]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PMD/AliPMDv1.cxx
Constant casted to avoid the ambiguity
[u/mrichter/AliRoot.git] / PMD / AliPMDv1.cxx
CommitLineData
c4561145 1/***************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15/*
16$Log$
1592ac65 17Revision 1.14 2001/05/21 09:39:28 morsch
18Minor modifications on the geometry. (Tapan Nayak)
19
20Revision 1.13 2001/05/16 14:57:19 alibrary
21New files for folders and Stack
22
9e1a0ddb 23Revision 1.12 2001/05/14 14:01:04 morsch
24AliPMDv0 coarse geometry and AliPMDv1 detailed simulation, completely revised versions by Tapan Nayak.
25
c4561145 26*/
27//
28///////////////////////////////////////////////////////////////////////////////
29// //
30// Photon Multiplicity Detector Version 1 //
31// //
32//Begin_Html
33/*
34<img src="picts/AliPMDv1Class.gif">
35*/
36//End_Html
37// //
38///////////////////////////////////////////////////////////////////////////////
39////
40
41#include "AliPMDv1.h"
42#include "AliRun.h"
43#include "AliMC.h"
44#include "AliConst.h"
45#include "AliMagF.h"
46#include "iostream.h"
47
48static Int_t kdet, ncell_sm, ncell_hole;
49static Float_t zdist, zdist1;
50static Float_t sm_length, sm_thick, cell_radius, cell_wall, cell_depth;
51static Float_t boundary, th_base, th_air, th_pcb;
52static Float_t th_lead, th_steel;
53
54ClassImp(AliPMDv1)
55
56 //_____________________________________________________________________________
57 AliPMDv1::AliPMDv1()
58{
59 //
60 // Default constructor
61 //
62 fMedSens=0;
63}
64
65//_____________________________________________________________________________
66AliPMDv1::AliPMDv1(const char *name, const char *title)
67 : AliPMD(name,title)
68{
69 //
70 // Standard constructor
71 //
72 fMedSens=0;
73}
74
75//_____________________________________________________________________________
76void AliPMDv1::CreateGeometry()
77{
78 //
79 // Create geometry for Photon Multiplicity Detector Version 3 :
80 // April 2, 2001
81 //
82 //Begin_Html
83 /*
84 <img src="picts/AliPMDv1.gif">
85 */
86 //End_Html
87 //Begin_Html
88 /*
89 <img src="picts/AliPMDv1Tree.gif">
90 */
91 //End_Html
92 GetParameters();
93 CreateSupermodule();
94 CreatePMD();
95}
96
97//_____________________________________________________________________________
98void AliPMDv1::CreateSupermodule()
99{
100 //
101 // Creates the geometry of the cells, places them in supermodule which
102 // is a rhombus object.
103
104 // *** DEFINITION OF THE GEOMETRY OF THE PMD ***
105 // *** HEXAGONAL CELLS WITH CELL RADIUS 0.25 cm (see "GetParameters")
106 // -- Author : S. Chattopadhyay, 02/04/1999.
107
108 // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is placed inside another
109 // hexagonal cell made of Cu (ECCU) with larger radius, compared to ECAR. The difference
110 // in radius gives the dimension of half width of each cell wall.
111 // These cells are placed as 72 x 72 array in a
112 // rhombus shaped supermodule (EHC1). The rhombus shaped modules are designed
113 // to have closed packed structure.
114 //
115 // Each supermodule (ESMA, ESMB), made of G10 is filled with following components
116 // EAIR --> Air gap between gas hexagonal cells and G10 backing.
117 // EHC1 --> Rhombus shaped parallelopiped containing the hexagonal cells
118 // EAIR --> Air gap between gas hexagonal cells and G10 backing.
119 //
120 // ESMA, ESMB are placed in EMM1 along with EMPB (Pb converter)
121 // and EMFE (iron support)
122
123 // EMM1 made of
124 // ESMB --> Normal supermodule, mirror image of ESMA
125 // EMPB --> Pb converter
126 // EMFE --> Fe backing
127 // ESMA --> Normal supermodule
128 //
129 // ESMX, ESMY are placed in EMM2 along with EMPB (Pb converter)
130 // and EMFE (iron support)
131
132 // EMM2 made of
133 // ESMY --> Special supermodule, mirror image of ESMX,
134 // EMPB --> Pb converter
135 // EMFE --> Fe backing
136 // ESMX --> First of the two Special supermodules near the hole
137
138 // EMM3 made of
139 // ESMQ --> Special supermodule, mirror image of ESMX,
140 // EMPB --> Pb converter
141 // EMFE --> Fe backing
142 // ESMP --> Second of the two Special supermodules near the hole
143
144 // EMM2 and EMM3 are used to create the hexagonal HOLE
145
146 //
147 // EPMD
148 // |
149 // |
150 // ---------------------------------------------------------------------------
151 // | | | | |
152 // EHOL EMM1 EMM2 EMM3 EALM
153 // | | |
154 // -------------------- -------------------- --------------------
155 // | | | | | | | | | | | |
156 // ESMB EMPB EMFE ESMA ESMY EMPB EMFE ESMX ESMQ EMPB EMFE ESMP
157 // | | |
158 // ------------ ------------ -------------
159 // | | | | | | | | |
160 // EAIR EHC1 EAIR EAIR EHC2 EAIR EAIR EHC3 EAIR
161 // | | |
162 // ECCU ECCU ECCU
163 // | | |
164 // ECAR ECAR ECAR
165
166
167 Int_t i, j;
168 Float_t xb, yb, zb;
169 Int_t number;
170 Int_t ihrotm,irotdm;
171 const Float_t root3_2 = TMath::Sqrt(3.) /2.;
172 Int_t *idtmed = fIdtmed->GetArray()-599;
173
174 AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.);
175 AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.);
176
177 zdist = TMath::Abs(zdist1);
178
179
180 //Subhasis, dimensional parameters of rhombus (dpara) as given to gsvolu
181 // rhombus to accomodate 72 x 72 hexagons, and with total 1.2cm extension
182 //(1mm tolerance on both side and 5mm thick G10 wall)
183 //
184
185 // **** CELL SIZE 20 mm^2 EQUIVALENT
186
187 // Inner hexagon filled with gas (Ar+CO2)
188
189 Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23};
190
191 hexd2[4]= - cell_depth/2.;
192 hexd2[7]= cell_depth/2.;
193 hexd2[6]= cell_radius - cell_wall;
194 hexd2[9]= cell_radius - cell_wall;
195
196 gMC->Gsvolu("ECAR", "PGON", idtmed[604], hexd2,10);
197 gMC->Gsatt("ECAR", "SEEN", 0);
198
199 // Outer hexagon made of Copper
200
201 Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25};
202 //total wall thickness=0.2*2
203
204 hexd1[4]= - cell_depth/2.;
205 hexd1[7]= cell_depth/2.;
206 hexd1[6]= cell_radius;
207 hexd1[9]= cell_radius;
208
209 gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10);
210 gMC->Gsatt("ECCU", "SEEN", 1);
211
212 // --- place inner hex inside outer hex
213
214 gMC->Gsposp("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY", hexd2, 10);
215
216// Rhombus shaped supermodules (defined by PARA)
217
218// volume for SUPERMODULE
219
220 Float_t dpara_sm1[6] = {12.5,12.5,0.8,30.,0.,0.};
221 dpara_sm1[0]=(ncell_sm+0.25)*hexd1[6] ;
222 dpara_sm1[1] = dpara_sm1[0] *root3_2;
223 dpara_sm1[2] = sm_thick/2.;
224
225//
226 gMC->Gsvolu("ESMA","PARA", idtmed[607], dpara_sm1, 6);
227 gMC->Gsatt("ESMA", "SEEN", 0);
228 //
229 gMC->Gsvolu("ESMB","PARA", idtmed[607], dpara_sm1, 6);
230 gMC->Gsatt("ESMB", "SEEN", 0);
231
232 // Air residing between the PCB and the base
233
234 Float_t dpara_air[6] = {12.5,12.5,8.,30.,0.,0.};
235 dpara_air[0]= dpara_sm1[0];
236 dpara_air[1]= dpara_sm1[1];
237 dpara_air[2]= th_air/2.;
238
239 gMC->Gsvolu("EAIR","PARA", idtmed[698], dpara_air, 6);
240 gMC->Gsatt("EAIR", "SEEN", 0);
241
242 // volume for honeycomb chamber EHC1
243
244 Float_t dpara1[6] = {12.5,12.5,0.4,30.,0.,0.};
245 dpara1[0] = dpara_sm1[0];
246 dpara1[1] = dpara_sm1[1];
247 dpara1[2] = cell_depth/2.;
248
249 gMC->Gsvolu("EHC1","PARA", idtmed[698], dpara1, 6);
250 gMC->Gsatt("EHC1", "SEEN", 1);
251
252
253
254 // Place hexagonal cells ECCU cells inside EHC1 (72 X 72)
255
256 Int_t xrow=1;
257
258 yb = -dpara1[1] + (1./root3_2)*hexd1[6];
259 zb = 0.;
260
261 for (j = 1; j <= ncell_sm; ++j) {
262 xb =-(dpara1[0] + dpara1[1]*0.577) + 2*hexd1[6]; //0.577=tan(30deg)
263 if(xrow >= 2){
264 xb = xb+(xrow-1)*hexd1[6];
265 }
266 for (i = 1; i <= ncell_sm; ++i) {
267 number = i+(j-1)*ncell_sm;
268 gMC->Gsposp("ECCU", number, "EHC1", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
269 xb += (hexd1[6]*2.);
270 }
271 xrow = xrow+1;
272 yb += (hexd1[6]*TMath::Sqrt(3.));
273 }
274
275
276 // Place EHC1 and EAIR into ESMA and ESMB
277
278 Float_t z_air1,z_air2,z_gas;
279
280 //ESMA is normal supermodule with base at bottom, with EHC1
281 z_air1= -dpara_sm1[2] + th_base + dpara_air[2];
282 gMC->Gspos("EAIR", 1, "ESMA", 0., 0., z_air1, 0, "ONLY");
283 z_gas=z_air1+dpara_air[2]+ th_pcb + dpara1[2];
284 gMC->Gspos("EHC1", 1, "ESMA", 0., 0., z_gas, 0, "ONLY");
285 z_air2=z_gas+dpara1[2]+ th_pcb + dpara_air[2];
286 gMC->Gspos("EAIR", 2, "ESMA", 0., 0., z_air2, 0, "ONLY");
287
288 // ESMB is mirror image of ESMA, with base at top, with EHC1
289
290 z_air1= -dpara_sm1[2] + th_pcb + dpara_air[2];
291 gMC->Gspos("EAIR", 3, "ESMB", 0., 0., z_air1, 0, "ONLY");
292 z_gas=z_air1+dpara_air[2]+ th_pcb + dpara1[2];
293 gMC->Gspos("EHC1", 2, "ESMB", 0., 0., z_gas, 0, "ONLY");
294 z_air2=z_gas+dpara1[2]+ th_pcb + dpara_air[2];
295 gMC->Gspos("EAIR", 4, "ESMB", 0., 0., z_air2, 0, "ONLY");
296
297
298// special supermodule EMM2(GEANT only) containing 6 unit modules
299
300// volume for SUPERMODULE
301
302 Float_t dpara_sm2[6] = {12.5,12.5,0.8,30.,0.,0.};
303 dpara_sm2[0]=(ncell_sm+0.25)*hexd1[6] ;
304 dpara_sm2[1] = (ncell_sm - ncell_hole + 0.25) * root3_2 * hexd1[6];
305 dpara_sm2[2] = sm_thick/2.;
306
307 gMC->Gsvolu("ESMX","PARA", idtmed[607], dpara_sm2, 6);
308 gMC->Gsatt("ESMX", "SEEN", 0);
309 //
310 gMC->Gsvolu("ESMY","PARA", idtmed[607], dpara_sm2, 6);
311 gMC->Gsatt("ESMY", "SEEN", 0);
312
313 Float_t dpara2[6] = {12.5,12.5,0.4,30.,0.,0.};
314 dpara2[0] = dpara_sm2[0];
315 dpara2[1] = dpara_sm2[1];
316 dpara2[2] = cell_depth/2.;
317
318 gMC->Gsvolu("EHC2","PARA", idtmed[698], dpara2, 6);
319 gMC->Gsatt("EHC2", "SEEN", 1);
320
321
322 // Air residing between the PCB and the base
323
324 Float_t dpara2_air[6] = {12.5,12.5,8.,30.,0.,0.};
325 dpara2_air[0]= dpara_sm2[0];
326 dpara2_air[1]= dpara_sm2[1];
327 dpara2_air[2]= th_air/2.;
328
329 gMC->Gsvolu("EAIX","PARA", idtmed[698], dpara2_air, 6);
330 gMC->Gsatt("EAIX", "SEEN", 0);
331
332 // Place hexagonal single cells ECCU inside EHC2
333 // skip cells which go into the hole in top left corner.
334
335 xrow=1;
336 yb = -dpara2[1] + (1./root3_2)*hexd1[6];
337 zb = 0.;
338 for (j = 1; j <= (ncell_sm - ncell_hole); ++j) {
339 xb =-(dpara2[0] + dpara2[1]*0.577) + 2*hexd1[6];
340 if(xrow >= 2){
341 xb = xb+(xrow-1)*hexd1[6];
342 }
343 for (i = 1; i <= ncell_sm; ++i) {
344 number = i+(j-1)*ncell_sm;
345 gMC->Gsposp("ECCU", number, "EHC2", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
346 xb += (hexd1[6]*2.);
347 }
348 xrow = xrow+1;
349 yb += (hexd1[6]*TMath::Sqrt(3.));
350 }
351
352
353 // ESMX is normal supermodule with base at bottom, with EHC2
354
355 z_air1= -dpara_sm2[2] + th_base + dpara2_air[2];
356 gMC->Gspos("EAIX", 1, "ESMX", 0., 0., z_air1, 0, "ONLY");
357 z_gas=z_air1+dpara2_air[2]+ th_pcb + dpara2[2];
358 gMC->Gspos("EHC2", 1, "ESMX", 0., 0., z_gas, 0, "ONLY");
359 z_air2=z_gas+dpara2[2]+ th_pcb + dpara2_air[2];
360 gMC->Gspos("EAIX", 2, "ESMX", 0., 0., z_air2, 0, "ONLY");
361
362 // ESMY is mirror image of ESMX with base at bottom, with EHC2
363
364 z_air1= -dpara_sm2[2] + th_pcb + dpara2_air[2];
365 gMC->Gspos("EAIX", 3, "ESMY", 0., 0., z_air1, 0, "ONLY");
366 z_gas=z_air1+dpara2_air[2]+ th_pcb + dpara2[2];
367 gMC->Gspos("EHC2", 2, "ESMY", 0., 0., z_gas, 0, "ONLY");
368 z_air2=z_gas+dpara2[2]+ th_pcb + dpara2_air[2];
369 gMC->Gspos("EAIX", 4, "ESMY", 0., 0., z_air2, 0, "ONLY");
370
371//
372
373
374// special supermodule EMM3 (GEANT only) containing 2 unit modules
375
376// volume for SUPERMODULE
377
378 Float_t dpara_sm3[6] = {12.5,12.5,0.8,30.,0.,0.};
379 dpara_sm3[0]=(ncell_sm - ncell_hole +0.25)*hexd1[6] ;
380 dpara_sm3[1] = (ncell_hole + 0.25) * hexd1[6] * root3_2;
381 dpara_sm3[2] = sm_thick/2.;
382
383 gMC->Gsvolu("ESMP","PARA", idtmed[607], dpara_sm3, 6);
384 gMC->Gsatt("ESMP", "SEEN", 0);
385 //
386 gMC->Gsvolu("ESMQ","PARA", idtmed[607], dpara_sm3, 6);
387 gMC->Gsatt("ESMQ", "SEEN", 0);
388
389 Float_t dpara3[6] = {12.5,12.5,0.4,30.,0.,0.};
390 dpara3[0] = dpara_sm3[0];
391 dpara3[1] = dpara_sm3[1];
392 dpara3[2] = cell_depth/2.;
393
394 gMC->Gsvolu("EHC3","PARA", idtmed[698], dpara3, 6);
395 gMC->Gsatt("EHC3", "SEEN", 1);
396
397
398 // Air residing between the PCB and the base
399
400 Float_t dpara3_air[6] = {12.5,12.5,8.,30.,0.,0.};
401 dpara3_air[0]= dpara_sm3[0];
402 dpara3_air[1]= dpara_sm3[1];
403 dpara3_air[2]= th_air/2.;
404
405 gMC->Gsvolu("EAIP","PARA", idtmed[698], dpara3_air, 6);
406 gMC->Gsatt("EAIP", "SEEN", 0);
407
408
409 // Place hexagonal single cells ECCU inside EHC3
410 // skip cells which go into the hole in top left corner.
411
412 xrow=1;
413 yb = -dpara3[1] + (1./root3_2)*hexd1[6];
414 zb = 0.;
415 for (j = 1; j <= ncell_hole; ++j) {
416 xb =-(dpara3[0] + dpara3[1]*0.577) + 2*hexd1[6];
417 if(xrow >= 2){
418 xb = xb+(xrow-1)*hexd1[6];
419 }
420 for (i = 1; i <= (ncell_sm - ncell_hole); ++i) {
421 number = i+(j-1)*(ncell_sm - ncell_hole);
422 gMC->Gsposp("ECCU", number, "EHC3", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
423 xb += (hexd1[6]*2.);
424 }
425 xrow = xrow+1;
426 yb += (hexd1[6]*TMath::Sqrt(3.));
427 }
428
429 // ESMP is normal supermodule with base at bottom, with EHC3
430
431 z_air1= -dpara_sm3[2] + th_base + dpara3_air[2];
432 gMC->Gspos("EAIP", 1, "ESMP", 0., 0., z_air1, 0, "ONLY");
433 z_gas=z_air1+dpara3_air[2]+ th_pcb + dpara3[2];
434 gMC->Gspos("EHC3", 1, "ESMP", 0., 0., z_gas, 0, "ONLY");
435 z_air2=z_gas+dpara3[2]+ th_pcb + dpara3_air[2];
436 gMC->Gspos("EAIP", 2, "ESMP", 0., 0., z_air2, 0, "ONLY");
437
438 // ESMQ is mirror image of ESMP with base at bottom, with EHC3
439
440 z_air1= -dpara_sm3[2] + th_pcb + dpara3_air[2];
441 gMC->Gspos("EAIP", 3, "ESMQ", 0., 0., z_air1, 0, "ONLY");
442 z_gas=z_air1+dpara3_air[2]+ th_pcb + dpara3[2];
443 gMC->Gspos("EHC3", 2, "ESMQ", 0., 0., z_gas, 0, "ONLY");
444 z_air2=z_gas+dpara3[2]+ th_pcb + dpara3_air[2];
445 gMC->Gspos("EAIP", 4, "ESMQ", 0., 0., z_air2, 0, "ONLY");
446
447}
448
449//_____________________________________________________________________________
450
451void AliPMDv1::CreatePMD()
452{
453 //
454 // Create final detector from supermodules
455 //
456 // -- Author : Y.P. VIYOGI, 07/05/1996.
457 // -- Modified: P.V.K.S.Baba(JU), 15-12-97.
458 // -- Modified: For New Geometry YPV, March 2001.
459
460
461 const Float_t root3_2 = TMath::Sqrt(3.)/2.;
462 const Float_t pi = 3.14159;
463 Int_t i,j;
464
465 Float_t xp, yp, zp;
466
467 Int_t num_mod;
468 Int_t jhrot12,jhrot13, irotdm;
469
470 Int_t *idtmed = fIdtmed->GetArray()-599;
471
472 // VOLUMES Names : begining with "E" for all PMD volumes,
473 // The names of SIZE variables begin with S and have more meaningful
474 // characters as shown below.
475
476 // VOLUME SIZE MEDIUM : REMARKS
477 // ------ ----- ------ : ---------------------------
478
479 // EPMD GASPMD AIR : INSIDE PMD and its SIZE
480
481 // *** Define the EPMD Volume and fill with air ***
482
483
484 // Gaspmd, the dimension of HEXAGONAL mother volume of PMD,
485
486
487 Float_t gaspmd[10] = {0.,360.,6,2,-4.,12.,150.,4.,12.,150.};
488
489 gaspmd[5] = ncell_hole * cell_radius * 2. * root3_2;
490 gaspmd[8] = gaspmd[5];
491
492 gMC->Gsvolu("EPMD", "PGON", idtmed[698], gaspmd, 10);
493 gMC->Gsatt("EPMD", "SEEN", 0);
494
495 AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.);
496
497 AliMatrix(jhrot12, 90., 120., 90., 210., 0., 0.);
498 AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.);
499
500
501 Float_t dm_thick = 2. * sm_thick + th_lead + th_steel;
502
503 // dpara_emm1 array contains parameters of the imaginary volume EMM1,
504 // EMM1 is a master module of type 1, which has 24 copies in the PMD.
505 // EMM1 : normal volume as in old cases
506
507
508 Float_t dpara_emm1[6] = {12.5,12.5,0.8,30.,0.,0.};
509 dpara_emm1[0] = sm_length/2.;
510 dpara_emm1[1] = dpara_emm1[0] *root3_2;
511 dpara_emm1[2] = dm_thick/2.;
512
513 gMC->Gsvolu("EMM1","PARA", idtmed[698], dpara_emm1, 6);
514 gMC->Gsatt("EMM1", "SEEN", 1);
515
516 //
517 // --- DEFINE Modules, iron, and lead volumes
518
519 // Pb Convertor for EMM1
520 Float_t dpara_pb1[6] = {12.5,12.5,8.,30.,0.,0.};
521 dpara_pb1[0] = sm_length/2.;
522 dpara_pb1[1] = dpara_pb1[0] * root3_2;
523 dpara_pb1[2] = th_lead/2.;
524
525 gMC->Gsvolu("EPB1","PARA", idtmed[600], dpara_pb1, 6);
526 gMC->Gsatt ("EPB1", "SEEN", 0);
527
528 // Fe Support for EMM1
529 Float_t dpara_fe1[6] = {12.5,12.5,8.,30.,0.,0.};
530 dpara_fe1[0] = dpara_pb1[0];
531 dpara_fe1[1] = dpara_pb1[1];
532 dpara_fe1[2] = th_steel/2.;
533
534 gMC->Gsvolu("EFE1","PARA", idtmed[618], dpara_fe1, 6);
535 gMC->Gsatt ("EFE1", "SEEN", 0);
536
537
538
539 //
540 // position supermodule ESMA, ESMB, EPB1, EFE1 inside EMM1
541
542 Float_t z_ps,z_pb,z_fe,z_cv;
543
544 z_ps = - dpara_emm1[2] + sm_thick/2.;
545 gMC->Gspos("ESMB", 1, "EMM1", 0., 0., z_ps, 0, "ONLY");
546 z_pb=z_ps+sm_thick/2.+dpara_pb1[2];
547 gMC->Gspos("EPB1", 1, "EMM1", 0., 0., z_pb, 0, "ONLY");
548 z_fe=z_pb+dpara_pb1[2]+dpara_fe1[2];
549 gMC->Gspos("EFE1", 1, "EMM1", 0., 0., z_fe, 0, "ONLY");
550 z_cv=z_fe+dpara_fe1[2]+sm_thick/2.;
551 gMC->Gspos("ESMA", 1, "EMM1", 0., 0., z_cv, 0, "ONLY");
552
553
554
555 // EMM2 : special master module having full row of cells but the number
556 // of rows limited by hole.
557
558 Float_t dpara_emm2[6] = {12.5,12.5,0.8,30.,0.,0.};
559 dpara_emm2[0] = sm_length/2.;
560 dpara_emm2[1] = (ncell_sm - ncell_hole + 0.25) * cell_radius * root3_2;
561 dpara_emm2[2] = dm_thick/2.;
562
563 gMC->Gsvolu("EMM2","PARA", idtmed[698], dpara_emm2, 6);
564 gMC->Gsatt("EMM2", "SEEN", 1);
565
566
567 // Pb Convertor for EMM2
568 Float_t dpara_pb2[6] = {12.5,12.5,8.,30.,0.,0.};
569 dpara_pb2[0] = dpara_emm2[0];
570 dpara_pb2[1] = dpara_emm2[1];
571 dpara_pb2[2] = th_lead/2.;
572
573 gMC->Gsvolu("EPB2","PARA", idtmed[600], dpara_pb2, 6);
574 gMC->Gsatt ("EPB2", "SEEN", 0);
575
576 // Fe Support for EMM2
577 Float_t dpara_fe2[6] = {12.5,12.5,8.,30.,0.,0.};
578 dpara_fe2[0] = dpara_pb2[0];
579 dpara_fe2[1] = dpara_pb2[1];
580 dpara_fe2[2] = th_steel/2.;
581
582 gMC->Gsvolu("EFE2","PARA", idtmed[618], dpara_fe2, 6);
583 gMC->Gsatt ("EFE2", "SEEN", 0);
584
585
586
587 // position supermodule ESMX, ESMY inside EMM2
588
589 z_ps = - dpara_emm2[2] + sm_thick/2.;
590 gMC->Gspos("ESMY", 1, "EMM2", 0., 0., z_ps, 0, "ONLY");
591 z_pb = z_ps + sm_thick/2.+dpara_pb2[2];
592 gMC->Gspos("EPB2", 1, "EMM2", 0., 0., z_pb, 0, "ONLY");
593 z_fe = z_pb + dpara_pb2[2]+dpara_fe2[2];
594 gMC->Gspos("EFE2", 1, "EMM2", 0., 0., z_fe, 0, "ONLY");
595 z_cv = z_fe + dpara_fe2[2]+sm_thick/2.;
596 gMC->Gspos("ESMX", 1, "EMM2", 0., 0., z_cv, 0, "ONLY");
597 //
598
599
600 // EMM3 : special master module having truncated rows and columns of cells
601 // limited by hole.
602
603 Float_t dpara_emm3[6] = {12.5,12.5,0.8,30.,0.,0.};
604 dpara_emm3[0] = dpara_emm2[1]/root3_2;
605 dpara_emm3[1] = (ncell_hole + 0.25) * cell_radius *root3_2;
606 dpara_emm3[2] = dm_thick/2.;
607
608 gMC->Gsvolu("EMM3","PARA", idtmed[698], dpara_emm3, 6);
609 gMC->Gsatt("EMM3", "SEEN", 1);
610
611
612 // Pb Convertor for EMM3
613 Float_t dpara_pb3[6] = {12.5,12.5,8.,30.,0.,0.};
614 dpara_pb3[0] = dpara_emm3[0];
615 dpara_pb3[1] = dpara_emm3[1];
616 dpara_pb3[2] = th_lead/2.;
617
618 gMC->Gsvolu("EPB3","PARA", idtmed[600], dpara_pb3, 6);
619 gMC->Gsatt ("EPB3", "SEEN", 0);
620
621 // Fe Support for EMM3
622 Float_t dpara_fe3[6] = {12.5,12.5,8.,30.,0.,0.};
623 dpara_fe3[0] = dpara_pb3[0];
624 dpara_fe3[1] = dpara_pb3[1];
625 dpara_fe3[2] = th_steel/2.;
626
627 gMC->Gsvolu("EFE3","PARA", idtmed[618], dpara_fe3, 6);
628 gMC->Gsatt ("EFE3", "SEEN", 0);
629
630
631
632 // position supermodule ESMP, ESMQ inside EMM3
633
634 z_ps = - dpara_emm3[2] + sm_thick/2.;
635 gMC->Gspos("ESMQ", 1, "EMM3", 0., 0., z_ps, 0, "ONLY");
636 z_pb = z_ps + sm_thick/2.+dpara_pb3[2];
637 gMC->Gspos("EPB3", 1, "EMM3", 0., 0., z_pb, 0, "ONLY");
638 z_fe = z_pb + dpara_pb3[2]+dpara_fe3[2];
639 gMC->Gspos("EFE3", 1, "EMM3", 0., 0., z_fe, 0, "ONLY");
640 z_cv = z_fe + dpara_fe3[2] + sm_thick/2.;
641 gMC->Gspos("ESMP", 1, "EMM3", 0., 0., z_cv, 0, "ONLY");
642 //
643
644 // EHOL is a tube structure made of air
645 //
646 //Float_t d_hole[3];
647 //d_hole[0] = 0.;
648 //d_hole[1] = ncell_hole * cell_radius *2. * root3_2 + boundary;
649 //d_hole[2] = dm_thick/2.;
650 //
651 //gMC->Gsvolu("EHOL", "TUBE", idtmed[698], d_hole, 3);
652 //gMC->Gsatt("EHOL", "SEEN", 1);
653
654 //Al-rod as boundary of the supermodules
655
656 Float_t Al_rod[3] ;
657 Al_rod[0] = sm_length * 3/2. - gaspmd[5]/2 - boundary ;
76ad67b5 658 Al_rod[1] = boundary - 0.5*cell_radius*root3_2;
c4561145 659 Al_rod[2] = dm_thick/2.;
660
661 gMC->Gsvolu("EALM","BOX ", idtmed[698], Al_rod, 3);
662 gMC->Gsatt ("EALM", "SEEN", 1);
663 Float_t xalm[3];
664 xalm[0]=Al_rod[0] + gaspmd[5] + 3.0*boundary;
665 xalm[1]=-xalm[0]/2.;
666 xalm[2]=xalm[1];
667
668 Float_t yalm[3];
669 yalm[0]=0.;
670 yalm[1]=xalm[0]*root3_2;
671 yalm[2]=-yalm[1];
672
673 // delx = full side of the supermodule
674 Float_t delx=sm_length * 3.;
675 Float_t x1= delx*root3_2 /2.;
676 Float_t x4=delx/4.;
677
678
679 // placing master modules and Al-rod in PMD
680
681 Float_t dx = sm_length;
682 Float_t dy = dx * root3_2;
683
684 Float_t xsup[9] = {-dx/2., dx/2., 3.*dx/2.,
685 -dx, 0., dx,
686 -3.*dx/2., -dx/2., dx/2.};
687
688 Float_t ysup[9] = {dy, dy, dy,
689 0., 0., 0.,
690 -dy, -dy, -dy};
691
692 // xpos and ypos are the x & y coordinates of the centres of EMM1 volumes
693
694 Float_t xoff = boundary * TMath::Tan(pi/6.);
695 Float_t xmod[3]={x4 + xoff , x4 + xoff, -2.*x4-boundary/root3_2};
696 Float_t ymod[3] = {-x1 - boundary, x1 + boundary, 0.};
697 Float_t xpos[9], ypos[9], x2, y2, x3, y3;
698
699 Float_t xemm2 = sm_length/2. -
700 (ncell_sm + ncell_hole + 0.25) * cell_radius * 0.5
701 + xoff;
702 Float_t yemm2 = -(ncell_sm + ncell_hole + 0.25) * cell_radius * root3_2
703 - boundary;
704
705 Float_t xemm3 = (ncell_sm + 0.5 * ncell_hole + 0.25) * cell_radius + xoff;
706 Float_t yemm3 = - (ncell_hole - 0.25) * cell_radius * root3_2 - boundary;
707
708 Float_t theta[3] = {0., 2.*pi/3., 4.*pi/3.};
709 Int_t irotate[3] = {0, jhrot12, jhrot13};
710
711 num_mod=0;
712 for (j=0; j<3; ++j)
713 {
714 gMC->Gsposp("EALM", j+1, "EPMD", xalm[j],yalm[j], 0., irotate[j], "ONLY", Al_rod, 3);
715 x2=xemm2*TMath::Cos(theta[j]) - yemm2*TMath::Sin(theta[j]);
716 y2=xemm2*TMath::Sin(theta[j]) + yemm2*TMath::Cos(theta[j]);
717
718 gMC->Gsposp("EMM2", j+1, "EPMD", x2,y2, 0., irotate[j], "ONLY", dpara_emm2, 6);
719
720 x3=xemm3*TMath::Cos(theta[j]) - yemm3*TMath::Sin(theta[j]);
721 y3=xemm3*TMath::Sin(theta[j]) + yemm3*TMath::Cos(theta[j]);
722
723 gMC->Gsposp("EMM3", j+4, "EPMD", x3,y3, 0., irotate[j], "ONLY", dpara_emm3, 6);
724
725 for (i=1; i<9; ++i)
726 {
727 xpos[i]=xmod[j] + xsup[i]*TMath::Cos(theta[j]) - ysup[i]*TMath::Sin(theta[j]);
728 ypos[i]=ymod[j] + xsup[i]*TMath::Sin(theta[j]) + ysup[i]*TMath::Cos(theta[j]);
729
1592ac65 730 if(fDebug)
731 printf("%s: %f %f \n", ClassName(), xpos[i], ypos[i]);
c4561145 732
733 num_mod = num_mod+1;
734
1592ac65 735 if(fDebug)
736 printf("\n%s: Num_mod %d\n",ClassName(),num_mod);
c4561145 737
738 gMC->Gsposp("EMM1", num_mod + 6, "EPMD", xpos[i],ypos[i], 0., irotate[j], "ONLY", dpara_emm1, 6);
739
740 }
741 }
742
743
744 // place EHOL in the centre of EPMD
745 // gMC->Gspos("EHOL", 1, "EPMD", 0.,0.,0., 0, "ONLY");
746
747 // --- Place the EPMD in ALICE
748 xp = 0.;
749 yp = 0.;
750 zp = zdist1;
751
752 gMC->Gspos("EPMD", 1, "ALIC", xp,yp,zp, 0, "ONLY");
753
754}
755
756
757//_____________________________________________________________________________
758void AliPMDv1::DrawModule()
759{
760 //
761 // Draw a shaded view of the Photon Multiplicity Detector
762 //
763
764 gMC->Gsatt("*", "seen", -1);
765 gMC->Gsatt("alic", "seen", 0);
766 //
767 // Set the visibility of the components
768 //
769 gMC->Gsatt("ECAR","seen",0);
770 gMC->Gsatt("ECCU","seen",1);
771 gMC->Gsatt("EHC1","seen",1);
772 gMC->Gsatt("EHC1","seen",1);
773 gMC->Gsatt("EHC2","seen",1);
774 gMC->Gsatt("EMM1","seen",1);
775 gMC->Gsatt("EHOL","seen",1);
776 gMC->Gsatt("EPMD","seen",0);
777 //
778 gMC->Gdopt("hide", "on");
779 gMC->Gdopt("shad", "on");
780 gMC->Gsatt("*", "fill", 7);
781 gMC->SetClipBox(".");
782 gMC->SetClipBox("*", 0, 3000, -3000, 3000, -6000, 6000);
783 gMC->DefaultRange();
784 gMC->Gdraw("alic", 40, 30, 0, 22, 20.5, .02, .02);
785 gMC->Gdhead(1111, "Photon Multiplicity Detector Version 1");
786
787 //gMC->Gdman(17, 5, "MAN");
788 gMC->Gdopt("hide", "off");
789}
790
791//_____________________________________________________________________________
792void AliPMDv1::CreateMaterials()
793{
794 //
795 // Create materials for the PMD
796 //
797 // ORIGIN : Y. P. VIYOGI
798 //
799
800 // --- The Argon- CO2 mixture ---
801 Float_t ag[2] = { 39.95 };
802 Float_t zg[2] = { 18. };
803 Float_t wg[2] = { .8,.2 };
804 Float_t dar = .001782; // --- Ar density in g/cm3 ---
805 // --- CO2 ---
806 Float_t ac[2] = { 12.,16. };
807 Float_t zc[2] = { 6.,8. };
808 Float_t wc[2] = { 1.,2. };
809 Float_t dc = .001977;
810 Float_t dco = .002; // --- CO2 density in g/cm3 ---
811
812 Float_t absl, radl, a, d, z;
813 Float_t dg;
814 Float_t x0ar;
815 //Float_t x0xe=2.4;
816 //Float_t dxe=0.005858;
817 Float_t buf[1];
818 Int_t nbuf;
819 Float_t asteel[4] = { 55.847,51.9961,58.6934,28.0855 };
820 Float_t zsteel[4] = { 26.,24.,28.,14. };
821 Float_t wsteel[4] = { .715,.18,.1,.005 };
822
823 Int_t *idtmed = fIdtmed->GetArray()-599;
824 Int_t isxfld = gAlice->Field()->Integ();
825 Float_t sxmgmx = gAlice->Field()->Max();
826
827 // --- Define the various materials for GEANT ---
828 AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5);
829 x0ar = 19.55 / dar;
830 AliMaterial(2, "Argon$", 39.95, 18., dar, x0ar, 6.5e4);
831 AliMixture(3, "CO2 $", ac, zc, dc, -2, wc);
832 AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5);
833 AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5);
834 AliMaterial(7, "W $", 183.85, 74., 19.3, .35, 10.3);
835 AliMaterial(8, "G10 $", 20., 10., 1.7, 19.4, 999.);
836 AliMaterial(9, "SILIC$", 28.09, 14., 2.33, 9.36, 45.);
837 AliMaterial(10, "Be $", 9.01, 4., 1.848, 35.3, 36.7);
838 AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.);
839 AliMaterial(16, "C $", 12.01, 6., 2.265, 18.8, 49.9);
840 AliMaterial(17, "POLYCARBONATE $", 20., 10., 1.2, 34.6, 999.);
841 AliMixture(19, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel);
842 // AliMaterial(31, "Xenon$", 131.3, 54., dxe, x0xe, 6.5e4);
843
844 AliMaterial(96, "MYLAR$", 8.73, 4.55, 1.39, 28.7, 62.);
845 AliMaterial(97, "CONCR$", 20., 10., 2.5, 10.7, 40.);
846 AliMaterial(98, "Vacum$", 1e-9, 1e-9, 1e-9, 1e16, 1e16);
847 AliMaterial(99, "Air $", 14.61, 7.3, .0012, 30420., 67500.);
848
849 // define gas-mixtures
850
851 char namate[21];
852 gMC->Gfmate((*fIdmate)[3], namate, a, z, d, radl, absl, buf, nbuf);
853 ag[1] = a;
854 zg[1] = z;
855 dg = (dar * 4 + dco) / 5;
856 AliMixture(5, "ArCO2$", ag, zg, dg, 2, wg);
857
858 // Define tracking media
859 AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
860 AliMedium(7, "W conv.$", 7, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
861 AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
862 AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
863 AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
864 AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
865 AliMedium(9, "SILICON $", 9, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
866 AliMedium(10, "Be $", 10, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
867 AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .1, 10);
868 AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .1, .1);
869 AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
870 AliMedium(16, "C $", 16, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
871 AliMedium(17, "PLOYCARB$", 17, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
872 AliMedium(19, " S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
873 // AliMedium(31, "Xenon $", 31, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
874
875 // --- Generate explicitly delta rays in the iron, aluminium and lead ---
876 gMC->Gstpar(idtmed[600], "LOSS", 3.);
877 gMC->Gstpar(idtmed[600], "DRAY", 1.);
878
879 gMC->Gstpar(idtmed[603], "LOSS", 3.);
880 gMC->Gstpar(idtmed[603], "DRAY", 1.);
881
882 gMC->Gstpar(idtmed[604], "LOSS", 3.);
883 gMC->Gstpar(idtmed[604], "DRAY", 1.);
884
885 gMC->Gstpar(idtmed[605], "LOSS", 3.);
886 gMC->Gstpar(idtmed[605], "DRAY", 1.);
887
888 gMC->Gstpar(idtmed[606], "LOSS", 3.);
889 gMC->Gstpar(idtmed[606], "DRAY", 1.);
890
891 gMC->Gstpar(idtmed[607], "LOSS", 3.);
892 gMC->Gstpar(idtmed[607], "DRAY", 1.);
893
894 // --- Energy cut-offs in the Pb and Al to gain time in tracking ---
895 // --- without affecting the hit patterns ---
896 gMC->Gstpar(idtmed[600], "CUTGAM", 1e-4);
897 gMC->Gstpar(idtmed[600], "CUTELE", 1e-4);
898 gMC->Gstpar(idtmed[600], "CUTNEU", 1e-4);
899 gMC->Gstpar(idtmed[600], "CUTHAD", 1e-4);
900 gMC->Gstpar(idtmed[605], "CUTGAM", 1e-4);
901 gMC->Gstpar(idtmed[605], "CUTELE", 1e-4);
902 gMC->Gstpar(idtmed[605], "CUTNEU", 1e-4);
903 gMC->Gstpar(idtmed[605], "CUTHAD", 1e-4);
904 gMC->Gstpar(idtmed[606], "CUTGAM", 1e-4);
905 gMC->Gstpar(idtmed[606], "CUTELE", 1e-4);
906 gMC->Gstpar(idtmed[606], "CUTNEU", 1e-4);
907 gMC->Gstpar(idtmed[606], "CUTHAD", 1e-4);
908 gMC->Gstpar(idtmed[603], "CUTGAM", 1e-4);
909 gMC->Gstpar(idtmed[603], "CUTELE", 1e-4);
910 gMC->Gstpar(idtmed[603], "CUTNEU", 1e-4);
911 gMC->Gstpar(idtmed[603], "CUTHAD", 1e-4);
912 gMC->Gstpar(idtmed[609], "CUTGAM", 1e-4);
913 gMC->Gstpar(idtmed[609], "CUTELE", 1e-4);
914 gMC->Gstpar(idtmed[609], "CUTNEU", 1e-4);
915 gMC->Gstpar(idtmed[609], "CUTHAD", 1e-4);
916
917 // --- Prevent particles stopping in the gas due to energy cut-off ---
918 gMC->Gstpar(idtmed[604], "CUTGAM", 1e-5);
919 gMC->Gstpar(idtmed[604], "CUTELE", 1e-5);
920 gMC->Gstpar(idtmed[604], "CUTNEU", 1e-5);
921 gMC->Gstpar(idtmed[604], "CUTHAD", 1e-5);
922 gMC->Gstpar(idtmed[604], "CUTMUO", 1e-5);
923}
924
925//_____________________________________________________________________________
926void AliPMDv1::Init()
927{
928 //
929 // Initialises PMD detector after it has been built
930 //
931 Int_t i;
932 kdet=1;
933 //
1592ac65 934 if(fDebug) {
935 printf("\n%s: ",ClassName());
936 for(i=0;i<35;i++) printf("*");
937 printf(" PMD_INIT ");
938 for(i=0;i<35;i++) printf("*");
939 printf("\n%s: ",ClassName());
940 printf(" PMD simulation package (v1) initialised\n");
941 printf("%s: parameters of pmd\n",ClassName());
942 printf("%s: %10.2f %10.2f %10.2f
943 %10.2f\n",ClassName(),cell_radius,cell_wall,cell_depth,zdist1 );
944 printf("%s: ",ClassName());
945 for(i=0;i<80;i++) printf("*");
946 printf("\n");
947 }
c4561145 948
949 Int_t *idtmed = fIdtmed->GetArray()-599;
950 fMedSens=idtmed[605-1];
951}
952
953//_____________________________________________________________________________
954void AliPMDv1::StepManager()
955{
956 //
957 // Called at each step in the PMD
958 //
959 Int_t copy;
960 Float_t hits[4], destep;
961 Float_t center[3] = {0,0,0};
962 Int_t vol[5];
963 //char *namep;
964
965 if(gMC->GetMedium() == fMedSens && (destep = gMC->Edep())) {
966
967 gMC->CurrentVolID(copy);
968
969 //namep=gMC->CurrentVolName();
970 //printf("Current vol is %s \n",namep);
971
972 vol[0]=copy;
973 gMC->CurrentVolOffID(1,copy);
974
975 //namep=gMC->CurrentVolOffName(1);
976 //printf("Current vol 11 is %s \n",namep);
977
978 vol[1]=copy;
979 gMC->CurrentVolOffID(2,copy);
980
981 //namep=gMC->CurrentVolOffName(2);
982 //printf("Current vol 22 is %s \n",namep);
983
984 vol[2]=copy;
985
986 // if(strncmp(namep,"EHC1",4))vol[2]=1;
987
988 gMC->CurrentVolOffID(3,copy);
989
990 //namep=gMC->CurrentVolOffName(3);
991 //printf("Current vol 33 is %s \n",namep);
992
993 vol[3]=copy;
994 gMC->CurrentVolOffID(4,copy);
995
996 //namep=gMC->CurrentVolOffName(4);
997 //printf("Current vol 44 is %s \n",namep);
998
999 vol[4]=copy;
1000 //printf("volume number %d,%d,%d,%d,%d,%f \n",vol[0],vol[1],vol[2],vol[3],vol[4],destep*1000000);
1001
1002 gMC->Gdtom(center,hits,1);
1003 hits[3] = destep*1e9; //Number in eV
1004 AddHit(gAlice->CurrentTrack(), vol, hits);
1005 }
1006}
1007
1008
1009//------------------------------------------------------------------------
1010// Get parameters
1011
1012void AliPMDv1::GetParameters()
1013{
1014 Int_t ncell_um, num_um;
1015 ncell_um=24;
1016 num_um=3;
1017 ncell_hole=24;
1018 cell_radius=0.25;
1019 cell_wall=0.02;
1020 cell_depth=0.25 * 2.;
1021 //
1022 boundary=0.7;
1023 ncell_sm=ncell_um * num_um; //no. of cells in a row in one supermodule
1024 sm_length= ((ncell_sm + 0.25 ) * cell_radius) * 2.;
1025 //
1026 th_base=0.3;
1027 th_air=0.1;
1028 th_pcb=0.16;
1029 //
1030 sm_thick = th_base + th_air + th_pcb + cell_depth + th_pcb + th_air + th_pcb;
1031 //
1032 th_lead=1.5;
1033 th_steel=0.5;
1034 //
1035 zdist1 = -365.;
1036}
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049