 gMC->Gspos("S08B",1,"S08P",0., yborder,0.,0,"ONLY");
846 gMC->Gspos("S08B",2,"S08P",0.,-yborder,0.,0,"ONLY");
847
848 // create the NULOC volume and position it in the horizontal frame
849
850 gMC->Gsvolu("S07E","BOX",kNulocMaterial,nulocpar,3);
851 gMC->Gsvolu("S08E","BOX",kNulocMaterial,nulocpar,3);
852 index = 0;
853 for (xx = -xxmax; xx <= xxmax; xx += 2*kNulocLength) {
854 index++;
855 gMC->Gspos("S07E",2*index-1,"S07B", xx, 0.,-kBframeWidth/2. + kNulocWidth/2, 0, "ONLY");
856 gMC->Gspos("S07E",2*index ,"S07B", xx, 0., kBframeWidth/2. - kNulocWidth/2, 0, "ONLY");
857 gMC->Gspos("S08E",2*index-1,"S08B", xx, 0.,-kBframeWidth/2. + kNulocWidth/2, 0, "ONLY");
858 gMC->Gspos("S08E",2*index ,"S08B", xx, 0., kBframeWidth/2. - kNulocWidth/2, 0, "ONLY");
859 }
860
861 // position the volumes approximating the circular section of the pipe
862
863 Float_t epsilon = 0.001;
864 Int_t ndiv = 10;
865 Int_t imax = 1;
866 Double_t divpar[3];
867 Double_t dydiv = kSensHeight/ndiv;
868 Double_t ydiv = (kSensHeight - dydiv)/2.;
b7ef3c96 869 Float_t rmin = AliMUONConstants::Rmin(3); // Same radius for both chamber of St4
e516b01d 870 Float_t xdiv = 0.;
871 Float_t xvol;
872 Float_t yvol;
873
874 for (Int_t idiv = 0; idiv < ndiv; idiv++){
875 ydiv += dydiv;
876 xdiv = 0.;
6f7aa53f 877 if (ydiv < rmin) xdiv = rmin * TMath::Sin( TMath::ACos((ydiv-dydiv/2.)/rmin) );
e516b01d 878 divpar[0] = (kPcbLength - xdiv)/2.;
879 divpar[1] = dydiv/2. - epsilon;
880 divpar[2] = kSensWidth/2.;
881 xvol = (kPcbLength + xdiv)/2.;
882 yvol = ydiv ;
6296ba34 883
e516b01d 884 for (Int_t quadrant = 1; quadrant <= 4; quadrant++) {
885 sprintf(idSlatCh7,"LC%d",ConvertSlatNum(1,quadrant,kNslats4-1));
886 sprintf(idSlatCh8,"LD%d",ConvertSlatNum(1,quadrant,kNslats4-1));
6296ba34 887
e516b01d 888 GetEnvelopes(6)->AddEnvelopeConstituentParam("S07G",idSlatCh7, quadrant*100+imax+4*idiv+1,
889 TGeoTranslation(xvol-kPcbLength * kNPCB4[1]/2.,yvol-kPcbLength,0.),3,divpar);
6296ba34 890
e516b01d 891 GetEnvelopes(7)->AddEnvelopeConstituentParam("S08G", idSlatCh8, quadrant*100+imax+4*idiv+1,
892 TGeoTranslation(xvol-kPcbLength * kNPCB4[1]/2.,yvol-kPcbLength,0.),3,divpar);
893 }
d12a7158 894 }
e516b01d 895 // cout << "Geometry for Station 4...... done" << endl;
896
897 }
d1cd2474 898
e516b01d 899 if (fStations[4]) {
6296ba34 900
d1cd2474 901
e516b01d 902 // //********************************************************************
903 // // Station 5 **
904 // //********************************************************************
905 // // indices 1 and 2 for first and second chambers in the station
906 // // iChamber (first chamber) kept for other quanties than Z,
907 // // assumed to be the same in both chambers
908 // corrected geometry (JP. Cussonneau, Ch. Finck)
909
e118b27e 910 iChamber = &fMUON->Chamber(8);
e516b01d 911 iChamber1 = iChamber;
e118b27e 912 iChamber2 = &fMUON->Chamber(9);
d1cd2474 913
e516b01d 914 const Int_t kNslats5 = 7; // number of slats per quadrant
915 const Int_t kNPCB5[kNslats5] = {5, 6, 6, 6, 5, 4, 3}; // n PCB per slat
916 const Float_t kXpos5[kNslats5] = {38.2, 0., 0., 0., 0., 0., 0.};
917 const Float_t kYpos5[kNslats5] = {0., 38.2, 37.9, 37.6, 37.3, 37.05, 36.75};
918 Float_t slatLength5[kNslats5];
919
6ffd4cb7 920 // Mother volume for each chamber
921 // Outer excess and inner recess for mother volume radius
922 // with respect to ROuter and RInner
f29ba3e1 923 Float_t dframepIn = kRframeHeight;
924 Float_t dframepOut= kVframeLength + 40.0; // Additional 40 cm gap is needed to wrap the corners of the slats
6ffd4cb7 925 Float_t tpar[3];
b7ef3c96 926 Double_t dstation = ( (-AliMUONConstants::DefaultChamberZ(9)) -
927 (-AliMUONConstants::DefaultChamberZ(8)) ) /2.3;
928 tpar[0] = AliMUONConstants::Rmin(4)-dframepIn;
929 tpar[1] = AliMUONConstants::Rmax(4)+dframepOut;
6ffd4cb7 930 tpar[2] = dstation;
931 gMC->Gsvolu("CH09", "TUBE", idAir, tpar, 3);
932 gMC->Gsvolu("CH10", "TUBE", idAir, tpar, 3);
6ffd4cb7 933
e516b01d 934 // create and position the slat (mother) volumes
935
936 char idSlatCh9[5];
937 char idSlatCh10[5];
938 Float_t xSlat5;
939 Float_t ySlat5 = 0;
940 angle = 0.;
941
942 for (i = 0; i < kNslats5; i++){
943
944 slatLength5[i] = kPcbLength * kNPCB5[i] + 2.* kVframeLength;
945 xSlat5 = slatLength5[i]/2. + kDslatLength + kXpos5[i];
946 ySlat5 += kYpos5[i];
947
948 spar[0] = slatLength5[i]/2.;
949 spar[1] = kSlatHeight/2.;
950 spar[2] = kSlatWidth/2.;
951
952 Float_t dzCh5 = dzCh;
953 Float_t zSlat5 = (i%2 ==0)? -zSlat : zSlat;
954
955 sprintf(idSlatCh9,"LE%d",kNslats5-1+i);
e856ab99 956 detElemId = 913 - (i + kNslats5-1-6);
eb1c3e3a 957 //gMC->Gsvolu(idSlatCh9,"BOX",kSlatMaterial,spar,3);
e516b01d 958 GetEnvelopes(8)->AddEnvelope(idSlatCh9, detElemId, true, TGeoTranslation(xSlat5, ySlat5, -zSlat5 + dzCh5),
959 TGeoRotation("rot1",90,angle,90,90+angle,0,0) );
960
961 sprintf(idSlatCh9,"LE%d",3*kNslats5-2+i);
e856ab99 962 detElemId = 900 + (i + kNslats5-1-6);
eb1c3e3a 963 //gMC->Gsvolu(idSlatCh9,"BOX",kSlatMaterial,spar,3);
e516b01d 964 GetEnvelopes(8)->AddEnvelope(idSlatCh9, detElemId, true, TGeoTranslation(-xSlat5, ySlat5, zSlat5 - dzCh5),
965 TGeoRotation("rot2",90,180+angle,90,90+angle,180,0) );
d1cd2474 966
e516b01d 967 if (i > 0) {
968 sprintf(idSlatCh9,"LE%d",kNslats5-1-i);
e856ab99 969 detElemId = 913 + (i + kNslats5-1-6);
eb1c3e3a 970 //gMC->Gsvolu(idSlatCh9,"BOX",kSlatMaterial,spar,3);
e516b01d 971 GetEnvelopes(8)->AddEnvelope(idSlatCh9, detElemId, true, TGeoTranslation(xSlat5, -ySlat5, -zSlat5 + dzCh5),
972 TGeoRotation("rot3",90,angle,90,270+angle,180,0) );
973
974 sprintf(idSlatCh9,"LE%d",3*kNslats5-2-i);
e856ab99 975 detElemId = 926 - (i + kNslats5-1-6);
eb1c3e3a 976 //gMC->Gsvolu(idSlatCh9,"BOX",kSlatMaterial,spar,3);
e516b01d 977 GetEnvelopes(8)->AddEnvelope(idSlatCh9, detElemId, true, TGeoTranslation(-xSlat5, -ySlat5, zSlat5 - dzCh5),
978 TGeoRotation("rot4",90,180+angle,90,270+angle,0,0) );
979 }
980
981 sprintf(idSlatCh10,"LF%d",kNslats5-1+i);
e856ab99 982 detElemId = 1013 - (i + kNslats5-1-6);
eb1c3e3a 983 //gMC->Gsvolu(idSlatCh10,"BOX",kSlatMaterial,spar,3);
e516b01d 984 GetEnvelopes(9)->AddEnvelope(idSlatCh10, detElemId, true, TGeoTranslation(xSlat5, ySlat5, -zSlat5 + dzCh5),
985 TGeoRotation("rot5",90,angle,90,90+angle,0,0) );
986
987 sprintf(idSlatCh10,"LF%d",3*kNslats5-2+i);
e856ab99 988 detElemId = 1000 + (i + kNslats5-1-6);
eb1c3e3a 989 //gMC->Gsvolu(idSlatCh10,"BOX",kSlatMaterial,spar,3);
e516b01d 990 GetEnvelopes(9)->AddEnvelope(idSlatCh10, detElemId, true, TGeoTranslation(-xSlat5, ySlat5, zSlat5 - dzCh5),
991 TGeoRotation("rot6",90,180+angle,90,90+angle,180,0) );
992
993 if (i > 0) {
994 sprintf(idSlatCh10,"LF%d",kNslats5-1-i);
e856ab99 995 detElemId = 1013 + (i + kNslats5-1-6);
eb1c3e3a 996 //gMC->Gsvolu(idSlatCh10,"BOX",kSlatMaterial,spar,3);
e516b01d 997 GetEnvelopes(9)->AddEnvelope(idSlatCh10, detElemId, true, TGeoTranslation(xSlat5, -ySlat5, -zSlat5 + dzCh5),
998 TGeoRotation("rot7",90,angle,90,270+angle,180,0) );
999 sprintf(idSlatCh10,"LF%d",3*kNslats5-2-i);
e856ab99 1000 detElemId = 1026 - (i + kNslats5-1-6);
eb1c3e3a 1001 //gMC->Gsvolu(idSlatCh10,"BOX",kSlatMaterial,spar,3);
e516b01d 1002 GetEnvelopes(9)->AddEnvelope(idSlatCh10, detElemId, true, TGeoTranslation(-xSlat5, -ySlat5, zSlat5 - dzCh5),
1003 TGeoRotation("rot8",90,180+angle,90,270+angle,0,0) );
1004 }
1005 }
1006
1007 // create the panel volume
d12a7158 1008
e516b01d 1009 gMC->Gsvolu("S09C","BOX",kCarbonMaterial,panelpar,3);
1010 gMC->Gsvolu("S10C","BOX",kCarbonMaterial,panelpar,3);
1011
1012 // create the nomex volume
1013
1014 gMC->Gsvolu("S09N","BOX",kNomexMaterial,nomexpar,3);
1015 gMC->Gsvolu("S10N","BOX",kNomexMaterial,nomexpar,3);
d1cd2474 1016
d1cd2474 1017
e516b01d 1018 // create the nomex volume (bulk)
d1cd2474 1019
e516b01d 1020 gMC->Gsvolu("S09X","BOX",kNomexBMaterial,nomexbpar,3);
1021 gMC->Gsvolu("S10X","BOX",kNomexBMaterial,nomexbpar,3);
d1cd2474 1022
e516b01d 1023 // create the insulating material volume
d1cd2474 1024
e516b01d 1025 gMC->Gsvolu("S09I","BOX",kInsuMaterial,insupar,3);
1026 gMC->Gsvolu("S10I","BOX",kInsuMaterial,insupar,3);
c3b69531 1027
e516b01d 1028 // create the PCB volume
1029
1030 gMC->Gsvolu("S09P","BOX",kPcbMaterial,pcbpar,3);
1031 gMC->Gsvolu("S10P","BOX",kPcbMaterial,pcbpar,3);
d1cd2474 1032
e516b01d 1033 // create the sensitive volumes,
1034
1035 gMC->Gsvolu("S09G","BOX",kSensMaterial,dum,0);
1036 gMC->Gsvolu("S10G","BOX",kSensMaterial,dum,0);
1037
1038 // create the vertical frame volume
1039
1040 gMC->Gsvolu("S09V","BOX",kVframeMaterial,vFramepar,3);
1041 gMC->Gsvolu("S10V","BOX",kVframeMaterial,vFramepar,3);
1042
1043 // create the horizontal frame volume
1044
1045 gMC->Gsvolu("S09H","BOX",kHframeMaterial,hFramepar,3);
1046 gMC->Gsvolu("S10H","BOX",kHframeMaterial,hFramepar,3);
1047
1048 // create the horizontal border volume
1049
1050 gMC->Gsvolu("S09B","BOX",kBframeMaterial,bFramepar,3);
1051 gMC->Gsvolu("S10B","BOX",kBframeMaterial,bFramepar,3);
1052
1053 index = 0;
1054 for (i = 0; i < kNslats5; i++){
1055 for (Int_t quadrant = 1; quadrant <= 4; quadrant++) {
1056
1057 if (i == 0 && quadrant == 2) continue;
1058 if (i == 0 && quadrant == 4) continue;
1059
1060 sprintf(idSlatCh9,"LE%d",ConvertSlatNum(i,quadrant,kNslats5-1));
1061 sprintf(idSlatCh10,"LF%d",ConvertSlatNum(i,quadrant,kNslats5-1));
1062 Float_t xvFrame = (slatLength5[i] - kVframeLength)/2.; // ok
1063
1064 // position the vertical frames (spacers)
1065 if (i != 1) {
1066 GetEnvelopes(8)->AddEnvelopeConstituent("S09V", idSlatCh9, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
1067 GetEnvelopes(8)->AddEnvelopeConstituent("S09V", idSlatCh9, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
1068 GetEnvelopes(9)->AddEnvelopeConstituent("S10V", idSlatCh10, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
1069 GetEnvelopes(9)->AddEnvelopeConstituent("S10V", idSlatCh10, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
1070 } else { // no rounded spacer yet
1071 GetEnvelopes(8)->AddEnvelopeConstituent("S09V", idSlatCh9, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
1072 // GetEnvelopes(8)->AddEnvelopeConstituent("S09V", idSlatCh9, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
1073 GetEnvelopes(9)->AddEnvelopeConstituent("S10V", idSlatCh10, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
1074 // GetEnvelopes(9)->AddEnvelopeConstituent("S10V", idSlatCh10, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
1075 }
1076
1077 // position the panels and the insulating material
1078 for (j = 0; j < kNPCB5[i]; j++){
1079 if (i == 1 && j == 0) continue;
1080 index++;
1081 Float_t xx = kSensLength * (-kNPCB5[i]/2.+j+.5);
1082
1083 Float_t zPanel = spar[2] - nomexbpar[2];
1084 GetEnvelopes(8)->AddEnvelopeConstituent("S09X", idSlatCh9, 2*index-1,TGeoTranslation(xx,0.,zPanel));
1085 GetEnvelopes(8)->AddEnvelopeConstituent("S09X", idSlatCh9, 2*index,TGeoTranslation(xx,0.,-zPanel));
1086 GetEnvelopes(8)->AddEnvelopeConstituent("S09I", idSlatCh9, index,TGeoTranslation(xx,0.,0.));
1087
1088 GetEnvelopes(9)->AddEnvelopeConstituent("S10X", idSlatCh10, 2*index-1,TGeoTranslation(xx,0.,zPanel));
1089 GetEnvelopes(9)->AddEnvelopeConstituent("S10X", idSlatCh10, 2*index,TGeoTranslation(xx,0.,-zPanel));
1090 GetEnvelopes(9)->AddEnvelopeConstituent("S10I", idSlatCh10, index,TGeoTranslation(xx,0.,0.));
1091 }
1092 }
1093 }
1094
1095 // position the nomex volume inside the panel volume
1096 gMC->Gspos("S09N",1,"S09C",0.,0.,0.,0,"ONLY");
1097 gMC->Gspos("S10N",1,"S10C",0.,0.,0.,0,"ONLY");
1098
1099 // position panel volume inside the bulk nomex material volume
1100 gMC->Gspos("S09C",1,"S09X",0.,0.,kNomexBWidth/2.,0,"ONLY");
1101 gMC->Gspos("S10C",1,"S10X",0.,0.,kNomexBWidth/2.,0,"ONLY");
1102
1103 // position the PCB volume inside the insulating material volume
1104 gMC->Gspos("S09P",1,"S09I",0.,0.,0.,0,"ONLY");
1105 gMC->Gspos("S10P",1,"S10I",0.,0.,0.,0,"ONLY");
1106
1107 // position the horizontal frame volume inside the PCB volume
1108 gMC->Gspos("S09H",1,"S09P",0.,0.,0.,0,"ONLY");
1109 gMC->Gspos("S10H",1,"S10P",0.,0.,0.,0,"ONLY");
1110
1111 // position the sensitive volume inside the horizontal frame volume
1112 gMC->Gsposp("S09G",1,"S09H",0.,0.,0.,0,"ONLY",senspar,3);
1113 gMC->Gsposp("S10G",1,"S10H",0.,0.,0.,0,"ONLY",senspar,3);
1114
1115 // position the border volumes inside the PCB volume
1116 Float_t yborder = ( kPcbHeight - kBframeHeight ) / 2.;
1117 gMC->Gspos("S09B",1,"S09P",0., yborder,0.,0,"ONLY");
1118 gMC->Gspos("S09B",2,"S09P",0.,-yborder,0.,0,"ONLY");
1119 gMC->Gspos("S10B",1,"S10P",0., yborder,0.,0,"ONLY");
1120 gMC->Gspos("S10B",2,"S10P",0.,-yborder,0.,0,"ONLY");
1121
1122 // // create the NULOC volume and position it in the horizontal frame
1123
1124 gMC->Gsvolu("S09E","BOX",kNulocMaterial,nulocpar,3);
1125 gMC->Gsvolu("S10E","BOX",kNulocMaterial,nulocpar,3);
1126 index = 0;
1127 for (xx = -xxmax; xx <= xxmax; xx += 2*kNulocLength) {
1128 index++;
1129 gMC->Gspos("S09E",2*index-1,"S09B", xx, 0.,-kBframeWidth/2. + kNulocWidth/2, 0, "ONLY");
1130 gMC->Gspos("S09E",2*index ,"S09B", xx, 0., kBframeWidth/2. - kNulocWidth/2, 0, "ONLY");
1131 gMC->Gspos("S10E",2*index-1,"S10B", xx, 0.,-kBframeWidth/2. + kNulocWidth/2, 0, "ONLY");
1132 gMC->Gspos("S10E",2*index ,"S10B", xx, 0., kBframeWidth/2. - kNulocWidth/2, 0, "ONLY");
1133 }
1134
d1cd2474 1135
e516b01d 1136 // position the volumes approximating the circular section of the pipe
1137 Float_t epsilon = 0.001;
1138 Int_t ndiv = 10;
1139 Int_t imax = 1;
1140 Double_t divpar[3];
1141 Double_t dydiv = kSensHeight/ndiv;
1142 Double_t ydiv = (kSensHeight - dydiv)/2.;
b7ef3c96 1143 Float_t rmin = AliMUONConstants::Rmin(4);
e516b01d 1144 Float_t xdiv = 0.;
1145 Float_t xvol;
1146 Float_t yvol;
1147
1148 for (Int_t idiv = 0; idiv < ndiv; idiv++){
1149 ydiv += dydiv;
1150 xdiv = 0.;
6f7aa53f 1151 if (ydiv < rmin) xdiv = rmin * TMath::Sin( TMath::ACos((ydiv-dydiv/2.)/rmin) );
e516b01d 1152 divpar[0] = (kPcbLength - xdiv)/2.;
1153 divpar[1] = dydiv/2. - epsilon;
1154 divpar[2] = kSensWidth/2.;
1155 xvol = (kPcbLength + xdiv)/2.;
1156 yvol = ydiv;
1157
1158 for (Int_t quadrant = 1; quadrant <= 4; quadrant++) {
1159 sprintf(idSlatCh9,"LE%d",ConvertSlatNum(1,quadrant,kNslats5-1));
1160 sprintf(idSlatCh10,"LF%d",ConvertSlatNum(1,quadrant,kNslats5-1));
1161
1162 GetEnvelopes(8)->AddEnvelopeConstituentParam("S09G", idSlatCh9, quadrant*100+imax+4*idiv+1,
1163 TGeoTranslation(xvol-kPcbLength * kNPCB5[1]/2.,yvol-kPcbLength,0.),3,divpar);
1164 GetEnvelopes(9)->AddEnvelopeConstituentParam("S10G", idSlatCh10, quadrant*100+imax+4*idiv+1,
1165 TGeoTranslation(xvol-kPcbLength * kNPCB5[1]/2.,yvol-kPcbLength,0.),3,divpar);
1166 }
d1cd2474 1167 }
e516b01d 1168 // cout << "Geometry for Station 5...... done" << endl;
1169
1170 }
d1cd2474 1171}
1172
1173
1174//______________________________________________________________________________
1175void AliMUONSlatGeometryBuilder::SetTransformations()
1176{
2c9844e7 1177// Defines the transformations for the station345 chambers.
d1cd2474 1178// ---
eb1c3e3a 1179
1180 if (gAlice->GetModule("DIPO")) {
1181 // if DIPO is preset, the whole station will be placed in DDIP volume
1182 SetMotherVolume(4, "DDIP");
1183 SetMotherVolume(5, "DDIP");
1184 SetVolume(4, "CH05", true);
1185 SetVolume(5, "CH06", true);
1186 }
1187 else {
1188 SetVolume(4, "CH05");
1189 SetVolume(5, "CH06");
1190 }
1191 SetVolume(6, "CH07");
1192 SetVolume(7, "CH08");
1193 SetVolume(8, "CH09");
1194 SetVolume(9, "CH10");
1195
2c9844e7 1196// Stations 345 are not perpendicular to the beam axis
1197// See AliMUONConstants class
1198 TGeoRotation st345inclination("rot99");
1199 st345inclination.RotateX(AliMUONConstants::St345Inclination());
1200
b7ef3c96 1201 Double_t zpos1= - AliMUONConstants::DefaultChamberZ(4);
2c9844e7 1202 SetTransformation(4, TGeoTranslation(0., 0., zpos1), st345inclination);
b7ef3c96 1203
1204 zpos1= - AliMUONConstants::DefaultChamberZ(5);
2c9844e7 1205 SetTransformation(5, TGeoTranslation(0., 0., zpos1), st345inclination);
b7ef3c96 1206
1207 zpos1 = - AliMUONConstants::DefaultChamberZ(6);
2c9844e7 1208 SetTransformation(6, TGeoTranslation(0., 0., zpos1), st345inclination);
b7ef3c96 1209
1210 zpos1 = - AliMUONConstants::DefaultChamberZ(7);
2c9844e7 1211 SetTransformation(7, TGeoTranslation(0., 0., zpos1), st345inclination );
b7ef3c96 1212
1213 zpos1 = - AliMUONConstants::DefaultChamberZ(8);
2c9844e7 1214 SetTransformation(8, TGeoTranslation(0., 0., zpos1), st345inclination);
b7ef3c96 1215
1216 zpos1 = - AliMUONConstants::DefaultChamberZ(9);
2c9844e7 1217 SetTransformation(9, TGeoTranslation(0., 0., zpos1), st345inclination);
d1cd2474 1218
1219}
1220
1221//______________________________________________________________________________
1222void AliMUONSlatGeometryBuilder::SetSensitiveVolumes()
1223{
1224// Defines the sensitive volumes for slat stations chambers.
1225// ---
1226
e118b27e 1227 GetGeometry(4)->SetSensitiveVolume("S05G");
1228 GetGeometry(5)->SetSensitiveVolume("S06G");
1229 GetGeometry(6)->SetSensitiveVolume("S07G");
1230 GetGeometry(7)->SetSensitiveVolume("S08G");
1231 GetGeometry(8)->SetSensitiveVolume("S09G");
1232 GetGeometry(9)->SetSensitiveVolume("S10G");
d1cd2474 1233}
1234
1235//______________________________________________________________________________
1236Int_t AliMUONSlatGeometryBuilder::ConvertSlatNum(Int_t numslat, Int_t quadnum, Int_t fspq) const
1237{
2057e0cc 1238// On-line function establishing the correspondance between numslat (the slat number on a particular quadrant (numslat->0....4 for St3))
1239// and slatnum (the slat number on the whole panel (slatnum->1...18 for St3)
c10e6eaf 1240 numslat += 1;
1241 if (quadnum==2 || quadnum==3)
1242 numslat += fspq;
1243 else
1244 numslat = fspq + 2-numslat;
1245 numslat -= 1;
d1cd2474 1246
c10e6eaf 1247 if (quadnum==3 || quadnum==4) numslat += 2*fspq+1;
1248
1249 return numslat;
d1cd2474 1250}