]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PMD/AliPMDv0.cxx
Adaption to new fluka common blocks (E. Futo)
[u/mrichter/AliRoot.git] / PMD / AliPMDv0.cxx
CommitLineData
c4561145 1/***************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15/*
16$Log$
ef61784c 17Revision 1.16 2002/11/21 22:57:02 alibrary
18Removing AliMC and AliMCProcess
19
4c475d27 20Revision 1.15 2002/10/23 07:36:35 alibrary
21Introducing Riostream.h
22
93bdec82 23Revision 1.14 2001/05/21 17:44:04 hristov
24Backslash to continue strings
25
dee197d3 26Revision 1.13 2001/05/21 10:59:09 morsch
27Printouts in debug mode only.
28
df622204 29Revision 1.12 2001/05/21 09:39:28 morsch
30Minor modifications on the geometry. (Tapan Nayak)
31
76ad67b5 32Revision 1.11 2001/05/14 14:01:04 morsch
33AliPMDv0 coarse geometry and AliPMDv1 detailed simulation, completely revised versions by Tapan Nayak.
c4561145 34*/
35
36//
37///////////////////////////////////////////////////////////////////////////////
38// //
39// Photon Multiplicity Detector Version 1 //
40// //
41//Begin_Html
42/*
43<img src="picts/AliPMDv0Class.gif">
44*/
45//End_Html
46// //
47///////////////////////////////////////////////////////////////////////////////
48////
49
50#include "AliPMDv0.h"
51#include "AliRun.h"
c4561145 52#include "AliConst.h"
53#include "AliMagF.h"
93bdec82 54#include "Riostream.h"
c4561145 55
56static Int_t kdet, ncell_sm, ncell_hole;
57static Float_t zdist, zdist1;
58static Float_t sm_length, sm_thick, cell_radius, cell_wall, cell_depth;
59static Float_t boundary, th_base, th_air, th_pcb;
60static Float_t th_lead, th_steel;
61
62ClassImp(AliPMDv0)
63
64 //_____________________________________________________________________________
65 AliPMDv0::AliPMDv0()
66{
67 //
68 // Default constructor
69 //
70 fMedSens=0;
71}
72
73//_____________________________________________________________________________
74AliPMDv0::AliPMDv0(const char *name, const char *title)
75 : AliPMD(name,title)
76{
77 //
78 // Standard constructor
79 //
80 fMedSens=0;
81}
82
83//_____________________________________________________________________________
84void AliPMDv0::CreateGeometry()
85{
86 //
87 // Create geometry for Photon Multiplicity Detector Version 3 :
88 // April 2, 2001
89 //
90 //Begin_Html
91 /*
92 <img src="picts/AliPMDv0.gif">
93 */
94 //End_Html
95 //Begin_Html
96 /*
97 <img src="picts/AliPMDv0Tree.gif">
98 */
99 //End_Html
100 GetParameters();
101 CreateSupermodule();
102 CreatePMD();
103}
104
105//_____________________________________________________________________________
106void AliPMDv0::CreateSupermodule()
107{
108 //
109 // Creates the geometry of the cells, places them in supermodule which
110 // is a rhombus object.
111
112 // *** DEFINITION OF THE GEOMETRY OF THE PMD ***
113 // *** HEXAGONAL CELLS WITH CELL RADIUS 0.25 cm (see "GetParameters")
114 // -- Author : S. Chattopadhyay, 02/04/1999.
115
116 // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is placed inside another
117 // hexagonal cell made of Cu (ECCU) with larger radius, compared to ECAR. The difference
118 // in radius gives the dimension of half width of each cell wall.
119 // These cells are placed as 72 x 72 array in a
120 // rhombus shaped supermodule (EHC1). The rhombus shaped modules are designed
121 // to have closed packed structure.
122 //
123 // Each supermodule (ESMA, ESMB), made of G10 is filled with following components
124 // EAIR --> Air gap between gas hexagonal cells and G10 backing.
125 // EHC1 --> Rhombus shaped parallelopiped containing the hexagonal cells
126 // EAIR --> Air gap between gas hexagonal cells and G10 backing.
127 //
128 // ESMA, ESMB are placed in EMM1 along with EMPB (Pb converter)
129 // and EMFE (iron support)
130
131 // EMM1 made of
132 // ESMB --> Normal supermodule, mirror image of ESMA
133 // EMPB --> Pb converter
134 // EMFE --> Fe backing
135 // ESMA --> Normal supermodule
136 //
137 // ESMX, ESMY are placed in EMM2 along with EMPB (Pb converter)
138 // and EMFE (iron support)
139
140 // EMM2 made of
141 // ESMY --> Special supermodule, mirror image of ESMX,
142 // EMPB --> Pb converter
143 // EMFE --> Fe backing
144 // ESMX --> First of the two Special supermodules near the hole
145
146 // EMM3 made of
147 // ESMQ --> Special supermodule, mirror image of ESMX,
148 // EMPB --> Pb converter
149 // EMFE --> Fe backing
150 // ESMP --> Second of the two Special supermodules near the hole
151
152 // EMM2 and EMM3 are used to create the hexagonal HOLE
153
154 //
155 // EPMD
156 // |
157 // |
158 // ---------------------------------------------------------------------------
159 // | | | | |
160 // EHOL EMM1 EMM2 EMM3 EALM
161 // | | |
162 // -------------------- -------------------- --------------------
163 // | | | | | | | | | | | |
164 // ESMB EMPB EMFE ESMA ESMY EMPB EMFE ESMX ESMQ EMPB EMFE ESMP
165 // | | |
166 // ------------ ------------ -------------
167 // | | | | | | | | |
168 // EAIR EHC1 EAIR EAIR EHC2 EAIR EAIR EHC3 EAIR
169 // | | |
170 // ECCU ECCU ECCU
171 // | | |
172 // ECAR ECAR ECAR
173
174
175 Int_t i, j;
176 Float_t xb, yb, zb;
177 Int_t number;
178 Int_t ihrotm,irotdm;
179 const Float_t root3_2 = TMath::Sqrt(3.) /2.;
180 Int_t *idtmed = fIdtmed->GetArray()-599;
181
182 AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.);
183 AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.);
184
185 zdist = TMath::Abs(zdist1);
186
187
188 //Subhasis, dimensional parameters of rhombus (dpara) as given to gsvolu
189 // rhombus to accomodate 72 x 72 hexagons, and with total 1.2cm extension
190 //(1mm tolerance on both side and 5mm thick G10 wall)
191 //
192
193 // **** CELL SIZE 20 mm^2 EQUIVALENT
194
195 // Inner hexagon filled with gas (Ar+CO2)
196
197 Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23};
198
199 hexd2[4]= - cell_depth/2.;
200 hexd2[7]= cell_depth/2.;
201 hexd2[6]= cell_radius - cell_wall;
202 hexd2[9]= cell_radius - cell_wall;
203
204 // Gas replaced by vacuum for v0(insensitive) version of PMD.
205
206 gMC->Gsvolu("ECAR", "PGON", idtmed[697], hexd2,10);
207 gMC->Gsatt("ECAR", "SEEN", 0);
208
209 // Outer hexagon made of Copper
210
211 Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25};
212 //total wall thickness=0.2*2
213
214 hexd1[4]= - cell_depth/2.;
215 hexd1[7]= cell_depth/2.;
216 hexd1[6]= cell_radius;
217 hexd1[9]= cell_radius;
218
219 gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10);
220 gMC->Gsatt("ECCU", "SEEN", 1);
221
222 // --- place inner hex inside outer hex
223
ef61784c 224 gMC->Gspos("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY");
c4561145 225
226// Rhombus shaped supermodules (defined by PARA)
227
228// volume for SUPERMODULE
229
230 Float_t dpara_sm1[6] = {12.5,12.5,0.8,30.,0.,0.};
231 dpara_sm1[0]=(ncell_sm+0.25)*hexd1[6] ;
232 dpara_sm1[1] = dpara_sm1[0] *root3_2;
233 dpara_sm1[2] = sm_thick/2.;
234
235//
236 gMC->Gsvolu("ESMA","PARA", idtmed[607], dpara_sm1, 6);
237 gMC->Gsatt("ESMA", "SEEN", 0);
238 //
239 gMC->Gsvolu("ESMB","PARA", idtmed[607], dpara_sm1, 6);
240 gMC->Gsatt("ESMB", "SEEN", 0);
241
242 // Air residing between the PCB and the base
243
244 Float_t dpara_air[6] = {12.5,12.5,8.,30.,0.,0.};
245 dpara_air[0]= dpara_sm1[0];
246 dpara_air[1]= dpara_sm1[1];
247 dpara_air[2]= th_air/2.;
248
249 gMC->Gsvolu("EAIR","PARA", idtmed[698], dpara_air, 6);
250 gMC->Gsatt("EAIR", "SEEN", 0);
251
252 // volume for honeycomb chamber EHC1
253
254 Float_t dpara1[6] = {12.5,12.5,0.4,30.,0.,0.};
255 dpara1[0] = dpara_sm1[0];
256 dpara1[1] = dpara_sm1[1];
257 dpara1[2] = cell_depth/2.;
258
259 gMC->Gsvolu("EHC1","PARA", idtmed[698], dpara1, 6);
260 gMC->Gsatt("EHC1", "SEEN", 1);
261
262
263
264 // Place hexagonal cells ECCU cells inside EHC1 (72 X 72)
265
266 Int_t xrow=1;
267
268 yb = -dpara1[1] + (1./root3_2)*hexd1[6];
269 zb = 0.;
270
271 for (j = 1; j <= ncell_sm; ++j) {
272 xb =-(dpara1[0] + dpara1[1]*0.577) + 2*hexd1[6]; //0.577=tan(30deg)
273 if(xrow >= 2){
274 xb = xb+(xrow-1)*hexd1[6];
275 }
276 for (i = 1; i <= ncell_sm; ++i) {
277 number = i+(j-1)*ncell_sm;
ef61784c 278 gMC->Gspos("ECCU", number, "EHC1", xb,yb,zb, ihrotm, "ONLY");
c4561145 279 xb += (hexd1[6]*2.);
280 }
281 xrow = xrow+1;
282 yb += (hexd1[6]*TMath::Sqrt(3.));
283 }
284
285
286 // Place EHC1 and EAIR into ESMA and ESMB
287
288 Float_t z_air1,z_air2,z_gas;
289
290 //ESMA is normal supermodule with base at bottom, with EHC1
291 z_air1= -dpara_sm1[2] + th_base + dpara_air[2];
292 gMC->Gspos("EAIR", 1, "ESMA", 0., 0., z_air1, 0, "ONLY");
293 z_gas=z_air1+dpara_air[2]+ th_pcb + dpara1[2];
76ad67b5 294 //Line below Commented for version 0 of PMD routine
295 // gMC->Gspos("EHC1", 1, "ESMA", 0., 0., z_gas, 0, "ONLY");
c4561145 296 z_air2=z_gas+dpara1[2]+ th_pcb + dpara_air[2];
297 gMC->Gspos("EAIR", 2, "ESMA", 0., 0., z_air2, 0, "ONLY");
298
299 // ESMB is mirror image of ESMA, with base at top, with EHC1
300
301 z_air1= -dpara_sm1[2] + th_pcb + dpara_air[2];
302 gMC->Gspos("EAIR", 3, "ESMB", 0., 0., z_air1, 0, "ONLY");
303 z_gas=z_air1+dpara_air[2]+ th_pcb + dpara1[2];
76ad67b5 304 //Line below Commented for version 0 of PMD routine
305 // gMC->Gspos("EHC1", 2, "ESMB", 0., 0., z_gas, 0, "ONLY");
c4561145 306 z_air2=z_gas+dpara1[2]+ th_pcb + dpara_air[2];
307 gMC->Gspos("EAIR", 4, "ESMB", 0., 0., z_air2, 0, "ONLY");
308
309
310// special supermodule EMM2(GEANT only) containing 6 unit modules
311
312// volume for SUPERMODULE
313
314 Float_t dpara_sm2[6] = {12.5,12.5,0.8,30.,0.,0.};
315 dpara_sm2[0]=(ncell_sm+0.25)*hexd1[6] ;
316 dpara_sm2[1] = (ncell_sm - ncell_hole + 0.25) * root3_2 * hexd1[6];
317 dpara_sm2[2] = sm_thick/2.;
318
319 gMC->Gsvolu("ESMX","PARA", idtmed[607], dpara_sm2, 6);
320 gMC->Gsatt("ESMX", "SEEN", 0);
321 //
322 gMC->Gsvolu("ESMY","PARA", idtmed[607], dpara_sm2, 6);
323 gMC->Gsatt("ESMY", "SEEN", 0);
324
325 Float_t dpara2[6] = {12.5,12.5,0.4,30.,0.,0.};
326 dpara2[0] = dpara_sm2[0];
327 dpara2[1] = dpara_sm2[1];
328 dpara2[2] = cell_depth/2.;
329
330 gMC->Gsvolu("EHC2","PARA", idtmed[698], dpara2, 6);
331 gMC->Gsatt("EHC2", "SEEN", 1);
332
333
334 // Air residing between the PCB and the base
335
336 Float_t dpara2_air[6] = {12.5,12.5,8.,30.,0.,0.};
337 dpara2_air[0]= dpara_sm2[0];
338 dpara2_air[1]= dpara_sm2[1];
339 dpara2_air[2]= th_air/2.;
340
341 gMC->Gsvolu("EAIX","PARA", idtmed[698], dpara2_air, 6);
342 gMC->Gsatt("EAIX", "SEEN", 0);
343
344 // Place hexagonal single cells ECCU inside EHC2
345 // skip cells which go into the hole in top left corner.
346
347 xrow=1;
348 yb = -dpara2[1] + (1./root3_2)*hexd1[6];
349 zb = 0.;
350 for (j = 1; j <= (ncell_sm - ncell_hole); ++j) {
351 xb =-(dpara2[0] + dpara2[1]*0.577) + 2*hexd1[6];
352 if(xrow >= 2){
353 xb = xb+(xrow-1)*hexd1[6];
354 }
355 for (i = 1; i <= ncell_sm; ++i) {
356 number = i+(j-1)*ncell_sm;
ef61784c 357 gMC->Gspos("ECCU", number, "EHC2", xb,yb,zb, ihrotm, "ONLY");
c4561145 358 xb += (hexd1[6]*2.);
359 }
360 xrow = xrow+1;
361 yb += (hexd1[6]*TMath::Sqrt(3.));
362 }
363
364
365 // ESMX is normal supermodule with base at bottom, with EHC2
366
367 z_air1= -dpara_sm2[2] + th_base + dpara2_air[2];
368 gMC->Gspos("EAIX", 1, "ESMX", 0., 0., z_air1, 0, "ONLY");
369 z_gas=z_air1+dpara2_air[2]+ th_pcb + dpara2[2];
76ad67b5 370 //Line below Commented for version 0 of PMD routine
371 // gMC->Gspos("EHC2", 1, "ESMX", 0., 0., z_gas, 0, "ONLY");
c4561145 372 z_air2=z_gas+dpara2[2]+ th_pcb + dpara2_air[2];
373 gMC->Gspos("EAIX", 2, "ESMX", 0., 0., z_air2, 0, "ONLY");
374
375 // ESMY is mirror image of ESMX with base at bottom, with EHC2
376
377 z_air1= -dpara_sm2[2] + th_pcb + dpara2_air[2];
378 gMC->Gspos("EAIX", 3, "ESMY", 0., 0., z_air1, 0, "ONLY");
379 z_gas=z_air1+dpara2_air[2]+ th_pcb + dpara2[2];
76ad67b5 380 //Line below Commented for version 0 of PMD routine
381 // gMC->Gspos("EHC2", 2, "ESMY", 0., 0., z_gas, 0, "ONLY");
c4561145 382 z_air2=z_gas+dpara2[2]+ th_pcb + dpara2_air[2];
383 gMC->Gspos("EAIX", 4, "ESMY", 0., 0., z_air2, 0, "ONLY");
384
385//
386
387
388// special supermodule EMM3 (GEANT only) containing 2 unit modules
389
390// volume for SUPERMODULE
391
392 Float_t dpara_sm3[6] = {12.5,12.5,0.8,30.,0.,0.};
393 dpara_sm3[0]=(ncell_sm - ncell_hole +0.25)*hexd1[6] ;
394 dpara_sm3[1] = (ncell_hole + 0.25) * hexd1[6] * root3_2;
395 dpara_sm3[2] = sm_thick/2.;
396
397 gMC->Gsvolu("ESMP","PARA", idtmed[607], dpara_sm3, 6);
398 gMC->Gsatt("ESMP", "SEEN", 0);
399 //
400 gMC->Gsvolu("ESMQ","PARA", idtmed[607], dpara_sm3, 6);
401 gMC->Gsatt("ESMQ", "SEEN", 0);
402
403 Float_t dpara3[6] = {12.5,12.5,0.4,30.,0.,0.};
404 dpara3[0] = dpara_sm3[0];
405 dpara3[1] = dpara_sm3[1];
406 dpara3[2] = cell_depth/2.;
407
408 gMC->Gsvolu("EHC3","PARA", idtmed[698], dpara3, 6);
409 gMC->Gsatt("EHC3", "SEEN", 1);
410
411
412 // Air residing between the PCB and the base
413
414 Float_t dpara3_air[6] = {12.5,12.5,8.,30.,0.,0.};
415 dpara3_air[0]= dpara_sm3[0];
416 dpara3_air[1]= dpara_sm3[1];
417 dpara3_air[2]= th_air/2.;
418
419 gMC->Gsvolu("EAIP","PARA", idtmed[698], dpara3_air, 6);
420 gMC->Gsatt("EAIP", "SEEN", 0);
421
422
423 // Place hexagonal single cells ECCU inside EHC3
424 // skip cells which go into the hole in top left corner.
425
426 xrow=1;
427 yb = -dpara3[1] + (1./root3_2)*hexd1[6];
428 zb = 0.;
429 for (j = 1; j <= ncell_hole; ++j) {
430 xb =-(dpara3[0] + dpara3[1]*0.577) + 2*hexd1[6];
431 if(xrow >= 2){
432 xb = xb+(xrow-1)*hexd1[6];
433 }
434 for (i = 1; i <= (ncell_sm - ncell_hole); ++i) {
435 number = i+(j-1)*(ncell_sm - ncell_hole);
ef61784c 436 gMC->Gspos("ECCU", number, "EHC3", xb,yb,zb, ihrotm, "ONLY");
c4561145 437 xb += (hexd1[6]*2.);
438 }
439 xrow = xrow+1;
440 yb += (hexd1[6]*TMath::Sqrt(3.));
441 }
442
443 // ESMP is normal supermodule with base at bottom, with EHC3
444
445 z_air1= -dpara_sm3[2] + th_base + dpara3_air[2];
446 gMC->Gspos("EAIP", 1, "ESMP", 0., 0., z_air1, 0, "ONLY");
447 z_gas=z_air1+dpara3_air[2]+ th_pcb + dpara3[2];
76ad67b5 448 //Line below Commented for version 0 of PMD routine
449 // gMC->Gspos("EHC3", 1, "ESMP", 0., 0., z_gas, 0, "ONLY");
c4561145 450 z_air2=z_gas+dpara3[2]+ th_pcb + dpara3_air[2];
451 gMC->Gspos("EAIP", 2, "ESMP", 0., 0., z_air2, 0, "ONLY");
452
453 // ESMQ is mirror image of ESMP with base at bottom, with EHC3
454
455 z_air1= -dpara_sm3[2] + th_pcb + dpara3_air[2];
456 gMC->Gspos("EAIP", 3, "ESMQ", 0., 0., z_air1, 0, "ONLY");
457 z_gas=z_air1+dpara3_air[2]+ th_pcb + dpara3[2];
76ad67b5 458 //Line below Commented for version 0 of PMD routine
459 // gMC->Gspos("EHC3", 2, "ESMQ", 0., 0., z_gas, 0, "ONLY");
c4561145 460 z_air2=z_gas+dpara3[2]+ th_pcb + dpara3_air[2];
461 gMC->Gspos("EAIP", 4, "ESMQ", 0., 0., z_air2, 0, "ONLY");
462
463}
464
465//_____________________________________________________________________________
466
467void AliPMDv0::CreatePMD()
468{
469 //
470 // Create final detector from supermodules
471 //
472 // -- Author : Y.P. VIYOGI, 07/05/1996.
473 // -- Modified: P.V.K.S.Baba(JU), 15-12-97.
474 // -- Modified: For New Geometry YPV, March 2001.
475
476
477 const Float_t root3_2 = TMath::Sqrt(3.)/2.;
478 const Float_t pi = 3.14159;
479 Int_t i,j;
480
481 Float_t xp, yp, zp;
482
483 Int_t num_mod;
484 Int_t jhrot12,jhrot13, irotdm;
485
486 Int_t *idtmed = fIdtmed->GetArray()-599;
487
488 // VOLUMES Names : begining with "E" for all PMD volumes,
489 // The names of SIZE variables begin with S and have more meaningful
490 // characters as shown below.
491
492 // VOLUME SIZE MEDIUM : REMARKS
493 // ------ ----- ------ : ---------------------------
494
495 // EPMD GASPMD AIR : INSIDE PMD and its SIZE
496
497 // *** Define the EPMD Volume and fill with air ***
498
499
500 // Gaspmd, the dimension of HEXAGONAL mother volume of PMD,
501
502
503 Float_t gaspmd[10] = {0.,360.,6,2,-4.,12.,150.,4.,12.,150.};
504
505 gaspmd[5] = ncell_hole * cell_radius * 2. * root3_2;
506 gaspmd[8] = gaspmd[5];
507
508 gMC->Gsvolu("EPMD", "PGON", idtmed[698], gaspmd, 10);
509 gMC->Gsatt("EPMD", "SEEN", 0);
510
511 AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.);
512
513 AliMatrix(jhrot12, 90., 120., 90., 210., 0., 0.);
514 AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.);
515
516
517 Float_t dm_thick = 2. * sm_thick + th_lead + th_steel;
518
519 // dpara_emm1 array contains parameters of the imaginary volume EMM1,
520 // EMM1 is a master module of type 1, which has 24 copies in the PMD.
521 // EMM1 : normal volume as in old cases
522
523
524 Float_t dpara_emm1[6] = {12.5,12.5,0.8,30.,0.,0.};
525 dpara_emm1[0] = sm_length/2.;
526 dpara_emm1[1] = dpara_emm1[0] *root3_2;
527 dpara_emm1[2] = dm_thick/2.;
528
529 gMC->Gsvolu("EMM1","PARA", idtmed[698], dpara_emm1, 6);
530 gMC->Gsatt("EMM1", "SEEN", 1);
531
532 //
533 // --- DEFINE Modules, iron, and lead volumes
534
535 // Pb Convertor for EMM1
536 Float_t dpara_pb1[6] = {12.5,12.5,8.,30.,0.,0.};
537 dpara_pb1[0] = sm_length/2.;
538 dpara_pb1[1] = dpara_pb1[0] * root3_2;
539 dpara_pb1[2] = th_lead/2.;
540
541 gMC->Gsvolu("EPB1","PARA", idtmed[600], dpara_pb1, 6);
542 gMC->Gsatt ("EPB1", "SEEN", 0);
543
544 // Fe Support for EMM1
545 Float_t dpara_fe1[6] = {12.5,12.5,8.,30.,0.,0.};
546 dpara_fe1[0] = dpara_pb1[0];
547 dpara_fe1[1] = dpara_pb1[1];
548 dpara_fe1[2] = th_steel/2.;
549
550 gMC->Gsvolu("EFE1","PARA", idtmed[618], dpara_fe1, 6);
551 gMC->Gsatt ("EFE1", "SEEN", 0);
552
553
554
555 //
556 // position supermodule ESMA, ESMB, EPB1, EFE1 inside EMM1
557
558 Float_t z_ps,z_pb,z_fe,z_cv;
559
560 z_ps = - dpara_emm1[2] + sm_thick/2.;
561 gMC->Gspos("ESMB", 1, "EMM1", 0., 0., z_ps, 0, "ONLY");
562 z_pb=z_ps+sm_thick/2.+dpara_pb1[2];
563 gMC->Gspos("EPB1", 1, "EMM1", 0., 0., z_pb, 0, "ONLY");
564 z_fe=z_pb+dpara_pb1[2]+dpara_fe1[2];
565 gMC->Gspos("EFE1", 1, "EMM1", 0., 0., z_fe, 0, "ONLY");
566 z_cv=z_fe+dpara_fe1[2]+sm_thick/2.;
567 gMC->Gspos("ESMA", 1, "EMM1", 0., 0., z_cv, 0, "ONLY");
568
569
570
571 // EMM2 : special master module having full row of cells but the number
572 // of rows limited by hole.
573
574 Float_t dpara_emm2[6] = {12.5,12.5,0.8,30.,0.,0.};
575 dpara_emm2[0] = sm_length/2.;
576 dpara_emm2[1] = (ncell_sm - ncell_hole + 0.25) * cell_radius * root3_2;
577 dpara_emm2[2] = dm_thick/2.;
578
579 gMC->Gsvolu("EMM2","PARA", idtmed[698], dpara_emm2, 6);
580 gMC->Gsatt("EMM2", "SEEN", 1);
581
582
583 // Pb Convertor for EMM2
584 Float_t dpara_pb2[6] = {12.5,12.5,8.,30.,0.,0.};
585 dpara_pb2[0] = dpara_emm2[0];
586 dpara_pb2[1] = dpara_emm2[1];
587 dpara_pb2[2] = th_lead/2.;
588
589 gMC->Gsvolu("EPB2","PARA", idtmed[600], dpara_pb2, 6);
590 gMC->Gsatt ("EPB2", "SEEN", 0);
591
592 // Fe Support for EMM2
593 Float_t dpara_fe2[6] = {12.5,12.5,8.,30.,0.,0.};
594 dpara_fe2[0] = dpara_pb2[0];
595 dpara_fe2[1] = dpara_pb2[1];
596 dpara_fe2[2] = th_steel/2.;
597
598 gMC->Gsvolu("EFE2","PARA", idtmed[618], dpara_fe2, 6);
599 gMC->Gsatt ("EFE2", "SEEN", 0);
600
601
602
603 // position supermodule ESMX, ESMY inside EMM2
604
605 z_ps = - dpara_emm2[2] + sm_thick/2.;
606 gMC->Gspos("ESMY", 1, "EMM2", 0., 0., z_ps, 0, "ONLY");
607 z_pb = z_ps + sm_thick/2.+dpara_pb2[2];
608 gMC->Gspos("EPB2", 1, "EMM2", 0., 0., z_pb, 0, "ONLY");
609 z_fe = z_pb + dpara_pb2[2]+dpara_fe2[2];
610 gMC->Gspos("EFE2", 1, "EMM2", 0., 0., z_fe, 0, "ONLY");
611 z_cv = z_fe + dpara_fe2[2]+sm_thick/2.;
612 gMC->Gspos("ESMX", 1, "EMM2", 0., 0., z_cv, 0, "ONLY");
613 //
614
615
616 // EMM3 : special master module having truncated rows and columns of cells
617 // limited by hole.
618
619 Float_t dpara_emm3[6] = {12.5,12.5,0.8,30.,0.,0.};
620 dpara_emm3[0] = dpara_emm2[1]/root3_2;
621 dpara_emm3[1] = (ncell_hole + 0.25) * cell_radius *root3_2;
622 dpara_emm3[2] = dm_thick/2.;
623
624 gMC->Gsvolu("EMM3","PARA", idtmed[698], dpara_emm3, 6);
625 gMC->Gsatt("EMM3", "SEEN", 1);
626
627
628 // Pb Convertor for EMM3
629 Float_t dpara_pb3[6] = {12.5,12.5,8.,30.,0.,0.};
630 dpara_pb3[0] = dpara_emm3[0];
631 dpara_pb3[1] = dpara_emm3[1];
632 dpara_pb3[2] = th_lead/2.;
633
634 gMC->Gsvolu("EPB3","PARA", idtmed[600], dpara_pb3, 6);
635 gMC->Gsatt ("EPB3", "SEEN", 0);
636
637 // Fe Support for EMM3
638 Float_t dpara_fe3[6] = {12.5,12.5,8.,30.,0.,0.};
639 dpara_fe3[0] = dpara_pb3[0];
640 dpara_fe3[1] = dpara_pb3[1];
641 dpara_fe3[2] = th_steel/2.;
642
643 gMC->Gsvolu("EFE3","PARA", idtmed[618], dpara_fe3, 6);
644 gMC->Gsatt ("EFE3", "SEEN", 0);
645
646
647
648 // position supermodule ESMP, ESMQ inside EMM3
649
650 z_ps = - dpara_emm3[2] + sm_thick/2.;
651 gMC->Gspos("ESMQ", 1, "EMM3", 0., 0., z_ps, 0, "ONLY");
652 z_pb = z_ps + sm_thick/2.+dpara_pb3[2];
653 gMC->Gspos("EPB3", 1, "EMM3", 0., 0., z_pb, 0, "ONLY");
654 z_fe = z_pb + dpara_pb3[2]+dpara_fe3[2];
655 gMC->Gspos("EFE3", 1, "EMM3", 0., 0., z_fe, 0, "ONLY");
656 z_cv = z_fe + dpara_fe3[2] + sm_thick/2.;
657 gMC->Gspos("ESMP", 1, "EMM3", 0., 0., z_cv, 0, "ONLY");
658 //
659
660 // EHOL is a tube structure made of air
661 //
662 //Float_t d_hole[3];
663 //d_hole[0] = 0.;
664 //d_hole[1] = ncell_hole * cell_radius *2. * root3_2 + boundary;
665 //d_hole[2] = dm_thick/2.;
666 //
667 //gMC->Gsvolu("EHOL", "TUBE", idtmed[698], d_hole, 3);
668 //gMC->Gsatt("EHOL", "SEEN", 1);
669
670 //Al-rod as boundary of the supermodules
671
672 Float_t Al_rod[3] ;
673 Al_rod[0] = sm_length * 3/2. - gaspmd[5]/2 - boundary ;
674 Al_rod[1] = boundary;
675 Al_rod[2] = dm_thick/2.;
676
677 gMC->Gsvolu("EALM","BOX ", idtmed[698], Al_rod, 3);
678 gMC->Gsatt ("EALM", "SEEN", 1);
679 Float_t xalm[3];
680 xalm[0]=Al_rod[0] + gaspmd[5] + 3.0*boundary;
681 xalm[1]=-xalm[0]/2.;
682 xalm[2]=xalm[1];
683
684 Float_t yalm[3];
685 yalm[0]=0.;
686 yalm[1]=xalm[0]*root3_2;
687 yalm[2]=-yalm[1];
688
689 // delx = full side of the supermodule
690 Float_t delx=sm_length * 3.;
691 Float_t x1= delx*root3_2 /2.;
692 Float_t x4=delx/4.;
693
694
695 // placing master modules and Al-rod in PMD
696
697 Float_t dx = sm_length;
698 Float_t dy = dx * root3_2;
699
700 Float_t xsup[9] = {-dx/2., dx/2., 3.*dx/2.,
701 -dx, 0., dx,
702 -3.*dx/2., -dx/2., dx/2.};
703
704 Float_t ysup[9] = {dy, dy, dy,
705 0., 0., 0.,
706 -dy, -dy, -dy};
707
708 // xpos and ypos are the x & y coordinates of the centres of EMM1 volumes
709
710 Float_t xoff = boundary * TMath::Tan(pi/6.);
711 Float_t xmod[3]={x4 + xoff , x4 + xoff, -2.*x4-boundary/root3_2};
712 Float_t ymod[3] = {-x1 - boundary, x1 + boundary, 0.};
713 Float_t xpos[9], ypos[9], x2, y2, x3, y3;
714
715 Float_t xemm2 = sm_length/2. -
716 (ncell_sm + ncell_hole + 0.25) * cell_radius * 0.5
717 + xoff;
718 Float_t yemm2 = -(ncell_sm + ncell_hole + 0.25) * cell_radius * root3_2
719 - boundary;
720
721 Float_t xemm3 = (ncell_sm + 0.5 * ncell_hole + 0.25) * cell_radius + xoff;
722 Float_t yemm3 = - (ncell_hole - 0.25) * cell_radius * root3_2 - boundary;
723
724 Float_t theta[3] = {0., 2.*pi/3., 4.*pi/3.};
725 Int_t irotate[3] = {0, jhrot12, jhrot13};
726
727 num_mod=0;
ef61784c 728 for (j=0; j<3; ++j) {
729 gMC->Gspos("EALM", j+1, "EPMD", xalm[j],yalm[j], 0., irotate[j], "ONLY");
730 x2=xemm2*TMath::Cos(theta[j]) - yemm2*TMath::Sin(theta[j]);
731 y2=xemm2*TMath::Sin(theta[j]) + yemm2*TMath::Cos(theta[j]);
c4561145 732
ef61784c 733 gMC->Gspos("EMM2", j+1, "EPMD", x2,y2, 0., irotate[j], "ONLY");
c4561145 734
ef61784c 735 x3=xemm3*TMath::Cos(theta[j]) - yemm3*TMath::Sin(theta[j]);
736 y3=xemm3*TMath::Sin(theta[j]) + yemm3*TMath::Cos(theta[j]);
c4561145 737
ef61784c 738 gMC->Gspos("EMM3", j+4, "EPMD", x3,y3, 0., irotate[j], "ONLY");
c4561145 739
ef61784c 740 for (i=1; i<9; ++i) {
741 xpos[i]=xmod[j] + xsup[i]*TMath::Cos(theta[j]) - ysup[i]*TMath::Sin(theta[j]);
742 ypos[i]=ymod[j] + xsup[i]*TMath::Sin(theta[j]) + ysup[i]*TMath::Cos(theta[j]);
743 if(fDebug)
744 printf("%s: %f %f \n", ClassName(), xpos[i], ypos[i]);
c4561145 745
ef61784c 746 num_mod = num_mod+1;
c4561145 747
ef61784c 748 if(fDebug)
749 printf("\n%s: Num_mod %d\n",ClassName(),num_mod);
c4561145 750
ef61784c 751 gMC->Gspos("EMM1", num_mod + 6, "EPMD", xpos[i],ypos[i], 0., irotate[j], "ONLY");
c4561145 752
ef61784c 753 }
754 }
c4561145 755
756
757 // place EHOL in the centre of EPMD
758 // gMC->Gspos("EHOL", 1, "EPMD", 0.,0.,0., 0, "ONLY");
759
760 // --- Place the EPMD in ALICE
761 xp = 0.;
762 yp = 0.;
763 zp = zdist1;
764
765 gMC->Gspos("EPMD", 1, "ALIC", xp,yp,zp, 0, "ONLY");
766
767}
768
769
770//_____________________________________________________________________________
771void AliPMDv0::DrawModule()
772{
773 //
774 // Draw a shaded view of the Photon Multiplicity Detector
775 //
776
777 gMC->Gsatt("*", "seen", -1);
778 gMC->Gsatt("alic", "seen", 0);
779 //
780 // Set the visibility of the components
781 //
782 gMC->Gsatt("ECAR","seen",0);
783 gMC->Gsatt("ECCU","seen",1);
784 gMC->Gsatt("EHC1","seen",1);
785 gMC->Gsatt("EHC1","seen",1);
786 gMC->Gsatt("EHC2","seen",1);
787 gMC->Gsatt("EMM1","seen",1);
788 gMC->Gsatt("EHOL","seen",1);
789 gMC->Gsatt("EPMD","seen",0);
790 //
791 gMC->Gdopt("hide", "on");
792 gMC->Gdopt("shad", "on");
793 gMC->Gsatt("*", "fill", 7);
794 gMC->SetClipBox(".");
795 gMC->SetClipBox("*", 0, 3000, -3000, 3000, -6000, 6000);
796 gMC->DefaultRange();
797 gMC->Gdraw("alic", 40, 30, 0, 22, 20.5, .02, .02);
798 gMC->Gdhead(1111, "Photon Multiplicity Detector Version 1");
799
800 //gMC->Gdman(17, 5, "MAN");
801 gMC->Gdopt("hide", "off");
802}
803
804//_____________________________________________________________________________
805void AliPMDv0::CreateMaterials()
806{
807 //
808 // Create materials for the PMD
809 //
810 // ORIGIN : Y. P. VIYOGI
811 //
812
813 // --- The Argon- CO2 mixture ---
814 Float_t ag[2] = { 39.95 };
815 Float_t zg[2] = { 18. };
816 Float_t wg[2] = { .8,.2 };
817 Float_t dar = .001782; // --- Ar density in g/cm3 ---
818 // --- CO2 ---
819 Float_t ac[2] = { 12.,16. };
820 Float_t zc[2] = { 6.,8. };
821 Float_t wc[2] = { 1.,2. };
822 Float_t dc = .001977;
823 Float_t dco = .002; // --- CO2 density in g/cm3 ---
824
825 Float_t absl, radl, a, d, z;
826 Float_t dg;
827 Float_t x0ar;
828 //Float_t x0xe=2.4;
829 //Float_t dxe=0.005858;
830 Float_t buf[1];
831 Int_t nbuf;
832 Float_t asteel[4] = { 55.847,51.9961,58.6934,28.0855 };
833 Float_t zsteel[4] = { 26.,24.,28.,14. };
834 Float_t wsteel[4] = { .715,.18,.1,.005 };
835
836 Int_t *idtmed = fIdtmed->GetArray()-599;
837 Int_t isxfld = gAlice->Field()->Integ();
838 Float_t sxmgmx = gAlice->Field()->Max();
839
840 // --- Define the various materials for GEANT ---
841 AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5);
842 x0ar = 19.55 / dar;
843 AliMaterial(2, "Argon$", 39.95, 18., dar, x0ar, 6.5e4);
844 AliMixture(3, "CO2 $", ac, zc, dc, -2, wc);
845 AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5);
846 AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5);
847 AliMaterial(7, "W $", 183.85, 74., 19.3, .35, 10.3);
848 AliMaterial(8, "G10 $", 20., 10., 1.7, 19.4, 999.);
849 AliMaterial(9, "SILIC$", 28.09, 14., 2.33, 9.36, 45.);
850 AliMaterial(10, "Be $", 9.01, 4., 1.848, 35.3, 36.7);
851 AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.);
852 AliMaterial(16, "C $", 12.01, 6., 2.265, 18.8, 49.9);
853 AliMaterial(17, "POLYCARBONATE $", 20., 10., 1.2, 34.6, 999.);
854 AliMixture(19, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel);
855 // AliMaterial(31, "Xenon$", 131.3, 54., dxe, x0xe, 6.5e4);
856
857 AliMaterial(96, "MYLAR$", 8.73, 4.55, 1.39, 28.7, 62.);
858 AliMaterial(97, "CONCR$", 20., 10., 2.5, 10.7, 40.);
859 AliMaterial(98, "Vacum$", 1e-9, 1e-9, 1e-9, 1e16, 1e16);
860 AliMaterial(99, "Air $", 14.61, 7.3, .0012, 30420., 67500.);
861
862 // define gas-mixtures
863
864 char namate[21];
865 gMC->Gfmate((*fIdmate)[3], namate, a, z, d, radl, absl, buf, nbuf);
866 ag[1] = a;
867 zg[1] = z;
868 dg = (dar * 4 + dco) / 5;
869 AliMixture(5, "ArCO2$", ag, zg, dg, 2, wg);
870
871 // Define tracking media
872 AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
873 AliMedium(7, "W conv.$", 7, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
874 AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
875 AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
876 AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
877 AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
878 AliMedium(9, "SILICON $", 9, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
879 AliMedium(10, "Be $", 10, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
880 AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .1, 10);
881 AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .1, .1);
882 AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
883 AliMedium(16, "C $", 16, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
884 AliMedium(17, "PLOYCARB$", 17, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
885 AliMedium(19, " S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
886 // AliMedium(31, "Xenon $", 31, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
887
888 // --- Generate explicitly delta rays in the iron, aluminium and lead ---
889 gMC->Gstpar(idtmed[600], "LOSS", 3.);
890 gMC->Gstpar(idtmed[600], "DRAY", 1.);
891
892 gMC->Gstpar(idtmed[603], "LOSS", 3.);
893 gMC->Gstpar(idtmed[603], "DRAY", 1.);
894
895 gMC->Gstpar(idtmed[604], "LOSS", 3.);
896 gMC->Gstpar(idtmed[604], "DRAY", 1.);
897
898 gMC->Gstpar(idtmed[605], "LOSS", 3.);
899 gMC->Gstpar(idtmed[605], "DRAY", 1.);
900
901 gMC->Gstpar(idtmed[606], "LOSS", 3.);
902 gMC->Gstpar(idtmed[606], "DRAY", 1.);
903
904 gMC->Gstpar(idtmed[607], "LOSS", 3.);
905 gMC->Gstpar(idtmed[607], "DRAY", 1.);
906
907 // --- Energy cut-offs in the Pb and Al to gain time in tracking ---
908 // --- without affecting the hit patterns ---
909 gMC->Gstpar(idtmed[600], "CUTGAM", 1e-4);
910 gMC->Gstpar(idtmed[600], "CUTELE", 1e-4);
911 gMC->Gstpar(idtmed[600], "CUTNEU", 1e-4);
912 gMC->Gstpar(idtmed[600], "CUTHAD", 1e-4);
913 gMC->Gstpar(idtmed[605], "CUTGAM", 1e-4);
914 gMC->Gstpar(idtmed[605], "CUTELE", 1e-4);
915 gMC->Gstpar(idtmed[605], "CUTNEU", 1e-4);
916 gMC->Gstpar(idtmed[605], "CUTHAD", 1e-4);
917 gMC->Gstpar(idtmed[606], "CUTGAM", 1e-4);
918 gMC->Gstpar(idtmed[606], "CUTELE", 1e-4);
919 gMC->Gstpar(idtmed[606], "CUTNEU", 1e-4);
920 gMC->Gstpar(idtmed[606], "CUTHAD", 1e-4);
921 gMC->Gstpar(idtmed[603], "CUTGAM", 1e-4);
922 gMC->Gstpar(idtmed[603], "CUTELE", 1e-4);
923 gMC->Gstpar(idtmed[603], "CUTNEU", 1e-4);
924 gMC->Gstpar(idtmed[603], "CUTHAD", 1e-4);
925 gMC->Gstpar(idtmed[609], "CUTGAM", 1e-4);
926 gMC->Gstpar(idtmed[609], "CUTELE", 1e-4);
927 gMC->Gstpar(idtmed[609], "CUTNEU", 1e-4);
928 gMC->Gstpar(idtmed[609], "CUTHAD", 1e-4);
929
930 // --- Prevent particles stopping in the gas due to energy cut-off ---
931 gMC->Gstpar(idtmed[604], "CUTGAM", 1e-5);
932 gMC->Gstpar(idtmed[604], "CUTELE", 1e-5);
933 gMC->Gstpar(idtmed[604], "CUTNEU", 1e-5);
934 gMC->Gstpar(idtmed[604], "CUTHAD", 1e-5);
935 gMC->Gstpar(idtmed[604], "CUTMUO", 1e-5);
936}
937
938//_____________________________________________________________________________
939void AliPMDv0::Init()
940{
941 //
942 // Initialises PMD detector after it has been built
943 //
944 Int_t i;
945 kdet=1;
946 //
df622204 947 if(fDebug) {
948 printf("\n%s: ",ClassName());
949 for(i=0;i<35;i++) printf("*");
950 printf(" PMD_INIT ");
951 for(i=0;i<35;i++) printf("*");
952 printf("\n%s: ",ClassName());
953 printf(" PMD simulation package (v0) initialised\n");
954 printf("%s: parameters of pmd\n", ClassName());
dee197d3 955 printf("%s: %10.2f %10.2f %10.2f \
df622204 956 %10.2f\n",ClassName(),cell_radius,cell_wall,cell_depth,zdist1 );
957 printf("%s: ",ClassName());
958 for(i=0;i<80;i++) printf("*");
959 printf("\n");
960 }
c4561145 961 Int_t *idtmed = fIdtmed->GetArray()-599;
962 fMedSens=idtmed[605-1];
963}
964
965//_____________________________________________________________________________
966void AliPMDv0::StepManager()
967{
968 //
969 // Called at each step in the PMD
970 //
971 Int_t copy;
972 Float_t hits[4], destep;
973 Float_t center[3] = {0,0,0};
974 Int_t vol[5];
975 //char *namep;
976
977 if(gMC->GetMedium() == fMedSens && (destep = gMC->Edep())) {
978
979 gMC->CurrentVolID(copy);
980
981 //namep=gMC->CurrentVolName();
982 //printf("Current vol is %s \n",namep);
983
984 vol[0]=copy;
985 gMC->CurrentVolOffID(1,copy);
986
987 //namep=gMC->CurrentVolOffName(1);
988 //printf("Current vol 11 is %s \n",namep);
989
990 vol[1]=copy;
991 gMC->CurrentVolOffID(2,copy);
992
993 //namep=gMC->CurrentVolOffName(2);
994 //printf("Current vol 22 is %s \n",namep);
995
996 vol[2]=copy;
997
998 // if(strncmp(namep,"EHC1",4))vol[2]=1;
999
1000 gMC->CurrentVolOffID(3,copy);
1001
1002 //namep=gMC->CurrentVolOffName(3);
1003 //printf("Current vol 33 is %s \n",namep);
1004
1005 vol[3]=copy;
1006 gMC->CurrentVolOffID(4,copy);
1007
1008 //namep=gMC->CurrentVolOffName(4);
1009 //printf("Current vol 44 is %s \n",namep);
1010
1011 vol[4]=copy;
1012 //printf("volume number %d,%d,%d,%d,%d,%f \n",vol[0],vol[1],vol[2],vol[3],vol[4],destep*1000000);
1013
1014 gMC->Gdtom(center,hits,1);
1015 hits[3] = destep*1e9; //Number in eV
1016 AddHit(gAlice->CurrentTrack(), vol, hits);
1017 }
1018}
1019
1020
1021//------------------------------------------------------------------------
1022// Get parameters
1023
1024void AliPMDv0::GetParameters()
1025{
1026 Int_t ncell_um, num_um;
1027 ncell_um=24;
1028 num_um=3;
1029 ncell_hole=24;
1030 cell_radius=0.25;
1031 cell_wall=0.02;
1032 cell_depth=0.25 * 2.;
1033 //
1034 boundary=0.7;
1035 ncell_sm=ncell_um * num_um; //no. of cells in a row in one supermodule
1036 sm_length= ((ncell_sm + 0.25 ) * cell_radius) * 2.;
1037 //
1038 th_base=0.3;
1039 th_air=0.1;
1040 th_pcb=0.16;
1041 //
1042 sm_thick = th_base + th_air + th_pcb + cell_depth + th_pcb + th_air + th_pcb;
1043 //
1044 th_lead=1.5;
1045 th_steel=0.5;
1046 //
1047 zdist1 = -365.;
1048}
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
ef61784c 1062