]> git.uio.no Git - u/mrichter/AliRoot.git/blame - STEER/AliExternalTrackParam.cxx
Introducing a new AliVTrack class which will keep the features common for the ESD...
[u/mrichter/AliRoot.git] / STEER / AliExternalTrackParam.cxx
CommitLineData
51ad6848 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18///////////////////////////////////////////////////////////////////////////////
19// //
49d13e89 20// Implementation of the external track parameterisation class. //
51ad6848 21// //
49d13e89 22// This parameterisation is used to exchange tracks between the detectors. //
23// A set of functions returning the position and the momentum of tracks //
24// in the global coordinate system as well as the track impact parameters //
25// are implemented.
26// Origin: I.Belikov, CERN, Jouri.Belikov@cern.ch //
51ad6848 27///////////////////////////////////////////////////////////////////////////////
4b189f98 28#include <TMatrixDSym.h>
51ad6848 29#include "AliExternalTrackParam.h"
58e536c5 30#include "AliVVertex.h"
0c19adf7 31#include "TPolyMarker3D.h"
da4e3deb 32#include "TVector3.h"
6c94f330 33#include "AliLog.h"
51ad6848 34
35ClassImp(AliExternalTrackParam)
36
ed5f2849 37Double32_t AliExternalTrackParam::fgMostProbablePt=kMostProbablePt;
38
51ad6848 39//_____________________________________________________________________________
90e48c0c 40AliExternalTrackParam::AliExternalTrackParam() :
4f6e22bd 41 AliVTrack(),
90e48c0c 42 fX(0),
c9ec41e8 43 fAlpha(0)
51ad6848 44{
90e48c0c 45 //
46 // default constructor
47 //
c9ec41e8 48 for (Int_t i = 0; i < 5; i++) fP[i] = 0;
49 for (Int_t i = 0; i < 15; i++) fC[i] = 0;
51ad6848 50}
51
6c94f330 52//_____________________________________________________________________________
53AliExternalTrackParam::AliExternalTrackParam(const AliExternalTrackParam &track):
4f6e22bd 54 AliVTrack(track),
6c94f330 55 fX(track.fX),
56 fAlpha(track.fAlpha)
57{
58 //
59 // copy constructor
60 //
61 for (Int_t i = 0; i < 5; i++) fP[i] = track.fP[i];
62 for (Int_t i = 0; i < 15; i++) fC[i] = track.fC[i];
63}
64
def9660e 65//_____________________________________________________________________________
66AliExternalTrackParam& AliExternalTrackParam::operator=(const AliExternalTrackParam &trkPar)
67{
68 //
69 // assignment operator
70 //
71
72 if (this!=&trkPar) {
4f6e22bd 73 AliVTrack::operator=(trkPar);
def9660e 74 fX = trkPar.fX;
75 fAlpha = trkPar.fAlpha;
76
77 for (Int_t i = 0; i < 5; i++) fP[i] = trkPar.fP[i];
78 for (Int_t i = 0; i < 15; i++) fC[i] = trkPar.fC[i];
79 }
80
81 return *this;
82}
83
51ad6848 84//_____________________________________________________________________________
85AliExternalTrackParam::AliExternalTrackParam(Double_t x, Double_t alpha,
86 const Double_t param[5],
90e48c0c 87 const Double_t covar[15]) :
4f6e22bd 88 AliVTrack(),
90e48c0c 89 fX(x),
c9ec41e8 90 fAlpha(alpha)
51ad6848 91{
90e48c0c 92 //
93 // create external track parameters from given arguments
94 //
c9ec41e8 95 for (Int_t i = 0; i < 5; i++) fP[i] = param[i];
96 for (Int_t i = 0; i < 15; i++) fC[i] = covar[i];
51ad6848 97}
98
4f6e22bd 99//_____________________________________________________________________________
100AliExternalTrackParam::AliExternalTrackParam(const AliVTrack *vTrack) :
101 AliVTrack(),
102 fX(0.),
103 fAlpha(0.)
104{
105 //
106 // constructor from virtual track
107 //
108 Double_t xyz[3]={vTrack->Xv(),vTrack->Yv(),vTrack->Zv()};
109 Double_t pxpypz[3]={vTrack->Px(),vTrack->Py(),vTrack->Pz()};
110 Double_t cv[21];
111 vTrack->GetCovarianceXYZPxPyPz(cv);
112 Short_t sign = (Short_t)vTrack->Charge();
113
114 Set(xyz,pxpypz,cv,sign);
115}
116
90e48c0c 117//_____________________________________________________________________________
da4e3deb 118AliExternalTrackParam::AliExternalTrackParam(Double_t xyz[3],Double_t pxpypz[3],
119 Double_t cv[21],Short_t sign) :
4f6e22bd 120 AliVTrack(),
da4e3deb 121 fX(0.),
122 fAlpha(0.)
4f6e22bd 123{
124 //
125 // constructor from the global parameters
126 //
127
128 Set(xyz,pxpypz,cv,sign);
129}
130
131//_____________________________________________________________________________
132void AliExternalTrackParam::Set(Double_t xyz[3],Double_t pxpypz[3],
133 Double_t cv[21],Short_t sign)
da4e3deb 134{
135 //
136 // create external track parameters from the global parameters
137 // x,y,z,px,py,pz and their 6x6 covariance matrix
138 // A.Dainese 10.10.08
139
140 // Calculate alpha: the rotation angle of the corresponding local system
141 fAlpha = TMath::ATan2(pxpypz[1],pxpypz[0]);
142
143 // Get the vertex of origin and the momentum
144 TVector3 ver(xyz[0],xyz[1],xyz[2]);
145 TVector3 mom(pxpypz[0],pxpypz[1],pxpypz[2]);
146
147 // Rotate to the local coordinate system
148 ver.RotateZ(-fAlpha);
149 mom.RotateZ(-fAlpha);
150
151 // x of the reference plane
152 fX = ver.X();
153
154 Double_t charge = (Double_t)sign;
155
156 fP[0] = ver.Y();
157 fP[1] = ver.Z();
158 fP[2] = TMath::Sin(mom.Phi());
159 fP[3] = mom.Pz()/mom.Pt();
160 fP[4] = TMath::Sign(1/mom.Pt(),charge);
161
162 // Covariance matrix (formulas to be simplified)
163
164 Double_t pt=1./TMath::Abs(fP[4]);
165 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
166 Double_t r=TMath::Sqrt((1.-fP[2])*(1.+fP[2]));
167
168 Double_t m00=-sn;// m10=cs;
169 Double_t m23=-pt*(sn + fP[2]*cs/r), m43=-pt*pt*(r*cs - fP[2]*sn);
170 Double_t m24= pt*(cs - fP[2]*sn/r), m44=-pt*pt*(r*sn + fP[2]*cs);
171 Double_t m35=pt, m45=-pt*pt*fP[3];
172
173 m43*=GetSign();
174 m44*=GetSign();
175 m45*=GetSign();
176
177 Double_t cv34 = TMath::Sqrt(cv[3 ]*cv[3 ]+cv[4 ]*cv[4 ]);
178 Double_t a1=cv[13]-cv[9]*(m23*m44+m43*m24)/m23/m43;
179 Double_t a2=m23*m24-m23*(m23*m44+m43*m24)/m43;
180 Double_t a3=m43*m44-m43*(m23*m44+m43*m24)/m23;
181 Double_t a4=cv[14]-2.*cv[9]*m24*m44/m23/m43;
182 Double_t a5=m24*m24-2.*m24*m44*m23/m43;
183 Double_t a6=m44*m44-2.*m24*m44*m43/m23;
184
185 fC[0 ] = cv[0 ]+cv[2 ];
186 fC[1 ] = TMath::Sign(cv34,cv[3 ]/m00);
187 fC[2 ] = cv[5 ];
188 fC[3 ] = (cv[10]/m44-cv[6]/m43)/(m24/m44-m23/m43)/m00;
189 fC[10] = (cv[6]/m00-fC[3 ]*m23)/m43;
190 fC[6 ] = (cv[15]/m00-fC[10]*m45)/m35;
191 fC[4 ] = (cv[12]-cv[8]*m44/m43)/(m24-m23*m44/m43);
192 fC[11] = (cv[8]-fC[4]*m23)/m43;
193 fC[7 ] = cv[17]/m35-fC[11]*m45/m35;
194 fC[5 ] = TMath::Abs((a4-a6*a1/a3)/(a5-a6*a2/a3));
195 fC[14] = TMath::Abs(a1/a3-a2*fC[5]/a3);
196 fC[12] = (cv[9]-fC[5]*m23*m23-fC[14]*m43*m43)/m23/m43;
197 Double_t b1=cv[18]-fC[12]*m23*m45-fC[14]*m43*m45;
198 Double_t b2=m23*m35;
199 Double_t b3=m43*m35;
200 Double_t b4=cv[19]-fC[12]*m24*m45-fC[14]*m44*m45;
201 Double_t b5=m24*m35;
202 Double_t b6=m44*m35;
203 fC[8 ] = (b4-b6*b1/b3)/(b5-b6*b2/b3);
204 fC[13] = b1/b3-b2*fC[8]/b3;
205 fC[9 ] = TMath::Abs((cv[20]-fC[14]*(m45*m45)-fC[13]*2.*m35*m45)/(m35*m35));
4f6e22bd 206
207 return;
da4e3deb 208}
209
210//_____________________________________________________________________________
6c94f330 211void AliExternalTrackParam::Set(Double_t x, Double_t alpha,
212 const Double_t p[5], const Double_t cov[15]) {
c9ec41e8 213 //
6c94f330 214 // Sets the parameters
c9ec41e8 215 //
6c94f330 216 fX=x;
217 fAlpha=alpha;
218 for (Int_t i = 0; i < 5; i++) fP[i] = p[i];
219 for (Int_t i = 0; i < 15; i++) fC[i] = cov[i];
51ad6848 220}
221
222//_____________________________________________________________________________
c9ec41e8 223void AliExternalTrackParam::Reset() {
1530f89c 224 //
225 // Resets all the parameters to 0
226 //
c9ec41e8 227 fX=fAlpha=0.;
228 for (Int_t i = 0; i < 5; i++) fP[i] = 0;
229 for (Int_t i = 0; i < 15; i++) fC[i] = 0;
51ad6848 230}
231
3775b0ca 232//_____________________________________________________________________________
233void AliExternalTrackParam::AddCovariance(const Double_t c[15]) {
234 //
235 // Add "something" to the track covarince matrix.
236 // May be needed to account for unknown mis-calibration/mis-alignment
237 //
238 fC[0] +=c[0];
239 fC[1] +=c[1]; fC[2] +=c[2];
240 fC[3] +=c[3]; fC[4] +=c[4]; fC[5] +=c[5];
241 fC[6] +=c[6]; fC[7] +=c[7]; fC[8] +=c[8]; fC[9] +=c[9];
242 fC[10]+=c[10]; fC[11]+=c[11]; fC[12]+=c[12]; fC[13]+=c[13]; fC[14]+=c[14];
243}
244
245
c9ec41e8 246Double_t AliExternalTrackParam::GetP() const {
247 //---------------------------------------------------------------------
248 // This function returns the track momentum
249 // Results for (nearly) straight tracks are meaningless !
250 //---------------------------------------------------------------------
06fb4a2f 251 if (TMath::Abs(fP[4])<=kAlmost0) return kVeryBig;
c9ec41e8 252 return TMath::Sqrt(1.+ fP[3]*fP[3])/TMath::Abs(fP[4]);
51ad6848 253}
254
1d99986f 255Double_t AliExternalTrackParam::Get1P() const {
256 //---------------------------------------------------------------------
257 // This function returns the 1/(track momentum)
258 //---------------------------------------------------------------------
259 return TMath::Abs(fP[4])/TMath::Sqrt(1.+ fP[3]*fP[3]);
260}
261
c9ec41e8 262//_______________________________________________________________________
c7bafca9 263Double_t AliExternalTrackParam::GetD(Double_t x,Double_t y,Double_t b) const {
c9ec41e8 264 //------------------------------------------------------------------
265 // This function calculates the transverse impact parameter
266 // with respect to a point with global coordinates (x,y)
267 // in the magnetic field "b" (kG)
268 //------------------------------------------------------------------
5773defd 269 if (TMath::Abs(b) < kAlmost0Field) return GetLinearD(x,y);
1530f89c 270 Double_t rp4=GetC(b);
c9ec41e8 271
272 Double_t xt=fX, yt=fP[0];
273
274 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
275 Double_t a = x*cs + y*sn;
276 y = -x*sn + y*cs; x=a;
277 xt-=x; yt-=y;
278
279 sn=rp4*xt - fP[2]; cs=rp4*yt + TMath::Sqrt(1.- fP[2]*fP[2]);
280 a=2*(xt*fP[2] - yt*TMath::Sqrt(1.- fP[2]*fP[2]))-rp4*(xt*xt + yt*yt);
1530f89c 281 return -a/(1 + TMath::Sqrt(sn*sn + cs*cs));
282}
283
284//_______________________________________________________________________
285void AliExternalTrackParam::
286GetDZ(Double_t x, Double_t y, Double_t z, Double_t b, Float_t dz[2]) const {
287 //------------------------------------------------------------------
288 // This function calculates the transverse and longitudinal impact parameters
289 // with respect to a point with global coordinates (x,y)
290 // in the magnetic field "b" (kG)
291 //------------------------------------------------------------------
292 Double_t f1 = fP[2], r1 = TMath::Sqrt(1. - f1*f1);
293 Double_t xt=fX, yt=fP[0];
294 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
295 Double_t a = x*cs + y*sn;
296 y = -x*sn + y*cs; x=a;
297 xt-=x; yt-=y;
298
299 Double_t rp4=GetC(b);
300 if ((TMath::Abs(b) < kAlmost0Field) || (TMath::Abs(rp4) < kAlmost0)) {
301 dz[0] = -(xt*f1 - yt*r1);
302 dz[1] = fP[1] + (dz[0]*f1 - xt)/r1*fP[3] - z;
303 return;
304 }
305
306 sn=rp4*xt - f1; cs=rp4*yt + r1;
307 a=2*(xt*f1 - yt*r1)-rp4*(xt*xt + yt*yt);
308 Double_t rr=TMath::Sqrt(sn*sn + cs*cs);
309 dz[0] = -a/(1 + rr);
310 Double_t f2 = -sn/rr, r2 = TMath::Sqrt(1. - f2*f2);
311 dz[1] = fP[1] + fP[3]/rp4*TMath::ASin(f2*r1 - f1*r2) - z;
51ad6848 312}
313
49d13e89 314//_______________________________________________________________________
315Double_t AliExternalTrackParam::GetLinearD(Double_t xv,Double_t yv) const {
316 //------------------------------------------------------------------
317 // This function calculates the transverse impact parameter
318 // with respect to a point with global coordinates (xv,yv)
319 // neglecting the track curvature.
320 //------------------------------------------------------------------
321 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
322 Double_t x= xv*cs + yv*sn;
323 Double_t y=-xv*sn + yv*cs;
324
325 Double_t d = (fX-x)*fP[2] - (fP[0]-y)*TMath::Sqrt(1.- fP[2]*fP[2]);
326
1530f89c 327 return -d;
49d13e89 328}
329
116b445b 330Bool_t AliExternalTrackParam::CorrectForMeanMaterial
7dded1d5 331(Double_t xOverX0, Double_t xTimesRho, Double_t mass, Bool_t anglecorr,
332 Double_t (*Bethe)(Double_t)) {
116b445b 333 //------------------------------------------------------------------
334 // This function corrects the track parameters for the crossed material.
335 // "xOverX0" - X/X0, the thickness in units of the radiation length.
336 // "xTimesRho" - is the product length*density (g/cm^2).
337 // "mass" - the mass of this particle (GeV/c^2).
338 //------------------------------------------------------------------
339 Double_t &fP2=fP[2];
340 Double_t &fP3=fP[3];
341 Double_t &fP4=fP[4];
342
343 Double_t &fC22=fC[5];
344 Double_t &fC33=fC[9];
345 Double_t &fC43=fC[13];
346 Double_t &fC44=fC[14];
347
7dded1d5 348 //Apply angle correction, if requested
349 if(anglecorr) {
350 Double_t angle=TMath::Sqrt((1.+ fP3*fP3)/(1.- fP2*fP2));
351 xOverX0 *=angle;
352 xTimesRho *=angle;
353 }
354
116b445b 355 Double_t p=GetP();
356 Double_t p2=p*p;
357 Double_t beta2=p2/(p2 + mass*mass);
116b445b 358
359 //Multiple scattering******************
360 if (xOverX0 != 0) {
361 Double_t theta2=14.1*14.1/(beta2*p2*1e6)*TMath::Abs(xOverX0);
9a53dcc6 362 if(theta2>TMath::Pi()*TMath::Pi()) return kFALSE;
116b445b 363 //Double_t theta2=1.0259e-6*14*14/28/(beta2*p2)*TMath::Abs(d)*9.36*2.33;
364 fC22 += theta2*(1.- fP2*fP2)*(1. + fP3*fP3);
365 fC33 += theta2*(1. + fP3*fP3)*(1. + fP3*fP3);
366 fC43 += theta2*fP3*fP4*(1. + fP3*fP3);
367 fC44 += theta2*fP3*fP4*fP3*fP4;
368 }
369
370 //Energy losses************************
371 if ((xTimesRho != 0.) && (beta2 < 1.)) {
372 Double_t dE=Bethe(beta2)*xTimesRho;
373 Double_t e=TMath::Sqrt(p2 + mass*mass);
374 if ( TMath::Abs(dE) > 0.3*e ) return kFALSE; //30% energy loss is too much!
375 fP4*=(1.- e/p2*dE);
4b2fa3ce 376 if (TMath::Abs(fP4)>100.) return kFALSE; // Do not track below 10 MeV/c
377
116b445b 378
379 // Approximate energy loss fluctuation (M.Ivanov)
380 const Double_t knst=0.07; // To be tuned.
381 Double_t sigmadE=knst*TMath::Sqrt(TMath::Abs(dE));
382 fC44+=((sigmadE*e/p2*fP4)*(sigmadE*e/p2*fP4));
383
384 }
385
386 return kTRUE;
387}
388
389
ee5dba5e 390Bool_t AliExternalTrackParam::CorrectForMaterial
391(Double_t d, Double_t x0, Double_t mass, Double_t (*Bethe)(Double_t)) {
c7bafca9 392 //------------------------------------------------------------------
116b445b 393 // Deprecated function !
394 // Better use CorrectForMeanMaterial instead of it.
395 //
c7bafca9 396 // This function corrects the track parameters for the crossed material
397 // "d" - the thickness (fraction of the radiation length)
398 // "x0" - the radiation length (g/cm^2)
399 // "mass" - the mass of this particle (GeV/c^2)
400 //------------------------------------------------------------------
401 Double_t &fP2=fP[2];
402 Double_t &fP3=fP[3];
403 Double_t &fP4=fP[4];
404
405 Double_t &fC22=fC[5];
406 Double_t &fC33=fC[9];
407 Double_t &fC43=fC[13];
408 Double_t &fC44=fC[14];
409
7b5ef2e6 410 Double_t p=GetP();
411 Double_t p2=p*p;
c7bafca9 412 Double_t beta2=p2/(p2 + mass*mass);
413 d*=TMath::Sqrt((1.+ fP3*fP3)/(1.- fP2*fP2));
414
415 //Multiple scattering******************
416 if (d!=0) {
417 Double_t theta2=14.1*14.1/(beta2*p2*1e6)*TMath::Abs(d);
9a53dcc6 418 if(theta2>TMath::Pi()*TMath::Pi()) return kFALSE;
c7bafca9 419 //Double_t theta2=1.0259e-6*14*14/28/(beta2*p2)*TMath::Abs(d)*9.36*2.33;
420 fC22 += theta2*(1.- fP2*fP2)*(1. + fP3*fP3);
421 fC33 += theta2*(1. + fP3*fP3)*(1. + fP3*fP3);
422 fC43 += theta2*fP3*fP4*(1. + fP3*fP3);
423 fC44 += theta2*fP3*fP4*fP3*fP4;
424 }
425
426 //Energy losses************************
8fc1985d 427 if (x0!=0. && beta2<1) {
c7bafca9 428 d*=x0;
ee5dba5e 429 Double_t dE=Bethe(beta2)*d;
430 Double_t e=TMath::Sqrt(p2 + mass*mass);
ae666100 431 if ( TMath::Abs(dE) > 0.3*e ) return kFALSE; //30% energy loss is too much!
ee5dba5e 432 fP4*=(1.- e/p2*dE);
433
434 // Approximate energy loss fluctuation (M.Ivanov)
ed5f2849 435 const Double_t knst=0.07; // To be tuned.
436 Double_t sigmadE=knst*TMath::Sqrt(TMath::Abs(dE));
ee5dba5e 437 fC44+=((sigmadE*e/p2*fP4)*(sigmadE*e/p2*fP4));
438
c7bafca9 439 }
440
441 return kTRUE;
442}
443
ee5dba5e 444Double_t ApproximateBetheBloch(Double_t beta2) {
445 //------------------------------------------------------------------
446 // This is an approximation of the Bethe-Bloch formula with
447 // the density effect taken into account at beta*gamma > 3.5
448 // (the approximation is reasonable only for solid materials)
449 //------------------------------------------------------------------
a821848c 450 if (beta2 >= 1) return kVeryBig;
451
ee5dba5e 452 if (beta2/(1-beta2)>3.5*3.5)
453 return 0.153e-3/beta2*(log(3.5*5940)+0.5*log(beta2/(1-beta2)) - beta2);
454
455 return 0.153e-3/beta2*(log(5940*beta2/(1-beta2)) - beta2);
456}
457
49d13e89 458Bool_t AliExternalTrackParam::Rotate(Double_t alpha) {
459 //------------------------------------------------------------------
460 // Transform this track to the local coord. system rotated
461 // by angle "alpha" (rad) with respect to the global coord. system.
462 //------------------------------------------------------------------
dfcef74c 463 if (TMath::Abs(fP[2]) >= kAlmost1) {
464 AliError(Form("Precondition is not satisfied: |sin(phi)|>1 ! %f",fP[2]));
465 return kFALSE;
466 }
467
49d13e89 468 if (alpha < -TMath::Pi()) alpha += 2*TMath::Pi();
469 else if (alpha >= TMath::Pi()) alpha -= 2*TMath::Pi();
470
471 Double_t &fP0=fP[0];
472 Double_t &fP2=fP[2];
473 Double_t &fC00=fC[0];
474 Double_t &fC10=fC[1];
475 Double_t &fC20=fC[3];
476 Double_t &fC21=fC[4];
477 Double_t &fC22=fC[5];
478 Double_t &fC30=fC[6];
479 Double_t &fC32=fC[8];
480 Double_t &fC40=fC[10];
481 Double_t &fC42=fC[12];
482
483 Double_t x=fX;
484 Double_t ca=TMath::Cos(alpha-fAlpha), sa=TMath::Sin(alpha-fAlpha);
485 Double_t sf=fP2, cf=TMath::Sqrt(1.- fP2*fP2);
486
dfcef74c 487 Double_t tmp=sf*ca - cf*sa;
488 if (TMath::Abs(tmp) >= kAlmost1) return kFALSE;
489
49d13e89 490 fAlpha = alpha;
491 fX = x*ca + fP0*sa;
492 fP0= -x*sa + fP0*ca;
dfcef74c 493 fP2= tmp;
49d13e89 494
06fb4a2f 495 if (TMath::Abs(cf)<kAlmost0) {
496 AliError(Form("Too small cosine value %f",cf));
497 cf = kAlmost0;
498 }
499
49d13e89 500 Double_t rr=(ca+sf/cf*sa);
501
502 fC00 *= (ca*ca);
503 fC10 *= ca;
504 fC20 *= ca*rr;
505 fC21 *= rr;
506 fC22 *= rr*rr;
507 fC30 *= ca;
508 fC32 *= rr;
509 fC40 *= ca;
510 fC42 *= rr;
511
512 return kTRUE;
513}
514
515Bool_t AliExternalTrackParam::PropagateTo(Double_t xk, Double_t b) {
516 //----------------------------------------------------------------
517 // Propagate this track to the plane X=xk (cm) in the field "b" (kG)
518 //----------------------------------------------------------------
49d13e89 519 Double_t dx=xk-fX;
e421f556 520 if (TMath::Abs(dx)<=kAlmost0) return kTRUE;
18ebc5ef 521
1530f89c 522 Double_t crv=GetC(b);
5773defd 523 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
524
49d13e89 525 Double_t f1=fP[2], f2=f1 + crv*dx;
bbefa4c4 526 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
49d13e89 527 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
528
529 Double_t &fP0=fP[0], &fP1=fP[1], &fP2=fP[2], &fP3=fP[3], &fP4=fP[4];
530 Double_t
531 &fC00=fC[0],
532 &fC10=fC[1], &fC11=fC[2],
533 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
534 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
535 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
536
537 Double_t r1=TMath::Sqrt(1.- f1*f1), r2=TMath::Sqrt(1.- f2*f2);
538
539 fX=xk;
540 fP0 += dx*(f1+f2)/(r1+r2);
18ebc5ef 541 fP1 += dx*(r2 + f2*(f1+f2)/(r1+r2))*fP3; // Many thanks to P.Hristov !
49d13e89 542 fP2 += dx*crv;
543
544 //f = F - 1
545
546 Double_t f02= dx/(r1*r1*r1); Double_t cc=crv/fP4;
547 Double_t f04=0.5*dx*dx/(r1*r1*r1); f04*=cc;
548 Double_t f12= dx*fP3*f1/(r1*r1*r1);
549 Double_t f14=0.5*dx*dx*fP3*f1/(r1*r1*r1); f14*=cc;
550 Double_t f13= dx/r1;
551 Double_t f24= dx; f24*=cc;
552
553 //b = C*ft
554 Double_t b00=f02*fC20 + f04*fC40, b01=f12*fC20 + f14*fC40 + f13*fC30;
555 Double_t b02=f24*fC40;
556 Double_t b10=f02*fC21 + f04*fC41, b11=f12*fC21 + f14*fC41 + f13*fC31;
557 Double_t b12=f24*fC41;
558 Double_t b20=f02*fC22 + f04*fC42, b21=f12*fC22 + f14*fC42 + f13*fC32;
559 Double_t b22=f24*fC42;
560 Double_t b40=f02*fC42 + f04*fC44, b41=f12*fC42 + f14*fC44 + f13*fC43;
561 Double_t b42=f24*fC44;
562 Double_t b30=f02*fC32 + f04*fC43, b31=f12*fC32 + f14*fC43 + f13*fC33;
563 Double_t b32=f24*fC43;
564
565 //a = f*b = f*C*ft
566 Double_t a00=f02*b20+f04*b40,a01=f02*b21+f04*b41,a02=f02*b22+f04*b42;
567 Double_t a11=f12*b21+f14*b41+f13*b31,a12=f12*b22+f14*b42+f13*b32;
568 Double_t a22=f24*b42;
569
570 //F*C*Ft = C + (b + bt + a)
571 fC00 += b00 + b00 + a00;
572 fC10 += b10 + b01 + a01;
573 fC20 += b20 + b02 + a02;
574 fC30 += b30;
575 fC40 += b40;
576 fC11 += b11 + b11 + a11;
577 fC21 += b21 + b12 + a12;
578 fC31 += b31;
579 fC41 += b41;
580 fC22 += b22 + b22 + a22;
581 fC32 += b32;
582 fC42 += b42;
583
584 return kTRUE;
585}
586
052daaff 587void AliExternalTrackParam::Propagate(Double_t len, Double_t x[3],
588Double_t p[3], Double_t bz) const {
589 //+++++++++++++++++++++++++++++++++++++++++
590 // Origin: K. Shileev (Kirill.Shileev@cern.ch)
591 // Extrapolate track along simple helix in magnetic field
592 // Arguments: len -distance alogn helix, [cm]
593 // bz - mag field, [kGaus]
594 // Returns: x and p contain extrapolated positon and momentum
595 // The momentum returned for straight-line tracks is meaningless !
596 //+++++++++++++++++++++++++++++++++++++++++
597 GetXYZ(x);
598
def9660e 599 if (OneOverPt() < kAlmost0 || TMath::Abs(bz) < kAlmost0Field ){ //straight-line tracks
052daaff 600 Double_t unit[3]; GetDirection(unit);
601 x[0]+=unit[0]*len;
602 x[1]+=unit[1]*len;
603 x[2]+=unit[2]*len;
604
605 p[0]=unit[0]/kAlmost0;
606 p[1]=unit[1]/kAlmost0;
607 p[2]=unit[2]/kAlmost0;
608 } else {
609 GetPxPyPz(p);
610 Double_t pp=GetP();
611 Double_t a = -kB2C*bz*GetSign();
612 Double_t rho = a/pp;
613 x[0] += p[0]*TMath::Sin(rho*len)/a - p[1]*(1-TMath::Cos(rho*len))/a;
614 x[1] += p[1]*TMath::Sin(rho*len)/a + p[0]*(1-TMath::Cos(rho*len))/a;
615 x[2] += p[2]*len/pp;
616
617 Double_t p0=p[0];
618 p[0] = p0 *TMath::Cos(rho*len) - p[1]*TMath::Sin(rho*len);
619 p[1] = p[1]*TMath::Cos(rho*len) + p0 *TMath::Sin(rho*len);
620 }
621}
622
623Bool_t AliExternalTrackParam::Intersect(Double_t pnt[3], Double_t norm[3],
624Double_t bz) const {
625 //+++++++++++++++++++++++++++++++++++++++++
626 // Origin: K. Shileev (Kirill.Shileev@cern.ch)
627 // Finds point of intersection (if exists) of the helix with the plane.
628 // Stores result in fX and fP.
629 // Arguments: planePoint,planeNorm - the plane defined by any plane's point
630 // and vector, normal to the plane
631 // Returns: kTrue if helix intersects the plane, kFALSE otherwise.
632 //+++++++++++++++++++++++++++++++++++++++++
633 Double_t x0[3]; GetXYZ(x0); //get track position in MARS
634
635 //estimates initial helix length up to plane
636 Double_t s=
637 (pnt[0]-x0[0])*norm[0] + (pnt[1]-x0[1])*norm[1] + (pnt[2]-x0[2])*norm[2];
638 Double_t dist=99999,distPrev=dist;
639 Double_t x[3],p[3];
640 while(TMath::Abs(dist)>0.00001){
641 //calculates helix at the distance s from x0 ALONG the helix
642 Propagate(s,x,p,bz);
643
644 //distance between current helix position and plane
645 dist=(x[0]-pnt[0])*norm[0]+(x[1]-pnt[1])*norm[1]+(x[2]-pnt[2])*norm[2];
646
647 if(TMath::Abs(dist) >= TMath::Abs(distPrev)) {return kFALSE;}
648 distPrev=dist;
649 s-=dist;
650 }
651 //on exit pnt is intersection point,norm is track vector at that point,
652 //all in MARS
653 for (Int_t i=0; i<3; i++) {pnt[i]=x[i]; norm[i]=p[i];}
654 return kTRUE;
655}
656
49d13e89 657Double_t
658AliExternalTrackParam::GetPredictedChi2(Double_t p[2],Double_t cov[3]) const {
659 //----------------------------------------------------------------
660 // Estimate the chi2 of the space point "p" with the cov. matrix "cov"
661 //----------------------------------------------------------------
662 Double_t sdd = fC[0] + cov[0];
663 Double_t sdz = fC[1] + cov[1];
664 Double_t szz = fC[2] + cov[2];
665 Double_t det = sdd*szz - sdz*sdz;
666
667 if (TMath::Abs(det) < kAlmost0) return kVeryBig;
668
669 Double_t d = fP[0] - p[0];
670 Double_t z = fP[1] - p[1];
671
672 return (d*szz*d - 2*d*sdz*z + z*sdd*z)/det;
673}
674
4b189f98 675Double_t AliExternalTrackParam::
676GetPredictedChi2(Double_t p[3],Double_t covyz[3],Double_t covxyz[3]) const {
677 //----------------------------------------------------------------
678 // Estimate the chi2 of the 3D space point "p" and
1e023a36 679 // the full covariance matrix "covyz" and "covxyz"
4b189f98 680 //
681 // Cov(x,x) ... : covxyz[0]
682 // Cov(y,x) ... : covxyz[1] covyz[0]
683 // Cov(z,x) ... : covxyz[2] covyz[1] covyz[2]
684 //----------------------------------------------------------------
685
686 Double_t res[3] = {
687 GetX() - p[0],
688 GetY() - p[1],
689 GetZ() - p[2]
690 };
691
692 Double_t f=GetSnp();
693 if (TMath::Abs(f) >= kAlmost1) return kVeryBig;
694 Double_t r=TMath::Sqrt(1.- f*f);
695 Double_t a=f/r, b=GetTgl()/r;
696
697 Double_t s2=333.*333.; //something reasonably big (cm^2)
698
699 TMatrixDSym v(3);
700 v(0,0)= s2; v(0,1)= a*s2; v(0,2)= b*s2;;
701 v(1,0)=a*s2; v(1,1)=a*a*s2 + GetSigmaY2(); v(1,2)=a*b*s2 + GetSigmaZY();
702 v(2,0)=b*s2; v(2,1)=a*b*s2 + GetSigmaZY(); v(2,2)=b*b*s2 + GetSigmaZ2();
703
704 v(0,0)+=covxyz[0]; v(0,1)+=covxyz[1]; v(0,2)+=covxyz[2];
705 v(1,0)+=covxyz[1]; v(1,1)+=covyz[0]; v(1,2)+=covyz[1];
706 v(2,0)+=covxyz[2]; v(2,1)+=covyz[1]; v(2,2)+=covyz[2];
707
708 v.Invert();
709 if (!v.IsValid()) return kVeryBig;
710
711 Double_t chi2=0.;
712 for (Int_t i = 0; i < 3; i++)
713 for (Int_t j = 0; j < 3; j++) chi2 += res[i]*res[j]*v(i,j);
714
715 return chi2;
716
717
718}
719
1e023a36 720Bool_t AliExternalTrackParam::
721PropagateTo(Double_t p[3],Double_t covyz[3],Double_t covxyz[3],Double_t bz) {
722 //----------------------------------------------------------------
723 // Propagate this track to the plane
724 // the 3D space point "p" (with the covariance matrix "covyz" and "covxyz")
725 // belongs to.
726 // The magnetic field is "bz" (kG)
727 //
728 // The track curvature and the change of the covariance matrix
729 // of the track parameters are negleted !
730 // (So the "step" should be small compared with 1/curvature)
731 //----------------------------------------------------------------
732
733 Double_t f=GetSnp();
734 if (TMath::Abs(f) >= kAlmost1) return kFALSE;
735 Double_t r=TMath::Sqrt(1.- f*f);
736 Double_t a=f/r, b=GetTgl()/r;
737
738 Double_t s2=333.*333.; //something reasonably big (cm^2)
739
740 TMatrixDSym tV(3);
741 tV(0,0)= s2; tV(0,1)= a*s2; tV(0,2)= b*s2;
742 tV(1,0)=a*s2; tV(1,1)=a*a*s2; tV(1,2)=a*b*s2;
743 tV(2,0)=b*s2; tV(2,1)=a*b*s2; tV(2,2)=b*b*s2;
744
745 TMatrixDSym pV(3);
746 pV(0,0)=covxyz[0]; pV(0,1)=covxyz[1]; pV(0,2)=covxyz[2];
747 pV(1,0)=covxyz[1]; pV(1,1)=covyz[0]; pV(1,2)=covyz[1];
748 pV(2,0)=covxyz[2]; pV(2,1)=covyz[1]; pV(2,2)=covyz[2];
749
750 TMatrixDSym tpV(tV);
751 tpV+=pV;
752 tpV.Invert();
753 if (!tpV.IsValid()) return kFALSE;
754
755 TMatrixDSym pW(3),tW(3);
756 for (Int_t i=0; i<3; i++)
757 for (Int_t j=0; j<3; j++) {
758 pW(i,j)=tW(i,j)=0.;
759 for (Int_t k=0; k<3; k++) {
760 pW(i,j) += tV(i,k)*tpV(k,j);
761 tW(i,j) += pV(i,k)*tpV(k,j);
762 }
763 }
764
765 Double_t t[3] = {GetX(), GetY(), GetZ()};
766
767 Double_t x=0.;
768 for (Int_t i=0; i<3; i++) x += (tW(0,i)*t[i] + pW(0,i)*p[i]);
769 Double_t crv=GetC(bz);
770 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
771 f += crv*(x-fX);
772 if (TMath::Abs(f) >= kAlmost1) return kFALSE;
773 fX=x;
774
775 fP[0]=0.;
776 for (Int_t i=0; i<3; i++) fP[0] += (tW(1,i)*t[i] + pW(1,i)*p[i]);
777 fP[1]=0.;
778 for (Int_t i=0; i<3; i++) fP[1] += (tW(2,i)*t[i] + pW(2,i)*p[i]);
779
780 return kTRUE;
781}
782
e23a38cb 783Double_t *AliExternalTrackParam::GetResiduals(
784Double_t *p,Double_t *cov,Bool_t updated) const {
785 //------------------------------------------------------------------
786 // Returns the track residuals with the space point "p" having
787 // the covariance matrix "cov".
788 // If "updated" is kTRUE, the track parameters expected to be updated,
789 // otherwise they must be predicted.
790 //------------------------------------------------------------------
791 static Double_t res[2];
792
793 Double_t r00=cov[0], r01=cov[1], r11=cov[2];
794 if (updated) {
795 r00-=fC[0]; r01-=fC[1]; r11-=fC[2];
796 } else {
797 r00+=fC[0]; r01+=fC[1]; r11+=fC[2];
798 }
799 Double_t det=r00*r11 - r01*r01;
800
801 if (TMath::Abs(det) < kAlmost0) return 0;
802
803 Double_t tmp=r00; r00=r11/det; r11=tmp/det;
f0fbf964 804
805 if (r00 < 0.) return 0;
806 if (r11 < 0.) return 0;
807
e23a38cb 808 Double_t dy = fP[0] - p[0];
809 Double_t dz = fP[1] - p[1];
810
811 res[0]=dy*TMath::Sqrt(r00);
812 res[1]=dz*TMath::Sqrt(r11);
813
814 return res;
815}
816
49d13e89 817Bool_t AliExternalTrackParam::Update(Double_t p[2], Double_t cov[3]) {
818 //------------------------------------------------------------------
819 // Update the track parameters with the space point "p" having
820 // the covariance matrix "cov"
821 //------------------------------------------------------------------
822 Double_t &fP0=fP[0], &fP1=fP[1], &fP2=fP[2], &fP3=fP[3], &fP4=fP[4];
823 Double_t
824 &fC00=fC[0],
825 &fC10=fC[1], &fC11=fC[2],
826 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
827 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
828 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
829
830 Double_t r00=cov[0], r01=cov[1], r11=cov[2];
831 r00+=fC00; r01+=fC10; r11+=fC11;
832 Double_t det=r00*r11 - r01*r01;
833
834 if (TMath::Abs(det) < kAlmost0) return kFALSE;
835
836
837 Double_t tmp=r00; r00=r11/det; r11=tmp/det; r01=-r01/det;
838
839 Double_t k00=fC00*r00+fC10*r01, k01=fC00*r01+fC10*r11;
840 Double_t k10=fC10*r00+fC11*r01, k11=fC10*r01+fC11*r11;
841 Double_t k20=fC20*r00+fC21*r01, k21=fC20*r01+fC21*r11;
842 Double_t k30=fC30*r00+fC31*r01, k31=fC30*r01+fC31*r11;
843 Double_t k40=fC40*r00+fC41*r01, k41=fC40*r01+fC41*r11;
844
845 Double_t dy=p[0] - fP0, dz=p[1] - fP1;
846 Double_t sf=fP2 + k20*dy + k21*dz;
847 if (TMath::Abs(sf) > kAlmost1) return kFALSE;
848
849 fP0 += k00*dy + k01*dz;
850 fP1 += k10*dy + k11*dz;
851 fP2 = sf;
852 fP3 += k30*dy + k31*dz;
853 fP4 += k40*dy + k41*dz;
854
855 Double_t c01=fC10, c02=fC20, c03=fC30, c04=fC40;
856 Double_t c12=fC21, c13=fC31, c14=fC41;
857
858 fC00-=k00*fC00+k01*fC10; fC10-=k00*c01+k01*fC11;
859 fC20-=k00*c02+k01*c12; fC30-=k00*c03+k01*c13;
860 fC40-=k00*c04+k01*c14;
861
862 fC11-=k10*c01+k11*fC11;
863 fC21-=k10*c02+k11*c12; fC31-=k10*c03+k11*c13;
864 fC41-=k10*c04+k11*c14;
865
866 fC22-=k20*c02+k21*c12; fC32-=k20*c03+k21*c13;
867 fC42-=k20*c04+k21*c14;
868
869 fC33-=k30*c03+k31*c13;
870 fC43-=k30*c04+k31*c14;
871
872 fC44-=k40*c04+k41*c14;
873
874 return kTRUE;
875}
876
c7bafca9 877void
878AliExternalTrackParam::GetHelixParameters(Double_t hlx[6], Double_t b) const {
879 //--------------------------------------------------------------------
880 // External track parameters -> helix parameters
881 // "b" - magnetic field (kG)
882 //--------------------------------------------------------------------
883 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
884
1530f89c 885 hlx[0]=fP[0]; hlx[1]=fP[1]; hlx[2]=fP[2]; hlx[3]=fP[3];
c7bafca9 886
887 hlx[5]=fX*cs - hlx[0]*sn; // x0
888 hlx[0]=fX*sn + hlx[0]*cs; // y0
889//hlx[1]= // z0
890 hlx[2]=TMath::ASin(hlx[2]) + fAlpha; // phi0
891//hlx[3]= // tgl
1530f89c 892 hlx[4]=GetC(b); // C
c7bafca9 893}
894
895
896static void Evaluate(const Double_t *h, Double_t t,
897 Double_t r[3], //radius vector
898 Double_t g[3], //first defivatives
899 Double_t gg[3]) //second derivatives
900{
901 //--------------------------------------------------------------------
902 // Calculate position of a point on a track and some derivatives
903 //--------------------------------------------------------------------
904 Double_t phase=h[4]*t+h[2];
905 Double_t sn=TMath::Sin(phase), cs=TMath::Cos(phase);
906
907 r[0] = h[5] + (sn - h[6])/h[4];
908 r[1] = h[0] - (cs - h[7])/h[4];
909 r[2] = h[1] + h[3]*t;
910
911 g[0] = cs; g[1]=sn; g[2]=h[3];
912
913 gg[0]=-h[4]*sn; gg[1]=h[4]*cs; gg[2]=0.;
914}
915
916Double_t AliExternalTrackParam::GetDCA(const AliExternalTrackParam *p,
917Double_t b, Double_t &xthis, Double_t &xp) const {
918 //------------------------------------------------------------
919 // Returns the (weighed !) distance of closest approach between
920 // this track and the track "p".
921 // Other returned values:
922 // xthis, xt - coordinates of tracks' reference planes at the DCA
923 //-----------------------------------------------------------
924 Double_t dy2=GetSigmaY2() + p->GetSigmaY2();
925 Double_t dz2=GetSigmaZ2() + p->GetSigmaZ2();
926 Double_t dx2=dy2;
927
928 //dx2=dy2=dz2=1.;
929
930 Double_t p1[8]; GetHelixParameters(p1,b);
931 p1[6]=TMath::Sin(p1[2]); p1[7]=TMath::Cos(p1[2]);
932 Double_t p2[8]; p->GetHelixParameters(p2,b);
933 p2[6]=TMath::Sin(p2[2]); p2[7]=TMath::Cos(p2[2]);
934
935
936 Double_t r1[3],g1[3],gg1[3]; Double_t t1=0.;
937 Evaluate(p1,t1,r1,g1,gg1);
938 Double_t r2[3],g2[3],gg2[3]; Double_t t2=0.;
939 Evaluate(p2,t2,r2,g2,gg2);
940
941 Double_t dx=r2[0]-r1[0], dy=r2[1]-r1[1], dz=r2[2]-r1[2];
942 Double_t dm=dx*dx/dx2 + dy*dy/dy2 + dz*dz/dz2;
943
944 Int_t max=27;
945 while (max--) {
946 Double_t gt1=-(dx*g1[0]/dx2 + dy*g1[1]/dy2 + dz*g1[2]/dz2);
947 Double_t gt2=+(dx*g2[0]/dx2 + dy*g2[1]/dy2 + dz*g2[2]/dz2);
948 Double_t h11=(g1[0]*g1[0] - dx*gg1[0])/dx2 +
949 (g1[1]*g1[1] - dy*gg1[1])/dy2 +
950 (g1[2]*g1[2] - dz*gg1[2])/dz2;
951 Double_t h22=(g2[0]*g2[0] + dx*gg2[0])/dx2 +
952 (g2[1]*g2[1] + dy*gg2[1])/dy2 +
953 (g2[2]*g2[2] + dz*gg2[2])/dz2;
954 Double_t h12=-(g1[0]*g2[0]/dx2 + g1[1]*g2[1]/dy2 + g1[2]*g2[2]/dz2);
955
956 Double_t det=h11*h22-h12*h12;
957
958 Double_t dt1,dt2;
959 if (TMath::Abs(det)<1.e-33) {
960 //(quasi)singular Hessian
961 dt1=-gt1; dt2=-gt2;
962 } else {
963 dt1=-(gt1*h22 - gt2*h12)/det;
964 dt2=-(h11*gt2 - h12*gt1)/det;
965 }
966
967 if ((dt1*gt1+dt2*gt2)>0) {dt1=-dt1; dt2=-dt2;}
968
969 //check delta(phase1) ?
970 //check delta(phase2) ?
971
972 if (TMath::Abs(dt1)/(TMath::Abs(t1)+1.e-3) < 1.e-4)
973 if (TMath::Abs(dt2)/(TMath::Abs(t2)+1.e-3) < 1.e-4) {
974 if ((gt1*gt1+gt2*gt2) > 1.e-4/dy2/dy2)
358f16ae 975 AliDebug(1," stopped at not a stationary point !");
c7bafca9 976 Double_t lmb=h11+h22; lmb=lmb-TMath::Sqrt(lmb*lmb-4*det);
977 if (lmb < 0.)
358f16ae 978 AliDebug(1," stopped at not a minimum !");
c7bafca9 979 break;
980 }
981
982 Double_t dd=dm;
983 for (Int_t div=1 ; ; div*=2) {
984 Evaluate(p1,t1+dt1,r1,g1,gg1);
985 Evaluate(p2,t2+dt2,r2,g2,gg2);
986 dx=r2[0]-r1[0]; dy=r2[1]-r1[1]; dz=r2[2]-r1[2];
987 dd=dx*dx/dx2 + dy*dy/dy2 + dz*dz/dz2;
988 if (dd<dm) break;
989 dt1*=0.5; dt2*=0.5;
990 if (div>512) {
358f16ae 991 AliDebug(1," overshoot !"); break;
c7bafca9 992 }
993 }
994 dm=dd;
995
996 t1+=dt1;
997 t2+=dt2;
998
999 }
1000
358f16ae 1001 if (max<=0) AliDebug(1," too many iterations !");
c7bafca9 1002
1003 Double_t cs=TMath::Cos(GetAlpha());
1004 Double_t sn=TMath::Sin(GetAlpha());
1005 xthis=r1[0]*cs + r1[1]*sn;
1006
1007 cs=TMath::Cos(p->GetAlpha());
1008 sn=TMath::Sin(p->GetAlpha());
1009 xp=r2[0]*cs + r2[1]*sn;
1010
1011 return TMath::Sqrt(dm*TMath::Sqrt(dy2*dz2));
1012}
1013
1014Double_t AliExternalTrackParam::
1015PropagateToDCA(AliExternalTrackParam *p, Double_t b) {
1016 //--------------------------------------------------------------
1017 // Propagates this track and the argument track to the position of the
1018 // distance of closest approach.
1019 // Returns the (weighed !) distance of closest approach.
1020 //--------------------------------------------------------------
1021 Double_t xthis,xp;
1022 Double_t dca=GetDCA(p,b,xthis,xp);
1023
1024 if (!PropagateTo(xthis,b)) {
1025 //AliWarning(" propagation failed !");
1026 return 1e+33;
1027 }
1028
1029 if (!p->PropagateTo(xp,b)) {
1030 //AliWarning(" propagation failed !";
1031 return 1e+33;
1032 }
1033
1034 return dca;
1035}
1036
1037
58e536c5 1038Bool_t AliExternalTrackParam::PropagateToDCA(const AliVVertex *vtx,
e99a34df 1039Double_t b, Double_t maxd, Double_t dz[2], Double_t covar[3]) {
f76701bf 1040 //
e99a34df 1041 // Propagate this track to the DCA to vertex "vtx",
f76701bf 1042 // if the (rough) transverse impact parameter is not bigger then "maxd".
1043 // Magnetic field is "b" (kG).
1044 //
1045 // a) The track gets extapolated to the DCA to the vertex.
1046 // b) The impact parameters and their covariance matrix are calculated.
1047 //
1048 // In the case of success, the returned value is kTRUE
1049 // (otherwise, it's kFALSE)
1050 //
1051 Double_t alpha=GetAlpha();
1052 Double_t sn=TMath::Sin(alpha), cs=TMath::Cos(alpha);
1053 Double_t x=GetX(), y=GetParameter()[0], snp=GetParameter()[2];
58e536c5 1054 Double_t xv= vtx->GetX()*cs + vtx->GetY()*sn;
1055 Double_t yv=-vtx->GetX()*sn + vtx->GetY()*cs, zv=vtx->GetZ();
f76701bf 1056 x-=xv; y-=yv;
1057
1058 //Estimate the impact parameter neglecting the track curvature
1059 Double_t d=TMath::Abs(x*snp - y*TMath::Sqrt(1.- snp*snp));
1060 if (d > maxd) return kFALSE;
1061
1062 //Propagate to the DCA
e99a34df 1063 Double_t crv=kB2C*b*GetParameter()[4];
1064 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
1065
f76701bf 1066 Double_t tgfv=-(crv*x - snp)/(crv*y + TMath::Sqrt(1.-snp*snp));
1067 sn=tgfv/TMath::Sqrt(1.+ tgfv*tgfv); cs=TMath::Sqrt(1.- sn*sn);
e99a34df 1068 if (TMath::Abs(tgfv)>0.) cs = sn/tgfv;
1069 else cs=1.;
f76701bf 1070
1071 x = xv*cs + yv*sn;
1072 yv=-xv*sn + yv*cs; xv=x;
1073
1074 if (!Propagate(alpha+TMath::ASin(sn),xv,b)) return kFALSE;
e99a34df 1075
1076 if (dz==0) return kTRUE;
1077 dz[0] = GetParameter()[0] - yv;
1078 dz[1] = GetParameter()[1] - zv;
1079
1080 if (covar==0) return kTRUE;
58e536c5 1081 Double_t cov[6]; vtx->GetCovarianceMatrix(cov);
e99a34df 1082
1083 //***** Improvements by A.Dainese
1084 alpha=GetAlpha(); sn=TMath::Sin(alpha); cs=TMath::Cos(alpha);
1085 Double_t s2ylocvtx = cov[0]*sn*sn + cov[2]*cs*cs - 2.*cov[1]*cs*sn;
1086 covar[0] = GetCovariance()[0] + s2ylocvtx; // neglecting correlations
1087 covar[1] = GetCovariance()[1]; // between (x,y) and z
1088 covar[2] = GetCovariance()[2] + cov[5]; // in vertex's covariance matrix
1089 //*****
1090
29fbcc93 1091 return kTRUE;
f76701bf 1092}
1093
1094
b1149664 1095void AliExternalTrackParam::GetDirection(Double_t d[3]) const {
1096 //----------------------------------------------------------------
1097 // This function returns a unit vector along the track direction
1098 // in the global coordinate system.
1099 //----------------------------------------------------------------
1100 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
1101 Double_t snp=fP[2];
92934324 1102 Double_t csp =TMath::Sqrt((1.- snp)*(1.+snp));
b1149664 1103 Double_t norm=TMath::Sqrt(1.+ fP[3]*fP[3]);
1104 d[0]=(csp*cs - snp*sn)/norm;
1105 d[1]=(snp*cs + csp*sn)/norm;
1106 d[2]=fP[3]/norm;
1107}
1108
c683ddc2 1109Bool_t AliExternalTrackParam::GetPxPyPz(Double_t p[3]) const {
c9ec41e8 1110 //---------------------------------------------------------------------
1111 // This function returns the global track momentum components
1112 // Results for (nearly) straight tracks are meaningless !
1113 //---------------------------------------------------------------------
1114 p[0]=fP[4]; p[1]=fP[2]; p[2]=fP[3];
1115 return Local2GlobalMomentum(p,fAlpha);
1116}
a5e407e9 1117
def9660e 1118Double_t AliExternalTrackParam::Px() const {
957fb479 1119 //---------------------------------------------------------------------
1120 // Returns x-component of momentum
1121 // Result for (nearly) straight tracks is meaningless !
1122 //---------------------------------------------------------------------
def9660e 1123
957fb479 1124 Double_t p[3]={kVeryBig,kVeryBig,kVeryBig};
def9660e 1125 GetPxPyPz(p);
1126
1127 return p[0];
1128}
1129
1130Double_t AliExternalTrackParam::Py() const {
957fb479 1131 //---------------------------------------------------------------------
1132 // Returns y-component of momentum
1133 // Result for (nearly) straight tracks is meaningless !
1134 //---------------------------------------------------------------------
def9660e 1135
957fb479 1136 Double_t p[3]={kVeryBig,kVeryBig,kVeryBig};
def9660e 1137 GetPxPyPz(p);
1138
1139 return p[1];
1140}
1141
1142Double_t AliExternalTrackParam::Pz() const {
957fb479 1143 //---------------------------------------------------------------------
1144 // Returns z-component of momentum
1145 // Result for (nearly) straight tracks is meaningless !
1146 //---------------------------------------------------------------------
def9660e 1147
957fb479 1148 Double_t p[3]={kVeryBig,kVeryBig,kVeryBig};
def9660e 1149 GetPxPyPz(p);
1150
1151 return p[2];
1152}
1153
c683ddc2 1154Double_t AliExternalTrackParam::Xv() const {
1155 //---------------------------------------------------------------------
1156 // Returns x-component of first track point
1157 //---------------------------------------------------------------------
1158
1159 Double_t r[3]={0.,0.,0.};
1160 GetXYZ(r);
1161
1162 return r[0];
1163}
1164
1165Double_t AliExternalTrackParam::Yv() const {
1166 //---------------------------------------------------------------------
1167 // Returns y-component of first track point
1168 //---------------------------------------------------------------------
1169
1170 Double_t r[3]={0.,0.,0.};
1171 GetXYZ(r);
1172
1173 return r[1];
1174}
1175
1176Double_t AliExternalTrackParam::Zv() const {
1177 //---------------------------------------------------------------------
1178 // Returns z-component of first track point
1179 //---------------------------------------------------------------------
1180
1181 Double_t r[3]={0.,0.,0.};
1182 GetXYZ(r);
1183
1184 return r[2];
1185}
1186
def9660e 1187Double_t AliExternalTrackParam::Theta() const {
1188 // return theta angle of momentum
1189
7cdd0c20 1190 return 0.5*TMath::Pi() - TMath::ATan(fP[3]);
def9660e 1191}
1192
1193Double_t AliExternalTrackParam::Phi() const {
957fb479 1194 //---------------------------------------------------------------------
1195 // Returns the azimuthal angle of momentum
1196 // 0 <= phi < 2*pi
1197 //---------------------------------------------------------------------
def9660e 1198
957fb479 1199 Double_t phi=TMath::ASin(fP[2]) + fAlpha;
1200 if (phi<0.) phi+=2.*TMath::Pi();
1201 else if (phi>=2.*TMath::Pi()) phi-=2.*TMath::Pi();
1202
1203 return phi;
def9660e 1204}
1205
1206Double_t AliExternalTrackParam::M() const {
1207 // return particle mass
1208
1209 // No mass information available so far.
1210 // Redifine in derived class!
1211
1212 return -999.;
1213}
1214
1215Double_t AliExternalTrackParam::E() const {
1216 // return particle energy
1217
1218 // No PID information available so far.
1219 // Redifine in derived class!
1220
1221 return -999.;
1222}
1223
1224Double_t AliExternalTrackParam::Eta() const {
1225 // return pseudorapidity
1226
1227 return -TMath::Log(TMath::Tan(0.5 * Theta()));
1228}
1229
1230Double_t AliExternalTrackParam::Y() const {
1231 // return rapidity
1232
1233 // No PID information available so far.
1234 // Redifine in derived class!
1235
1236 return -999.;
1237}
1238
c9ec41e8 1239Bool_t AliExternalTrackParam::GetXYZ(Double_t *r) const {
1240 //---------------------------------------------------------------------
1241 // This function returns the global track position
1242 //---------------------------------------------------------------------
1243 r[0]=fX; r[1]=fP[0]; r[2]=fP[1];
1244 return Local2GlobalPosition(r,fAlpha);
51ad6848 1245}
1246
c9ec41e8 1247Bool_t AliExternalTrackParam::GetCovarianceXYZPxPyPz(Double_t cv[21]) const {
1248 //---------------------------------------------------------------------
1249 // This function returns the global covariance matrix of the track params
1250 //
1251 // Cov(x,x) ... : cv[0]
1252 // Cov(y,x) ... : cv[1] cv[2]
1253 // Cov(z,x) ... : cv[3] cv[4] cv[5]
1254 // Cov(px,x)... : cv[6] cv[7] cv[8] cv[9]
1255 // Cov(py,x)... : cv[10] cv[11] cv[12] cv[13] cv[14]
1256 // Cov(pz,x)... : cv[15] cv[16] cv[17] cv[18] cv[19] cv[20]
a5e407e9 1257 //
c9ec41e8 1258 // Results for (nearly) straight tracks are meaningless !
1259 //---------------------------------------------------------------------
e421f556 1260 if (TMath::Abs(fP[4])<=kAlmost0) {
c9ec41e8 1261 for (Int_t i=0; i<21; i++) cv[i]=0.;
1262 return kFALSE;
a5e407e9 1263 }
49d13e89 1264 if (TMath::Abs(fP[2]) > kAlmost1) {
c9ec41e8 1265 for (Int_t i=0; i<21; i++) cv[i]=0.;
1266 return kFALSE;
1267 }
1268 Double_t pt=1./TMath::Abs(fP[4]);
1269 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
92934324 1270 Double_t r=TMath::Sqrt((1.-fP[2])*(1.+fP[2]));
c9ec41e8 1271
1272 Double_t m00=-sn, m10=cs;
1273 Double_t m23=-pt*(sn + fP[2]*cs/r), m43=-pt*pt*(r*cs - fP[2]*sn);
1274 Double_t m24= pt*(cs - fP[2]*sn/r), m44=-pt*pt*(r*sn + fP[2]*cs);
1275 Double_t m35=pt, m45=-pt*pt*fP[3];
1276
854d5d49 1277 m43*=GetSign();
1278 m44*=GetSign();
1279 m45*=GetSign();
1280
c9ec41e8 1281 cv[0 ] = fC[0]*m00*m00;
1282 cv[1 ] = fC[0]*m00*m10;
1283 cv[2 ] = fC[0]*m10*m10;
1284 cv[3 ] = fC[1]*m00;
1285 cv[4 ] = fC[1]*m10;
1286 cv[5 ] = fC[2];
1287 cv[6 ] = m00*(fC[3]*m23 + fC[10]*m43);
1288 cv[7 ] = m10*(fC[3]*m23 + fC[10]*m43);
1289 cv[8 ] = fC[4]*m23 + fC[11]*m43;
1290 cv[9 ] = m23*(fC[5]*m23 + fC[12]*m43) + m43*(fC[12]*m23 + fC[14]*m43);
1291 cv[10] = m00*(fC[3]*m24 + fC[10]*m44);
1292 cv[11] = m10*(fC[3]*m24 + fC[10]*m44);
1293 cv[12] = fC[4]*m24 + fC[11]*m44;
1294 cv[13] = m23*(fC[5]*m24 + fC[12]*m44) + m43*(fC[12]*m24 + fC[14]*m44);
1295 cv[14] = m24*(fC[5]*m24 + fC[12]*m44) + m44*(fC[12]*m24 + fC[14]*m44);
1296 cv[15] = m00*(fC[6]*m35 + fC[10]*m45);
1297 cv[16] = m10*(fC[6]*m35 + fC[10]*m45);
1298 cv[17] = fC[7]*m35 + fC[11]*m45;
1299 cv[18] = m23*(fC[8]*m35 + fC[12]*m45) + m43*(fC[13]*m35 + fC[14]*m45);
1300 cv[19] = m24*(fC[8]*m35 + fC[12]*m45) + m44*(fC[13]*m35 + fC[14]*m45);
1301 cv[20] = m35*(fC[9]*m35 + fC[13]*m45) + m45*(fC[13]*m35 + fC[14]*m45);
51ad6848 1302
c9ec41e8 1303 return kTRUE;
51ad6848 1304}
1305
51ad6848 1306
c9ec41e8 1307Bool_t
1308AliExternalTrackParam::GetPxPyPzAt(Double_t x, Double_t b, Double_t *p) const {
1309 //---------------------------------------------------------------------
1310 // This function returns the global track momentum extrapolated to
1311 // the radial position "x" (cm) in the magnetic field "b" (kG)
1312 //---------------------------------------------------------------------
c9ec41e8 1313 p[0]=fP[4];
1530f89c 1314 p[1]=fP[2]+(x-fX)*GetC(b);
c9ec41e8 1315 p[2]=fP[3];
1316 return Local2GlobalMomentum(p,fAlpha);
51ad6848 1317}
1318
7cf7bb6c 1319Bool_t
1320AliExternalTrackParam::GetYAt(Double_t x, Double_t b, Double_t &y) const {
1321 //---------------------------------------------------------------------
1322 // This function returns the local Y-coordinate of the intersection
1323 // point between this track and the reference plane "x" (cm).
1324 // Magnetic field "b" (kG)
1325 //---------------------------------------------------------------------
1326 Double_t dx=x-fX;
1327 if(TMath::Abs(dx)<=kAlmost0) {y=fP[0]; return kTRUE;}
1328
1530f89c 1329 Double_t f1=fP[2], f2=f1 + dx*GetC(b);
7cf7bb6c 1330
1331 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
1332 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
1333
1334 Double_t r1=TMath::Sqrt(1.- f1*f1), r2=TMath::Sqrt(1.- f2*f2);
1335 y = fP[0] + dx*(f1+f2)/(r1+r2);
1336 return kTRUE;
1337}
1338
6c94f330 1339Bool_t
1340AliExternalTrackParam::GetZAt(Double_t x, Double_t b, Double_t &z) const {
1341 //---------------------------------------------------------------------
1342 // This function returns the local Z-coordinate of the intersection
1343 // point between this track and the reference plane "x" (cm).
1344 // Magnetic field "b" (kG)
1345 //---------------------------------------------------------------------
1346 Double_t dx=x-fX;
1347 if(TMath::Abs(dx)<=kAlmost0) {z=fP[1]; return kTRUE;}
1348
1349 Double_t f1=fP[2], f2=f1 + dx*fP[4]*b*kB2C;
1350
1351 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
1352 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
1353
1354 Double_t r1=sqrt(1.- f1*f1), r2=sqrt(1.- f2*f2);
1355 z = fP[1] + dx*(r2 + f2*(f1+f2)/(r1+r2))*fP[3]; // Many thanks to P.Hristov !
1356 return kTRUE;
1357}
1358
c9ec41e8 1359Bool_t
1360AliExternalTrackParam::GetXYZAt(Double_t x, Double_t b, Double_t *r) const {
1361 //---------------------------------------------------------------------
1362 // This function returns the global track position extrapolated to
1363 // the radial position "x" (cm) in the magnetic field "b" (kG)
1364 //---------------------------------------------------------------------
c9ec41e8 1365 Double_t dx=x-fX;
e421f556 1366 if(TMath::Abs(dx)<=kAlmost0) return GetXYZ(r);
1367
1530f89c 1368 Double_t f1=fP[2], f2=f1 + dx*GetC(b);
c9ec41e8 1369
e421f556 1370 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
49d13e89 1371 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
c9ec41e8 1372
1373 Double_t r1=TMath::Sqrt(1.- f1*f1), r2=TMath::Sqrt(1.- f2*f2);
1374 r[0] = x;
1375 r[1] = fP[0] + dx*(f1+f2)/(r1+r2);
6c94f330 1376 r[2] = fP[1] + dx*(f1+f2)/(f1*r2 + f2*r1)*fP[3];
c9ec41e8 1377 return Local2GlobalPosition(r,fAlpha);
51ad6848 1378}
1379
51ad6848 1380//_____________________________________________________________________________
1381void AliExternalTrackParam::Print(Option_t* /*option*/) const
1382{
1383// print the parameters and the covariance matrix
1384
1385 printf("AliExternalTrackParam: x = %-12g alpha = %-12g\n", fX, fAlpha);
1386 printf(" parameters: %12g %12g %12g %12g %12g\n",
c9ec41e8 1387 fP[0], fP[1], fP[2], fP[3], fP[4]);
1388 printf(" covariance: %12g\n", fC[0]);
1389 printf(" %12g %12g\n", fC[1], fC[2]);
1390 printf(" %12g %12g %12g\n", fC[3], fC[4], fC[5]);
51ad6848 1391 printf(" %12g %12g %12g %12g\n",
c9ec41e8 1392 fC[6], fC[7], fC[8], fC[9]);
51ad6848 1393 printf(" %12g %12g %12g %12g %12g\n",
c9ec41e8 1394 fC[10], fC[11], fC[12], fC[13], fC[14]);
51ad6848 1395}
5b77d93c 1396
c194ba83 1397Double_t AliExternalTrackParam::GetSnpAt(Double_t x,Double_t b) const {
1398 //
1399 // Get sinus at given x
1400 //
1530f89c 1401 Double_t crv=GetC(b);
c194ba83 1402 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
1403 Double_t dx = x-fX;
1404 Double_t res = fP[2]+dx*crv;
1405 return res;
1406}
bf00ebb8 1407
1408Bool_t AliExternalTrackParam::GetDistance(AliExternalTrackParam *param2, Double_t x, Double_t dist[3], Double_t bz){
1409 //------------------------------------------------------------------------
1410 // Get the distance between two tracks at the local position x
1411 // working in the local frame of this track.
1412 // Origin : Marian.Ivanov@cern.ch
1413 //-----------------------------------------------------------------------
1414 Double_t xyz[3];
1415 Double_t xyz2[3];
1416 xyz[0]=x;
1417 if (!GetYAt(x,bz,xyz[1])) return kFALSE;
1418 if (!GetZAt(x,bz,xyz[2])) return kFALSE;
1419 //
1420 //
1421 if (TMath::Abs(GetAlpha()-param2->GetAlpha())<kAlmost0){
1422 xyz2[0]=x;
1423 if (!param2->GetYAt(x,bz,xyz2[1])) return kFALSE;
1424 if (!param2->GetZAt(x,bz,xyz2[2])) return kFALSE;
1425 }else{
1426 //
1427 Double_t xyz1[3];
1428 Double_t dfi = param2->GetAlpha()-GetAlpha();
1429 Double_t ca = TMath::Cos(dfi), sa = TMath::Sin(dfi);
1430 xyz2[0] = xyz[0]*ca+xyz[1]*sa;
1431 xyz2[1] = -xyz[0]*sa+xyz[1]*ca;
1432 //
1433 xyz1[0]=xyz2[0];
1434 if (!param2->GetYAt(xyz2[0],bz,xyz1[1])) return kFALSE;
1435 if (!param2->GetZAt(xyz2[0],bz,xyz1[2])) return kFALSE;
1436 //
1437 xyz2[0] = xyz1[0]*ca-xyz1[1]*sa;
1438 xyz2[1] = +xyz1[0]*sa+xyz1[1]*ca;
1439 xyz2[2] = xyz1[2];
1440 }
1441 dist[0] = xyz[0]-xyz2[0];
1442 dist[1] = xyz[1]-xyz2[1];
1443 dist[2] = xyz[2]-xyz2[2];
1444
1445 return kTRUE;
1446}
0c19adf7 1447
1448
1449//
1450// Draw functionality.
1451// Origin: Marian Ivanov, Marian.Ivanov@cern.ch
1452//
1453
1454void AliExternalTrackParam::DrawTrack(Float_t magf, Float_t minR, Float_t maxR, Float_t stepR){
1455 //
1456 // Draw track line
1457 //
1458 if (minR>maxR) return ;
1459 if (stepR<=0) return ;
1460 Int_t npoints = TMath::Nint((maxR-minR)/stepR)+1;
1461 if (npoints<1) return;
1462 TPolyMarker3D *polymarker = new TPolyMarker3D(npoints);
1463 FillPolymarker(polymarker, magf,minR,maxR,stepR);
1464 polymarker->Draw();
1465}
1466
1467//
1468void AliExternalTrackParam::FillPolymarker(TPolyMarker3D *pol, Float_t magF, Float_t minR, Float_t maxR, Float_t stepR){
1469 //
1470 // Fill points in the polymarker
1471 //
1472 Int_t counter=0;
1473 for (Double_t r=minR; r<maxR; r+=stepR){
1474 Double_t point[3];
1475 GetXYZAt(r,magF,point);
1476 pol->SetPoint(counter,point[0],point[1], point[2]);
1477 printf("xyz\t%f\t%f\t%f\n",point[0], point[1],point[2]);
1478 counter++;
1479 }
1480}