]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PWGLF/FORWARD/doc/doc.tex
version for PWGLF approval
[u/mrichter/AliRoot.git] / PWGLF / FORWARD / doc / doc.tex
CommitLineData
655b45b0 1\documentclass[11pt]{article}
9e3855d0 2\renewcommand{\rmdefault}{ptm}
3\usepackage{mathptmx}
655b45b0 4\usepackage[margin=2cm,twoside,a4paper]{geometry}
5\usepackage{amstext}
6\usepackage{amsmath}
7\usepackage[ruled,vlined,linesnumbered]{algorithm2e}
ffa07380 8\usepackage{graphicx}
9\usepackage{color}
9eba87f5 10\usepackage{url}
ffa07380 11\usepackage{units}
12\usepackage{listings}
56bd6baf 13\usepackage[colorlinks,urlcolor=black,hyperindex,%
dc64f2ea 14 linktocpage,a4paper,bookmarks=true,%
15 bookmarksopen=true,bookmarksopenlevel=2,%
16 bookmarksnumbered=true]{hyperref}
17%% \usepackage{bookmark}
ffa07380 18\def\AlwaysText#1{\ifmmode\relax\text{#1}\else #1\fi}
19\newcommand{\AbbrName}[1]{\AlwaysText{{\scshape #1}}}
56bd6baf 20\newcommand{\CERN}{\AbbrName{cern}}
21\newcommand{\ALICE}{\AbbrName{alice}}
655b45b0 22\newcommand{\SPD}{\AbbrName{spd}}
23\newcommand{\ESD}{\AbbrName{esd}}
24\newcommand{\AOD}{\AbbrName{aod}}
25\newcommand{\INEL}{\AbbrName{inel}}
26\newcommand{\INELONE}{$\AbbrName{inel}>0$}
27\newcommand{\NSD}{\AbbrName{nsd}}
8c548214 28\newcommand{\FMD}[1][]{\AbbrName{fmd\ifx|#1|\else#1\fi}}
56bd6baf 29\newcommand{\OCDB}{\AbbrName{ocdb}}
30\newcommand{\mult}[1][]{\ensuremath N_{\text{ch}#1}}
655b45b0 31\newcommand{\dndetadphi}[1][]{{\ensuremath%
32 \ifx|#1|\else\left.\fi%
56bd6baf 33 \frac{d^2\mult{}}{d\eta\,d\varphi}%
655b45b0 34 \ifx|#1|\else\right|_{#1}\fi%
35}}
36\newcommand{\landau}[1]{{\ensuremath%
37 \text{landau}\left(#1\right)}}
38\newcommand{\dndeta}[1][]{{\ensuremath%
39 \ifx|#1|\else\left.\fi%
56bd6baf 40 \frac{1}{N}\frac{d\mult{}}{d\eta}%
655b45b0 41 \ifx|#1|\else\right|_{#1}\fi%
42}}
9eba87f5 43\newcommand{\dndphi}[1][]{{\ensuremath%
44 \ifx|#1|\else\left.\fi%
45 \frac{1}{N}\frac{d\mult{}}{d\varphi}%
46 \ifx|#1|\else\right|_{#1}\fi%
47}}
ffa07380 48\newcommand{\MC}{\AlwaysText{MC}}
fc6a90cc 49\newcommand{\N}[2]{{\ensuremath N_{#1#2}}}
50\newcommand{\NV}[1][]{\N{\text{V}}{#1}}
51\newcommand{\NnotV}{\N{\not{\text{V}}}}
52\newcommand{\NT}{\N{\text{T}}{}}
53\newcommand{\NA}{\N{\text{A}}{}}
56bd6baf 54\newcommand{\Ngood}{{\ensuremath N_{\text{good}}}}
ffa07380 55\newcommand{\GeV}[1]{\unit[#1]{\AlwaysText{GeV}}}
549a0be3 56\newcommand{\TeV}[1]{\unit[#1]{\AlwaysText{TeV}}}
ffa07380 57\newcommand{\cm}[1]{\unit[#1]{\AlwaysText{cm}}}
56bd6baf 58\newcommand{\secref}[1]{Section~\ref{#1}}
59\newcommand{\figref}[1]{Figure~\ref{#1}}
60\newcommand{\etaphi}{\ensuremath(\eta,\varphi)}
dc64f2ea 61% Azimuthal acceptance
62\newcommand{\Corners}{\ensuremath A^{\varphi}_{t}}
63% Acceptance due to dead strips
64\newcommand{\DeadCh}{\ensuremath A^{\eta}_{v,i}\etaphi}
65\newcommand{\SecMap}{\ensuremath S_v\etaphi}
655b45b0 66\setlength{\parskip}{1ex}
67\setlength{\parindent}{0em}
9e3855d0 68\title{%
69 {\LARGE EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH}\\%
70 {\Large European Organization for Particle Physics}\\[2ex]%
71 {\normalsize%
83c94e51 72 \begin{tabular}[t]{@{}p{.25\textwidth}@{}%
73 p{.5\textwidth}@{}%
9e3855d0 74 p{.25\textwidth}@{}}%
75 % \vfil%
76 \vfil
77 \includegraphics[keepaspectratio,width=.12\textwidth]{alice_logo_v3}%
78 \vfil%
79 &%
80 \vfil
81 \begin{center}%
82 {\LARGE\bf Analysing the FMD data for $\dndeta$}%
83 \end{center}%
84 \vfil
85 &%
86 % \vfil%
87 \vfil
88 \begin{tabular}[t]{@{}p{.25\textwidth}@{}}
89 \hfill\includegraphics[keepaspectratio,width=.12\textwidth]{%
90 cernlogo}\\
83c94e51 91 \hfill ALICE--INT--2012--040 v2\\
92 \hfill \today%
9e3855d0 93 \end{tabular}%
94 \vfil%
95 \end{tabular}}}
655b45b0 96\author{Christian Holm
ffa07380 97 Christensen\thanks{\texttt{$\langle$cholm@nbi.dk$\rangle$}}\quad\&\quad
98 Hans Hjersing Dalsgaard\thanks{\texttt{$\langle$canute@nbi.dk$\rangle$}}\\
655b45b0 99 Niels Bohr Institute\\
100 University of Copenhagen}
9e3855d0 101\date{}
655b45b0 102\begin{document}
dc64f2ea 103\pdfbookmark{Analysing the FMD data for dN/deta}{top}
655b45b0 104\maketitle
105
ffa07380 106\tableofcontents
107\section{Introduction}
655b45b0 108
109This document describes the steps performed in the analysis of the
110charged particle multiplicity in the forward pseudo--rapidity
9eba87f5 111regions with the \FMD{} detector \cite{FWD:2004mz,cholm:2009}. The
112document also include a summary (see section \ref{prelim}) of the request for preliminary figures
113for the measurement of $\dndeta$ with SPD\cite{ruben,Aamodt:2010cz},
114VZERO\cite{maxime}, and FMD.
115% The primary detector used for this is the \FMD{}
dc64f2ea 116
117The \FMD{} is
118organised in 3 \emph{sub--detectors} \FMD{1}, \FMD{2}, and \FMD{3}, each
119consisting of 1 (\FMD{1}) or 2 (\FMD{2} and~3) \emph{rings}.
120The rings fall into two types: \emph{Inner} or \emph{outer} rings.
121Each ring is in turn azimuthally divided into \emph{sectors}, and each
122sector is radially divided into \emph{strips}. How many sectors,
123strips, as well as the $\eta$ coverage is given in
124\tablename~\ref{tab:fmd:overview}.
125
126\begin{table}[htbp]
127 \begin{center}
128 \caption{Physical dimensions of Si segments and strips.}
129 \label{tab:fmd:overview}
130 \vglue0.2cm
131 \begin{tabular}{|c|cc|cr@{\space--\space}l|r@{\space--\space}l|}
132 \hline
133 \textbf{Sub--detector/} &
134 \textbf{Azimuthal}&
135 \textbf{Radial} &
136 $z$ &
137 \multicolumn{2}{c|}{\textbf{$r$}} &
138 \multicolumn{2}{c|}{\textbf{$\eta$}} \\
139 \textbf{Ring}&
140 \textbf{sectors} &
141 \textbf{strips} &
142 \textbf{[cm]} &
143 \multicolumn{2}{c|}{\textbf{range [cm]}} &
144 \multicolumn{2}{c|}{\textbf{coverage}} \\
145 \hline
146 FMD1i & 20& 512& 320 & 4.2& 17.2& 3.68& 5.03\\
147 FMD2i & 20& 512& 83.4& 4.2& 17.2& 2.28& 3.68\\
148 FMD2o & 40& 256& 75.2& 15.4& 28.4& 1.70& 2.29\\
149 FMD3i & 20& 512& -75.2& 4.2& 17.2&-2.29& -1.70\\
150 FMD3o & 40& 256& -83.4& 15.4& 28.4&-3.40& -2.01\\
151 \hline
152 \end{tabular}
153 \end{center}
154\end{table}
155
b9bd46b7 156The \FMD{} \ESD{} object contains the scaled energy deposited $\Delta
157E/\Delta E_{mip}$ for each of the 51,200 strips. This is determined
158in the reconstruction pass. The scaling to $\Delta E_{mip}$ is done
159using calibration factors extracted in designated pulser runs. In
160these runs, the front-end electronics is pulsed with an increasing
161known pulse size, and the conversion factor from ADC counts to $\Delta
162E_{mip}$ is determined \cite{cholm:2009}.
163
dc64f2ea 164The \SPD{} is used for determination of the position of the primary
9eba87f5 165interaction point except in the case of displaced vertex analysis as
166discussed in section \ref{sec:sub:sub:dispvtx}.
655b45b0 167
168The analysis is performed as a two--step process.
169\begin{enumerate}
170\item The Event--Summary--Data (\ESD{}) is processed event--by--event
171 and passed through a number of algorithms, and
172 $\dndetadphi$ for each event is output to an Analysis--Object--Data
dc64f2ea 173 (\AOD{}) tree (see \secref{sec:gen_aod}).
655b45b0 174\item The \AOD{} data is read in and the sub--sample of the data under
9eba87f5 175 investigation is selected (e.g., \INEL{}, \INELONE{}, \NSD{} in p+p data, or
176 some centrality class in Pb+Pb data) and the $\dndetadphi$ histogram read for
dc64f2ea 177 those events to build up $\dndeta$ (see \secref{sec:ana_aod}).
655b45b0 178\end{enumerate}
179The details of each step above will be expanded upon in the
180following.
181
dc64f2ea 182In Appendix~\ref{app:nomen} is an overview of the nomenclature used in
183this document.
184
185
186
ffa07380 187\section{Generating $\dndetadphi[i]$ event--by--event}
dc64f2ea 188\label{sec:gen_aod}
655b45b0 189
190When reading in the \ESD{}s and generating the $\dndetadphi$
191event--by--event the following steps are taken (in order) for each
9eba87f5 192event $i$ and FMD ring $r$.
655b45b0 193\begin{description}
194\item[Event inspection] The global properties of the event is
56bd6baf 195 determined, including the trigger type and primary interaction
196 point\footnote{`Vertex' and `primary interaction point' will be used
197 interchangeably in the text, since there is no ambiguity with
198 particle production vertex in this analysis.} $z$ coordinate (see
199 \secref{sec:sub:event_inspection}).
655b45b0 200\item[Sharing filter] The \ESD{} object is read in and corrected for
56bd6baf 201 sharing. The result is a new \ESD{} object (see
202 \secref{sec:sub:sharing_filter}).
655b45b0 203\item[Density calculator] The (possibly un--corrected) \ESD{} object
56bd6baf 204 is then inspected and an inclusive (primary \emph{and} secondary
205 particles), per--ring charged particle density
206 $\dndetadphi[incl,r,v,i]$ is made. This calculation depends in
207 general upon the interaction vertex position along the $z$ axis
208 $v_z$ (see \secref{sec:sub:density_calculator}).
9eba87f5 209\item[Corrections] The 5 (one for each FMD ring) $\dndetadphi[incl,r,v,i]$ are corrected for
56bd6baf 210 secondary production and acceptance. The correction for the
211 secondary particle production is highly dependent on the vertex $z$
212 coordinate. The result is a per--ring, charged primary particle
213 density $\dndetadphi[r,v,i]$ (see \secref{sec:sub:corrector}).
655b45b0 214\item[Histogram collector] Finally, the 5 $\dndetadphi[r,v,i]$ are
215 summed into a single $\dndetadphi[v,i]$ histogram, taking care of
216 the overlaps between the detector rings. In principle, this
217 histogram is independent of the vertex, except that the
218 pseudo--rapidity range, and possible holes in that range, depends on
56bd6baf 219 $v_z$ --- or rather the bin in which the $v_z$ falls (see
220 \secref{sec:sub:hist_collector}).
655b45b0 221\end{description}
222
223Each of these steps will be detailed in the following.
224
ffa07380 225\subsection{Event inspection}
56bd6baf 226\label{sec:sub:event_inspection}
655b45b0 227
228The first thing to do, is to inspect the event for triggers. A number
549a0be3 229of trigger bits, like \INEL{} (Minimum Bias for Pb+Pb), \INELONE{}, \NSD{}, and so on is then
655b45b0 230propagated to the \AOD{} output.
231
b9bd46b7 232Just after the sharing filter (described below) but before any further
655b45b0 233processing, the vertex information is queried. If there is no vertex
234information, or if the vertex $z$ coordinate is outside the
56bd6baf 235pre--defined range, then no further processing of that event takes place.
655b45b0 236
549a0be3 237\subsubsection{Displaced Vertices}
238\label{sec:sub:sub:dispvtx}
239
240The analysis can be set up to run on the `displaced vertices' that
241occur during LHC Pb+Pb running. Details on the displaced vertices, and
242their selection can be found in the VZERO analysis note \cite{maxime}.
ffa07380 243\subsection{Sharing filter}
56bd6baf 244\label{sec:sub:sharing_filter}
655b45b0 245
dc64f2ea 246A particle originating from the vertex can, because of its incident
56bd6baf 247angle on the \FMD{} sensors traverse more than one strip (see
248\figref{fig:share_fraction}). This means that the energy loss of the
249particle is distributed over 1 or more strips. The signal in each
b9bd46b7 250strip should therefore possibly be merged with its neighboring strip
56bd6baf 251signals to properly reconstruct the energy loss of a single particle.
655b45b0 252
56bd6baf 253\begin{figure}[htbp]
254 \centering
255 \includegraphics[keepaspectratio,height=3cm]{share_fraction}
256 \caption{A particle traversing 2 strips and depositing energy in
257 each strip. }
258 \label{fig:share_fraction}
259\end{figure}
260
261The effect is most pronounced in low--flux\footnote{Events with a low
262 hit density.} events, like proton--proton collisions or peripheral
263Pb--Pb collisions, while in high--flux events the hit density is so
264high that most likely each and every strip will be hit and the effect
9eba87f5 265cancels out on average.
655b45b0 266
267Since the particles travel more or less in straight lines toward the
dc64f2ea 268\FMD{} sensors, the sharing effect is predominantly in the $r$ or
9eba87f5 269\emph{strip} direction. Only neighbouring strips in a given sector are
270therefore investigated for this effect.
655b45b0 271
272Algorithm~\ref{algo:sharing} is applied to the signals in a given
273sector.
274
275\begin{algorithm}[htpb]
dc64f2ea 276 \belowpdfbookmark{Algorithm 1}{algo:sharing}
655b45b0 277 \SetKwData{usedThis}{current strip used}
278 \SetKwData{usedPrev}{previous strip used}
279 \SetKwData{Output}{output}
280 \SetKwData{Input}{input}
281 \SetKwData{Nstr}{\# strips}
282 \SetKwData{Signal}{current}
283 \SetKwData{Eta}{$\eta$}
284 \SetKwData{prevE}{previous strip signal}
285 \SetKwData{nextE}{next strip signal}
286 \SetKwData{lowFlux}{low flux flag}
287 \SetKwFunction{SignalInStrip}{SignalInStrip}
288 \SetKwFunction{MultiplicityOfStrip}{MultiplicityOfStrip}
289 \usedThis $\leftarrow$ false\;
290 \usedPrev $\leftarrow$ false\;
291 \For{$t\leftarrow1$ \KwTo \Nstr}{
292 \Output${}_t\leftarrow 0$\;
293 \Signal $\leftarrow$ \SignalInStrip($t$)\;
294
295 \uIf{\Signal is not valid}{
296 \Output${}_t \leftarrow$ invalid\;
297 }
298 \uElseIf{\Signal is 0}{
299 \Output${}_t \leftarrow$ 0\;
300 }
301 \Else{
302 \Eta$\leftarrow$ $\eta$ of \Input${}_t$\;
303 \prevE$\leftarrow$ 0\;
304 \nextE$\leftarrow$ 0\;
305 \lIf{$t \ne 1$}{
306 \prevE$\leftarrow$ \SignalInStrip($t-1$)\;
307 }
308 \lIf{$t \ne $\Nstr}{
309 \nextE$\leftarrow$ \SignalInStrip($t+1$)\;
310 }
311 \Output${}_t\leftarrow$
312 \MultiplicityOfStrip(\Signal,\Eta,\prevE,\nextE,\\
313 \hfill\lowFlux,$t$,\usedPrev,\usedThis)\;
314 }
315 }
316 \caption{Sharing correction}
317 \label{algo:sharing}
318\end{algorithm}
319
320Here the function \FuncSty{SignalInStrip}($t$) returns the properly
321path--length corrected signal in strip $t$. The function
56bd6baf 322\FuncSty{MultiplicityOfStrip} is where the real processing takes
323place (see page \pageref{func:MultiplicityOfStrip}).
655b45b0 324
325\begin{function}[htbp]
dc64f2ea 326 \belowpdfbookmark{MultiplicityOfStrip}{func:MultiplicityOfStrip}
56bd6baf 327 \caption{MultiplicityOfStrip(\DataSty{current},$\eta$,\DataSty{previous},\DataSty{next},\DataSty{low
655b45b0 328 flux flag},\DataSty{previous signal used},\DataSty{this signal
329 used})}
56bd6baf 330 \label{func:MultiplicityOfStrip}
655b45b0 331 \SetKwData{Current}{current}
332 \SetKwData{Next}{next}
333 \SetKwData{Previous}{previous}
334 \SetKwData{lowFlux}{low flux flag}
335 \SetKwData{usedPrev}{previous signal used}
336 \SetKwData{usedThis}{this signal used}
337 \SetKwData{lowCut}{low cut}
338 \SetKwData{total}{Total}
339 \SetKwData{highCut}{high cut}
340 \SetKwData{Eta}{$\eta$}
341 \SetKwFunction{GetHighCut}{GetHighCut}
342 \If{\Current is very large or \Current $<$ \lowCut} {
343 \usedThis $\leftarrow$ false\;
344 \usedPrev $\leftarrow$ false\;
345 \Return{0}
346 }
347 \If{\usedThis}{
348 \usedThis $\leftarrow$ false\;
349 \usedPrev $\leftarrow$ true\;
350 \Return{0}
351 }
352 \highCut $\leftarrow$ \GetHighCut($t$,\Eta)\;
dc64f2ea 353 %\If{\Current $<$ \Next and \Next $>$ \highCut and \lowFlux set}{
354 % \usedThis $\leftarrow$ false\;
355 % \usedPrev $\leftarrow$ false\;
356 % \Return{0}
357 %}
655b45b0 358 \total $\leftarrow$ \Current\;
359 \lIf{\lowCut $<$ \Previous $<$ \highCut and not \usedPrev}{
360 \total $\leftarrow$ \total + \Previous\;
361 }
362 \If{\lowCut $<$ \Next $<$ \highCut}{
363 \total $\leftarrow$ \total + \Next\;
364 \usedThis $\leftarrow$ true\;
365 }
366 \eIf{\total $>$ 0}{
367 \usedPrev $\leftarrow$ true\;
368 \Return{\total}
369 }{
370 \usedPrev $\leftarrow$ false\;
371 \usedThis $\leftarrow$ false\;
372 \Return{0}
373 }
374\end{function}
9eba87f5 375Here, the function \FuncSty{GetHighCut} (see below) evaluates a fit to the energy
56bd6baf 376distribution in the specified $\eta$ bin (see also
377\secref{sec:sub:density_calculator}). It returns
655b45b0 378$$
379\Delta_{mp} - 2 w
380$$
381where $\Delta_{mp}$ is the most probable energy loss, and $w$ is the
382width of the Landau distribution.
383
384The \KwSty{if} in line 5, says that if the previous strip was merged
385with current one, and the signal of the current strip was added to
56bd6baf 386that, then the current signal is set to 0, and we mark it as used for
387the next iteration (\DataSty{previous signal used}$\leftarrow$true).
655b45b0 388
dc64f2ea 389% The \KwSty{if} in line 10 checks if the current signal is smaller than
390% the next signal, if the next signal is larger than the upper cut
391% defined above, and if we have a low--flux event\footnote{Note, that in
392% the current implementation there are never any low--flux events.}.
393% If that condition is met, then the current signal is the smaller of
394% two possible candidates for merging, and it should be merged into the
395% next signal. Note, that this \emph{only} applies in low--flux events.
56bd6baf 396
dc64f2ea 397In line 11, % 15,
398we test if the previous signal lies between our low and
655b45b0 399high cuts, and if it has not been marked as being used. If so, we add
400it to our current signal.
401
dc64f2ea 402The next \KwSty{if} on line 12 % 16
403checks if the next signal is within our
655b45b0 404cut bounds. If so, we add that signal to the current signal and mark
405it as used for the next iteration (\DataSty{this signal
9eba87f5 406 used}$\leftarrow$true). It will then be put to zero on the next
655b45b0 407iteration by the condition on line 6.
408
409Finally, if our signal is still larger than 0, we return the signal
410and mark this signal as used (\DataSty{previous signal
411 used}$\leftarrow$true) so that it will not be used in the next
412iteration. Otherwise, we mark the current signal and the next signal
413as unused and return a 0.
414
415
ffa07380 416\subsection{Density calculator}
56bd6baf 417\label{sec:sub:density_calculator}
655b45b0 418
dc64f2ea 419The density calculator loops over all the strip signals in the sharing
420corrected\footnote{The sharing correction can be disabled, in which
9eba87f5 421 case the density calculator uses the input \ESD{} signals.} \ESD{}
56bd6baf 422and calculates the inclusive (primary + secondary) charged particle
423density in pre--defined $\etaphi$ bins.
655b45b0 424
549a0be3 425\subsubsection{Inclusive number of charged particles: Energy Fits}
dc64f2ea 426\label{sec:sub:sub:eloss_fits}
ffa07380 427
b9bd46b7 428The number charged particles in a strip $\mult[,t]$ is calculated
429using multiple Landau-like distributions fitted to the energy loss
9eba87f5 430spectrum of all strips in a given $\eta$ bin.
655b45b0 431\begin{align}
0a89eed1 432 \Delta_{i,mp} &= i (\Delta_{1,mp}+ \xi_1 \log(i))\nonumber\\
433 \xi_i &= i\xi_1\nonumber\\
434 \sigma_i &= \sqrt{i}\sigma_1\nonumber\\
56bd6baf 435 \mult[,t] &= \frac{\sum_i^{N_{max}}
0a89eed1 436 i\,a_i\,F(\Delta_t;\Delta_{i,mp},\xi_i,\sigma_i)}{
437 \sum_i^{N_{max}}\,a_i\,F(\Delta_t;\Delta_{i,mp},\xi_i,\sigma_i)}\quad,
655b45b0 438\end{align}
0a89eed1 439where $F(x;\Delta_{mp},\xi,\sigma)$ is the evaluation of the Landau
440distribution $f_L$ with most probable value $\Delta_{mp}$ and width
56bd6baf 441$\xi$, folded with a Gaussian distribution with spread $\sigma$ at the
442energy loss $x$ \cite{nim:b1:16,phyrev:a28:615}.
443\begin{align}
444 \label{eq:energy_response}
445 F(x;\Delta_{mp},\xi,\sigma) = \frac{1}{\sigma \sqrt{2 \pi}}
446 \int_{-\infty}^{+\infty} d\Delta' f_{L}(x;\Delta',\xi)
447 \exp{-\frac{(\Delta_{mp}-\Delta')^2}{2\sigma^2}}\quad,
448\end{align}
449where $\Delta_{1,mp}$, $\xi_1$, and $\sigma_1$ are the parameters for
450the first MIP peak, $a_1=1$, and $a_i$ is the relative weight of the
dc64f2ea 451$i$-fold MIP peak. The parameters $\Delta_{1,mp}, \xi_1,
452\sigma_1, \mathbf{a} = \left(a_2, \ldots a_{N_{max}}\right)$ are
453obtained by fitting
0a89eed1 454$$
dc64f2ea 455F_j(x;C,\Delta_{mp},\xi,\sigma,\mathbf{a}) = C
456\sum_{i=1}^{j} a_i F(x;\Delta_{i,mp},\xi_{i},\sigma_i)
0a89eed1 457$$
56bd6baf 458for increasing $j$ to the energy loss spectra in separate $\eta$ bins.
9eba87f5 459The fit procedure is stopped when for $j+1$: (the default values for
460each value are included below)
b9bd46b7 461\begin{itemize}
9eba87f5 462\item the reduced $\chi^2$ exceeds a certain threshold (usually 20), or
b9bd46b7 463\item the relative error $\delta p/p$ of any parameter of the fit
9eba87f5 464 exceeds a certain threshold (usually 0.12), or
b9bd46b7 465\item when the weight $a_j+1$ is smaller than some number (typically
466 $10^{-5}$).
467\end{itemize}
468$N_{max}$ is then set to $j$. Examples of the result of these fits
469are given in \figref{fig:eloss_fits} in Appendix~\ref{app:eloss_fits}.
549a0be3 470\subsubsection{Inclusive number of charged particles: Poisson Approach}
471\label{sec:sub:sub:poisson}
472Another approach to the calculation of the number of charged particles
9eba87f5 473is using Poisson statistics. This is the default choice because it is
474less sensitive to the stability of the fits required for the energy
475fits method.
549a0be3 476Assume that in a region of the FMD % where
477$\mult$
478%is azimuthally uniform in $\eta$ intervals it
479is
480distributed according to a Poisson distribution. This means that the
481probability of $\mult=n$ becomes:
482\begin{equation}
483P(n) = \frac{\mu^n e^{-\mu}}{n!} \label{eq:PoissonDef}
484\end{equation}
485In particular the measured occupancy, $\mu_{meas}$, is the probability
486of any number of hits, thus using \eqref{eq:PoissonDef} :
487\begin{equation}
488\mu_{meas} = 1 - P(0) = 1 - e^{-\mu }
489%\Rightarrow \mu = \ln
490%(1 - \mu_{meas})^{-1} \label{eq:PoissonDef2}
491\end{equation}
492which implies:
493\begin{equation}
494\mu = \ln
495(1 - \mu_{meas})^{-1} \label{eq:PoissonDef2}
496\end{equation}
497The mean number of particles in a hit strip becomes:
498\begin{eqnarray}
499C &=& \frac{\sum_{n>0} n P(n>0)}{\sum_{n>0} P(n>0)} \nonumber \\
500 &=& \frac{e^{-\mu}}{1-e^{-\mu}} \mu \sum \frac{\mu^n}{n!}
501 \nonumber \\
502 &=& \frac{e^{-\mu}}{1-e^{-\mu}} \mu e^{\mu} \nonumber \\
503 &=& \frac{\mu}{1-e^{-\mu}}
504\end{eqnarray}
505%While $\mu$ can be calculated analytically for practical purposes we
506With $\mu$ defined in \eqref{eq:PoissonDef2} this calculation is
507carried out per event in
9eba87f5 508regions of the FMD each containing 256 strips\footnote{Note that this means that the same factor is used for each of the 256 strips.}. %Defining
549a0be3 509%$\mu_{meas}^{region}$ to be the measured occupancy
510 In such a region,
511$\mult$ for a hit strip ($N_{hits} \equiv 1$) in that region becomes:
512\begin{equation}
513\mult = N_{hits} \times C = 1 \times C = C
514\end{equation}
515Where C is calculated using $\mu_{meas}^{region}$.
655b45b0 516
9eba87f5 517The Poisson method and the energy fits method have been compared in
518\cite{hhd:2009} where it is found that the two methods are in good
519agreement. The residual difference between the methods contributes to
520the systematic error.
521
56bd6baf 522\subsubsection{Azimuthal Acceptance}
ffa07380 523
56bd6baf 524Before the signal $\mult[,t]$ can be added to the $\etaphi$
655b45b0 525bin in one of the 5 per--ring histograms, it needs to be corrected for
56bd6baf 526the $\varphi$ acceptance of the strip.
655b45b0 527
b9bd46b7 528The sensors of the \FMD{} are not perfect arc--segments --- the two
529top corners are cut off to allow the largest possible sensor on a 6''
530Si-wafer. This means, however, that the strips in these outer
531regions do not fully cover $2\pi$ in azimuth, and there is therefore a
532need to correct for this limited acceptance.
533
655b45b0 534The acceptance correction is only applicable where the strip length
535does not cover the full sector. This is the case for the outer strips
536in both the inner and outer type rings. The acceptance correction is
537then simply
538\begin{align}
539 \label{eq:acc_corr}
dc64f2ea 540 \Corners{} &= \frac{l_t}{\Delta\varphi}\quad
655b45b0 541\end{align}
542where $l_t$ is the strip length in radians at constant $r$, and
543$\Delta\varphi$ is $2\pi$ divided by the number of sectors in the
544ring (20 for inner type rings, and 40 for outer type rings).
545
b9bd46b7 546Note, that this correction is a hardware--related correction, and does
547not depend on the properties of the collision (e.g., primary vertex
548location).
549
56bd6baf 550The final $\etaphi$ content of the 5 output vertex dependent,
655b45b0 551per--ring histograms of the inclusive charged particle density is then
552given by
553\begin{align}
8c548214 554 \label{eq:density}
56bd6baf 555 \dndetadphi[incl,r,v,i\etaphi] &= \sum_t^{t\in\etaphi}
dc64f2ea 556 \mult[,t]\,\Corners{}
655b45b0 557\end{align}
56bd6baf 558where $t$ runs over the strips in the $\etaphi$ bin.
655b45b0 559
ffa07380 560\subsection{Corrections}
56bd6baf 561\label{sec:sub:corrector}
655b45b0 562
563The corrections code receives the five vertex dependent,
564per--ring histograms of the inclusive charged particle density
565$\dndetadphi[incl,r,v,i]$ from the density calculator and applies
56bd6baf 566two corrections
ffa07380 567
568\subsubsection{Secondary correction}
569%%
570%% hHits_FMD<d><r>_vtx<v>
571%% hCorrection = -----------------------
572%% hPrimary_FMD_<r>_vtx<v>
573%%
574%% where
575%% - hPrimary_FMD_<r>_vtx<vtx> is 2D of eta,phi for all primary ch
576%% particles
577%% - hHits_FMD<d><r>_vtx<v> is 2D of eta,phi for all track-refs that
578%% hit the FMD - The 2D version of hMCHits_nocuts_FMD<d><r>_vtx<v>
579%% used below.
56bd6baf 580This is a 2 dimensional histogram generated from simulations, as the
581ratio of primary particles to the total number of particles that fall
582within an $\etaphi$ bin for a given vertex bin
583
584\begin{align}
585 \label{eq:secondary}
dc64f2ea 586 \SecMap{} &=
fc6a90cc 587 \frac{\sum_i^{\NV[,v]}\mult[,\text{primary},i]\etaphi}{
588 \sum_i^{\NV[,v]}\mult[,\text{\FMD{}},i]\etaphi}\quad,
56bd6baf 589\end{align}
fc6a90cc 590where $\NV[,v]$ is the number of events with a valid trigger and a
56bd6baf 591vertex in bin $v$, and $\mult[,\FMD{},i]$ is the total number of
592charged particles that hit the \FMD{} in event $i$ in the specified
593$\etaphi$ bin and $\mult[,\text{primary},i]$ is number of
594primary charged particles in event $i$ within the specified
595$\etaphi$ bin.
596
597$\mult[,\text{primary}]\etaphi$ is given by summing over the
598charged particles labelled as primaries \emph{at the time of the
599 collision} as defined in the simulation code. That is, it is the
600number of primaries within the $\etaphi$ bin at the collision
601point --- not at the \FMD{}.
602
9eba87f5 603$\SecMap$ varies from $\approx 1.5$ for the most forward bins to
604$\approx 3$ for the more central bins. Figure \ref{secondaries} shows the $\dndeta$ of secondaries from various sources assessed with MC simulations to give an idea of the magnitude of the effects of secondaries.
605\begin{figure}[]
606 \centering
607 \includegraphics[keepaspectratio,width=\textwidth]{%
608 secOriginSeparate}
609 \caption{$\dndeta$ for secondaries and primaries in the FMD. The same plot for the SPD inner layer is included for comparison.}
610 \label{secondaries}
611\end{figure}
612
613%For pp, different event
614%generators were used and found to give compatible results within
615%3--5\%.
616For pp, at least some millions of events must be
b9bd46b7 617accumulated to reach satisfactory statistics. For Pb--Pb where the
618general hit density is larger, reasonable statistics can be achieved
9eba87f5 619with less simulated data.
b9bd46b7 620
56bd6baf 621\subsubsection{Acceptance due to dead channels}
622
623Some of the strips in the \FMD{} have been marked up as \emph{dead},
624meaning that they are not used in the reconstruction or analysis.
625This leaves holes in the acceptance of each defined $\etaphi$
626which need to be corrected for.
627
628Dead channels are marked specially in the \ESD{}s with the flag
629\textit{Invalid Multiplicity}. This is used in the analysis to build
630up and event--by--event acceptance correction in each $\etaphi$
631bin by calculating the ratio
ffa07380 632\begin{align}
56bd6baf 633 \label{eq:dead_channels}
dc64f2ea 634 \DeadCh{} &=
56bd6baf 635 \frac{\sum_t^{t\in\etaphi}\left\{\begin{array}{cl}
636 1 & \text{if not dead}\\
637 0 & \text{otherwise}
638 \end{array}\right.}{\sum_t^{t\in\etaphi} 1}\quad,
ffa07380 639\end{align}
dc64f2ea 640where $t$ runs over the strips in the $\etaphi$ bin. This correction
9eba87f5 641is obviously $v_z$ dependent since the $\etaphi$ bin to which a strip $t$
642corresponds to depends on its position relative to the primary vertex.
56bd6baf 643
644Alternatively, pre--made acceptance factors can be used. These are
645made from the off-line conditions database (\OCDB{}).
655b45b0 646
647The 5 output vertex dependent, per--ring histograms of the primary
648charged particle density is then given by
649\begin{align}
56bd6baf 650 \dndetadphi[r,v,i\etaphi] &=
dc64f2ea 651 \SecMap{} \frac{1}{\DeadCh{}}\dndetadphi[incl,r,v,i\etaphi]
655b45b0 652\end{align}
653
ffa07380 654\subsection{Histogram collector}
56bd6baf 655\label{sec:sub:hist_collector}
655b45b0 656
657The histogram collector collects the information from the 5 vertex
658dependent, per--ring histograms of the primary charged particle
659density $\dndetadphi[r,v,i]$ into a single vertex dependent histogram
660of the charged particle density $\dndetadphi[v,i]$.
661
662To do this, it first calculates, for each vertex bin, the $\eta$ bin
663range to use for each ring. It investigates the secondary correction
dc64f2ea 664maps $\SecMap{}$ to find the edges of each map. The edges are given
665by the $\eta$ range where $\SecMap{}$ is larger than some
666threshold\footnote{Typically $t_s\approx 0.1$.} $t_s$. The code
9eba87f5 667applies safety margin of a number of bins, $N_{cut}$\footnote{Typically
8c548214 668 $N_{cut}=1$.}, to ensure that the data selected does not have too
669large corrections associated with it.
655b45b0 670
671It then loops over the bins in the defined $\eta$ range and sums the
8c548214 672contributions from each of the 5 histograms. In the $\eta$ ranges
673where two rings overlap, the collector calculates the average and adds
b9bd46b7 674the errors in quadrature\footnote{While not explicitly checked, it was
675 found that the histograms agrees within error bars in the
676 overlapping region}.
655b45b0 677
678The output vertex dependent histogram of the primary
679charged particle density is then given by
680\begin{align}
ffa07380 681 \label{eq:superhist}
56bd6baf 682 \dndetadphi[v,i\etaphi] &=
683 \frac{1}{N_{r\in\etaphi}}\sum_{r}^{r\in\etaphi}
684 \dndetadphi[r,v,i\etaphi]\\
685 \delta\left[\dndetadphi[v,i\etaphi]\right] &=
686 \frac{1}{N_{r\in\etaphi}}\sqrt{\sum_{r}^{r\in\etaphi}
687 \delta\left[\dndetadphi[r,v,i\etaphi]\right]^2}
655b45b0 688 \quad,
689\end{align}
56bd6baf 690where $N_{r\in\etaphi}$ is the number of overlapping histograms
691in the given $\etaphi$ bin.
655b45b0 692
ffa07380 693The histogram collector stores the found $\eta$ ranges in the
694underflow bin of the histogram produced. The content of the overflow
695bins are
696\begin{align}
697 \label{eq:overflow}
698 I_{v,i}(\eta) &=
699 \frac{1}{N_{r\in(\eta)}}
700 \sum_{r}^{r\in(\eta)} \left\{\begin{array}{cl}
701 0 & \eta \text{\ bin not selected}\\
702 1 & \eta \text{\ bin selected}
703 \end{array}\right.\quad,
704\end{align}
705where $N_{r\in(\eta)}$ is the number of overlapping histograms in the
706given $\eta$ bin. The subscript $v$ indicates that the content
707depends on the current vertex bin of event $i$.
708
709\section{Building the final $\dndeta$}
dc64f2ea 710\label{sec:ana_aod}
ffa07380 711
712To build the final $\dndeta$ distribution it is enough to sum
9eba87f5 713\eqref{eq:superhist} and \eqref{eq:overflow} over all accepted
714events, $\NA$, and correct for the acceptance $I(\eta)$
56bd6baf 715\begin{align}
fc6a90cc 716 \dndetadphi[\etaphi] &= \sum_i^{\NA}\dndetadphi[i,v\etaphi]\\
717 I(\eta) &= \sum_i^{\NA}I_{i,v}(\eta)\quad.
56bd6baf 718\end{align}
fc6a90cc 719Note, that $I(\eta)\le\NA$.
56bd6baf 720
fc6a90cc 721We then need to normalise to the total number of events $N_X$, given
722by
ffa07380 723\begin{align}
fc6a90cc 724 \N{X}{} &= \frac{1}{\epsilon_X}\left[\NA + \alpha(\NnotV -
725 \beta)\right] \label{eq:fulleventnorm}\\
726 & = \frac{1}{\epsilon_X}\left[\NA + \frac{\NA}{\NV}(\NT-\NV{} -
727 \beta)\right]\nonumber \\
728 & =\frac{1}{\epsilon_X}\NA\left[1+\frac{1}{\epsilon_V}-1-
729 \frac{\beta}{\NV}\right]\nonumber\\
730 & = \frac{1}{\epsilon_X}\frac{1}{\epsilon_V}\NA
731 \left(1-\frac{\beta}{\NT{}}\right)\nonumber
732\end{align}
733where
734\begin{description}
735\item[$\epsilon_X$] is the trigger efficiency for type
9eba87f5 736 $X\in[\text{\INEL},\text{\INELONE},\text{\NSD} for p+p data and MB
737 for Pb+Pb data]$
fc6a90cc 738\item[$\epsilon_V=\frac{\NV{}}{\NT{}}$] is the vertex efficiency
739 evaluated over the data.
740\item[$\NA$] is the number of events with a trigger \emph{and} a valid
741 vertex in the selected range
742\item[$\NV{}$] is the number of events with a trigger \emph{and} a valid
743 vertex.
744\item[$\NT$] is the number of events with a trigger.
745\item[$\NnotV{}=\NT-\NV{}$] is the number of events with a trigger
746 \emph{but no} valid vertex
747\item[$\alpha=\frac{\NA}{\NV}$] is the fraction of accepted events of
748 the total number of events with a trigger and valid vertex.
9eba87f5 749\item[$\beta=\N{a}{}+\N{c}{}-\N{e}{}$] is the number of background
750 events \emph{with} a valid off-line trigger. This formula is the
751 simplest case of one bunch crossing per trigger/background
752 class. For more complicated collision setups the fractions in the
753 formula change.
fc6a90cc 754\end{description}
755The two terms under the parenthesis in \eqref{eq:fulleventnorm} refers
756to the observed number of event $\NA$, and the events missed because
757of no vertex reconstruction. Note, for $\beta\ll\NT{}$
758\eqref{eq:fulleventnorm} reduces to the simpler expression
759$$
760\N{X}{} = \frac1{\epsilon_X}\frac1{\epsilon_V}\NA{}
761$$
762The trigger efficiency $\epsilon_X$ for a given trigger type $X$ is
763evaluated from simulations as
764\begin{align}
765 \epsilon_X = \frac{\N{X\wedge \text{T}}{}}{\N{X}{}}\quad,
766\end{align}
767that is, the ratio of number of events of type $X$ with a
768corresponding trigger to the number of events of type $X$.
769
770The final event--normalised charged particle density then becomes
771\begin{align}
772 \frac{1}{N}\frac{dN_{\text{ch}}}{d\eta} &=
773 \frac{1}{\N{X}{}} \int_0^{2\pi} d\varphi
774 \frac{\dndetadphi[\etaphi]}{I(\eta)}
775 \label{eq:eventnormdndeta}
776\end{align}
777
778If the trigger $X$ introduces a bias on the measured number of events,
779then \eqref{eq:eventnormdndeta} need to be modified to
780\begin{align}
781 \frac{1}{N}\frac{dN_{\text{ch}}}{d\eta} &=
782 \frac{1}{\N{X}{}} \int_0^{2\pi} d\varphi
783 \frac{\frac{1}{B\etaphi}\dndetadphi[\etaphi]}{I(\eta)}
784 \label{eq:eventnormdndeta2}\quad,
785\end{align}
786where $B\etaphi$ is the bias correction. This is typically
787calculated from simulations using the expression
788\begin{align}
789 B\etaphi = \frac{\frac{1}{\N{X\wedge
790 \text{T}}{}}\sum_i^{\N{X\wedge \text{T}}{}}
791 \mult[,\text{primary}]\etaphi}{\frac{1}{\N{X}{}}\sum_i^{\N{X}{}}
792 \mult[,\text{primary}]\etaphi}
ffa07380 793\end{align}
fc6a90cc 794
9eba87f5 795\section{Systematic Errors} \label{fmdsysterror}
796\begin{table}
797\centering
798\begin{tabular}{|c|c|c|}
799\hline
800 Effect & Magnitude in Pb+Pb analysis & Magnitude in p+p
801 analysis \\
802\hline
803 Variation of the cuts in sec. \ref{sec:sub:sharing_filter} & 2\% & 3\% \\
804\hline
805Calculation of $\mult$ & 3\% & 4\% \\
806\hline
807 Material budget & 7 \% & 7 \% \\
808\hline
809 Generator & 2\% & 2\% \\
810\hline
811Vertex and trigger bias & N/A & 3\% \\
812\hline
813 Centrality & 1\% --6\% & N/A \\
814\hline
815 Normalization & N/A & 1.3\% - 3\% \\
816\hline
817\hline
818Total in quadrature & 8.2\% -- 10.1\% & 9.4 \% -- 9.8\% \\
819\hline
820\end{tabular}
821\caption[Systematic Errors in the FMD]{The table summarizes the
822 systematic errors in the FMD including the total systematic error
823 obtained by addition in quadrature.} \label{systerrors}
824\end{table}
825The systematic errors on the $\dndeta$ measurement are discussed in detail in
826\cite{hhd:2009}. The results for the systematic errors in p+p and
827Pb+Pb data are shown in table \ref{systerrors}. A short summary of the elements of the table is given here:
828\begin{itemize}
829\item The variations of the cuts in section \ref{sec:sub:sharing_filter} are carried out by re--running the analysis with different cuts and taking the observed differences as the contribution to the systematic error.
830\item To assess the error on the calculation of the multiplcity the two methods for counting particles (see section \ref{sec:sub:density_calculator}) are compared.
831\item The systematic error on the material budget description was found from simulations with $\pm 10 \%$ increased density.
832\item Several event generators were used to assess the error from the particular choice of generator in the analysis. The same procedure was used to assess the error from the MC dependent part of the correction for trigger and vertex bias (p+p only).
833\item The systematic error on the centrality selection was obtained from variations of the different methods for measuring centrality.
834\end{itemize}
655b45b0 835
ffa07380 836\section{Using the per--event $\dndetadphi[i,v]$ histogram for other
837 analysis}
655b45b0 838
ffa07380 839\subsection{Multiplicity distribution}
655b45b0 840
ffa07380 841To build the multiplicity distribution for a given $\eta$ range
842$[\eta_1,\eta_2]$, one needs to find the total multiplicity in that
843$\eta$ range for each event. To do so, one should sum the
844$\dndetadphi[i,v]$ histogram over all $\varphi$ and in the selected
845$\eta$ range.
846\begin{align}
847 n'_{i[\eta_1,\eta_2]}, &= \int_{\eta_1}^{\eta_2}d\eta\int_0^{2\pi}d\varphi
848 \dndetadphi[i,v]\quad.\nonumber
849\end{align}
850However, $n'_i$ is not corrected for the coverage in $\eta$ for the
851particular vertex range $v$. One therefor needs to correct for the
852number of missing bins in the range $[\eta_1,\eta_2]$. Suppose
853$[\eta_1,\eta_2]$ covers $N_{[\eta_1,\eta_2]}$ $\eta$ bins, then the acceptance
854correction is given by
855\begin{align}
856 A_{i,[\eta_1,\eta_2]} = \frac{N_{[\eta_1,\eta_2]}}{\int_{\eta_1}^{\eta_2}d\eta\,
857 I_{i,v}(\eta)}\quad.\nonumber
858\end{align}
859The per--event multiplicity is then given by
860\begin{align}
861 n_{i,[\eta_1,\eta_2]} &= A_{i,[\eta_1,\eta_2]}\,n'_{i,[\eta_1,\eta_2]}\nonumber\\
862 &= \frac{N_{[\eta_1,\eta_2]}}{\int_{\eta_1}^{\eta_2}\eta
863 I_{i,v}(\eta)} \int_{\eta_1}^{\eta_2}d\eta\int_0^{2\pi}d\varphi
864 \dndetadphi[i,v]
865 \label{eq:event_n}
866\end{align}
867
868\subsection{Forward--Backward correlations}
869
870To do forward--backward correlations, one need to calculate
871$n_{i,[\eta_1,\eta_2]}$ as shown in \eqref{eq:event_n} in two bins
872$n_{i,[\eta_1,\eta_2]}$ and $n_{i,[-\eta_2,-\eta_1]}$ \textit{e.g.},
873$n_{i,f}=n_{i,[-3,-1]}$ and $n_{i,b}=n_{i,[1,3]}$.
874
dc64f2ea 875\clearpage
ffa07380 876\section{Some results}
877
dc64f2ea 878%% \figurename{}s \ref{fig:1} to \ref{fig:3} shows some results.
549a0be3 879Figures below show some examples \cite{hhd:2009}. Note these are not finalised
dc64f2ea 880plots.
9eba87f5 881\begin{figure}[]
549a0be3 882 \centering
883 \includegraphics[keepaspectratio,width=\textwidth]{%
884 results_ppdndeta}
885 \caption{$\dndeta$ for pp for \INEL{} events at
886 $\sqrt{s}=\GeV{900}$, $\sqrt{s}=\TeV{2.76}$, and $\sqrt{s}=\TeV{7}$
887 $\cm{-10}\le v_z\le\cm{10}$, rebinned by a factor 5 \cite{hhd:2009}.
888% Middle panel
889% shows the ratio of ALICE data to UA5, and the bottom panel shows
890% the ratio of the right (positive) side to the left (negative) side
891% of the forward $\dndeta$.
892}
893 \label{fig:1}
894\end{figure}
9eba87f5 895\begin{figure}[]
549a0be3 896 \centering
897 \includegraphics[keepaspectratio,width=\textwidth]{%
898 results_PbPbdndeta}
899 \caption{$\dndeta$ for Pb+Pb for Minimum Bias events at
900 $\sqrt{s_{NN}}=\TeV{2.76}$ $\cm{-10}\le v_z\le\cm{10}$, rebinned by a
901 factor 5 in 10 centrality intervals \cite{hhd:2009}.
902% Middle panel
903% shows the ratio of ALICE data to UA5, and the bottom panel shows
904% the ratio of the right (positive) side to the left (negative) side
905% of the forward $\dndeta$.
906}
907 \label{fig:2}
908\end{figure}
ffa07380 909
549a0be3 910
911\iffalse
dc64f2ea 912\begin{figure}[hbp]
ffa07380 913 \centering
914 \includegraphics[keepaspectratio,width=\textwidth]{%
b9bd46b7 915 dndeta_pp_0900GeV_INEL_m10p10cm}
ffa07380 916 \caption{$\dndeta$ for pp for \INEL{} events at $\sqrt{s}=\GeV{900}$,
b9bd46b7 917 $\cm{-10}\le v_z\le\cm{10}$, rebinned by a factor 5. Middle panel
918 shows the ratio of ALICE data to UA5, and the bottom panel shows
919 the ratio of the right (positive) side to the left (negative) side
920 of the forward $\dndeta$.}
ffa07380 921 \label{fig:1}
922\end{figure}
dc64f2ea 923
549a0be3 924
ffa07380 925\begin{figure}[tbp]
926 \centering
927 \includegraphics[keepaspectratio,width=\textwidth]{%
928 dndeta_0900GeV_m10-p10cm_rb05_inelgt0}
929 \caption{$\dndeta$ for pp for \INELONE{} events at
930 $\sqrt{s}=\GeV{900}$, $\cm{-10}\le v_z\le\cm{10}$, rebinned by a
931 factor 5. Comparisons to other measurements shown where
932 applicable}
933 \label{fig:2}
934\end{figure}
935\begin{figure}[tbp]
936 \centering
937 \includegraphics[keepaspectratio,width=\textwidth]{%
938 dndeta_0900GeV_m10-p10cm_rb05_nsd}
939 \caption{$\dndeta$ for pp for \NSD{} events at $\sqrt{s}=\GeV{900}$,
940 $\cm{-10}\le v_z\le\cm{10}$, rebinned by a factor 5. Comparisons
941 to other measurements shown where applicable}
942 \label{fig:3}
943\end{figure}
dc64f2ea 944\fi
9eba87f5 945\clearpage
946\section{Analysis for QM 2012 and Paper} \label{prelim}
947\subsection{Analysis}
948Following the development of the displaced vertex technique for VZERO \cite{maxime} it was
949decided also to attempt such an analysis with the FMD using exactly
950the same event selection and centrality selection as the VZERO
951analysis.
952
953The analysis described in this note was used successfully
954on these special events. Three detectors contribute to this
955measurement: SPD with tracklets covering $-2<\eta<2$ \cite{ruben,Aamodt:2010cz}, VZERO covering
956$-3<\eta<-1.25$ and $1.25<\eta<5.25$, and FMD covering $-5<\eta<-1.25$
957and $1.25<\eta<5.5$. The extended coverage of the VZERO and FMD comes
958from the positions of the displaced vertices. The full pseudorapidity
959coverage of the combined measurement is $-5<\eta<5.5$.
960
961To combine the measurements the individual measurements were weighted by
962their systematic error before a weighted average was taken to form the
963final $\dndeta$. The systematic error is calculated as an average in
964quadrature with a contribution from the residual difference between
965the measurements.
966
967Due to the nature of the ZDCvsZEM centrality determination (see
968\cite{maxime} for details) the centrality selection of the measurement
969with SPD, VZERO, and FMD is limited to $30\%$ central collisions. The
970centrality bins considered are thus $0-5\%$, $5-10\%$, $10-20\%$, and
971$20-30\%$.
972
973The selected vertices with full pseudorapidity coverage for FMD in
974this analysis are $\cm{112.5}$, $\cm{150}$, $\cm{187.5}$, $\cm{225}$,
975$\cm{262.5}$, $\cm{300}$. For vertices $v_z > \cm{300}$ and $v_z <
976\cm{112.5}$ a cut is imposed in pseudorapidity to only accept data
977with $|\eta| > 4$ to avoid regions in ALICE known to have issues with
978the material budget description.
979
980\subsection{Analysis Performance}
981This section includes some plots to assess the validity of the
982analysis. This includes comparisons between the measurements used
983(SPD, VZERO, and FMD) and
984$\dndphi$ from the FMD.
985
986Figure \ref{coverage} shows the pseudorapidity coverage of the FMD when using FMD1
987and FMD2I as a function of vertex with displaced vertices.
988\begin{figure}[hbp]
989 \centering
990 \includegraphics[keepaspectratio,width=\textwidth]{coverage}
991 \caption{Pseudorapidity coverage of the FMD as a function of vertex
992 with displaced vertices.}
993 \label{coverage}
994\end{figure}
995
996Figure \ref{spdfmdvzero} shows the results of the measurements of the
997SPD, VZERO, and FMD. It is
998seen that there is good
999agreement between the three different measurements albeit residual
1000differences of up to $6 \%$ remain.
1001\begin{figure}[hbp]
1002 \centering
1003 \includegraphics[keepaspectratio,width=\textwidth]{spdfmdvzero}
1004 \caption{$\dndeta$ measured with nominal vertices with the SPD and
1005 displaced vertices with VZERO and FMD. It is seen that there is
1006 good agreement between the measurements.}
1007 \label{spdfmdvzero}
1008\end{figure}
1009
1010Figure \ref{ratiofmdvzero} shows the ratios of the measurements of FMD and
1011VZERO to the combined measurement and to the SPD measurement. It is
1012seen that the residual differences are small and there is good
1013agreement between the three different measurements.
1014\begin{figure}
1015 \centering
1016 \begin{minipage}{0.5\linewidth}
1017 \centering
1018 \includegraphics[keepaspectratio,width=\textwidth]{ratiofmdvzero}
1019 \end{minipage}%
1020 \begin{minipage}{0.5\linewidth}
1021 \centering
1022 \includegraphics[keepaspectratio,width=\textwidth]{ratiospdfmdvzero}
1023\end{minipage}%
1024 \caption{Left: Ratio of FMD and VZERO measurements to the combined
1025 $\dndeta$ measured with SPD, VZERO and FMD. Right: Ratios of FMD
1026 and VZERO measurement to SPD measurement in regions of
1027 overlap. It is worth pointing out that the residual differences
1028 can come from the fact that the VZERO analysis uses SPD for
1029 absolute calibration while the FMD analysis does not. This means that the
1030 centrality determination for displaced vertices will affect the
1031 FMD analysis the most because the VZERO analysis has an additional
1032 constraint from the SPD analysis that uses the ZDCvsZEM centrality
1033 at midrapidity where it can be crosschecked with other means of
1034 centrality determination. Such a crosscheck is not possible elsewhere.}
1035 \label{ratiofmdvzero}
1036\end{figure}
1037
1038Since $\dndeta$ is an average taken over $\varphi$ it is instructive to
1039consider $\dndphi$ to check that these distributions are flat as they
1040should be. Figure \ref{dndphi_pos} shows examples of the $\dndphi$
1041distributions for FMD1. Figure \ref{dndphi_neg} shows examples from
1042FMD2 (inner ring). The two low points at $\varphi \sim 5.5$ in
1043Figure \ref{dndphi_neg} are
1044understood as coming from two dying chips in FMD2I. They are considered dead
1045in the final analysis and corrected for. It is seen that the trends
1046are quite flat within $\sim 5\%$
1047as expected. The same trend is observed for all the distributions.
1048\begin{figure}
1049 \centering
1050 \includegraphics[keepaspectratio,width=\textwidth]{dNdphi040612}
1051 \caption{Examples of $\dndphi$ from FMD1 (positive
1052 pseudorapidities). The distributions are essentially flat.}
1053 \label{dndphi_pos}
1054\end{figure}
1055\begin{figure}
1056 \centering
1057 \includegraphics[keepaspectratio,width=\textwidth]{dNdphi_neg_040612}
1058 \caption{Examples of $\dndphi$ from FMD2I (negative
1059 pseudorapidities). The two low points at $\varphi \sim 5.5$ are
1060 understood as the result of two dying chips in FMD2I. They are considered dead
1061 in the final analysis and corrected for accordingly. Apart from
1062 these points, the distributions are essentially flat.}
1063 \label{dndphi_neg}
1064\end{figure}
1065Figure \ref{pervertex} shows the analysis performed for each
1066vertex. The material budget effects for vertices $<\cm{112.5}$ are
1067clearly seen.
1068\begin{figure}
1069 %\centering
1070
1071 %\begin{minipage}{\linewidth}
1072 %\begin{minipage}{\columnwidth}
1073 \centering
1074 \includegraphics[keepaspectratio,width=0.8\textwidth]{dNdeta_per_vertex160612_negfield}
1075 %\end{minipage}%
1076 % \begin{minipage}{\linewidth}
1077 %\begin{minipage}{\columnwidth}
1078 \centering
1079 \includegraphics[keepaspectratio,width=0.8\textwidth]{dNdeta_per_vertex160612_posfield}
1080%\end{minipage}%
1081\caption{Top: Analysis per vertex for negative field data. Bottom:
1082 Analysis per vertex for positive field data. In the two plots the
1083 vertices where the full coverage is used are shown in blue. For the
1084 red and green points there a cut is applied for the pseudorapidity
1085 so that only points with $|\eta|>4$ are used in the analysis.}
1086\label{pervertex}
1087\end{figure}
1088Figure \ref{leftright} shows the ratio of the postive and negative pseudorapidities for the FMD. It is seen that there are discrepancies of up to $\sim 5 \%$.
1089\begin{figure}
1090 \centering
1091 \includegraphics[keepaspectratio,width=0.7\textwidth]{disp_dndeta_ratios_leftright}
1092 \caption{Ratios of the positive and negative pseudorapidities for the FMD (ratio is negative over positive). The grey band indicates the combined systematic error for FMD1I and FMD2I assuming excluding all contributions from event selection and material budget (i.e. the minimum systematic error between FMD1I and FMD2I).} \label{leftright}
1093\end{figure}
ffa07380 1094
9eba87f5 1095\subsection{Results}
1096This section summarizes the final results of the analysis and includes
1097the figures for approval.
1098
1099Figure \ref{combineddndeta} shows the combined $\dndeta$ from SPD,
1100VZERO, and FMD in the full pseudorapidity range of $-5<\eta<5.5$.
1101\begin{figure}
1102 \centering
1103 \includegraphics[keepaspectratio,width=\textwidth]{combineddndeta}
1104 \caption{Request for ALICE preliminary: Combined $\dndeta$ measured with SPD, VZERO and FMD. The
1105 VZERO and FMD measurements are made with displaced vertices and
1106 the SPD measurement is made at the nominal vertex. The fits are
1107 fits to a function $f(\eta) = A\exp (\frac{\eta -a_1}{2 a_2^2}) -
1108 B\exp (\frac{\eta -b_1}{2 b_{2}^2})$ i.e. a Gaussian centered on
1109 $ \eta = 0$ subtracted from a similar Gaussian.}
1110 \label{combineddndeta}
1111\end{figure}
1112
1113Figure \ref{dndetaoverNpart} shows $dN/d\eta/(N_{part}/2)$ based on
1114figure \ref{combineddndeta} and data taken from \cite{Aamodt:2010cz}.
1115\begin{figure}
1116 \centering
1117 \includegraphics[keepaspectratio,width=\textwidth]{dndetaoverNpart}
1118 \caption{Request for ALICE preliminary: The $dN/d\eta/(N_{part}/2)$ measured with SPD, VZERO and FMD. The
1119 VZERO and FMD measurements are made with displaced vertices and
1120 the SPD measurement is made at the nominal vertex. The values of
1121 $N_{part}$ and the measurement at $-0.5<\eta<0.5$ taken from \cite{Aamodt:2010cz}.}
1122 \label{dndetaoverNpart}
1123\end{figure}
1124Using figure \ref{dndetaoverNpart}, figure \ref{RatiodndetaoverNpart}
1125is constructed. It shows the ratios of $dN/d\eta/(N_{part}/2)$ in the
1126following $\eta$ bins:
1127$0.5<\eta<1.5$, $1.5<\eta<2.5$, $2.5<\eta<3.5$, $3.5<\eta<4.5$, and
1128$4.5<\eta<5.5$ to the published $dN/d\eta/(N_{part}/2)$ at $-0.5<\eta<0.5$. These
1129ratios are found to be flat for all pseudorapidity intervals.
1130\begin{figure}
1131 \centering
1132 \includegraphics[keepaspectratio,width=\textwidth]{RatiodndetaoverNpart}
1133 \caption{Request for ALICE preliminary: Ratios of $dN/d\eta/(N_{part}/2)$ at
1134 $0.5<\eta<1.5$, $1.5<\eta<2.5$, $2.5<\eta<3.5$, $3.5<\eta<4.5$, and
1135 $4.5<\eta<5.5$ to the published $dN/d\eta/(N_{part}/2)$ at $-0.5<\eta<0.5$. The ratios are found to be flat for all the pseudorapidity intervals.}
1136 \label{RatiodndetaoverNpart}
1137\end{figure}
1138With the analysis presented in figure \ref{combineddndeta} it is also
1139possible to study longitudinal scaling from LHC to RHIC
1140energies. Figure \ref{longscaling} shows $\dndeta$ as a function of
1141$y'=\eta-y_{beam}$ from Figure \ref{combineddndeta} and results from
1142the BRAHMS\cite{Bearden:2001qq} and PHOBOS\cite{Alver:2010ck}
1143experiments at RHIC. From the figure it is seen
1144that with the wide coverage of the SPD, VZERO, and FMD measurement it
1145is indeed likely that longitudinal scaling exist from RHIC to LHC
1146energies.
1147\begin{figure}
1148 \centering
1149 \includegraphics[keepaspectratio,width=\textwidth]{longscaling}
1150 \caption{Request for ALICE preliminary: Study of Longitudinal
1151 scaling. $\dndeta$ as a function of
1152$y'=\eta-y_{beam}$ from Figure \ref{combineddndeta} and the BRAHMS\cite{Bearden:2001qq} and
1153 PHOBOS\cite{Alver:2010ck} experiments at RHIC. The fits are the function
1154from figure \ref{combineddndeta} and a straight line ending in
1155$\eta=y_{beam}$. From the figure it seems likely that
1156longitudinal scaling exists from RHIC to LHC energies.}
1157 \label{longscaling}
1158\end{figure}
1159Finally the total number of produced charged particles,
1160$N_{ch}=\int^{y_{beam}}_{-y_{beam}}\dndeta d\eta$, has
1161been calculated from the fits in Figure \ref{combineddndeta}. The
1162obtained values of $N_{ch}$ versus $N_{part}$ are shown in figure
1163\ref{totalNch}. The systematic errors on $N_{ch}$ have been assessed
1164by the procedure of varying fit functions discussed in \cite{maxime}.
1165\begin{figure}
1166 \centering
1167 \includegraphics[keepaspectratio,width=\textwidth]{totalNch}
1168 \caption{Request for ALICE preliminary: Total number of charged
1169 particles, $N_{ch}=\int^{y_{beam}}_{-y_{beam}}\dndeta d\eta$,
1170 obtained from the fitted function in figure
1171 \ref{combineddndeta}. The systematic errors on this plot were
1172 assessed by variation of the fit function as described in \cite{maxime}.}
1173 \label{totalNch}
1174\end{figure}
1175\subsection{Comparison to old Preliminary}
1176At QM 2011 figures were approved for preliminary status and
1177shown. Roughly six months later it was found that the execution of the
1178FMD analysis had a flaw\footnote{A boolean variable was wrong in a
1179 configuration macro for FMD.} which caused the results to be lower than what they
1180should be. The top panel of Figure \ref{prelimcomparison} shows a
1181comparison between the distribution in Figure \ref{combineddndeta} and
1182the preliminary (ALI-PREL-2536) shown at QM 2011. The top panel shows the same
1183comparison with the proper FMD distribution instead of the incorrect
1184one. It is clear that the agreement observed between VZERO, SPD,
1185and FMD at QM 2011 does not hold with the FMD analysis run properly
1186for nominal vertices.
1187\begin{figure}
1188 \centering
1189 \begin{minipage}{0.5\linewidth}
1190 \centering
1191 \includegraphics[keepaspectratio,width=\textwidth]{prelim_wrong150612}
1192 \end{minipage}%
1193 \begin{minipage}{0.5\linewidth}
1194 \centering
1195 \includegraphics[keepaspectratio,width=\textwidth]{prelim_right150612}
1196\end{minipage}%
1197 \caption{Left: Comparison of new combined $\dndeta$ to the data
1198 shown at QM 2011. Right: The same comparison with the properly run
1199 FMD analysis at nominal vertices (`FMD Hits'). The difference is
1200 clearly seen around $|\eta| \sim 2$.}
1201 \label{prelimcomparison}
1202\end{figure}
1203
1204\subsection{Summary of Systematic Errors}
1205Table \ref{combinedsyst} shows the various sources of systematic
1206errors for the combined measurement of VZERO, SPD, and FMD collected
1207from Table \ref{fmdsysterror}, \cite{maxime}, and
1208\cite{ruben,Aamodt:2010cz}. The `common' section of the table refers to
1209source of systematic errors identified as common in the different
1210measurements. These errors were evaluated for the displaced vertices
1211analysis in the following way:
1212\begin{itemize}
1213\item Centrality errors come from variation in the parameters used in
1214 the scaling of the ZEM signal (see \cite{maxime}).
1215\item Material budget errors were estimated by analyzing a simulation
1216 and adding a weight of $0.9$ or $1.1$ to all physical processes except decays for all
1217 secondary particles. This approach was used in the absence of
1218 suitable ALICE simulation productions.
1219\item $p_T$ weights were developed to assess the effect of the
1220 difference in $p_T$ spectra measured by ALICE and in the HIJING
1221 generator.
1222\end{itemize}
1223\begin{table}
1224\centering
1225\begin{tabular}{|c|c|}
1226\hline
1227Source of Error & Magnitude \\
1228\hline
1229Common & \\
1230\hline
1231Centrality & 1-4\% \\
1232\hline
1233$p_T$ weights (FMD+VZERO) & 2\% \\
1234\hline
1235%Strangeness Enhancement & 1\% \\
1236%\hline
1237Material budget(FMD+VZERO) & 4\% \\
1238\hline
1239Generator & 2\% \\
1240\hline
1241SPD & \\
1242\hline
1243Background Subtraction & 0.1\%-2\% \\
1244\hline
1245Particle Mix & 1\% \\
1246\hline
1247Weak Decays & 1 \% \\
1248\hline
1249Extrapolation to zero $p$ & 2\% \\
1250\hline
1251VZERO & \\
1252\hline
1253Fluctuation between rings & 3\% \\
1254\hline
1255Normalization & 3\%-4\% \\
1256\hline
1257FMD & \\
1258\hline
1259Variation of Cuts & 2\% \\
1260\hline
1261Calculation of Multiplicity & 3\% \\
1262\hline
1263\end{tabular}
1264\caption[Combined Systematic Errors]{The table summarizes the
1265 systematic errors in the SPD\cite{ruben,Aamodt:2010cz}, VZERO\cite{maxime}, and FMD\cite{hhd:2009}.} \label{combinedsyst}
1266\end{table}
1267The errors are obtained using variation of the quantities studied in
1268MC simulations. In particular the studies of the dependence on the
1269material budget are carried out with special MC simulations where the
1270material density of ALICE is increased.
1271\subsection{Technical Details}
1272Here, the technical aspects of the analysis are described. The SPD
1273analysis was done on run 137366, reconstruction pass 2 while the FMD
1274and VZERO analysis were carried
1275out on a total of 126 runs (46 with negative field and 80 with
1276positive field) to obtain the necessary statistics for the displaced
1277vertices. These runs were selected to be of good quality for VZERO, SPD, FMD, and
1278ZDC. These data were also from pass 2 reconstruction.
1279
1280The AliRoot version for SPD is: \textbf{v5-03-24-AN}, for VZERO: \textbf{v5-03-28-AN}, and
1281for FMD: \textbf{v5-03-26-AN}.
1282
1283For the analysis of the displaced vertices presented here the production LHC12c2 was used (the simulation was done with an anchor run for each field polarity). This production includes the latest version (as of July 2012) of the ALICE geometry and alignment.
1284
1285There is a twiki page for the paper using this analysis:
1286\url{https://twiki.cern.ch/twiki/bin/viewauth/ALICE/PWGLFGeoPbPbdNdeta}.
ffa07380 1287\clearpage
dc64f2ea 1288%% \currentpdfbookmark{Appendices}{Appendices}
ffa07380 1289\appendix
56bd6baf 1290\section{Nomenclature}
dc64f2ea 1291\label{app:nomen}
56bd6baf 1292
1293\begin{table}[hbp]
1294 \centering
1295 \begin{tabular}[t]{|lp{.8\textwidth}|}
1296 \hline
1297 \textbf{Symbol}&\textbf{Description}\\
1298 \hline
1299 \INEL & In--elastic event\\
1300 \INELONE & In--elastic event with at least one tracklet in the
1301 \SPD{} in the region $-1\le\eta\le1$\\
1302 \NSD{} & Non--single--diffractive event. Single diffractive
1303 events are events where one of the incident collision systems
1304 (proton or nucleus) is excited and radiates particles, but there
1305 is no other processes taking place\\
1306 \hline
fc6a90cc 1307 $\NT{}$ & Number of events with a valid trigger\\
1308 $\NV{}$ & Number of events with a valid trigger \emph{and} a valid
1309 vertex.\\
1310 $\NA{}$ & Number of events with a valid trigger
1311 \emph{and} a valid vertex \emph{within} the selected vertex range.\\
1312 $\N{a,c,ac,e}{}$ & Number of events with background triggers $A$,
1313 $B$, $AC$, or $E$, \emph{and} a valid off-line trigger of the
1314 considered type. Background triggers are typically flagged with
1315 the trigger words \texttt{CINT1-A}, \texttt{CINT1-C},
1316 \texttt{CINT1-AC}, \texttt{CINT1-E}, or similar.\\
56bd6baf 1317 \hline
1318 $\mult{}$ & Charged particle multiplicity\\
1319 $\mult[,\text{primary}]$ & Primary charged particle multiplicity
1320 as given by simulations\\
1321 $\mult[,\text{\FMD{}}]$ & Number of charged particles that hit the
1322 \FMD{} as given by simulations\\
1323 $\mult[,t]$ & Number of charged particles in an \FMD{} strip as
1324 given by evaluating the energy response functions $F$\\
1325 \hline
1326 $F$ & Energy response function (see \eqref{eq:energy_response})\\
1327 $\Delta_{mp}$ & Most probably energy loss\\
1328 $\xi$ & `Width' parameter of a Landau distribution\\
1329 $\sigma$ & Variance of a Gaussian distribution\\
dc64f2ea 1330 $a_i$ & Relative weight of the $i$--fold MIP peak in the energy
56bd6baf 1331 loss spectra.\\
1332 \hline
dc64f2ea 1333 $\Corners{}$ & Azimuthal acceptance of strip $t$\\
1334 $\SecMap{}$ & Secondary particle correction factor in $\etaphi$
1335 for a given vertex bin $v$\\
1336 $\DeadCh{}$ & Acceptance in $\etaphi$ for a given vertex bin $v$\\
56bd6baf 1337 \hline
1338 $\dndetadphi[incl,r,v,i]$ & Inclusive (primary \emph{and}
1339 secondary) charge particle density in event $i$ with vertex $v$,
1340 for \FMD{} ring $r$.\\
1341 $\dndetadphi[r,v,i]$ & Primary charged particle
1342 density in event $i$ with vertex $v$ for \FMD{} ring $r$. \\
1343 $\dndetadphi[v,i]$ & Primary charged particle density in event $i$
1344 with vertex $v$\\
1345 $I_{v,i}(\eta)$ & $\eta$ acceptance of event $i$ with vertex $v$\\
fc6a90cc 1346 $I(\eta)$ & Integrated $\eta$ acceptance over $\NA$ events.
1347 Note, that this has a value of $\NA$ for $(\eta)$ bins where we
56bd6baf 1348 have full coverage\\
1349 \hline
b9bd46b7 1350 $X_t$ & Value $X$ for strip number $t$ (0-511 for inner rings,
1351 0-255 for outer rings)\\
1352 $X_r$ & Value $X$ for ring $r$ (where rings are \FMD{1i},
1353 \FMD{2i}, \FMD{2o}, \FMD{3o}, and \FMD{3i} in decreasing $\eta$
1354 coverage).\\
1355 $X_v$ & Value $X$ for vertex bin $v$ (typically 10 bins from -10cm
1356 to +10cm)\\
1357 $X_i$ & Value $X$ for event $i$\\
1358 \hline
56bd6baf 1359 \end{tabular}
1360 \caption{Nomenclature used in this document}
1361 \label{tab:nomenclature}
1362\end{table}
1363\clearpage
1364
1365
ffa07380 1366\section{Second pass example code}
56bd6baf 1367\label{app:exa_pass2}
ffa07380 1368\lstset{basicstyle=\small\ttfamily,%
1369 keywordstyle=\color[rgb]{0.627,0.125,0.941}\bfseries,%
1370 identifierstyle=\color[rgb]{0.133,0.545,0.133}\itshape,%
1371 commentstyle=\color[rgb]{0.698,0.133,0.133},%
1372 stringstyle=\color[rgb]{0.737,0.561,0.561},
fc6a90cc 1373 emph={TH2D,TH1D,TFile,TTree,AliAODForwardMult},emphstyle=\color{blue},%
ffa07380 1374 emph={[2]dndeta,sum,norm},emphstyle={[2]\bfseries\underbar},%
fc6a90cc 1375 emph={[3]file,tree,mult,nV,nBg,nA,nT,i,gSystem},emphstyle={[3]},%
ffa07380 1376 language=c++,%
1377}
1378\begin{lstlisting}[caption={Example 2\textsuperscript{nd} pass code to
1379 do $\dndeta$},label={lst:example},frame=single,captionpos=b]
fc6a90cc 1380void Analyse(int mask=AliAODForwardMult::kInel,
1381 float vzLow=-10, float vzHigh=10, float trigEff=1)
ffa07380 1382{
1383 gSystem->Load("libANALYSIS.so"); // Load analysis libraries
1384 gSystem->Load("libANALYSISalice.so"); // General ALICE stuff
bd6f5206 1385 gSystem->Load("libPWGLFforward2.so"); // Forward analysis code
ffa07380 1386
fc6a90cc 1387 int nT = 0; // # of ev. w/trigger
1388 int nV = 0; // # of ev. w/trigger&vertex
1389 int nA = 0; // # of accepted ev.
1390 int nBg = 0; // # of background ev
1391 TH2D* sum = 0; // Summed hist
1392 AliAODForwardMult* mult = 0; // AOD object
1393 TFile* file = TFile::Open("AliAODs.root","READ");
1394 TTree* tree = static_cast<TTree*>(file->Get("aodTree"));
1395 tree->SetBranchAddress("Forward", &forward); // Set the address
ffa07380 1396
56bd6baf 1397 for (int i = 0; i < tree->GetEntries(); i++) {
ffa07380 1398 // Read the i'th event
1399 tree->GetEntry(i);
1400
1401 // Create sum histogram on first event - to match binning to input
0a89eed1 1402 if (!sum)
1403 sum = static_cast<TH2D*>(mult->GetHistogram()->Clone("d2ndetadphi"));
ffa07380 1404
fc6a90cc 1405 // Calculate beta=A+C-E
1406 if (mult->IsTriggerBits(mask|AliAODForwardMult::kA)) nBg++;
1407 if (mult->IsTriggerBits(mask|AliAODForwardMult::kC)) nBg++;
1408 if (mult->IsTriggerBits(mask|AliAODForwardMult::kE)) nBg--;
56bd6baf 1409
ffa07380 1410 // Other trigger/event requirements could be defined
1411 if (!mult->IsTriggerBits(mask)) continue;
fc6a90cc 1412 nT++;
ffa07380 1413
56bd6baf 1414 // Check if we have vertex and select vertex range (in centimeters)
fc6a90cc 1415 if (!mult->HasIpZ()) continue;
1416 nV++;
1417
1418 if (!mult->InRange(vzLow, vzHigh) continue;
1419 nA++;
ffa07380 1420
1421 // Add contribution from this event
1422 sum->Add(&(mult->GetHistogram()));
1423 }
655b45b0 1424
ffa07380 1425 // Get acceptance normalisation from underflow bins
fc6a90cc 1426 TH1D* norm = sum->ProjectionX("norm", 0, 0, "");
ffa07380 1427 // Project onto eta axis - _ignoring_underflow_bins_!
fc6a90cc 1428 TH1D* dndeta = sum->ProjectionX("dndeta", 1, -1, "e");
ffa07380 1429 // Normalize to the acceptance, and scale by the vertex efficiency
1430 dndeta->Divide(norm);
fc6a90cc 1431 dndeta->Scale(trigEff * nT/nV / (1 - nBg/nT), "width");
ffa07380 1432 // And draw the result
1433 dndeta->Draw();
1434}
1435\end{lstlisting}
0a89eed1 1436
56bd6baf 1437\section{$\Delta E$ fits}
1438\label{app:eloss_fits}
1439
1440\begin{figure}[htbp]
1441 \centering
dc64f2ea 1442 \includegraphics[keepaspectratio,width=\textwidth]{eloss_fits}
1443 \caption{Summary of energy loss fits in each $\eta$ bin (see also
1444 \secref{sec:sub:sub:eloss_fits}).
1445 \newline
1446 On the left side: Top panel shows the
1447 reduced $\chi^2$, second from the top shows the found
1448 scaling constant, 3\textsuperscript{rd} from the top is
1449 the most probable energy loss $\Delta_{mp}$, 4\textsuperscript{th}
1450 shows the width parameter $\xi$ of the Landau, and the
1451 5\textsuperscript{th} is the Gaussian width $\sigma$.
b9bd46b7 1452 $\Delta_{mp}$, $\xi$, and $\sigma$ have units of $\Delta E/\Delta
1453 E_{mip}$.
dc64f2ea 1454 \newline
1455 On the right: The top panel shows the maximum number of
1456 multi--particle signals that where fitted, and the 4 bottom panels
1457 shows the weights $a_2,a_3,a_4,$ and $a_5$ for 2, 3, 4, and 5
1458 particle responses.}
56bd6baf 1459 \label{fig:eloss_fits}
1460\end{figure}
1461
dc64f2ea 1462\clearpage
1463\currentpdfbookmark{References}{References}
0a89eed1 1464\begin{thebibliography}{99}
56bd6baf 1465\bibitem{FWD:2004mz} \ALICE{} Collaboration, Bearden, I.~G.\ \textit{et al}
1466 \textit{ALICE technical design report on forward detectors: FMD, T0
1467 and V0}, \CERN{}, 2004, CERN-LHCC-2004-025
1468\bibitem{cholm:2009} Christensen, C.~H., \textit{The ALICE Forward
1469 Multiplicity Detector --- From Design to Installation},
1470 Ph.D.~thesis, University of Copenhagen, 2009,
1471 \url{http://www.nbi.dk/~cholm/}.
549a0be3 1472\bibitem{maxime} Guilbaud, M. \textit{et al}, \textit{Measurement of the charged-particle
1473multiplicity density at forward rapidity
1474with ALICE VZERO detector in central
1475Pb-Pb collision at $\sqrt{s_{NN}}=\TeV{2.76}$},
1476 ALICE internal note, 2012,
1477 \url{https://aliceinfo.cern.ch/Notes/node/17/}.
dc64f2ea 1478\bibitem{nim:b1:16}
1479%% \bibitem{Hancock:1983ry}
1480 S.~Hancock, F.~James, J.~Movchet {\it et al.},
1481 ``Energy Loss Distributions For Single Particles And Several
1482 Particles In A Thin Silicon Absorber,'' Nucl.\ Instrum.\ Meth.\
b9bd46b7 1483 \textbf{B1} (1984) 16, \url{http://cdsweb.cern.ch/record/147286/files/cer-000058451.pdf}.
dc64f2ea 1484\bibitem{phyrev:a28:615}
1485%% \bibitem{Hancock:1983fp}
1486 S.~Hancock, F.~James, J.~Movchet {\it et al.}, ``Energy Loss And
1487 Energy Straggling Of Protons And Pions In The Momentum Range
b9bd46b7 1488 0.7-gev/c To 115-gev/c,'' Phys.\ Rev.\ \textbf{A28} (1983) 615,
1489 \url{http://cdsweb.cern.ch/record/145395/files/PhysRevA.28.615.pdf}.
549a0be3 1490\bibitem{hhd:2009} Dalsgaard, H.~H., \textit{Pseudorapidity Densities in p+p and Pb+Pb collisions at
1491 LHC measured with the ALICE experiment},
1492 Ph.D.~thesis, University of Copenhagen, 2011,
1493 \url{http://www.nbi.dk/~canute/thesis.pdf}.
9eba87f5 1494\bibitem{ruben} Shahoyan, R. \textit{Determination of $\dndeta$ in
1495 Pb-Pb collision at 2.76 A TeV with SPD tracklets}, ALICE internal
1496 note 2012, \url{https://aliceinfo.cern.ch/Notes/node/59/}.
1497\bibitem{Aamodt:2010cz}
1498 K.~Aamodt {\it et al.} [ALICE Collaboration],
1499 %``Centrality dependence of the charged-particle multiplicity
1500 %density at mid-rapidity in Pb-Pb collisions at sqrt(sNN) = 2.76
1501 %TeV,''
1502 Phys.\ Rev.\ Lett.\ {\bf 106} (2011) 032301
1503 [arXiv:1012.1657 [nucl-ex]].
1504 %%CITATION = ARXIV:1012.1657;%%
1505\bibitem{Bearden:2001qq}
1506 I.~G.~Bearden {\it et al.} [BRAHMS Collaboration],
1507 %``Pseudorapidity distributions of charged particles from Au+Au
1508 %collisions at the maximum RHIC energy,''
1509 Phys.\ Rev.\ Lett.\ {\bf 88} (2002) 202301
1510 [nucl-ex/0112001].
1511 %%CITATION = NUCL-EX/0112001;%%
1512\bibitem{Alver:2010ck}
1513 B.~Alver {\it et al.} [PHOBOS Collaboration],
1514 %``Phobos results on charged particle multiplicity and pseudorapidity distributions in Au+Au, Cu+Cu, d+Au, and p+p collisions at ultra-relativistic energies,''
1515 Phys.\ Rev.\ C {\bf 83} (2011) 024913
1516 [arXiv:1011.1940 [nucl-ex]].
1517 %%CITATION = ARXIV:1011.1940;%%
0a89eed1 1518\end{thebibliography}
655b45b0 1519\end{document}
56bd6baf 1520
1521% Local Variables:
1522% ispell-local-dictionary: "british"
9e3855d0 1523% TeX-PDF-mode: t
56bd6baf 1524% End:
1525%
fc6a90cc 1526% LocalWords: tracklet diffractive IsTriggerBits AliAODForwardMult ProjectionX