]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PHOS/AliPHOSGeometry.h
Removed global's to comply with Coding Conventions
[u/mrichter/AliRoot.git] / PHOS / AliPHOSGeometry.h
CommitLineData
daa2ae2f 1#ifndef ALIPHOSGEOMETRY_H
2#define ALIPHOSGEOMETRY_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
6ad0bfa0 6/* $Id$ */
7
b2a60966 8//_________________________________________________________________________
9// Geometry class for PHOS : singleton
10// The EMC modules are parametrized so that any configuration can be easily implemented
11// The title is used to identify the type of CPV used. So far only PPSD implemented
12//
13//*-- Author: Yves Schutz (SUBATECH)
d15a28e7 14
15// --- ROOT system ---
16
daa2ae2f 17#include "TNamed.h"
18#include "TString.h"
19#include "TObjArray.h"
20#include "TVector3.h"
d15a28e7 21
22// --- AliRoot header files ---
23
daa2ae2f 24#include "AliGeometry.h"
25#include "AliPHOSRecPoint.h"
26
9f616d61 27
daa2ae2f 28class AliPHOSGeometry : public AliGeometry {
29
30public:
31
88714635 32 AliPHOSGeometry() {
33 // default ctor
34 // must be kept public for root persistency purposes, but should never be called by the outside world
35 } ;
daa2ae2f 36 virtual ~AliPHOSGeometry(void) ;
37 static AliPHOSGeometry * GetInstance(const Text_t* name, const Text_t* title) ;
38 static AliPHOSGeometry * GetInstance() ;
39 virtual void GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos, TMatrix & gmat) ;
40 virtual void GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos) ;
41
9ec91567 42 const static TString kDegre ;
43 const static TString kRadian ;
05375de7 44
daa2ae2f 45protected:
46
47 AliPHOSGeometry(const Text_t* name, const Text_t* title) : AliGeometry(name, title) { Init() ; }
48 void Init(void) ; // steering method for PHOS and CPV
49 void InitPHOS(void) ; // defines the various PHOS geometry parameters
50 void InitPPSD(void) ; // defines the various PPSD geometry parameters
51
52public:
53
54 // General
55
b2a60966 56 Bool_t AbsToRelNumbering(const Int_t AbsId, Int_t * RelId) ; // converts the absolute PHOS numbering to a relative
9f616d61 57 void EmcModuleCoverage(const Int_t m, Double_t & tm, Double_t & tM, Double_t & pm, Double_t & pM, Option_t * opt = kRadian);
b2a60966 58 // calculates the angular coverage in theta and phi of a EMC module
9f616d61 59 void EmcXtalCoverage(Double_t & theta, Double_t & phi, Option_t * opt = kRadian) ;
60 // calculates the angular coverage in theta and phi of a
61 // single crystal in a EMC module
62 void ImpactOnEmc(const Double_t theta, const Double_t phi, Int_t & ModuleNumber, Double_t & x, Double_t & z) ;
63 // calculates the impact coordinates of a neutral particle
64 // emitted in direction theta and phi in ALICE
daa2ae2f 65 void RelPosInModule(const Int_t * RelId, Float_t & y, Float_t & z) ; // gets the position of element (pad or Xtal) relative to
66 // center of PHOS module
67 void RelPosInAlice(const Int_t AbsId, TVector3 & pos) ; // gets the position of element (pad or Xtal) relative to
68 // Alice
69 Bool_t RelToAbsNumbering(const Int_t * RelId, Int_t & AbsId) ; // converts the absolute PHOS numbering to a relative
c198e326 70
daa2ae2f 71
72 ///////////// PHOS related parameters
73
74 Bool_t IsInitialized(void) const { return fInit ; }
75 Float_t GetAirFilledBoxSize(Int_t index) const { return fAirFilledBoxSize[index] ;}
76 Float_t GetCrystalHolderThickness(void) const { return fCrystalHolderThickness ; }
77 Float_t GetCrystalSize(Int_t index) const { return fXtlSize[index] ; }
78 Float_t GetCrystalSupportHeight(void) const { return fCrystalSupportHeight ; }
79 Float_t GetCrystalWrapThickness(void) const { return fCrystalWrapThickness;}
80 Float_t GetGapBetweenCrystals(void) const { return fGapBetweenCrystals ; }
81 Float_t GetIPtoCrystalSurface(void) const { return fIPtoCrystalSurface ; }
82 Float_t GetIPtoOuterCoverDistance(void) const { return fIPtoOuterCoverDistance ; }
b2a60966 83 Float_t GetIPtoPpsdUp(void) const { return (fIPtoOuterCoverDistance - fPPSDBoxSize[1] + fPPSDModuleSize[1]/2 ); }
84 Float_t GetIPtoPpsdLow(void) const { return (fIPtoOuterCoverDistance - fPPSDModuleSize[1]/2 ); }
daa2ae2f 85 Float_t GetIPtoTopLidDistance(void) const { return fIPtoTopLidDistance ; }
86 Float_t GetLowerThermoPlateThickness(void) const { return fLowerThermoPlateThickness ; }
87 Float_t GetLowerTextolitPlateThickness(void) const { return fLowerTextolitPlateThickness ; }
88 Float_t GetModuleBoxThickness(void) const { return fModuleBoxThickness ; }
89 Int_t GetNPhi(void) const { return fNPhi ; }
90 Int_t GetNZ(void) const { return fNZ ; }
91 Int_t GetNModules(void) const { return fNModules ; }
92 Float_t GetOuterBoxSize(Int_t index) const { return fOuterBoxSize[index] ; }
93 Float_t GetOuterBoxThickness(Int_t index) const { return fOuterBoxThickness[index] ; }
94 Float_t GetPHOSAngle(Int_t index) const { return fPHOSAngle[index-1] ; }
95 Float_t GetPinDiodeSize(Int_t index) const { return fPinDiodeSize[index] ; }
96 Float_t GetSecondUpperPlateThickness(void) const { return fSecondUpperPlateThickness ; }
97 Float_t GetSupportPlateThickness(void) const { return fSupportPlateThickness ; }
98 Float_t GetTextolitBoxSize(Int_t index) const { return fTextolitBoxSize[index] ; }
99 Float_t GetTextolitBoxThickness(Int_t index) const { return fTextolitBoxThickness[index]; }
100 Float_t GetUpperPlateThickness(void) const { return fUpperPlateThickness ; }
101 Float_t GetUpperCoolingPlateThickness(void) const { return fUpperCoolingPlateThickness ; }
102
103private:
104
105 void SetPHOSAngles() ; // calculates the PHOS modules PHI angle
106
107public:
d15a28e7 108
daa2ae2f 109 ///////////// PPSD (PHOS PRE SHOWER DETECTOR) related parameters
110
111
112 Float_t GetAnodeThickness(void) const { return fAnodeThickness ; }
113 Float_t GetAvalancheGap(void) const { return fAvalancheGap ; }
114 Float_t GetCathodeThickness(void) const { return fCathodeThickness ; }
115 Float_t GetCompositeThickness(void) const { return fCompositeThickness ; }
116 Float_t GetConversionGap(void) const { return fConversionGap ; }
117 Float_t GetLeadConverterThickness(void) const { return fLeadConverterThickness ; }
118 Float_t GetLeadToMicro2Gap(void) const { return fLeadToMicro2Gap ; }
119 Float_t GetLidThickness(void) const { return fLidThickness ; }
120 Float_t GetMicromegas1Thickness(void) const { return fMicromegas1Thickness ; }
121 Float_t GetMicromegas2Thickness(void) const { return fMicromegas2Thickness ; }
122 Float_t GetMicromegasWallThickness(void) const { return fMicromegasWallThickness ; }
123 Float_t GetMicro1ToLeadGap(void) const { return fMicro1ToLeadGap ; }
124 Int_t GetNumberOfPadsPhi(void) const { return fNumberOfPadsPhi ; }
125 Int_t GetNumberOfPadsZ(void) const { return fNumberOfPadsZ ; }
126 Int_t GetNumberOfModulesPhi(void) const { return fNumberOfModulesPhi ; }
127 Int_t GetNumberOfModulesZ(void) const { return fNumberOfModulesZ ; }
128 Float_t GetPCThickness(void) const { return fPCThickness ; }
129 Float_t GetPhiDisplacement(void) const { return fPhiDisplacement ; }
130 Float_t GetPPSDBoxSize(Int_t index) const { return fPPSDBoxSize[index] ; }
131 Float_t GetPPSDModuleSize(Int_t index) const { return fPPSDModuleSize[index] ; }
132 Float_t GetZDisplacement(void) const { return fZDisplacement ; }
2f3366b6 133
134 void SetLeadConverterThickness(Float_t e) ; // should ultimately disappear
daa2ae2f 135
136private:
137
138 ///////////// PHOS related parameters
139
140 Float_t fAirFilledBoxSize[3] ; // Air filled box containing one module
141 Float_t fAirThickness[3] ; // Space filled with air between the module box and the Textolit box
142 Float_t fCrystalSupportHeight ; // Height of the support of the crystal
143 Float_t fCrystalWrapThickness ; // Thickness of Tyvek wrapping the crystal
144 Float_t fCrystalHolderThickness ; // Titanium holder of the crystal
145 Float_t fGapBetweenCrystals ; // Total Gap between two adjacent crystals
146 Bool_t fInit ; // Tells if geometry has been succesfully set up
147 Float_t fIPtoOuterCoverDistance ; // Distances from interaction point to outer cover
148 Float_t fIPtoCrystalSurface ; // Distances from interaction point to Xtal surface
149 Float_t fModuleBoxThickness ; // Thickness of the thermo insulating box containing one crystals module
150 Float_t fLowerTextolitPlateThickness ; // Thickness of lower textolit plate
151 Float_t fLowerThermoPlateThickness ; // Thickness of lower thermo insulating plate
152 Int_t fNModules ; // Number of modules constituing PHOS
153 Int_t fNPhi ; // Number of crystal units in X (phi) direction
154 Int_t fNZ ; // Number of crystal units in Z direction
155 Float_t fOuterBoxSize[3] ; // Size of the outer thermo insulating foam box
156 Float_t fOuterBoxThickness[3] ; // Thickness of the outer thermo insulating foam box
4697edca 157 Float_t * fPHOSAngle ; //[fNModules] Position angles of modules
daa2ae2f 158 Float_t fPinDiodeSize[3] ; // Size of the PIN Diode
159 TObjArray * fRotMatrixArray ; // Liste of rotation matrices (one per phos module)
160 Float_t fSecondUpperPlateThickness ; // Thickness of upper polystyrene foam plate
161 Float_t fSupportPlateThickness ; // Thickness of the Aluminium support plate
162 Float_t fUpperCoolingPlateThickness ; // Thickness of the upper cooling plate
163 Float_t fUpperPlateThickness ; // Thickness of the uper thermo insulating foam plate
164 Float_t fTextolitBoxSize[3] ; // Size of the Textolit box inside the insulating foam box
165 Float_t fTextolitBoxThickness[3] ; // Thicknesses of th Textolit box
166 Float_t fXtlSize[3] ; // PWO4 crystal dimensions
167
168
169 ///////////// PPSD (PHOS PRE SHOWER DETECTOR) related parameters
170
171 Float_t fAnodeThickness ; // Thickness of the copper layer which makes the anode
172 Float_t fAvalancheGap ; // Thickness of the gas in the avalanche stage
173 Float_t fCathodeThickness ; // Thickeness of composite material ensuring rigidity of cathode
174 Float_t fCompositeThickness ; // Thickeness of composite material ensuring rigidity of anode
175 Float_t fConversionGap ; // Thickness of the gas in the conversion stage
176 Float_t fIPtoTopLidDistance ; // Distance from interaction point to top lid of PPSD
177 Float_t fLeadConverterThickness ; // Thickness of the Lead converter
178 Float_t fLeadToMicro2Gap ; // Thickness of the air gap between the Lead and Micromegas 2
179 Float_t fLidThickness ; // Thickness of top lid
180 Float_t fMicromegas1Thickness ; // Thickness of the first downstream Micromegas
181 Float_t fMicromegas2Thickness ; // Thickness of the second downstream Micromegas
182 Float_t fMicromegasWallThickness ; // Thickness of the Micromegas leak tight box
183 Float_t fMicro1ToLeadGap ; // Thickness of the air gap between Micromegas 1 and the Lead
184 Int_t fNumberOfPadsPhi ; // Number of pads on a micromegas module ;
185 Int_t fNumberOfPadsZ ; // Number of pads on a micromegas module ;
186 Int_t fNumberOfModulesPhi ; // Number of micromegas modules in phi
187 Int_t fNumberOfModulesZ ; // Number of micromegas modules in z
188 Float_t fPCThickness ; // Thickness of the printed circuit board of the anode
189 Float_t fPhiDisplacement ; // Phi displacement of micromegas1 with respect to micromegas2
190 Float_t fPPSDBoxSize[3] ; // Size of large box which contains PPSD; matches PHOS module size
191 Float_t fPPSDModuleSize[3] ; // Size of an individual micromegas module
192 Float_t fZDisplacement ; // Z displacement of micromegas1 with respect to micromegas2
193
88714635 194 static AliPHOSGeometry * fgGeom ; // pointer to the unique instance of the singleton
daa2ae2f 195
b2a60966 196 ClassDef(AliPHOSGeometry,1) // PHOS geometry class
daa2ae2f 197
198} ;
199
200#endif // AliPHOSGEOMETRY_H