]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PMD/AliPMDv0.cxx
Constant casted to avoid the ambiguity
[u/mrichter/AliRoot.git] / PMD / AliPMDv0.cxx
CommitLineData
c4561145 1/***************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15/*
16$Log$
df622204 17Revision 1.12 2001/05/21 09:39:28 morsch
18Minor modifications on the geometry. (Tapan Nayak)
19
76ad67b5 20Revision 1.11 2001/05/14 14:01:04 morsch
21AliPMDv0 coarse geometry and AliPMDv1 detailed simulation, completely revised versions by Tapan Nayak.
c4561145 22*/
23
24//
25///////////////////////////////////////////////////////////////////////////////
26// //
27// Photon Multiplicity Detector Version 1 //
28// //
29//Begin_Html
30/*
31<img src="picts/AliPMDv0Class.gif">
32*/
33//End_Html
34// //
35///////////////////////////////////////////////////////////////////////////////
36////
37
38#include "AliPMDv0.h"
39#include "AliRun.h"
40#include "AliMC.h"
41#include "AliConst.h"
42#include "AliMagF.h"
43#include "iostream.h"
44
45static Int_t kdet, ncell_sm, ncell_hole;
46static Float_t zdist, zdist1;
47static Float_t sm_length, sm_thick, cell_radius, cell_wall, cell_depth;
48static Float_t boundary, th_base, th_air, th_pcb;
49static Float_t th_lead, th_steel;
50
51ClassImp(AliPMDv0)
52
53 //_____________________________________________________________________________
54 AliPMDv0::AliPMDv0()
55{
56 //
57 // Default constructor
58 //
59 fMedSens=0;
60}
61
62//_____________________________________________________________________________
63AliPMDv0::AliPMDv0(const char *name, const char *title)
64 : AliPMD(name,title)
65{
66 //
67 // Standard constructor
68 //
69 fMedSens=0;
70}
71
72//_____________________________________________________________________________
73void AliPMDv0::CreateGeometry()
74{
75 //
76 // Create geometry for Photon Multiplicity Detector Version 3 :
77 // April 2, 2001
78 //
79 //Begin_Html
80 /*
81 <img src="picts/AliPMDv0.gif">
82 */
83 //End_Html
84 //Begin_Html
85 /*
86 <img src="picts/AliPMDv0Tree.gif">
87 */
88 //End_Html
89 GetParameters();
90 CreateSupermodule();
91 CreatePMD();
92}
93
94//_____________________________________________________________________________
95void AliPMDv0::CreateSupermodule()
96{
97 //
98 // Creates the geometry of the cells, places them in supermodule which
99 // is a rhombus object.
100
101 // *** DEFINITION OF THE GEOMETRY OF THE PMD ***
102 // *** HEXAGONAL CELLS WITH CELL RADIUS 0.25 cm (see "GetParameters")
103 // -- Author : S. Chattopadhyay, 02/04/1999.
104
105 // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is placed inside another
106 // hexagonal cell made of Cu (ECCU) with larger radius, compared to ECAR. The difference
107 // in radius gives the dimension of half width of each cell wall.
108 // These cells are placed as 72 x 72 array in a
109 // rhombus shaped supermodule (EHC1). The rhombus shaped modules are designed
110 // to have closed packed structure.
111 //
112 // Each supermodule (ESMA, ESMB), made of G10 is filled with following components
113 // EAIR --> Air gap between gas hexagonal cells and G10 backing.
114 // EHC1 --> Rhombus shaped parallelopiped containing the hexagonal cells
115 // EAIR --> Air gap between gas hexagonal cells and G10 backing.
116 //
117 // ESMA, ESMB are placed in EMM1 along with EMPB (Pb converter)
118 // and EMFE (iron support)
119
120 // EMM1 made of
121 // ESMB --> Normal supermodule, mirror image of ESMA
122 // EMPB --> Pb converter
123 // EMFE --> Fe backing
124 // ESMA --> Normal supermodule
125 //
126 // ESMX, ESMY are placed in EMM2 along with EMPB (Pb converter)
127 // and EMFE (iron support)
128
129 // EMM2 made of
130 // ESMY --> Special supermodule, mirror image of ESMX,
131 // EMPB --> Pb converter
132 // EMFE --> Fe backing
133 // ESMX --> First of the two Special supermodules near the hole
134
135 // EMM3 made of
136 // ESMQ --> Special supermodule, mirror image of ESMX,
137 // EMPB --> Pb converter
138 // EMFE --> Fe backing
139 // ESMP --> Second of the two Special supermodules near the hole
140
141 // EMM2 and EMM3 are used to create the hexagonal HOLE
142
143 //
144 // EPMD
145 // |
146 // |
147 // ---------------------------------------------------------------------------
148 // | | | | |
149 // EHOL EMM1 EMM2 EMM3 EALM
150 // | | |
151 // -------------------- -------------------- --------------------
152 // | | | | | | | | | | | |
153 // ESMB EMPB EMFE ESMA ESMY EMPB EMFE ESMX ESMQ EMPB EMFE ESMP
154 // | | |
155 // ------------ ------------ -------------
156 // | | | | | | | | |
157 // EAIR EHC1 EAIR EAIR EHC2 EAIR EAIR EHC3 EAIR
158 // | | |
159 // ECCU ECCU ECCU
160 // | | |
161 // ECAR ECAR ECAR
162
163
164 Int_t i, j;
165 Float_t xb, yb, zb;
166 Int_t number;
167 Int_t ihrotm,irotdm;
168 const Float_t root3_2 = TMath::Sqrt(3.) /2.;
169 Int_t *idtmed = fIdtmed->GetArray()-599;
170
171 AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.);
172 AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.);
173
174 zdist = TMath::Abs(zdist1);
175
176
177 //Subhasis, dimensional parameters of rhombus (dpara) as given to gsvolu
178 // rhombus to accomodate 72 x 72 hexagons, and with total 1.2cm extension
179 //(1mm tolerance on both side and 5mm thick G10 wall)
180 //
181
182 // **** CELL SIZE 20 mm^2 EQUIVALENT
183
184 // Inner hexagon filled with gas (Ar+CO2)
185
186 Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23};
187
188 hexd2[4]= - cell_depth/2.;
189 hexd2[7]= cell_depth/2.;
190 hexd2[6]= cell_radius - cell_wall;
191 hexd2[9]= cell_radius - cell_wall;
192
193 // Gas replaced by vacuum for v0(insensitive) version of PMD.
194
195 gMC->Gsvolu("ECAR", "PGON", idtmed[697], hexd2,10);
196 gMC->Gsatt("ECAR", "SEEN", 0);
197
198 // Outer hexagon made of Copper
199
200 Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25};
201 //total wall thickness=0.2*2
202
203 hexd1[4]= - cell_depth/2.;
204 hexd1[7]= cell_depth/2.;
205 hexd1[6]= cell_radius;
206 hexd1[9]= cell_radius;
207
208 gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10);
209 gMC->Gsatt("ECCU", "SEEN", 1);
210
211 // --- place inner hex inside outer hex
212
213 gMC->Gsposp("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY", hexd2, 10);
214
215// Rhombus shaped supermodules (defined by PARA)
216
217// volume for SUPERMODULE
218
219 Float_t dpara_sm1[6] = {12.5,12.5,0.8,30.,0.,0.};
220 dpara_sm1[0]=(ncell_sm+0.25)*hexd1[6] ;
221 dpara_sm1[1] = dpara_sm1[0] *root3_2;
222 dpara_sm1[2] = sm_thick/2.;
223
224//
225 gMC->Gsvolu("ESMA","PARA", idtmed[607], dpara_sm1, 6);
226 gMC->Gsatt("ESMA", "SEEN", 0);
227 //
228 gMC->Gsvolu("ESMB","PARA", idtmed[607], dpara_sm1, 6);
229 gMC->Gsatt("ESMB", "SEEN", 0);
230
231 // Air residing between the PCB and the base
232
233 Float_t dpara_air[6] = {12.5,12.5,8.,30.,0.,0.};
234 dpara_air[0]= dpara_sm1[0];
235 dpara_air[1]= dpara_sm1[1];
236 dpara_air[2]= th_air/2.;
237
238 gMC->Gsvolu("EAIR","PARA", idtmed[698], dpara_air, 6);
239 gMC->Gsatt("EAIR", "SEEN", 0);
240
241 // volume for honeycomb chamber EHC1
242
243 Float_t dpara1[6] = {12.5,12.5,0.4,30.,0.,0.};
244 dpara1[0] = dpara_sm1[0];
245 dpara1[1] = dpara_sm1[1];
246 dpara1[2] = cell_depth/2.;
247
248 gMC->Gsvolu("EHC1","PARA", idtmed[698], dpara1, 6);
249 gMC->Gsatt("EHC1", "SEEN", 1);
250
251
252
253 // Place hexagonal cells ECCU cells inside EHC1 (72 X 72)
254
255 Int_t xrow=1;
256
257 yb = -dpara1[1] + (1./root3_2)*hexd1[6];
258 zb = 0.;
259
260 for (j = 1; j <= ncell_sm; ++j) {
261 xb =-(dpara1[0] + dpara1[1]*0.577) + 2*hexd1[6]; //0.577=tan(30deg)
262 if(xrow >= 2){
263 xb = xb+(xrow-1)*hexd1[6];
264 }
265 for (i = 1; i <= ncell_sm; ++i) {
266 number = i+(j-1)*ncell_sm;
267 gMC->Gsposp("ECCU", number, "EHC1", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
268 xb += (hexd1[6]*2.);
269 }
270 xrow = xrow+1;
271 yb += (hexd1[6]*TMath::Sqrt(3.));
272 }
273
274
275 // Place EHC1 and EAIR into ESMA and ESMB
276
277 Float_t z_air1,z_air2,z_gas;
278
279 //ESMA is normal supermodule with base at bottom, with EHC1
280 z_air1= -dpara_sm1[2] + th_base + dpara_air[2];
281 gMC->Gspos("EAIR", 1, "ESMA", 0., 0., z_air1, 0, "ONLY");
282 z_gas=z_air1+dpara_air[2]+ th_pcb + dpara1[2];
76ad67b5 283 //Line below Commented for version 0 of PMD routine
284 // gMC->Gspos("EHC1", 1, "ESMA", 0., 0., z_gas, 0, "ONLY");
c4561145 285 z_air2=z_gas+dpara1[2]+ th_pcb + dpara_air[2];
286 gMC->Gspos("EAIR", 2, "ESMA", 0., 0., z_air2, 0, "ONLY");
287
288 // ESMB is mirror image of ESMA, with base at top, with EHC1
289
290 z_air1= -dpara_sm1[2] + th_pcb + dpara_air[2];
291 gMC->Gspos("EAIR", 3, "ESMB", 0., 0., z_air1, 0, "ONLY");
292 z_gas=z_air1+dpara_air[2]+ th_pcb + dpara1[2];
76ad67b5 293 //Line below Commented for version 0 of PMD routine
294 // gMC->Gspos("EHC1", 2, "ESMB", 0., 0., z_gas, 0, "ONLY");
c4561145 295 z_air2=z_gas+dpara1[2]+ th_pcb + dpara_air[2];
296 gMC->Gspos("EAIR", 4, "ESMB", 0., 0., z_air2, 0, "ONLY");
297
298
299// special supermodule EMM2(GEANT only) containing 6 unit modules
300
301// volume for SUPERMODULE
302
303 Float_t dpara_sm2[6] = {12.5,12.5,0.8,30.,0.,0.};
304 dpara_sm2[0]=(ncell_sm+0.25)*hexd1[6] ;
305 dpara_sm2[1] = (ncell_sm - ncell_hole + 0.25) * root3_2 * hexd1[6];
306 dpara_sm2[2] = sm_thick/2.;
307
308 gMC->Gsvolu("ESMX","PARA", idtmed[607], dpara_sm2, 6);
309 gMC->Gsatt("ESMX", "SEEN", 0);
310 //
311 gMC->Gsvolu("ESMY","PARA", idtmed[607], dpara_sm2, 6);
312 gMC->Gsatt("ESMY", "SEEN", 0);
313
314 Float_t dpara2[6] = {12.5,12.5,0.4,30.,0.,0.};
315 dpara2[0] = dpara_sm2[0];
316 dpara2[1] = dpara_sm2[1];
317 dpara2[2] = cell_depth/2.;
318
319 gMC->Gsvolu("EHC2","PARA", idtmed[698], dpara2, 6);
320 gMC->Gsatt("EHC2", "SEEN", 1);
321
322
323 // Air residing between the PCB and the base
324
325 Float_t dpara2_air[6] = {12.5,12.5,8.,30.,0.,0.};
326 dpara2_air[0]= dpara_sm2[0];
327 dpara2_air[1]= dpara_sm2[1];
328 dpara2_air[2]= th_air/2.;
329
330 gMC->Gsvolu("EAIX","PARA", idtmed[698], dpara2_air, 6);
331 gMC->Gsatt("EAIX", "SEEN", 0);
332
333 // Place hexagonal single cells ECCU inside EHC2
334 // skip cells which go into the hole in top left corner.
335
336 xrow=1;
337 yb = -dpara2[1] + (1./root3_2)*hexd1[6];
338 zb = 0.;
339 for (j = 1; j <= (ncell_sm - ncell_hole); ++j) {
340 xb =-(dpara2[0] + dpara2[1]*0.577) + 2*hexd1[6];
341 if(xrow >= 2){
342 xb = xb+(xrow-1)*hexd1[6];
343 }
344 for (i = 1; i <= ncell_sm; ++i) {
345 number = i+(j-1)*ncell_sm;
346 gMC->Gsposp("ECCU", number, "EHC2", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
347 xb += (hexd1[6]*2.);
348 }
349 xrow = xrow+1;
350 yb += (hexd1[6]*TMath::Sqrt(3.));
351 }
352
353
354 // ESMX is normal supermodule with base at bottom, with EHC2
355
356 z_air1= -dpara_sm2[2] + th_base + dpara2_air[2];
357 gMC->Gspos("EAIX", 1, "ESMX", 0., 0., z_air1, 0, "ONLY");
358 z_gas=z_air1+dpara2_air[2]+ th_pcb + dpara2[2];
76ad67b5 359 //Line below Commented for version 0 of PMD routine
360 // gMC->Gspos("EHC2", 1, "ESMX", 0., 0., z_gas, 0, "ONLY");
c4561145 361 z_air2=z_gas+dpara2[2]+ th_pcb + dpara2_air[2];
362 gMC->Gspos("EAIX", 2, "ESMX", 0., 0., z_air2, 0, "ONLY");
363
364 // ESMY is mirror image of ESMX with base at bottom, with EHC2
365
366 z_air1= -dpara_sm2[2] + th_pcb + dpara2_air[2];
367 gMC->Gspos("EAIX", 3, "ESMY", 0., 0., z_air1, 0, "ONLY");
368 z_gas=z_air1+dpara2_air[2]+ th_pcb + dpara2[2];
76ad67b5 369 //Line below Commented for version 0 of PMD routine
370 // gMC->Gspos("EHC2", 2, "ESMY", 0., 0., z_gas, 0, "ONLY");
c4561145 371 z_air2=z_gas+dpara2[2]+ th_pcb + dpara2_air[2];
372 gMC->Gspos("EAIX", 4, "ESMY", 0., 0., z_air2, 0, "ONLY");
373
374//
375
376
377// special supermodule EMM3 (GEANT only) containing 2 unit modules
378
379// volume for SUPERMODULE
380
381 Float_t dpara_sm3[6] = {12.5,12.5,0.8,30.,0.,0.};
382 dpara_sm3[0]=(ncell_sm - ncell_hole +0.25)*hexd1[6] ;
383 dpara_sm3[1] = (ncell_hole + 0.25) * hexd1[6] * root3_2;
384 dpara_sm3[2] = sm_thick/2.;
385
386 gMC->Gsvolu("ESMP","PARA", idtmed[607], dpara_sm3, 6);
387 gMC->Gsatt("ESMP", "SEEN", 0);
388 //
389 gMC->Gsvolu("ESMQ","PARA", idtmed[607], dpara_sm3, 6);
390 gMC->Gsatt("ESMQ", "SEEN", 0);
391
392 Float_t dpara3[6] = {12.5,12.5,0.4,30.,0.,0.};
393 dpara3[0] = dpara_sm3[0];
394 dpara3[1] = dpara_sm3[1];
395 dpara3[2] = cell_depth/2.;
396
397 gMC->Gsvolu("EHC3","PARA", idtmed[698], dpara3, 6);
398 gMC->Gsatt("EHC3", "SEEN", 1);
399
400
401 // Air residing between the PCB and the base
402
403 Float_t dpara3_air[6] = {12.5,12.5,8.,30.,0.,0.};
404 dpara3_air[0]= dpara_sm3[0];
405 dpara3_air[1]= dpara_sm3[1];
406 dpara3_air[2]= th_air/2.;
407
408 gMC->Gsvolu("EAIP","PARA", idtmed[698], dpara3_air, 6);
409 gMC->Gsatt("EAIP", "SEEN", 0);
410
411
412 // Place hexagonal single cells ECCU inside EHC3
413 // skip cells which go into the hole in top left corner.
414
415 xrow=1;
416 yb = -dpara3[1] + (1./root3_2)*hexd1[6];
417 zb = 0.;
418 for (j = 1; j <= ncell_hole; ++j) {
419 xb =-(dpara3[0] + dpara3[1]*0.577) + 2*hexd1[6];
420 if(xrow >= 2){
421 xb = xb+(xrow-1)*hexd1[6];
422 }
423 for (i = 1; i <= (ncell_sm - ncell_hole); ++i) {
424 number = i+(j-1)*(ncell_sm - ncell_hole);
425 gMC->Gsposp("ECCU", number, "EHC3", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
426 xb += (hexd1[6]*2.);
427 }
428 xrow = xrow+1;
429 yb += (hexd1[6]*TMath::Sqrt(3.));
430 }
431
432 // ESMP is normal supermodule with base at bottom, with EHC3
433
434 z_air1= -dpara_sm3[2] + th_base + dpara3_air[2];
435 gMC->Gspos("EAIP", 1, "ESMP", 0., 0., z_air1, 0, "ONLY");
436 z_gas=z_air1+dpara3_air[2]+ th_pcb + dpara3[2];
76ad67b5 437 //Line below Commented for version 0 of PMD routine
438 // gMC->Gspos("EHC3", 1, "ESMP", 0., 0., z_gas, 0, "ONLY");
c4561145 439 z_air2=z_gas+dpara3[2]+ th_pcb + dpara3_air[2];
440 gMC->Gspos("EAIP", 2, "ESMP", 0., 0., z_air2, 0, "ONLY");
441
442 // ESMQ is mirror image of ESMP with base at bottom, with EHC3
443
444 z_air1= -dpara_sm3[2] + th_pcb + dpara3_air[2];
445 gMC->Gspos("EAIP", 3, "ESMQ", 0., 0., z_air1, 0, "ONLY");
446 z_gas=z_air1+dpara3_air[2]+ th_pcb + dpara3[2];
76ad67b5 447 //Line below Commented for version 0 of PMD routine
448 // gMC->Gspos("EHC3", 2, "ESMQ", 0., 0., z_gas, 0, "ONLY");
c4561145 449 z_air2=z_gas+dpara3[2]+ th_pcb + dpara3_air[2];
450 gMC->Gspos("EAIP", 4, "ESMQ", 0., 0., z_air2, 0, "ONLY");
451
452}
453
454//_____________________________________________________________________________
455
456void AliPMDv0::CreatePMD()
457{
458 //
459 // Create final detector from supermodules
460 //
461 // -- Author : Y.P. VIYOGI, 07/05/1996.
462 // -- Modified: P.V.K.S.Baba(JU), 15-12-97.
463 // -- Modified: For New Geometry YPV, March 2001.
464
465
466 const Float_t root3_2 = TMath::Sqrt(3.)/2.;
467 const Float_t pi = 3.14159;
468 Int_t i,j;
469
470 Float_t xp, yp, zp;
471
472 Int_t num_mod;
473 Int_t jhrot12,jhrot13, irotdm;
474
475 Int_t *idtmed = fIdtmed->GetArray()-599;
476
477 // VOLUMES Names : begining with "E" for all PMD volumes,
478 // The names of SIZE variables begin with S and have more meaningful
479 // characters as shown below.
480
481 // VOLUME SIZE MEDIUM : REMARKS
482 // ------ ----- ------ : ---------------------------
483
484 // EPMD GASPMD AIR : INSIDE PMD and its SIZE
485
486 // *** Define the EPMD Volume and fill with air ***
487
488
489 // Gaspmd, the dimension of HEXAGONAL mother volume of PMD,
490
491
492 Float_t gaspmd[10] = {0.,360.,6,2,-4.,12.,150.,4.,12.,150.};
493
494 gaspmd[5] = ncell_hole * cell_radius * 2. * root3_2;
495 gaspmd[8] = gaspmd[5];
496
497 gMC->Gsvolu("EPMD", "PGON", idtmed[698], gaspmd, 10);
498 gMC->Gsatt("EPMD", "SEEN", 0);
499
500 AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.);
501
502 AliMatrix(jhrot12, 90., 120., 90., 210., 0., 0.);
503 AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.);
504
505
506 Float_t dm_thick = 2. * sm_thick + th_lead + th_steel;
507
508 // dpara_emm1 array contains parameters of the imaginary volume EMM1,
509 // EMM1 is a master module of type 1, which has 24 copies in the PMD.
510 // EMM1 : normal volume as in old cases
511
512
513 Float_t dpara_emm1[6] = {12.5,12.5,0.8,30.,0.,0.};
514 dpara_emm1[0] = sm_length/2.;
515 dpara_emm1[1] = dpara_emm1[0] *root3_2;
516 dpara_emm1[2] = dm_thick/2.;
517
518 gMC->Gsvolu("EMM1","PARA", idtmed[698], dpara_emm1, 6);
519 gMC->Gsatt("EMM1", "SEEN", 1);
520
521 //
522 // --- DEFINE Modules, iron, and lead volumes
523
524 // Pb Convertor for EMM1
525 Float_t dpara_pb1[6] = {12.5,12.5,8.,30.,0.,0.};
526 dpara_pb1[0] = sm_length/2.;
527 dpara_pb1[1] = dpara_pb1[0] * root3_2;
528 dpara_pb1[2] = th_lead/2.;
529
530 gMC->Gsvolu("EPB1","PARA", idtmed[600], dpara_pb1, 6);
531 gMC->Gsatt ("EPB1", "SEEN", 0);
532
533 // Fe Support for EMM1
534 Float_t dpara_fe1[6] = {12.5,12.5,8.,30.,0.,0.};
535 dpara_fe1[0] = dpara_pb1[0];
536 dpara_fe1[1] = dpara_pb1[1];
537 dpara_fe1[2] = th_steel/2.;
538
539 gMC->Gsvolu("EFE1","PARA", idtmed[618], dpara_fe1, 6);
540 gMC->Gsatt ("EFE1", "SEEN", 0);
541
542
543
544 //
545 // position supermodule ESMA, ESMB, EPB1, EFE1 inside EMM1
546
547 Float_t z_ps,z_pb,z_fe,z_cv;
548
549 z_ps = - dpara_emm1[2] + sm_thick/2.;
550 gMC->Gspos("ESMB", 1, "EMM1", 0., 0., z_ps, 0, "ONLY");
551 z_pb=z_ps+sm_thick/2.+dpara_pb1[2];
552 gMC->Gspos("EPB1", 1, "EMM1", 0., 0., z_pb, 0, "ONLY");
553 z_fe=z_pb+dpara_pb1[2]+dpara_fe1[2];
554 gMC->Gspos("EFE1", 1, "EMM1", 0., 0., z_fe, 0, "ONLY");
555 z_cv=z_fe+dpara_fe1[2]+sm_thick/2.;
556 gMC->Gspos("ESMA", 1, "EMM1", 0., 0., z_cv, 0, "ONLY");
557
558
559
560 // EMM2 : special master module having full row of cells but the number
561 // of rows limited by hole.
562
563 Float_t dpara_emm2[6] = {12.5,12.5,0.8,30.,0.,0.};
564 dpara_emm2[0] = sm_length/2.;
565 dpara_emm2[1] = (ncell_sm - ncell_hole + 0.25) * cell_radius * root3_2;
566 dpara_emm2[2] = dm_thick/2.;
567
568 gMC->Gsvolu("EMM2","PARA", idtmed[698], dpara_emm2, 6);
569 gMC->Gsatt("EMM2", "SEEN", 1);
570
571
572 // Pb Convertor for EMM2
573 Float_t dpara_pb2[6] = {12.5,12.5,8.,30.,0.,0.};
574 dpara_pb2[0] = dpara_emm2[0];
575 dpara_pb2[1] = dpara_emm2[1];
576 dpara_pb2[2] = th_lead/2.;
577
578 gMC->Gsvolu("EPB2","PARA", idtmed[600], dpara_pb2, 6);
579 gMC->Gsatt ("EPB2", "SEEN", 0);
580
581 // Fe Support for EMM2
582 Float_t dpara_fe2[6] = {12.5,12.5,8.,30.,0.,0.};
583 dpara_fe2[0] = dpara_pb2[0];
584 dpara_fe2[1] = dpara_pb2[1];
585 dpara_fe2[2] = th_steel/2.;
586
587 gMC->Gsvolu("EFE2","PARA", idtmed[618], dpara_fe2, 6);
588 gMC->Gsatt ("EFE2", "SEEN", 0);
589
590
591
592 // position supermodule ESMX, ESMY inside EMM2
593
594 z_ps = - dpara_emm2[2] + sm_thick/2.;
595 gMC->Gspos("ESMY", 1, "EMM2", 0., 0., z_ps, 0, "ONLY");
596 z_pb = z_ps + sm_thick/2.+dpara_pb2[2];
597 gMC->Gspos("EPB2", 1, "EMM2", 0., 0., z_pb, 0, "ONLY");
598 z_fe = z_pb + dpara_pb2[2]+dpara_fe2[2];
599 gMC->Gspos("EFE2", 1, "EMM2", 0., 0., z_fe, 0, "ONLY");
600 z_cv = z_fe + dpara_fe2[2]+sm_thick/2.;
601 gMC->Gspos("ESMX", 1, "EMM2", 0., 0., z_cv, 0, "ONLY");
602 //
603
604
605 // EMM3 : special master module having truncated rows and columns of cells
606 // limited by hole.
607
608 Float_t dpara_emm3[6] = {12.5,12.5,0.8,30.,0.,0.};
609 dpara_emm3[0] = dpara_emm2[1]/root3_2;
610 dpara_emm3[1] = (ncell_hole + 0.25) * cell_radius *root3_2;
611 dpara_emm3[2] = dm_thick/2.;
612
613 gMC->Gsvolu("EMM3","PARA", idtmed[698], dpara_emm3, 6);
614 gMC->Gsatt("EMM3", "SEEN", 1);
615
616
617 // Pb Convertor for EMM3
618 Float_t dpara_pb3[6] = {12.5,12.5,8.,30.,0.,0.};
619 dpara_pb3[0] = dpara_emm3[0];
620 dpara_pb3[1] = dpara_emm3[1];
621 dpara_pb3[2] = th_lead/2.;
622
623 gMC->Gsvolu("EPB3","PARA", idtmed[600], dpara_pb3, 6);
624 gMC->Gsatt ("EPB3", "SEEN", 0);
625
626 // Fe Support for EMM3
627 Float_t dpara_fe3[6] = {12.5,12.5,8.,30.,0.,0.};
628 dpara_fe3[0] = dpara_pb3[0];
629 dpara_fe3[1] = dpara_pb3[1];
630 dpara_fe3[2] = th_steel/2.;
631
632 gMC->Gsvolu("EFE3","PARA", idtmed[618], dpara_fe3, 6);
633 gMC->Gsatt ("EFE3", "SEEN", 0);
634
635
636
637 // position supermodule ESMP, ESMQ inside EMM3
638
639 z_ps = - dpara_emm3[2] + sm_thick/2.;
640 gMC->Gspos("ESMQ", 1, "EMM3", 0., 0., z_ps, 0, "ONLY");
641 z_pb = z_ps + sm_thick/2.+dpara_pb3[2];
642 gMC->Gspos("EPB3", 1, "EMM3", 0., 0., z_pb, 0, "ONLY");
643 z_fe = z_pb + dpara_pb3[2]+dpara_fe3[2];
644 gMC->Gspos("EFE3", 1, "EMM3", 0., 0., z_fe, 0, "ONLY");
645 z_cv = z_fe + dpara_fe3[2] + sm_thick/2.;
646 gMC->Gspos("ESMP", 1, "EMM3", 0., 0., z_cv, 0, "ONLY");
647 //
648
649 // EHOL is a tube structure made of air
650 //
651 //Float_t d_hole[3];
652 //d_hole[0] = 0.;
653 //d_hole[1] = ncell_hole * cell_radius *2. * root3_2 + boundary;
654 //d_hole[2] = dm_thick/2.;
655 //
656 //gMC->Gsvolu("EHOL", "TUBE", idtmed[698], d_hole, 3);
657 //gMC->Gsatt("EHOL", "SEEN", 1);
658
659 //Al-rod as boundary of the supermodules
660
661 Float_t Al_rod[3] ;
662 Al_rod[0] = sm_length * 3/2. - gaspmd[5]/2 - boundary ;
663 Al_rod[1] = boundary;
664 Al_rod[2] = dm_thick/2.;
665
666 gMC->Gsvolu("EALM","BOX ", idtmed[698], Al_rod, 3);
667 gMC->Gsatt ("EALM", "SEEN", 1);
668 Float_t xalm[3];
669 xalm[0]=Al_rod[0] + gaspmd[5] + 3.0*boundary;
670 xalm[1]=-xalm[0]/2.;
671 xalm[2]=xalm[1];
672
673 Float_t yalm[3];
674 yalm[0]=0.;
675 yalm[1]=xalm[0]*root3_2;
676 yalm[2]=-yalm[1];
677
678 // delx = full side of the supermodule
679 Float_t delx=sm_length * 3.;
680 Float_t x1= delx*root3_2 /2.;
681 Float_t x4=delx/4.;
682
683
684 // placing master modules and Al-rod in PMD
685
686 Float_t dx = sm_length;
687 Float_t dy = dx * root3_2;
688
689 Float_t xsup[9] = {-dx/2., dx/2., 3.*dx/2.,
690 -dx, 0., dx,
691 -3.*dx/2., -dx/2., dx/2.};
692
693 Float_t ysup[9] = {dy, dy, dy,
694 0., 0., 0.,
695 -dy, -dy, -dy};
696
697 // xpos and ypos are the x & y coordinates of the centres of EMM1 volumes
698
699 Float_t xoff = boundary * TMath::Tan(pi/6.);
700 Float_t xmod[3]={x4 + xoff , x4 + xoff, -2.*x4-boundary/root3_2};
701 Float_t ymod[3] = {-x1 - boundary, x1 + boundary, 0.};
702 Float_t xpos[9], ypos[9], x2, y2, x3, y3;
703
704 Float_t xemm2 = sm_length/2. -
705 (ncell_sm + ncell_hole + 0.25) * cell_radius * 0.5
706 + xoff;
707 Float_t yemm2 = -(ncell_sm + ncell_hole + 0.25) * cell_radius * root3_2
708 - boundary;
709
710 Float_t xemm3 = (ncell_sm + 0.5 * ncell_hole + 0.25) * cell_radius + xoff;
711 Float_t yemm3 = - (ncell_hole - 0.25) * cell_radius * root3_2 - boundary;
712
713 Float_t theta[3] = {0., 2.*pi/3., 4.*pi/3.};
714 Int_t irotate[3] = {0, jhrot12, jhrot13};
715
716 num_mod=0;
717 for (j=0; j<3; ++j)
718 {
719 gMC->Gsposp("EALM", j+1, "EPMD", xalm[j],yalm[j], 0., irotate[j], "ONLY", Al_rod, 3);
720 x2=xemm2*TMath::Cos(theta[j]) - yemm2*TMath::Sin(theta[j]);
721 y2=xemm2*TMath::Sin(theta[j]) + yemm2*TMath::Cos(theta[j]);
722
723 gMC->Gsposp("EMM2", j+1, "EPMD", x2,y2, 0., irotate[j], "ONLY", dpara_emm2, 6);
724
725 x3=xemm3*TMath::Cos(theta[j]) - yemm3*TMath::Sin(theta[j]);
726 y3=xemm3*TMath::Sin(theta[j]) + yemm3*TMath::Cos(theta[j]);
727
728 gMC->Gsposp("EMM3", j+4, "EPMD", x3,y3, 0., irotate[j], "ONLY", dpara_emm3, 6);
729
730 for (i=1; i<9; ++i)
731 {
732 xpos[i]=xmod[j] + xsup[i]*TMath::Cos(theta[j]) - ysup[i]*TMath::Sin(theta[j]);
733 ypos[i]=ymod[j] + xsup[i]*TMath::Sin(theta[j]) + ysup[i]*TMath::Cos(theta[j]);
df622204 734 if(fDebug)
735 printf("%s: %f %f \n", ClassName(), xpos[i], ypos[i]);
c4561145 736
737 num_mod = num_mod+1;
738
df622204 739 if(fDebug)
740 printf("\n%s: Num_mod %d\n",ClassName(),num_mod);
c4561145 741
742 gMC->Gsposp("EMM1", num_mod + 6, "EPMD", xpos[i],ypos[i], 0., irotate[j], "ONLY", dpara_emm1, 6);
743
744 }
745 }
746
747
748 // place EHOL in the centre of EPMD
749 // gMC->Gspos("EHOL", 1, "EPMD", 0.,0.,0., 0, "ONLY");
750
751 // --- Place the EPMD in ALICE
752 xp = 0.;
753 yp = 0.;
754 zp = zdist1;
755
756 gMC->Gspos("EPMD", 1, "ALIC", xp,yp,zp, 0, "ONLY");
757
758}
759
760
761//_____________________________________________________________________________
762void AliPMDv0::DrawModule()
763{
764 //
765 // Draw a shaded view of the Photon Multiplicity Detector
766 //
767
768 gMC->Gsatt("*", "seen", -1);
769 gMC->Gsatt("alic", "seen", 0);
770 //
771 // Set the visibility of the components
772 //
773 gMC->Gsatt("ECAR","seen",0);
774 gMC->Gsatt("ECCU","seen",1);
775 gMC->Gsatt("EHC1","seen",1);
776 gMC->Gsatt("EHC1","seen",1);
777 gMC->Gsatt("EHC2","seen",1);
778 gMC->Gsatt("EMM1","seen",1);
779 gMC->Gsatt("EHOL","seen",1);
780 gMC->Gsatt("EPMD","seen",0);
781 //
782 gMC->Gdopt("hide", "on");
783 gMC->Gdopt("shad", "on");
784 gMC->Gsatt("*", "fill", 7);
785 gMC->SetClipBox(".");
786 gMC->SetClipBox("*", 0, 3000, -3000, 3000, -6000, 6000);
787 gMC->DefaultRange();
788 gMC->Gdraw("alic", 40, 30, 0, 22, 20.5, .02, .02);
789 gMC->Gdhead(1111, "Photon Multiplicity Detector Version 1");
790
791 //gMC->Gdman(17, 5, "MAN");
792 gMC->Gdopt("hide", "off");
793}
794
795//_____________________________________________________________________________
796void AliPMDv0::CreateMaterials()
797{
798 //
799 // Create materials for the PMD
800 //
801 // ORIGIN : Y. P. VIYOGI
802 //
803
804 // --- The Argon- CO2 mixture ---
805 Float_t ag[2] = { 39.95 };
806 Float_t zg[2] = { 18. };
807 Float_t wg[2] = { .8,.2 };
808 Float_t dar = .001782; // --- Ar density in g/cm3 ---
809 // --- CO2 ---
810 Float_t ac[2] = { 12.,16. };
811 Float_t zc[2] = { 6.,8. };
812 Float_t wc[2] = { 1.,2. };
813 Float_t dc = .001977;
814 Float_t dco = .002; // --- CO2 density in g/cm3 ---
815
816 Float_t absl, radl, a, d, z;
817 Float_t dg;
818 Float_t x0ar;
819 //Float_t x0xe=2.4;
820 //Float_t dxe=0.005858;
821 Float_t buf[1];
822 Int_t nbuf;
823 Float_t asteel[4] = { 55.847,51.9961,58.6934,28.0855 };
824 Float_t zsteel[4] = { 26.,24.,28.,14. };
825 Float_t wsteel[4] = { .715,.18,.1,.005 };
826
827 Int_t *idtmed = fIdtmed->GetArray()-599;
828 Int_t isxfld = gAlice->Field()->Integ();
829 Float_t sxmgmx = gAlice->Field()->Max();
830
831 // --- Define the various materials for GEANT ---
832 AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5);
833 x0ar = 19.55 / dar;
834 AliMaterial(2, "Argon$", 39.95, 18., dar, x0ar, 6.5e4);
835 AliMixture(3, "CO2 $", ac, zc, dc, -2, wc);
836 AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5);
837 AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5);
838 AliMaterial(7, "W $", 183.85, 74., 19.3, .35, 10.3);
839 AliMaterial(8, "G10 $", 20., 10., 1.7, 19.4, 999.);
840 AliMaterial(9, "SILIC$", 28.09, 14., 2.33, 9.36, 45.);
841 AliMaterial(10, "Be $", 9.01, 4., 1.848, 35.3, 36.7);
842 AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.);
843 AliMaterial(16, "C $", 12.01, 6., 2.265, 18.8, 49.9);
844 AliMaterial(17, "POLYCARBONATE $", 20., 10., 1.2, 34.6, 999.);
845 AliMixture(19, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel);
846 // AliMaterial(31, "Xenon$", 131.3, 54., dxe, x0xe, 6.5e4);
847
848 AliMaterial(96, "MYLAR$", 8.73, 4.55, 1.39, 28.7, 62.);
849 AliMaterial(97, "CONCR$", 20., 10., 2.5, 10.7, 40.);
850 AliMaterial(98, "Vacum$", 1e-9, 1e-9, 1e-9, 1e16, 1e16);
851 AliMaterial(99, "Air $", 14.61, 7.3, .0012, 30420., 67500.);
852
853 // define gas-mixtures
854
855 char namate[21];
856 gMC->Gfmate((*fIdmate)[3], namate, a, z, d, radl, absl, buf, nbuf);
857 ag[1] = a;
858 zg[1] = z;
859 dg = (dar * 4 + dco) / 5;
860 AliMixture(5, "ArCO2$", ag, zg, dg, 2, wg);
861
862 // Define tracking media
863 AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
864 AliMedium(7, "W conv.$", 7, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
865 AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
866 AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
867 AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
868 AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
869 AliMedium(9, "SILICON $", 9, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
870 AliMedium(10, "Be $", 10, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
871 AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .1, 10);
872 AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .1, .1);
873 AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
874 AliMedium(16, "C $", 16, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
875 AliMedium(17, "PLOYCARB$", 17, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
876 AliMedium(19, " S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
877 // AliMedium(31, "Xenon $", 31, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
878
879 // --- Generate explicitly delta rays in the iron, aluminium and lead ---
880 gMC->Gstpar(idtmed[600], "LOSS", 3.);
881 gMC->Gstpar(idtmed[600], "DRAY", 1.);
882
883 gMC->Gstpar(idtmed[603], "LOSS", 3.);
884 gMC->Gstpar(idtmed[603], "DRAY", 1.);
885
886 gMC->Gstpar(idtmed[604], "LOSS", 3.);
887 gMC->Gstpar(idtmed[604], "DRAY", 1.);
888
889 gMC->Gstpar(idtmed[605], "LOSS", 3.);
890 gMC->Gstpar(idtmed[605], "DRAY", 1.);
891
892 gMC->Gstpar(idtmed[606], "LOSS", 3.);
893 gMC->Gstpar(idtmed[606], "DRAY", 1.);
894
895 gMC->Gstpar(idtmed[607], "LOSS", 3.);
896 gMC->Gstpar(idtmed[607], "DRAY", 1.);
897
898 // --- Energy cut-offs in the Pb and Al to gain time in tracking ---
899 // --- without affecting the hit patterns ---
900 gMC->Gstpar(idtmed[600], "CUTGAM", 1e-4);
901 gMC->Gstpar(idtmed[600], "CUTELE", 1e-4);
902 gMC->Gstpar(idtmed[600], "CUTNEU", 1e-4);
903 gMC->Gstpar(idtmed[600], "CUTHAD", 1e-4);
904 gMC->Gstpar(idtmed[605], "CUTGAM", 1e-4);
905 gMC->Gstpar(idtmed[605], "CUTELE", 1e-4);
906 gMC->Gstpar(idtmed[605], "CUTNEU", 1e-4);
907 gMC->Gstpar(idtmed[605], "CUTHAD", 1e-4);
908 gMC->Gstpar(idtmed[606], "CUTGAM", 1e-4);
909 gMC->Gstpar(idtmed[606], "CUTELE", 1e-4);
910 gMC->Gstpar(idtmed[606], "CUTNEU", 1e-4);
911 gMC->Gstpar(idtmed[606], "CUTHAD", 1e-4);
912 gMC->Gstpar(idtmed[603], "CUTGAM", 1e-4);
913 gMC->Gstpar(idtmed[603], "CUTELE", 1e-4);
914 gMC->Gstpar(idtmed[603], "CUTNEU", 1e-4);
915 gMC->Gstpar(idtmed[603], "CUTHAD", 1e-4);
916 gMC->Gstpar(idtmed[609], "CUTGAM", 1e-4);
917 gMC->Gstpar(idtmed[609], "CUTELE", 1e-4);
918 gMC->Gstpar(idtmed[609], "CUTNEU", 1e-4);
919 gMC->Gstpar(idtmed[609], "CUTHAD", 1e-4);
920
921 // --- Prevent particles stopping in the gas due to energy cut-off ---
922 gMC->Gstpar(idtmed[604], "CUTGAM", 1e-5);
923 gMC->Gstpar(idtmed[604], "CUTELE", 1e-5);
924 gMC->Gstpar(idtmed[604], "CUTNEU", 1e-5);
925 gMC->Gstpar(idtmed[604], "CUTHAD", 1e-5);
926 gMC->Gstpar(idtmed[604], "CUTMUO", 1e-5);
927}
928
929//_____________________________________________________________________________
930void AliPMDv0::Init()
931{
932 //
933 // Initialises PMD detector after it has been built
934 //
935 Int_t i;
936 kdet=1;
937 //
df622204 938 if(fDebug) {
939 printf("\n%s: ",ClassName());
940 for(i=0;i<35;i++) printf("*");
941 printf(" PMD_INIT ");
942 for(i=0;i<35;i++) printf("*");
943 printf("\n%s: ",ClassName());
944 printf(" PMD simulation package (v0) initialised\n");
945 printf("%s: parameters of pmd\n", ClassName());
946 printf("%s: %10.2f %10.2f %10.2f
947 %10.2f\n",ClassName(),cell_radius,cell_wall,cell_depth,zdist1 );
948 printf("%s: ",ClassName());
949 for(i=0;i<80;i++) printf("*");
950 printf("\n");
951 }
c4561145 952 Int_t *idtmed = fIdtmed->GetArray()-599;
953 fMedSens=idtmed[605-1];
954}
955
956//_____________________________________________________________________________
957void AliPMDv0::StepManager()
958{
959 //
960 // Called at each step in the PMD
961 //
962 Int_t copy;
963 Float_t hits[4], destep;
964 Float_t center[3] = {0,0,0};
965 Int_t vol[5];
966 //char *namep;
967
968 if(gMC->GetMedium() == fMedSens && (destep = gMC->Edep())) {
969
970 gMC->CurrentVolID(copy);
971
972 //namep=gMC->CurrentVolName();
973 //printf("Current vol is %s \n",namep);
974
975 vol[0]=copy;
976 gMC->CurrentVolOffID(1,copy);
977
978 //namep=gMC->CurrentVolOffName(1);
979 //printf("Current vol 11 is %s \n",namep);
980
981 vol[1]=copy;
982 gMC->CurrentVolOffID(2,copy);
983
984 //namep=gMC->CurrentVolOffName(2);
985 //printf("Current vol 22 is %s \n",namep);
986
987 vol[2]=copy;
988
989 // if(strncmp(namep,"EHC1",4))vol[2]=1;
990
991 gMC->CurrentVolOffID(3,copy);
992
993 //namep=gMC->CurrentVolOffName(3);
994 //printf("Current vol 33 is %s \n",namep);
995
996 vol[3]=copy;
997 gMC->CurrentVolOffID(4,copy);
998
999 //namep=gMC->CurrentVolOffName(4);
1000 //printf("Current vol 44 is %s \n",namep);
1001
1002 vol[4]=copy;
1003 //printf("volume number %d,%d,%d,%d,%d,%f \n",vol[0],vol[1],vol[2],vol[3],vol[4],destep*1000000);
1004
1005 gMC->Gdtom(center,hits,1);
1006 hits[3] = destep*1e9; //Number in eV
1007 AddHit(gAlice->CurrentTrack(), vol, hits);
1008 }
1009}
1010
1011
1012//------------------------------------------------------------------------
1013// Get parameters
1014
1015void AliPMDv0::GetParameters()
1016{
1017 Int_t ncell_um, num_um;
1018 ncell_um=24;
1019 num_um=3;
1020 ncell_hole=24;
1021 cell_radius=0.25;
1022 cell_wall=0.02;
1023 cell_depth=0.25 * 2.;
1024 //
1025 boundary=0.7;
1026 ncell_sm=ncell_um * num_um; //no. of cells in a row in one supermodule
1027 sm_length= ((ncell_sm + 0.25 ) * cell_radius) * 2.;
1028 //
1029 th_base=0.3;
1030 th_air=0.1;
1031 th_pcb=0.16;
1032 //
1033 sm_thick = th_base + th_air + th_pcb + cell_depth + th_pcb + th_air + th_pcb;
1034 //
1035 th_lead=1.5;
1036 th_steel=0.5;
1037 //
1038 zdist1 = -365.;
1039}
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052