]> git.uio.no Git - u/mrichter/AliRoot.git/blame - STEER/STEERBase/AliExternalTrackParam.cxx
Merge branch 'master' of https://git.cern.ch/reps/AliRoot
[u/mrichter/AliRoot.git] / STEER / STEERBase / AliExternalTrackParam.cxx
CommitLineData
51ad6848 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18///////////////////////////////////////////////////////////////////////////////
19// //
49d13e89 20// Implementation of the external track parameterisation class. //
51ad6848 21// //
49d13e89 22// This parameterisation is used to exchange tracks between the detectors. //
23// A set of functions returning the position and the momentum of tracks //
24// in the global coordinate system as well as the track impact parameters //
25// are implemented.
26// Origin: I.Belikov, CERN, Jouri.Belikov@cern.ch //
51ad6848 27///////////////////////////////////////////////////////////////////////////////
86be8934 28#include <cassert>
29
30#include <TVectorD.h>
4b189f98 31#include <TMatrixDSym.h>
d46683db 32#include <TPolyMarker3D.h>
33#include <TVector3.h>
cfdb62d4 34#include <TMatrixD.h>
d46683db 35
51ad6848 36#include "AliExternalTrackParam.h"
58e536c5 37#include "AliVVertex.h"
6c94f330 38#include "AliLog.h"
51ad6848 39
40ClassImp(AliExternalTrackParam)
41
ed5f2849 42Double32_t AliExternalTrackParam::fgMostProbablePt=kMostProbablePt;
f2cef1b5 43Bool_t AliExternalTrackParam::fgUseLogTermMS = kFALSE;;
51ad6848 44//_____________________________________________________________________________
90e48c0c 45AliExternalTrackParam::AliExternalTrackParam() :
4f6e22bd 46 AliVTrack(),
90e48c0c 47 fX(0),
c9ec41e8 48 fAlpha(0)
51ad6848 49{
90e48c0c 50 //
51 // default constructor
52 //
c9ec41e8 53 for (Int_t i = 0; i < 5; i++) fP[i] = 0;
54 for (Int_t i = 0; i < 15; i++) fC[i] = 0;
51ad6848 55}
56
6c94f330 57//_____________________________________________________________________________
58AliExternalTrackParam::AliExternalTrackParam(const AliExternalTrackParam &track):
4f6e22bd 59 AliVTrack(track),
6c94f330 60 fX(track.fX),
61 fAlpha(track.fAlpha)
62{
63 //
64 // copy constructor
65 //
66 for (Int_t i = 0; i < 5; i++) fP[i] = track.fP[i];
67 for (Int_t i = 0; i < 15; i++) fC[i] = track.fC[i];
86be8934 68 CheckCovariance();
6c94f330 69}
70
def9660e 71//_____________________________________________________________________________
72AliExternalTrackParam& AliExternalTrackParam::operator=(const AliExternalTrackParam &trkPar)
73{
74 //
75 // assignment operator
76 //
77
78 if (this!=&trkPar) {
4f6e22bd 79 AliVTrack::operator=(trkPar);
def9660e 80 fX = trkPar.fX;
81 fAlpha = trkPar.fAlpha;
82
83 for (Int_t i = 0; i < 5; i++) fP[i] = trkPar.fP[i];
84 for (Int_t i = 0; i < 15; i++) fC[i] = trkPar.fC[i];
86be8934 85 CheckCovariance();
def9660e 86 }
87
88 return *this;
89}
90
51ad6848 91//_____________________________________________________________________________
92AliExternalTrackParam::AliExternalTrackParam(Double_t x, Double_t alpha,
93 const Double_t param[5],
90e48c0c 94 const Double_t covar[15]) :
4f6e22bd 95 AliVTrack(),
90e48c0c 96 fX(x),
c9ec41e8 97 fAlpha(alpha)
51ad6848 98{
90e48c0c 99 //
100 // create external track parameters from given arguments
101 //
c9ec41e8 102 for (Int_t i = 0; i < 5; i++) fP[i] = param[i];
103 for (Int_t i = 0; i < 15; i++) fC[i] = covar[i];
86be8934 104 CheckCovariance();
51ad6848 105}
106
4ec1ca0f 107//_____________________________________________________________________________
108void AliExternalTrackParam::CopyFromVTrack(const AliVTrack *vTrack)
109{
110 //
111 // Recreate TrackParams from VTrack
112 // This is not a copy contructor !
113 //
114 if (!vTrack) {
115 AliError("Source VTrack is NULL");
116 return;
117 }
118 if (this==vTrack) {
119 AliError("Copy of itself is requested");
120 return;
121 }
122 //
123 if (vTrack->InheritsFrom(AliExternalTrackParam::Class())) {
124 AliDebug(1,"Source itself is AliExternalTrackParam, using assignment operator");
125 *this = *(AliExternalTrackParam*)vTrack;
126 return;
127 }
128 //
129 AliVTrack::operator=( *vTrack );
130 //
131 Double_t xyz[3],pxpypz[3],cv[21];
132 vTrack->GetXYZ(xyz);
133 pxpypz[0]=vTrack->Px();
134 pxpypz[1]=vTrack->Py();
135 pxpypz[2]=vTrack->Pz();
136 vTrack->GetCovarianceXYZPxPyPz(cv);
137 Short_t sign = (Short_t)vTrack->Charge();
138 Set(xyz,pxpypz,cv,sign);
139}
140
4f6e22bd 141//_____________________________________________________________________________
142AliExternalTrackParam::AliExternalTrackParam(const AliVTrack *vTrack) :
143 AliVTrack(),
144 fX(0.),
145 fAlpha(0.)
146{
147 //
610e3088 148 // Constructor from virtual track,
149 // This is not a copy contructor !
4f6e22bd 150 //
610e3088 151
152 if (vTrack->InheritsFrom("AliExternalTrackParam")) {
153 AliError("This is not a copy constructor. Use AliExternalTrackParam(const AliExternalTrackParam &) !");
154 AliWarning("Calling the default constructor...");
155 AliExternalTrackParam();
156 return;
157 }
158
892be05f 159 Double_t xyz[3],pxpypz[3],cv[21];
160 vTrack->GetXYZ(xyz);
161 pxpypz[0]=vTrack->Px();
162 pxpypz[1]=vTrack->Py();
163 pxpypz[2]=vTrack->Pz();
4f6e22bd 164 vTrack->GetCovarianceXYZPxPyPz(cv);
165 Short_t sign = (Short_t)vTrack->Charge();
166
167 Set(xyz,pxpypz,cv,sign);
168}
169
90e48c0c 170//_____________________________________________________________________________
da4e3deb 171AliExternalTrackParam::AliExternalTrackParam(Double_t xyz[3],Double_t pxpypz[3],
172 Double_t cv[21],Short_t sign) :
4f6e22bd 173 AliVTrack(),
da4e3deb 174 fX(0.),
175 fAlpha(0.)
4f6e22bd 176{
177 //
178 // constructor from the global parameters
179 //
180
181 Set(xyz,pxpypz,cv,sign);
182}
183
d14ea120 184/*
4f6e22bd 185//_____________________________________________________________________________
186void AliExternalTrackParam::Set(Double_t xyz[3],Double_t pxpypz[3],
187 Double_t cv[21],Short_t sign)
da4e3deb 188{
189 //
190 // create external track parameters from the global parameters
191 // x,y,z,px,py,pz and their 6x6 covariance matrix
192 // A.Dainese 10.10.08
193
aff56ff7 194 // Calculate alpha: the rotation angle of the corresponding local system.
195 //
196 // For global radial position inside the beam pipe, alpha is the
197 // azimuthal angle of the momentum projected on (x,y).
198 //
c99948ce 199 // For global radial position outside the ITS, alpha is the
aff56ff7 200 // azimuthal angle of the centre of the TPC sector in which the point
201 // xyz lies
202 //
4349f5a4 203 const double kSafe = 1e-5;
aff56ff7 204 Double_t radPos2 = xyz[0]*xyz[0]+xyz[1]*xyz[1];
c99948ce 205 Double_t radMax = 45.; // approximately ITS outer radius
4349f5a4 206 if (radPos2 < radMax*radMax) { // inside the ITS
aff56ff7 207 fAlpha = TMath::ATan2(pxpypz[1],pxpypz[0]);
c99948ce 208 } else { // outside the ITS
aff56ff7 209 Float_t phiPos = TMath::Pi()+TMath::ATan2(-xyz[1], -xyz[0]);
210 fAlpha =
211 TMath::DegToRad()*(20*((((Int_t)(phiPos*TMath::RadToDeg()))/20))+10);
212 }
4349f5a4 213 //
214 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
215 // protection: avoid alpha being too close to 0 or +-pi/2
5123be3b 216 if (TMath::Abs(sn)<2*kSafe) {
217 if (fAlpha>0) fAlpha += fAlpha< TMath::Pi()/2. ? 2*kSafe : -2*kSafe;
218 else fAlpha += fAlpha>-TMath::Pi()/2. ? -2*kSafe : 2*kSafe;
4349f5a4 219 cs=TMath::Cos(fAlpha);
220 sn=TMath::Sin(fAlpha);
221 }
5123be3b 222 else if (TMath::Abs(cs)<2*kSafe) {
223 if (fAlpha>0) fAlpha += fAlpha> TMath::Pi()/2. ? 2*kSafe : -2*kSafe;
224 else fAlpha += fAlpha>-TMath::Pi()/2. ? 2*kSafe : -2*kSafe;
4349f5a4 225 cs=TMath::Cos(fAlpha);
8defb4a0 226 sn=TMath::Sin(fAlpha);
4349f5a4 227 }
da4e3deb 228 // Get the vertex of origin and the momentum
229 TVector3 ver(xyz[0],xyz[1],xyz[2]);
230 TVector3 mom(pxpypz[0],pxpypz[1],pxpypz[2]);
4349f5a4 231 //
232 // avoid momenta along axis
233 if (TMath::Abs(mom[0])<kSafe) mom[0] = TMath::Sign(kSafe*TMath::Abs(mom[1]), mom[0]);
234 if (TMath::Abs(mom[1])<kSafe) mom[1] = TMath::Sign(kSafe*TMath::Abs(mom[0]), mom[1]);
da4e3deb 235
236 // Rotate to the local coordinate system
237 ver.RotateZ(-fAlpha);
238 mom.RotateZ(-fAlpha);
239
d14ea120 240 //
da4e3deb 241 // x of the reference plane
242 fX = ver.X();
243
244 Double_t charge = (Double_t)sign;
245
246 fP[0] = ver.Y();
247 fP[1] = ver.Z();
248 fP[2] = TMath::Sin(mom.Phi());
249 fP[3] = mom.Pz()/mom.Pt();
250 fP[4] = TMath::Sign(1/mom.Pt(),charge);
d14ea120 251 //
252 if (TMath::Abs( 1-fP[2]) < 3*kSafe) fP[2] = 1.- 3*kSafe; //Protection
253 else if (TMath::Abs(-1-fP[2]) < 3*kSafe) fP[2] =-1.+ 3*kSafe; //Protection
254 //
da4e3deb 255 // Covariance matrix (formulas to be simplified)
da4e3deb 256 Double_t pt=1./TMath::Abs(fP[4]);
d14ea120 257 // avoid alpha+phi being to close to +-pi/2 in the cov.matrix evaluation
258 double fp2 = fP[2];
259 Double_t r=TMath::Sqrt((1.-fp2)*(1.+fp2));
260 //
da4e3deb 261 Double_t m00=-sn;// m10=cs;
d14ea120 262 Double_t m23=-pt*(sn + fp2*cs/r), m43=-pt*pt*(r*cs - fp2*sn);
263 Double_t m24= pt*(cs - fp2*sn/r), m44=-pt*pt*(r*sn + fp2*cs);
da4e3deb 264 Double_t m35=pt, m45=-pt*pt*fP[3];
265
266 m43*=GetSign();
267 m44*=GetSign();
268 m45*=GetSign();
269
270 Double_t cv34 = TMath::Sqrt(cv[3 ]*cv[3 ]+cv[4 ]*cv[4 ]);
271 Double_t a1=cv[13]-cv[9]*(m23*m44+m43*m24)/m23/m43;
272 Double_t a2=m23*m24-m23*(m23*m44+m43*m24)/m43;
273 Double_t a3=m43*m44-m43*(m23*m44+m43*m24)/m23;
d14ea120 274 Double_t a4=cv[14]+2.*cv[9]; //cv[14]-2.*cv[9]*m24*m44/m23/m43;
da4e3deb 275 Double_t a5=m24*m24-2.*m24*m44*m23/m43;
276 Double_t a6=m44*m44-2.*m24*m44*m43/m23;
277
278 fC[0 ] = cv[0 ]+cv[2 ];
279 fC[1 ] = TMath::Sign(cv34,cv[3 ]/m00);
280 fC[2 ] = cv[5 ];
5123be3b 281 fC[3 ] = (cv[10]*m43-cv[6]*m44)/(m24*m43-m23*m44)/m00;
da4e3deb 282 fC[10] = (cv[6]/m00-fC[3 ]*m23)/m43;
283 fC[6 ] = (cv[15]/m00-fC[10]*m45)/m35;
5123be3b 284 fC[4 ] = (cv[12]*m43-cv[8]*m44)/(m24*m43-m23*m44);
da4e3deb 285 fC[11] = (cv[8]-fC[4]*m23)/m43;
286 fC[7 ] = cv[17]/m35-fC[11]*m45/m35;
5123be3b 287 fC[5 ] = TMath::Abs((a4*a3-a6*a1)/(a5*a3-a6*a2));
288 fC[14] = TMath::Abs((a1-a2*fC[5])/a3);
da4e3deb 289 fC[12] = (cv[9]-fC[5]*m23*m23-fC[14]*m43*m43)/m23/m43;
290 Double_t b1=cv[18]-fC[12]*m23*m45-fC[14]*m43*m45;
291 Double_t b2=m23*m35;
292 Double_t b3=m43*m35;
293 Double_t b4=cv[19]-fC[12]*m24*m45-fC[14]*m44*m45;
294 Double_t b5=m24*m35;
295 Double_t b6=m44*m35;
296 fC[8 ] = (b4-b6*b1/b3)/(b5-b6*b2/b3);
297 fC[13] = b1/b3-b2*fC[8]/b3;
298 fC[9 ] = TMath::Abs((cv[20]-fC[14]*(m45*m45)-fC[13]*2.*m35*m45)/(m35*m35));
4f6e22bd 299
86be8934 300 CheckCovariance();
301
4f6e22bd 302 return;
da4e3deb 303}
d14ea120 304*/
305
306//_____________________________________________________________________________
307void AliExternalTrackParam::Set(Double_t xyz[3],Double_t pxpypz[3],
308 Double_t cv[21],Short_t sign)
309{
310 //
311 // create external track parameters from the global parameters
312 // x,y,z,px,py,pz and their 6x6 covariance matrix
313 // A.Dainese 10.10.08
314
315 // Calculate alpha: the rotation angle of the corresponding local system.
316 //
317 // For global radial position inside the beam pipe, alpha is the
318 // azimuthal angle of the momentum projected on (x,y).
319 //
320 // For global radial position outside the ITS, alpha is the
321 // azimuthal angle of the centre of the TPC sector in which the point
322 // xyz lies
323 //
324 const double kSafe = 1e-5;
325 Double_t radPos2 = xyz[0]*xyz[0]+xyz[1]*xyz[1];
326 Double_t radMax = 45.; // approximately ITS outer radius
327 if (radPos2 < radMax*radMax) { // inside the ITS
328 fAlpha = TMath::ATan2(pxpypz[1],pxpypz[0]);
329 } else { // outside the ITS
330 Float_t phiPos = TMath::Pi()+TMath::ATan2(-xyz[1], -xyz[0]);
331 fAlpha =
332 TMath::DegToRad()*(20*((((Int_t)(phiPos*TMath::RadToDeg()))/20))+10);
333 }
334 //
335 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
336 // protection: avoid alpha being too close to 0 or +-pi/2
337 if (TMath::Abs(sn)<2*kSafe) {
338 if (fAlpha>0) fAlpha += fAlpha< TMath::Pi()/2. ? 2*kSafe : -2*kSafe;
339 else fAlpha += fAlpha>-TMath::Pi()/2. ? -2*kSafe : 2*kSafe;
340 cs=TMath::Cos(fAlpha);
341 sn=TMath::Sin(fAlpha);
342 }
343 else if (TMath::Abs(cs)<2*kSafe) {
344 if (fAlpha>0) fAlpha += fAlpha> TMath::Pi()/2. ? 2*kSafe : -2*kSafe;
345 else fAlpha += fAlpha>-TMath::Pi()/2. ? 2*kSafe : -2*kSafe;
346 cs=TMath::Cos(fAlpha);
347 sn=TMath::Sin(fAlpha);
348 }
349 // Get the vertex of origin and the momentum
350 TVector3 ver(xyz[0],xyz[1],xyz[2]);
351 TVector3 mom(pxpypz[0],pxpypz[1],pxpypz[2]);
352 //
353 // Rotate to the local coordinate system
354 ver.RotateZ(-fAlpha);
355 mom.RotateZ(-fAlpha);
356
357 //
358 // x of the reference plane
359 fX = ver.X();
360
361 Double_t charge = (Double_t)sign;
362
363 fP[0] = ver.Y();
364 fP[1] = ver.Z();
365 fP[2] = TMath::Sin(mom.Phi());
366 fP[3] = mom.Pz()/mom.Pt();
367 fP[4] = TMath::Sign(1/mom.Pt(),charge);
368 //
369 if (TMath::Abs( 1-fP[2]) < kSafe) fP[2] = 1.- kSafe; //Protection
370 else if (TMath::Abs(-1-fP[2]) < kSafe) fP[2] =-1.+ kSafe; //Protection
371 //
372 // Covariance matrix (formulas to be simplified)
373 Double_t pt=1./TMath::Abs(fP[4]);
374 Double_t r=TMath::Sqrt((1.-fP[2])*(1.+fP[2]));
375 //
376 Double_t cv34 = TMath::Sqrt(cv[3 ]*cv[3 ]+cv[4 ]*cv[4 ]);
377 //
378 Int_t special = 0;
379 double sgcheck = r*sn + fP[2]*cs;
380 if (TMath::Abs(sgcheck)>=1-kSafe) { // special case: lab phi is +-pi/2
381 special = 1;
382 sgcheck = TMath::Sign(1.0,sgcheck);
383 }
384 else if (TMath::Abs(sgcheck)<kSafe) {
385 sgcheck = TMath::Sign(1.0,cs);
386 special = 2; // special case: lab phi is 0
387 }
388 //
389 fC[0 ] = cv[0 ]+cv[2 ];
390 fC[1 ] = TMath::Sign(cv34,-cv[3 ]*sn);
391 fC[2 ] = cv[5 ];
392 //
393 if (special==1) {
394 double pti = 1./pt;
395 double pti2 = pti*pti;
396 int q = GetSign();
397 fC[3 ] = cv[6]*pti;
398 fC[4 ] = -sgcheck*cv[8]*r*pti;
399 fC[5 ] = TMath::Abs(cv[9]*r*r*pti2);
400 fC[6 ] = (cv[10]*fP[3]-sgcheck*cv[15])*pti/r;
401 fC[7 ] = (cv[17]-sgcheck*cv[12]*fP[3])*pti;
402 fC[8 ] = (-sgcheck*cv[18]+cv[13]*fP[3])*r*pti2;
403 fC[9 ] = TMath::Abs( cv[20]-2*sgcheck*cv[19]*fP[3]+cv[14]*fP[3]*fP[3])*pti2;
404 fC[10] = cv[10]*pti2/r*q;
405 fC[11] = -sgcheck*cv[12]*pti2*q;
406 fC[12] = cv[13]*r*pti*pti2*q;
407 fC[13] = (-sgcheck*cv[19]+cv[14]*fP[3])*r*pti2*pti;
408 fC[14] = TMath::Abs(cv[14]*pti2*pti2);
409 } else if (special==2) {
410 double pti = 1./pt;
411 double pti2 = pti*pti;
412 int q = GetSign();
413 fC[3 ] = -cv[10]*pti*cs/sn;
414 fC[4 ] = cv[12]*cs*pti;
415 fC[5 ] = TMath::Abs(cv[14]*cs*cs*pti2);
416 fC[6 ] = (sgcheck*cv[6]*fP[3]-cv[15])*pti/sn;
417 fC[7 ] = (cv[17]-sgcheck*cv[8]*fP[3])*pti;
418 fC[8 ] = (cv[19]-sgcheck*cv[13]*fP[3])*cs*pti2;
419 fC[9 ] = TMath::Abs( cv[20]-2*sgcheck*cv[18]*fP[3]+cv[9]*fP[3]*fP[3])*pti2;
420 fC[10] = sgcheck*cv[6]*pti2/sn*q;
421 fC[11] = -sgcheck*cv[8]*pti2*q;
422 fC[12] = -sgcheck*cv[13]*cs*pti*pti2*q;
423 fC[13] = (-sgcheck*cv[18]+cv[9]*fP[3])*pti2*pti*q;
424 fC[14] = TMath::Abs(cv[9]*pti2*pti2);
425 }
426 else {
427 Double_t m00=-sn;// m10=cs;
428 Double_t m23=-pt*(sn + fP[2]*cs/r), m43=-pt*pt*(r*cs - fP[2]*sn);
429 Double_t m24= pt*(cs - fP[2]*sn/r), m44=-pt*pt*(r*sn + fP[2]*cs);
430 Double_t m35=pt, m45=-pt*pt*fP[3];
431 //
432 m43*=GetSign();
433 m44*=GetSign();
434 m45*=GetSign();
435 //
436 Double_t a1=cv[13]-cv[9]*(m23*m44+m43*m24)/m23/m43;
437 Double_t a2=m23*m24-m23*(m23*m44+m43*m24)/m43;
438 Double_t a3=m43*m44-m43*(m23*m44+m43*m24)/m23;
439 Double_t a4=cv[14]+2.*cv[9]; //cv[14]-2.*cv[9]*m24*m44/m23/m43;
440 Double_t a5=m24*m24-2.*m24*m44*m23/m43;
441 Double_t a6=m44*m44-2.*m24*m44*m43/m23;
442 //
443 fC[3 ] = (cv[10]*m43-cv[6]*m44)/(m24*m43-m23*m44)/m00;
444 fC[10] = (cv[6]/m00-fC[3 ]*m23)/m43;
445 fC[6 ] = (cv[15]/m00-fC[10]*m45)/m35;
446 fC[4 ] = (cv[12]*m43-cv[8]*m44)/(m24*m43-m23*m44);
447 fC[11] = (cv[8]-fC[4]*m23)/m43;
448 fC[7 ] = cv[17]/m35-fC[11]*m45/m35;
449 fC[5 ] = TMath::Abs((a4*a3-a6*a1)/(a5*a3-a6*a2));
450 fC[14] = TMath::Abs((a1-a2*fC[5])/a3);
451 fC[12] = (cv[9]-fC[5]*m23*m23-fC[14]*m43*m43)/m23/m43;
452 Double_t b1=cv[18]-fC[12]*m23*m45-fC[14]*m43*m45;
453 Double_t b2=m23*m35;
454 Double_t b3=m43*m35;
455 Double_t b4=cv[19]-fC[12]*m24*m45-fC[14]*m44*m45;
456 Double_t b5=m24*m35;
457 Double_t b6=m44*m35;
458 fC[8 ] = (b4-b6*b1/b3)/(b5-b6*b2/b3);
459 fC[13] = b1/b3-b2*fC[8]/b3;
460 fC[9 ] = TMath::Abs((cv[20]-fC[14]*(m45*m45)-fC[13]*2.*m35*m45)/(m35*m35));
461 }
462 CheckCovariance();
463
464 return;
465}
da4e3deb 466
51ad6848 467//_____________________________________________________________________________
c9ec41e8 468void AliExternalTrackParam::Reset() {
1530f89c 469 //
470 // Resets all the parameters to 0
471 //
c9ec41e8 472 fX=fAlpha=0.;
473 for (Int_t i = 0; i < 5; i++) fP[i] = 0;
474 for (Int_t i = 0; i < 15; i++) fC[i] = 0;
51ad6848 475}
476
3775b0ca 477//_____________________________________________________________________________
478void AliExternalTrackParam::AddCovariance(const Double_t c[15]) {
479 //
480 // Add "something" to the track covarince matrix.
481 // May be needed to account for unknown mis-calibration/mis-alignment
482 //
483 fC[0] +=c[0];
484 fC[1] +=c[1]; fC[2] +=c[2];
485 fC[3] +=c[3]; fC[4] +=c[4]; fC[5] +=c[5];
486 fC[6] +=c[6]; fC[7] +=c[7]; fC[8] +=c[8]; fC[9] +=c[9];
487 fC[10]+=c[10]; fC[11]+=c[11]; fC[12]+=c[12]; fC[13]+=c[13]; fC[14]+=c[14];
86be8934 488 CheckCovariance();
3775b0ca 489}
490
491
c9ec41e8 492Double_t AliExternalTrackParam::GetP() const {
493 //---------------------------------------------------------------------
494 // This function returns the track momentum
495 // Results for (nearly) straight tracks are meaningless !
496 //---------------------------------------------------------------------
06fb4a2f 497 if (TMath::Abs(fP[4])<=kAlmost0) return kVeryBig;
c9ec41e8 498 return TMath::Sqrt(1.+ fP[3]*fP[3])/TMath::Abs(fP[4]);
51ad6848 499}
500
1d99986f 501Double_t AliExternalTrackParam::Get1P() const {
502 //---------------------------------------------------------------------
503 // This function returns the 1/(track momentum)
504 //---------------------------------------------------------------------
505 return TMath::Abs(fP[4])/TMath::Sqrt(1.+ fP[3]*fP[3]);
506}
507
c9ec41e8 508//_______________________________________________________________________
c7bafca9 509Double_t AliExternalTrackParam::GetD(Double_t x,Double_t y,Double_t b) const {
c9ec41e8 510 //------------------------------------------------------------------
511 // This function calculates the transverse impact parameter
512 // with respect to a point with global coordinates (x,y)
513 // in the magnetic field "b" (kG)
514 //------------------------------------------------------------------
5773defd 515 if (TMath::Abs(b) < kAlmost0Field) return GetLinearD(x,y);
1530f89c 516 Double_t rp4=GetC(b);
c9ec41e8 517
518 Double_t xt=fX, yt=fP[0];
519
520 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
521 Double_t a = x*cs + y*sn;
522 y = -x*sn + y*cs; x=a;
523 xt-=x; yt-=y;
524
bfd20868 525 sn=rp4*xt - fP[2]; cs=rp4*yt + TMath::Sqrt((1.- fP[2])*(1.+fP[2]));
526 a=2*(xt*fP[2] - yt*TMath::Sqrt((1.-fP[2])*(1.+fP[2])))-rp4*(xt*xt + yt*yt);
1530f89c 527 return -a/(1 + TMath::Sqrt(sn*sn + cs*cs));
528}
529
530//_______________________________________________________________________
531void AliExternalTrackParam::
532GetDZ(Double_t x, Double_t y, Double_t z, Double_t b, Float_t dz[2]) const {
533 //------------------------------------------------------------------
534 // This function calculates the transverse and longitudinal impact parameters
535 // with respect to a point with global coordinates (x,y)
536 // in the magnetic field "b" (kG)
537 //------------------------------------------------------------------
bfd20868 538 Double_t f1 = fP[2], r1 = TMath::Sqrt((1.-f1)*(1.+f1));
1530f89c 539 Double_t xt=fX, yt=fP[0];
540 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
541 Double_t a = x*cs + y*sn;
542 y = -x*sn + y*cs; x=a;
543 xt-=x; yt-=y;
544
545 Double_t rp4=GetC(b);
546 if ((TMath::Abs(b) < kAlmost0Field) || (TMath::Abs(rp4) < kAlmost0)) {
547 dz[0] = -(xt*f1 - yt*r1);
548 dz[1] = fP[1] + (dz[0]*f1 - xt)/r1*fP[3] - z;
549 return;
550 }
551
552 sn=rp4*xt - f1; cs=rp4*yt + r1;
553 a=2*(xt*f1 - yt*r1)-rp4*(xt*xt + yt*yt);
554 Double_t rr=TMath::Sqrt(sn*sn + cs*cs);
555 dz[0] = -a/(1 + rr);
bfd20868 556 Double_t f2 = -sn/rr, r2 = TMath::Sqrt((1.-f2)*(1.+f2));
1530f89c 557 dz[1] = fP[1] + fP[3]/rp4*TMath::ASin(f2*r1 - f1*r2) - z;
51ad6848 558}
559
49d13e89 560//_______________________________________________________________________
561Double_t AliExternalTrackParam::GetLinearD(Double_t xv,Double_t yv) const {
562 //------------------------------------------------------------------
563 // This function calculates the transverse impact parameter
564 // with respect to a point with global coordinates (xv,yv)
565 // neglecting the track curvature.
566 //------------------------------------------------------------------
567 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
568 Double_t x= xv*cs + yv*sn;
569 Double_t y=-xv*sn + yv*cs;
570
bfd20868 571 Double_t d = (fX-x)*fP[2] - (fP[0]-y)*TMath::Sqrt((1.-fP[2])*(1.+fP[2]));
49d13e89 572
1530f89c 573 return -d;
49d13e89 574}
575
b8e07ed6 576Bool_t AliExternalTrackParam::CorrectForMeanMaterialdEdx
577(Double_t xOverX0, Double_t xTimesRho, Double_t mass,
578 Double_t dEdx,
579 Bool_t anglecorr) {
116b445b 580 //------------------------------------------------------------------
581 // This function corrects the track parameters for the crossed material.
582 // "xOverX0" - X/X0, the thickness in units of the radiation length.
2b99ff83 583 // "xTimesRho" - is the product length*density (g/cm^2).
584 // It should be passed as negative when propagating tracks
585 // from the intreaction point to the outside of the central barrel.
1d26da6d 586 // "mass" - the mass of this particle (GeV/c^2). Negative mass means charge=2 particle
b8e07ed6 587 // "dEdx" - mean enery loss (GeV/(g/cm^2)
588 // "anglecorr" - switch for the angular correction
116b445b 589 //------------------------------------------------------------------
590 Double_t &fP2=fP[2];
591 Double_t &fP3=fP[3];
592 Double_t &fP4=fP[4];
593
594 Double_t &fC22=fC[5];
595 Double_t &fC33=fC[9];
596 Double_t &fC43=fC[13];
597 Double_t &fC44=fC[14];
598
7dded1d5 599 //Apply angle correction, if requested
600 if(anglecorr) {
bfd20868 601 Double_t angle=TMath::Sqrt((1.+ fP3*fP3)/((1-fP2)*(1.+fP2)));
7dded1d5 602 xOverX0 *=angle;
603 xTimesRho *=angle;
604 }
605
116b445b 606 Double_t p=GetP();
1d26da6d 607 if (mass<0) p += p; // q=2 particle
116b445b 608 Double_t p2=p*p;
609 Double_t beta2=p2/(p2 + mass*mass);
116b445b 610
9f2bec63 611 //Calculating the multiple scattering corrections******************
612 Double_t cC22 = 0.;
613 Double_t cC33 = 0.;
614 Double_t cC43 = 0.;
615 Double_t cC44 = 0.;
116b445b 616 if (xOverX0 != 0) {
f2cef1b5 617 //Double_t theta2=1.0259e-6*14*14/28/(beta2*p2)*TMath::Abs(d)*9.36*2.33;
618 Double_t theta2=0.0136*0.0136/(beta2*p2)*TMath::Abs(xOverX0);
619 if (GetUseLogTermMS()) {
620 double lt = 1+0.038*TMath::Log(TMath::Abs(xOverX0));
621 if (lt>0) theta2 *= lt*lt;
622 }
1d26da6d 623 if (mass<0) theta2 *= 4; // q=2 particle
f2cef1b5 624 if(theta2>TMath::Pi()*TMath::Pi()) return kFALSE;
625 cC22 = theta2*((1.-fP2)*(1.+fP2))*(1. + fP3*fP3);
626 cC33 = theta2*(1. + fP3*fP3)*(1. + fP3*fP3);
627 cC43 = theta2*fP3*fP4*(1. + fP3*fP3);
628 cC44 = theta2*fP3*fP4*fP3*fP4;
116b445b 629 }
630
9f2bec63 631 //Calculating the energy loss corrections************************
632 Double_t cP4=1.;
116b445b 633 if ((xTimesRho != 0.) && (beta2 < 1.)) {
b8e07ed6 634 Double_t dE=dEdx*xTimesRho;
116b445b 635 Double_t e=TMath::Sqrt(p2 + mass*mass);
636 if ( TMath::Abs(dE) > 0.3*e ) return kFALSE; //30% energy loss is too much!
76ece3d8 637 if ( (1.+ dE/p2*(dE + 2*e)) < 0. ) return kFALSE;
c9038cae 638 cP4 = 1./TMath::Sqrt(1.+ dE/p2*(dE + 2*e)); //A precise formula by Ruben !
9f2bec63 639 if (TMath::Abs(fP4*cP4)>100.) return kFALSE; //Do not track below 10 MeV/c
4b2fa3ce 640
116b445b 641
642 // Approximate energy loss fluctuation (M.Ivanov)
643 const Double_t knst=0.07; // To be tuned.
644 Double_t sigmadE=knst*TMath::Sqrt(TMath::Abs(dE));
9f2bec63 645 cC44 += ((sigmadE*e/p2*fP4)*(sigmadE*e/p2*fP4));
116b445b 646
647 }
648
9f2bec63 649 //Applying the corrections*****************************
650 fC22 += cC22;
651 fC33 += cC33;
652 fC43 += cC43;
653 fC44 += cC44;
654 fP4 *= cP4;
655
86be8934 656 CheckCovariance();
657
116b445b 658 return kTRUE;
659}
660
b8e07ed6 661Bool_t AliExternalTrackParam::CorrectForMeanMaterial
662(Double_t xOverX0, Double_t xTimesRho, Double_t mass,
663 Bool_t anglecorr,
664 Double_t (*Bethe)(Double_t)) {
665 //------------------------------------------------------------------
666 // This function corrects the track parameters for the crossed material.
667 // "xOverX0" - X/X0, the thickness in units of the radiation length.
668 // "xTimesRho" - is the product length*density (g/cm^2).
2b99ff83 669 // It should be passed as negative when propagating tracks
670 // from the intreaction point to the outside of the central barrel.
1d26da6d 671 // "mass" - the mass of this particle (GeV/c^2). mass<0 means charge=2
b8e07ed6 672 // "anglecorr" - switch for the angular correction
673 // "Bethe" - function calculating the energy loss (GeV/(g/cm^2))
674 //------------------------------------------------------------------
37486ceb 675
b8e07ed6 676 Double_t bg=GetP()/mass;
1d26da6d 677 if (mass<0) {
678 if (mass<-990) {
d4da4017 679 AliDebug(2,Form("Mass %f corresponds to unknown PID particle",mass));
1d26da6d 680 return kFALSE;
681 }
682 bg = -2*bg;
937a4c16 683 }
b8e07ed6 684 Double_t dEdx=Bethe(bg);
1d26da6d 685 if (mass<0) dEdx *= 4;
b8e07ed6 686
687 return CorrectForMeanMaterialdEdx(xOverX0,xTimesRho,mass,dEdx,anglecorr);
688}
689
690Bool_t AliExternalTrackParam::CorrectForMeanMaterialZA
691(Double_t xOverX0, Double_t xTimesRho, Double_t mass,
692 Double_t zOverA,
693 Double_t density,
694 Double_t exEnergy,
695 Double_t jp1,
696 Double_t jp2,
697 Bool_t anglecorr) {
698 //------------------------------------------------------------------
699 // This function corrects the track parameters for the crossed material
700 // using the full Geant-like Bethe-Bloch formula parameterization
701 // "xOverX0" - X/X0, the thickness in units of the radiation length.
702 // "xTimesRho" - is the product length*density (g/cm^2).
2b99ff83 703 // It should be passed as negative when propagating tracks
704 // from the intreaction point to the outside of the central barrel.
1d26da6d 705 // "mass" - the mass of this particle (GeV/c^2). mass<0 means charge=2 particle
b8e07ed6 706 // "density" - mean density (g/cm^3)
707 // "zOverA" - mean Z/A
708 // "exEnergy" - mean exitation energy (GeV)
709 // "jp1" - density effect first junction point
710 // "jp2" - density effect second junction point
711 // "anglecorr" - switch for the angular correction
712 //
713 // The default values of the parameters are for silicon
714 //
715 //------------------------------------------------------------------
716
717 Double_t bg=GetP()/mass;
1d26da6d 718 if (mass<0) {
719 if (mass<-990) {
86a725e3 720 AliDebug(2,Form("Mass %f corresponds to unknown PID particle",mass));
1d26da6d 721 return kFALSE;
722 }
723 bg = -2*bg;
724 }
b8e07ed6 725 Double_t dEdx=BetheBlochGeant(bg,density,jp1,jp2,exEnergy,zOverA);
726
1d26da6d 727 if (mass<0) dEdx *= 4;
b8e07ed6 728 return CorrectForMeanMaterialdEdx(xOverX0,xTimesRho,mass,dEdx,anglecorr);
729}
730
731
116b445b 732
ee5dba5e 733Bool_t AliExternalTrackParam::CorrectForMaterial
734(Double_t d, Double_t x0, Double_t mass, Double_t (*Bethe)(Double_t)) {
c7bafca9 735 //------------------------------------------------------------------
116b445b 736 // Deprecated function !
737 // Better use CorrectForMeanMaterial instead of it.
738 //
c7bafca9 739 // This function corrects the track parameters for the crossed material
740 // "d" - the thickness (fraction of the radiation length)
2b99ff83 741 // It should be passed as negative when propagating tracks
742 // from the intreaction point to the outside of the central barrel.
c7bafca9 743 // "x0" - the radiation length (g/cm^2)
744 // "mass" - the mass of this particle (GeV/c^2)
745 //------------------------------------------------------------------
c7bafca9 746
b8e07ed6 747 return CorrectForMeanMaterial(d,x0*d,mass,kTRUE,Bethe);
c7bafca9 748
c7bafca9 749}
750
9c56b409 751Double_t AliExternalTrackParam::BetheBlochAleph(Double_t bg,
752 Double_t kp1,
753 Double_t kp2,
754 Double_t kp3,
755 Double_t kp4,
756 Double_t kp5) {
757 //
758 // This is the empirical ALEPH parameterization of the Bethe-Bloch formula.
759 // It is normalized to 1 at the minimum.
760 //
761 // bg - beta*gamma
762 //
763 // The default values for the kp* parameters are for ALICE TPC.
764 // The returned value is in MIP units
765 //
766
767 Double_t beta = bg/TMath::Sqrt(1.+ bg*bg);
768
769 Double_t aa = TMath::Power(beta,kp4);
770 Double_t bb = TMath::Power(1./bg,kp5);
771
772 bb=TMath::Log(kp3+bb);
773
774 return (kp2-aa-bb)*kp1/aa;
775}
776
777Double_t AliExternalTrackParam::BetheBlochGeant(Double_t bg,
778 Double_t kp0,
779 Double_t kp1,
780 Double_t kp2,
781 Double_t kp3,
782 Double_t kp4) {
783 //
784 // This is the parameterization of the Bethe-Bloch formula inspired by Geant.
785 //
786 // bg - beta*gamma
787 // kp0 - density [g/cm^3]
788 // kp1 - density effect first junction point
789 // kp2 - density effect second junction point
790 // kp3 - mean excitation energy [GeV]
791 // kp4 - mean Z/A
792 //
793 // The default values for the kp* parameters are for silicon.
794 // The returned value is in [GeV/(g/cm^2)].
795 //
796
797 const Double_t mK = 0.307075e-3; // [GeV*cm^2/g]
798 const Double_t me = 0.511e-3; // [GeV/c^2]
799 const Double_t rho = kp0;
800 const Double_t x0 = kp1*2.303;
801 const Double_t x1 = kp2*2.303;
802 const Double_t mI = kp3;
803 const Double_t mZA = kp4;
804 const Double_t bg2 = bg*bg;
805 const Double_t maxT= 2*me*bg2; // neglecting the electron mass
806
807 //*** Density effect
808 Double_t d2=0.;
809 const Double_t x=TMath::Log(bg);
810 const Double_t lhwI=TMath::Log(28.816*1e-9*TMath::Sqrt(rho*mZA)/mI);
811 if (x > x1) {
812 d2 = lhwI + x - 0.5;
813 } else if (x > x0) {
814 const Double_t r=(x1-x)/(x1-x0);
815 d2 = lhwI + x - 0.5 + (0.5 - lhwI - x0)*r*r*r;
816 }
817
818 return mK*mZA*(1+bg2)/bg2*
819 (0.5*TMath::Log(2*me*bg2*maxT/(mI*mI)) - bg2/(1+bg2) - d2);
820}
821
d46683db 822Double_t AliExternalTrackParam::BetheBlochSolid(Double_t bg) {
ee5dba5e 823 //------------------------------------------------------------------
d46683db 824 // This is an approximation of the Bethe-Bloch formula,
825 // reasonable for solid materials.
826 // All the parameters are, in fact, for Si.
9b655cba 827 // The returned value is in [GeV/(g/cm^2)]
ee5dba5e 828 //------------------------------------------------------------------
a821848c 829
9c56b409 830 return BetheBlochGeant(bg);
d46683db 831}
ee5dba5e 832
d46683db 833Double_t AliExternalTrackParam::BetheBlochGas(Double_t bg) {
834 //------------------------------------------------------------------
835 // This is an approximation of the Bethe-Bloch formula,
836 // reasonable for gas materials.
837 // All the parameters are, in fact, for Ne.
9b655cba 838 // The returned value is in [GeV/(g/cm^2)]
d46683db 839 //------------------------------------------------------------------
840
841 const Double_t rho = 0.9e-3;
842 const Double_t x0 = 2.;
843 const Double_t x1 = 4.;
844 const Double_t mI = 140.e-9;
845 const Double_t mZA = 0.49555;
846
9c56b409 847 return BetheBlochGeant(bg,rho,x0,x1,mI,mZA);
ee5dba5e 848}
849
49d13e89 850Bool_t AliExternalTrackParam::Rotate(Double_t alpha) {
851 //------------------------------------------------------------------
852 // Transform this track to the local coord. system rotated
853 // by angle "alpha" (rad) with respect to the global coord. system.
854 //------------------------------------------------------------------
dfcef74c 855 if (TMath::Abs(fP[2]) >= kAlmost1) {
856 AliError(Form("Precondition is not satisfied: |sin(phi)|>1 ! %f",fP[2]));
857 return kFALSE;
858 }
859
49d13e89 860 if (alpha < -TMath::Pi()) alpha += 2*TMath::Pi();
861 else if (alpha >= TMath::Pi()) alpha -= 2*TMath::Pi();
862
863 Double_t &fP0=fP[0];
864 Double_t &fP2=fP[2];
865 Double_t &fC00=fC[0];
866 Double_t &fC10=fC[1];
867 Double_t &fC20=fC[3];
868 Double_t &fC21=fC[4];
869 Double_t &fC22=fC[5];
870 Double_t &fC30=fC[6];
871 Double_t &fC32=fC[8];
872 Double_t &fC40=fC[10];
873 Double_t &fC42=fC[12];
874
875 Double_t x=fX;
876 Double_t ca=TMath::Cos(alpha-fAlpha), sa=TMath::Sin(alpha-fAlpha);
bfd20868 877 Double_t sf=fP2, cf=TMath::Sqrt((1.- fP2)*(1.+fP2)); // Improve precision
07dfd570 878 // RS: check if rotation does no invalidate track model (cos(local_phi)>=0, i.e. particle
879 // direction in local frame is along the X axis
880 if ((cf*ca+sf*sa)<0) {
1450dc8a 881 AliDebug(1,Form("Rotation failed: local cos(phi) would become %.2f",cf*ca+sf*sa));
07dfd570 882 return kFALSE;
883 }
884 //
dfcef74c 885 Double_t tmp=sf*ca - cf*sa;
6e50abb1 886
7248cf51 887 if (TMath::Abs(tmp) >= kAlmost1) {
888 if (TMath::Abs(tmp) > 1.+ Double_t(FLT_EPSILON))
889 AliWarning(Form("Rotation failed ! %.10e",tmp));
0b69bbb2 890 return kFALSE;
891 }
49d13e89 892 fAlpha = alpha;
893 fX = x*ca + fP0*sa;
894 fP0= -x*sa + fP0*ca;
dfcef74c 895 fP2= tmp;
49d13e89 896
06fb4a2f 897 if (TMath::Abs(cf)<kAlmost0) {
898 AliError(Form("Too small cosine value %f",cf));
899 cf = kAlmost0;
900 }
901
49d13e89 902 Double_t rr=(ca+sf/cf*sa);
903
904 fC00 *= (ca*ca);
905 fC10 *= ca;
906 fC20 *= ca*rr;
907 fC21 *= rr;
908 fC22 *= rr*rr;
909 fC30 *= ca;
910 fC32 *= rr;
911 fC40 *= ca;
912 fC42 *= rr;
913
86be8934 914 CheckCovariance();
915
49d13e89 916 return kTRUE;
917}
918
a251382e 919//______________________________________________________
920Bool_t AliExternalTrackParam::RotateParamOnly(Double_t alpha)
921{
922 // rotate to new frame, ignore covariance
923 if (TMath::Abs(fP[2]) >= kAlmost1) {
924 AliError(Form("Precondition is not satisfied: |sin(phi)|>1 ! %f",fP[2]));
925 return kFALSE;
926 }
927 //
928 if (alpha < -TMath::Pi()) alpha += 2*TMath::Pi();
929 else if (alpha >= TMath::Pi()) alpha -= 2*TMath::Pi();
930 //
931 Double_t &fP0=fP[0];
932 Double_t &fP2=fP[2];
933 //
934 Double_t x=fX;
935 Double_t ca=TMath::Cos(alpha-fAlpha), sa=TMath::Sin(alpha-fAlpha);
936 Double_t sf=fP2, cf=TMath::Sqrt((1.- fP2)*(1.+fP2)); // Improve precision
937 // RS: check if rotation does no invalidate track model (cos(local_phi)>=0, i.e. particle
938 // direction in local frame is along the X axis
939 if ((cf*ca+sf*sa)<0) {
940 AliDebug(1,Form("Rotation failed: local cos(phi) would become %.2f",cf*ca+sf*sa));
941 return kFALSE;
942 }
943 //
944 Double_t tmp=sf*ca - cf*sa;
945
946 if (TMath::Abs(tmp) >= kAlmost1) {
947 if (TMath::Abs(tmp) > 1.+ Double_t(FLT_EPSILON))
948 AliWarning(Form("Rotation failed ! %.10e",tmp));
949 return kFALSE;
950 }
951 fAlpha = alpha;
952 fX = x*ca + fP0*sa;
953 fP0= -x*sa + fP0*ca;
954 fP2= tmp;
955 return kTRUE;
956}
957
2d2fd909 958Bool_t AliExternalTrackParam::Invert() {
959 //------------------------------------------------------------------
960 // Transform this track to the local coord. system rotated by 180 deg.
961 //------------------------------------------------------------------
962 fX = -fX;
963 fAlpha += TMath::Pi();
964 while (fAlpha < -TMath::Pi()) fAlpha += 2*TMath::Pi();
965 while (fAlpha >= TMath::Pi()) fAlpha -= 2*TMath::Pi();
966 //
967 fP[0] = -fP[0];
6e50abb1 968 //fP[2] = -fP[2];
2d2fd909 969 fP[3] = -fP[3];
970 fP[4] = -fP[4];
971 //
6e50abb1 972 fC[1] = -fC[1]; // since the fP1 and fP2 are not inverted, their covariances with others change sign
973 fC[3] = -fC[3];
2d2fd909 974 fC[7] = -fC[7];
6e50abb1 975 fC[8] = -fC[8];
2d2fd909 976 fC[11] = -fC[11];
6e50abb1 977 fC[12] = -fC[12];
2d2fd909 978 //
979 return kTRUE;
980}
981
49d13e89 982Bool_t AliExternalTrackParam::PropagateTo(Double_t xk, Double_t b) {
983 //----------------------------------------------------------------
984 // Propagate this track to the plane X=xk (cm) in the field "b" (kG)
985 //----------------------------------------------------------------
49d13e89 986 Double_t dx=xk-fX;
e421f556 987 if (TMath::Abs(dx)<=kAlmost0) return kTRUE;
18ebc5ef 988
1530f89c 989 Double_t crv=GetC(b);
5773defd 990 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
991
2de63fc5 992 Double_t x2r = crv*dx;
993 Double_t f1=fP[2], f2=f1 + x2r;
bbefa4c4 994 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
49d13e89 995 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
4349f5a4 996 if (TMath::Abs(fP[4])< kAlmost0) return kFALSE;
49d13e89 997
998 Double_t &fP0=fP[0], &fP1=fP[1], &fP2=fP[2], &fP3=fP[3], &fP4=fP[4];
999 Double_t
1000 &fC00=fC[0],
1001 &fC10=fC[1], &fC11=fC[2],
1002 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
1003 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
1004 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
1005
bfd20868 1006 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
4349f5a4 1007 if (TMath::Abs(r1)<kAlmost0) return kFALSE;
1008 if (TMath::Abs(r2)<kAlmost0) return kFALSE;
49d13e89 1009
1010 fX=xk;
2de63fc5 1011 double dy2dx = (f1+f2)/(r1+r2);
1012 fP0 += dx*dy2dx;
0effb2c3 1013 fP2 += x2r;
1014 if (TMath::Abs(x2r)<0.05) fP1 += dx*(r2 + f2*dy2dx)*fP3; // Many thanks to P.Hristov !
2de63fc5 1015 else {
1016 // for small dx/R the linear apporximation of the arc by the segment is OK,
1017 // but at large dx/R the error is very large and leads to incorrect Z propagation
1018 // angle traversed delta = 2*asin(dist_start_end / R / 2), hence the arc is: R*deltaPhi
1019 // The dist_start_end is obtained from sqrt(dx^2+dy^2) = x/(r1+r2)*sqrt(2+f1*f2+r1*r2)
0effb2c3 1020 // double chord = dx*TMath::Sqrt(1+dy2dx*dy2dx); // distance from old position to new one
1021 // double rot = 2*TMath::ASin(0.5*chord*crv); // angular difference seen from the circle center
1022 // fP1 += rot/crv*fP3;
1023 //
ca1f889f 1024 double rot = TMath::ASin(r1*f2 - r2*f1); // more economic version from Yura.
1025 if (f1*f1+f2*f2>1 && f1*f2<0) { // special cases of large rotations or large abs angles
1026 if (f2>0) rot = TMath::Pi() - rot; //
1027 else rot = -TMath::Pi() - rot;
1028 }
1029 fP1 += fP3/crv*rot; // more economic version from Yura.
2de63fc5 1030 }
49d13e89 1031
1032 //f = F - 1
e804766b 1033 /*
49d13e89 1034 Double_t f02= dx/(r1*r1*r1); Double_t cc=crv/fP4;
1035 Double_t f04=0.5*dx*dx/(r1*r1*r1); f04*=cc;
1036 Double_t f12= dx*fP3*f1/(r1*r1*r1);
1037 Double_t f14=0.5*dx*dx*fP3*f1/(r1*r1*r1); f14*=cc;
1038 Double_t f13= dx/r1;
1039 Double_t f24= dx; f24*=cc;
e804766b 1040 */
1041 Double_t rinv = 1./r1;
1042 Double_t r3inv = rinv*rinv*rinv;
1043 Double_t f24= x2r/fP4;
1044 Double_t f02= dx*r3inv;
1045 Double_t f04=0.5*f24*f02;
1046 Double_t f12= f02*fP3*f1;
1047 Double_t f14=0.5*f24*f02*fP3*f1;
1048 Double_t f13= dx*rinv;
1049
49d13e89 1050 //b = C*ft
1051 Double_t b00=f02*fC20 + f04*fC40, b01=f12*fC20 + f14*fC40 + f13*fC30;
1052 Double_t b02=f24*fC40;
1053 Double_t b10=f02*fC21 + f04*fC41, b11=f12*fC21 + f14*fC41 + f13*fC31;
1054 Double_t b12=f24*fC41;
1055 Double_t b20=f02*fC22 + f04*fC42, b21=f12*fC22 + f14*fC42 + f13*fC32;
1056 Double_t b22=f24*fC42;
1057 Double_t b40=f02*fC42 + f04*fC44, b41=f12*fC42 + f14*fC44 + f13*fC43;
1058 Double_t b42=f24*fC44;
1059 Double_t b30=f02*fC32 + f04*fC43, b31=f12*fC32 + f14*fC43 + f13*fC33;
1060 Double_t b32=f24*fC43;
1061
1062 //a = f*b = f*C*ft
1063 Double_t a00=f02*b20+f04*b40,a01=f02*b21+f04*b41,a02=f02*b22+f04*b42;
1064 Double_t a11=f12*b21+f14*b41+f13*b31,a12=f12*b22+f14*b42+f13*b32;
1065 Double_t a22=f24*b42;
1066
1067 //F*C*Ft = C + (b + bt + a)
1068 fC00 += b00 + b00 + a00;
1069 fC10 += b10 + b01 + a01;
1070 fC20 += b20 + b02 + a02;
1071 fC30 += b30;
1072 fC40 += b40;
1073 fC11 += b11 + b11 + a11;
1074 fC21 += b21 + b12 + a12;
1075 fC31 += b31;
1076 fC41 += b41;
1077 fC22 += b22 + b22 + a22;
1078 fC32 += b32;
1079 fC42 += b42;
1080
86be8934 1081 CheckCovariance();
1082
49d13e89 1083 return kTRUE;
1084}
1085
599b440e 1086Bool_t AliExternalTrackParam::PropagateParamOnlyTo(Double_t xk, Double_t b) {
1087 //----------------------------------------------------------------
1088 // Propagate this track to the plane X=xk (cm) in the field "b" (kG)
1089 // Only parameters are propagated, not the matrix. To be used for small
1090 // distances only (<mm, i.e. misalignment)
1091 //----------------------------------------------------------------
1092 Double_t dx=xk-fX;
1093 if (TMath::Abs(dx)<=kAlmost0) return kTRUE;
1094
1095 Double_t crv=GetC(b);
1096 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
1097
1098 Double_t x2r = crv*dx;
1099 Double_t f1=fP[2], f2=f1 + x2r;
1100 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
1101 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
1102 if (TMath::Abs(fP[4])< kAlmost0) return kFALSE;
1103
1104 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
1105 if (TMath::Abs(r1)<kAlmost0) return kFALSE;
1106 if (TMath::Abs(r2)<kAlmost0) return kFALSE;
1107
1108 fX=xk;
1109 double dy2dx = (f1+f2)/(r1+r2);
1110 fP[0] += dx*dy2dx;
1111 fP[1] += dx*(r2 + f2*dy2dx)*fP[3]; // Many thanks to P.Hristov !
1112 fP[2] += x2r;
1113
1114 return kTRUE;
1115}
1116
9f2bec63 1117Bool_t
1118AliExternalTrackParam::Propagate(Double_t alpha, Double_t x, Double_t b) {
1119 //------------------------------------------------------------------
1120 // Transform this track to the local coord. system rotated
1121 // by angle "alpha" (rad) with respect to the global coord. system,
1122 // and propagate this track to the plane X=xk (cm) in the field "b" (kG)
1123 //------------------------------------------------------------------
1124
1125 //Save the parameters
1126 Double_t as=fAlpha;
1127 Double_t xs=fX;
1128 Double_t ps[5], cs[15];
1129 for (Int_t i=0; i<5; i++) ps[i]=fP[i];
1130 for (Int_t i=0; i<15; i++) cs[i]=fC[i];
1131
1132 if (Rotate(alpha))
1133 if (PropagateTo(x,b)) return kTRUE;
1134
1135 //Restore the parameters, if the operation failed
1136 fAlpha=as;
1137 fX=xs;
1138 for (Int_t i=0; i<5; i++) fP[i]=ps[i];
1139 for (Int_t i=0; i<15; i++) fC[i]=cs[i];
1140 return kFALSE;
1141}
1142
266a0f9b 1143Bool_t AliExternalTrackParam::PropagateBxByBz
1144(Double_t alpha, Double_t x, Double_t b[3]) {
1145 //------------------------------------------------------------------
1146 // Transform this track to the local coord. system rotated
1147 // by angle "alpha" (rad) with respect to the global coord. system,
1148 // and propagate this track to the plane X=xk (cm),
1149 // taking into account all three components of the B field, "b[3]" (kG)
1150 //------------------------------------------------------------------
1151
1152 //Save the parameters
1153 Double_t as=fAlpha;
1154 Double_t xs=fX;
1155 Double_t ps[5], cs[15];
1156 for (Int_t i=0; i<5; i++) ps[i]=fP[i];
1157 for (Int_t i=0; i<15; i++) cs[i]=fC[i];
1158
1159 if (Rotate(alpha))
1160 if (PropagateToBxByBz(x,b)) return kTRUE;
1161
1162 //Restore the parameters, if the operation failed
1163 fAlpha=as;
1164 fX=xs;
1165 for (Int_t i=0; i<5; i++) fP[i]=ps[i];
1166 for (Int_t i=0; i<15; i++) fC[i]=cs[i];
1167 return kFALSE;
1168}
1169
9f2bec63 1170
052daaff 1171void AliExternalTrackParam::Propagate(Double_t len, Double_t x[3],
1172Double_t p[3], Double_t bz) const {
1173 //+++++++++++++++++++++++++++++++++++++++++
1174 // Origin: K. Shileev (Kirill.Shileev@cern.ch)
1175 // Extrapolate track along simple helix in magnetic field
1176 // Arguments: len -distance alogn helix, [cm]
1177 // bz - mag field, [kGaus]
1178 // Returns: x and p contain extrapolated positon and momentum
1179 // The momentum returned for straight-line tracks is meaningless !
1180 //+++++++++++++++++++++++++++++++++++++++++
1181 GetXYZ(x);
1182
2258e165 1183 if (OneOverPt() < kAlmost0 || TMath::Abs(bz) < kAlmost0Field || GetC(bz) < kAlmost0){ //straight-line tracks
052daaff 1184 Double_t unit[3]; GetDirection(unit);
1185 x[0]+=unit[0]*len;
1186 x[1]+=unit[1]*len;
1187 x[2]+=unit[2]*len;
1188
1189 p[0]=unit[0]/kAlmost0;
1190 p[1]=unit[1]/kAlmost0;
1191 p[2]=unit[2]/kAlmost0;
1192 } else {
1193 GetPxPyPz(p);
1194 Double_t pp=GetP();
1195 Double_t a = -kB2C*bz*GetSign();
1196 Double_t rho = a/pp;
1197 x[0] += p[0]*TMath::Sin(rho*len)/a - p[1]*(1-TMath::Cos(rho*len))/a;
1198 x[1] += p[1]*TMath::Sin(rho*len)/a + p[0]*(1-TMath::Cos(rho*len))/a;
1199 x[2] += p[2]*len/pp;
1200
1201 Double_t p0=p[0];
1202 p[0] = p0 *TMath::Cos(rho*len) - p[1]*TMath::Sin(rho*len);
1203 p[1] = p[1]*TMath::Cos(rho*len) + p0 *TMath::Sin(rho*len);
1204 }
1205}
1206
1207Bool_t AliExternalTrackParam::Intersect(Double_t pnt[3], Double_t norm[3],
1208Double_t bz) const {
1209 //+++++++++++++++++++++++++++++++++++++++++
1210 // Origin: K. Shileev (Kirill.Shileev@cern.ch)
1211 // Finds point of intersection (if exists) of the helix with the plane.
1212 // Stores result in fX and fP.
1213 // Arguments: planePoint,planeNorm - the plane defined by any plane's point
1214 // and vector, normal to the plane
1215 // Returns: kTrue if helix intersects the plane, kFALSE otherwise.
1216 //+++++++++++++++++++++++++++++++++++++++++
1217 Double_t x0[3]; GetXYZ(x0); //get track position in MARS
1218
1219 //estimates initial helix length up to plane
1220 Double_t s=
1221 (pnt[0]-x0[0])*norm[0] + (pnt[1]-x0[1])*norm[1] + (pnt[2]-x0[2])*norm[2];
1222 Double_t dist=99999,distPrev=dist;
1223 Double_t x[3],p[3];
1224 while(TMath::Abs(dist)>0.00001){
1225 //calculates helix at the distance s from x0 ALONG the helix
1226 Propagate(s,x,p,bz);
1227
1228 //distance between current helix position and plane
1229 dist=(x[0]-pnt[0])*norm[0]+(x[1]-pnt[1])*norm[1]+(x[2]-pnt[2])*norm[2];
1230
1231 if(TMath::Abs(dist) >= TMath::Abs(distPrev)) {return kFALSE;}
1232 distPrev=dist;
1233 s-=dist;
1234 }
1235 //on exit pnt is intersection point,norm is track vector at that point,
1236 //all in MARS
1237 for (Int_t i=0; i<3; i++) {pnt[i]=x[i]; norm[i]=p[i];}
1238 return kTRUE;
1239}
1240
49d13e89 1241Double_t
6b1e75b2 1242AliExternalTrackParam::GetPredictedChi2(const Double_t p[2],const Double_t cov[3]) const {
49d13e89 1243 //----------------------------------------------------------------
1244 // Estimate the chi2 of the space point "p" with the cov. matrix "cov"
1245 //----------------------------------------------------------------
1246 Double_t sdd = fC[0] + cov[0];
1247 Double_t sdz = fC[1] + cov[1];
1248 Double_t szz = fC[2] + cov[2];
1249 Double_t det = sdd*szz - sdz*sdz;
1250
1251 if (TMath::Abs(det) < kAlmost0) return kVeryBig;
1252
1253 Double_t d = fP[0] - p[0];
1254 Double_t z = fP[1] - p[1];
1255
1256 return (d*szz*d - 2*d*sdz*z + z*sdd*z)/det;
1257}
1258
4b189f98 1259Double_t AliExternalTrackParam::
6b1e75b2 1260GetPredictedChi2(const Double_t p[3],const Double_t covyz[3],const Double_t covxyz[3]) const {
4b189f98 1261 //----------------------------------------------------------------
1262 // Estimate the chi2 of the 3D space point "p" and
1e023a36 1263 // the full covariance matrix "covyz" and "covxyz"
4b189f98 1264 //
1265 // Cov(x,x) ... : covxyz[0]
1266 // Cov(y,x) ... : covxyz[1] covyz[0]
1267 // Cov(z,x) ... : covxyz[2] covyz[1] covyz[2]
1268 //----------------------------------------------------------------
1269
1270 Double_t res[3] = {
1271 GetX() - p[0],
1272 GetY() - p[1],
1273 GetZ() - p[2]
1274 };
1275
1276 Double_t f=GetSnp();
1277 if (TMath::Abs(f) >= kAlmost1) return kVeryBig;
bfd20868 1278 Double_t r=TMath::Sqrt((1.-f)*(1.+f));
4b189f98 1279 Double_t a=f/r, b=GetTgl()/r;
1280
1281 Double_t s2=333.*333.; //something reasonably big (cm^2)
1282
1283 TMatrixDSym v(3);
1284 v(0,0)= s2; v(0,1)= a*s2; v(0,2)= b*s2;;
1285 v(1,0)=a*s2; v(1,1)=a*a*s2 + GetSigmaY2(); v(1,2)=a*b*s2 + GetSigmaZY();
1286 v(2,0)=b*s2; v(2,1)=a*b*s2 + GetSigmaZY(); v(2,2)=b*b*s2 + GetSigmaZ2();
1287
1288 v(0,0)+=covxyz[0]; v(0,1)+=covxyz[1]; v(0,2)+=covxyz[2];
1289 v(1,0)+=covxyz[1]; v(1,1)+=covyz[0]; v(1,2)+=covyz[1];
1290 v(2,0)+=covxyz[2]; v(2,1)+=covyz[1]; v(2,2)+=covyz[2];
1291
1292 v.Invert();
1293 if (!v.IsValid()) return kVeryBig;
1294
1295 Double_t chi2=0.;
1296 for (Int_t i = 0; i < 3; i++)
1297 for (Int_t j = 0; j < 3; j++) chi2 += res[i]*res[j]*v(i,j);
1298
1299 return chi2;
acdfbc78 1300}
1301
1302Double_t AliExternalTrackParam::
1303GetPredictedChi2(const AliExternalTrackParam *t) const {
1304 //----------------------------------------------------------------
1305 // Estimate the chi2 (5 dof) of this track with respect to the track
1306 // given by the argument.
1307 // The two tracks must be in the same reference system
1308 // and estimated at the same reference plane.
1309 //----------------------------------------------------------------
1310
95972410 1311 if (TMath::Abs(t->GetAlpha()-GetAlpha()) > FLT_EPSILON) {
acdfbc78 1312 AliError("The reference systems of the tracks differ !");
1313 return kVeryBig;
1314 }
8a3b848d 1315 if (TMath::Abs(t->GetX()-GetX()) > FLT_EPSILON) {
acdfbc78 1316 AliError("The reference of the tracks planes differ !");
1317 return kVeryBig;
1318 }
1319
1320 TMatrixDSym c(5);
1321 c(0,0)=GetSigmaY2();
1322 c(1,0)=GetSigmaZY(); c(1,1)=GetSigmaZ2();
1323 c(2,0)=GetSigmaSnpY(); c(2,1)=GetSigmaSnpZ(); c(2,2)=GetSigmaSnp2();
1324 c(3,0)=GetSigmaTglY(); c(3,1)=GetSigmaTglZ(); c(3,2)=GetSigmaTglSnp(); c(3,3)=GetSigmaTgl2();
1325 c(4,0)=GetSigma1PtY(); c(4,1)=GetSigma1PtZ(); c(4,2)=GetSigma1PtSnp(); c(4,3)=GetSigma1PtTgl(); c(4,4)=GetSigma1Pt2();
1326
1327 c(0,0)+=t->GetSigmaY2();
1328 c(1,0)+=t->GetSigmaZY(); c(1,1)+=t->GetSigmaZ2();
1329 c(2,0)+=t->GetSigmaSnpY();c(2,1)+=t->GetSigmaSnpZ();c(2,2)+=t->GetSigmaSnp2();
1330 c(3,0)+=t->GetSigmaTglY();c(3,1)+=t->GetSigmaTglZ();c(3,2)+=t->GetSigmaTglSnp();c(3,3)+=t->GetSigmaTgl2();
1331 c(4,0)+=t->GetSigma1PtY();c(4,1)+=t->GetSigma1PtZ();c(4,2)+=t->GetSigma1PtSnp();c(4,3)+=t->GetSigma1PtTgl();c(4,4)+=t->GetSigma1Pt2();
1332 c(0,1)=c(1,0);
1333 c(0,2)=c(2,0); c(1,2)=c(2,1);
1334 c(0,3)=c(3,0); c(1,3)=c(3,1); c(2,3)=c(3,2);
1335 c(0,4)=c(4,0); c(1,4)=c(4,1); c(2,4)=c(4,2); c(3,4)=c(4,3);
1336
1337 c.Invert();
1338 if (!c.IsValid()) return kVeryBig;
1339
1340
1341 Double_t res[5] = {
1342 GetY() - t->GetY(),
1343 GetZ() - t->GetZ(),
1344 GetSnp() - t->GetSnp(),
1345 GetTgl() - t->GetTgl(),
1346 GetSigned1Pt() - t->GetSigned1Pt()
1347 };
4b189f98 1348
acdfbc78 1349 Double_t chi2=0.;
1350 for (Int_t i = 0; i < 5; i++)
1351 for (Int_t j = 0; j < 5; j++) chi2 += res[i]*res[j]*c(i,j);
4b189f98 1352
acdfbc78 1353 return chi2;
4b189f98 1354}
1355
1e023a36 1356Bool_t AliExternalTrackParam::
1357PropagateTo(Double_t p[3],Double_t covyz[3],Double_t covxyz[3],Double_t bz) {
1358 //----------------------------------------------------------------
1359 // Propagate this track to the plane
1360 // the 3D space point "p" (with the covariance matrix "covyz" and "covxyz")
1361 // belongs to.
1362 // The magnetic field is "bz" (kG)
1363 //
1364 // The track curvature and the change of the covariance matrix
1365 // of the track parameters are negleted !
1366 // (So the "step" should be small compared with 1/curvature)
1367 //----------------------------------------------------------------
1368
1369 Double_t f=GetSnp();
1370 if (TMath::Abs(f) >= kAlmost1) return kFALSE;
bfd20868 1371 Double_t r=TMath::Sqrt((1.-f)*(1.+f));
1e023a36 1372 Double_t a=f/r, b=GetTgl()/r;
1373
1374 Double_t s2=333.*333.; //something reasonably big (cm^2)
1375
1376 TMatrixDSym tV(3);
1377 tV(0,0)= s2; tV(0,1)= a*s2; tV(0,2)= b*s2;
1378 tV(1,0)=a*s2; tV(1,1)=a*a*s2; tV(1,2)=a*b*s2;
1379 tV(2,0)=b*s2; tV(2,1)=a*b*s2; tV(2,2)=b*b*s2;
1380
1381 TMatrixDSym pV(3);
1382 pV(0,0)=covxyz[0]; pV(0,1)=covxyz[1]; pV(0,2)=covxyz[2];
1383 pV(1,0)=covxyz[1]; pV(1,1)=covyz[0]; pV(1,2)=covyz[1];
1384 pV(2,0)=covxyz[2]; pV(2,1)=covyz[1]; pV(2,2)=covyz[2];
1385
1386 TMatrixDSym tpV(tV);
1387 tpV+=pV;
1388 tpV.Invert();
1389 if (!tpV.IsValid()) return kFALSE;
1390
1391 TMatrixDSym pW(3),tW(3);
1392 for (Int_t i=0; i<3; i++)
1393 for (Int_t j=0; j<3; j++) {
1394 pW(i,j)=tW(i,j)=0.;
1395 for (Int_t k=0; k<3; k++) {
1396 pW(i,j) += tV(i,k)*tpV(k,j);
1397 tW(i,j) += pV(i,k)*tpV(k,j);
1398 }
1399 }
1400
1401 Double_t t[3] = {GetX(), GetY(), GetZ()};
1402
1403 Double_t x=0.;
1404 for (Int_t i=0; i<3; i++) x += (tW(0,i)*t[i] + pW(0,i)*p[i]);
1405 Double_t crv=GetC(bz);
1406 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
1407 f += crv*(x-fX);
1408 if (TMath::Abs(f) >= kAlmost1) return kFALSE;
1409 fX=x;
1410
1411 fP[0]=0.;
1412 for (Int_t i=0; i<3; i++) fP[0] += (tW(1,i)*t[i] + pW(1,i)*p[i]);
1413 fP[1]=0.;
1414 for (Int_t i=0; i<3; i++) fP[1] += (tW(2,i)*t[i] + pW(2,i)*p[i]);
1415
1416 return kTRUE;
1417}
1418
e23a38cb 1419Double_t *AliExternalTrackParam::GetResiduals(
1420Double_t *p,Double_t *cov,Bool_t updated) const {
1421 //------------------------------------------------------------------
1422 // Returns the track residuals with the space point "p" having
1423 // the covariance matrix "cov".
1424 // If "updated" is kTRUE, the track parameters expected to be updated,
1425 // otherwise they must be predicted.
1426 //------------------------------------------------------------------
1427 static Double_t res[2];
1428
1429 Double_t r00=cov[0], r01=cov[1], r11=cov[2];
1430 if (updated) {
1431 r00-=fC[0]; r01-=fC[1]; r11-=fC[2];
1432 } else {
1433 r00+=fC[0]; r01+=fC[1]; r11+=fC[2];
1434 }
1435 Double_t det=r00*r11 - r01*r01;
1436
1437 if (TMath::Abs(det) < kAlmost0) return 0;
1438
1439 Double_t tmp=r00; r00=r11/det; r11=tmp/det;
f0fbf964 1440
1441 if (r00 < 0.) return 0;
1442 if (r11 < 0.) return 0;
1443
e23a38cb 1444 Double_t dy = fP[0] - p[0];
1445 Double_t dz = fP[1] - p[1];
1446
1447 res[0]=dy*TMath::Sqrt(r00);
1448 res[1]=dz*TMath::Sqrt(r11);
1449
1450 return res;
1451}
1452
6b1e75b2 1453Bool_t AliExternalTrackParam::Update(const Double_t p[2], const Double_t cov[3]) {
49d13e89 1454 //------------------------------------------------------------------
1455 // Update the track parameters with the space point "p" having
1456 // the covariance matrix "cov"
1457 //------------------------------------------------------------------
1458 Double_t &fP0=fP[0], &fP1=fP[1], &fP2=fP[2], &fP3=fP[3], &fP4=fP[4];
1459 Double_t
1460 &fC00=fC[0],
1461 &fC10=fC[1], &fC11=fC[2],
1462 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
1463 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
1464 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
1465
1466 Double_t r00=cov[0], r01=cov[1], r11=cov[2];
1467 r00+=fC00; r01+=fC10; r11+=fC11;
1468 Double_t det=r00*r11 - r01*r01;
1469
1470 if (TMath::Abs(det) < kAlmost0) return kFALSE;
1471
1472
1473 Double_t tmp=r00; r00=r11/det; r11=tmp/det; r01=-r01/det;
1474
1475 Double_t k00=fC00*r00+fC10*r01, k01=fC00*r01+fC10*r11;
1476 Double_t k10=fC10*r00+fC11*r01, k11=fC10*r01+fC11*r11;
1477 Double_t k20=fC20*r00+fC21*r01, k21=fC20*r01+fC21*r11;
1478 Double_t k30=fC30*r00+fC31*r01, k31=fC30*r01+fC31*r11;
1479 Double_t k40=fC40*r00+fC41*r01, k41=fC40*r01+fC41*r11;
1480
1481 Double_t dy=p[0] - fP0, dz=p[1] - fP1;
1482 Double_t sf=fP2 + k20*dy + k21*dz;
1483 if (TMath::Abs(sf) > kAlmost1) return kFALSE;
1484
1485 fP0 += k00*dy + k01*dz;
1486 fP1 += k10*dy + k11*dz;
1487 fP2 = sf;
1488 fP3 += k30*dy + k31*dz;
1489 fP4 += k40*dy + k41*dz;
1490
1491 Double_t c01=fC10, c02=fC20, c03=fC30, c04=fC40;
1492 Double_t c12=fC21, c13=fC31, c14=fC41;
1493
1494 fC00-=k00*fC00+k01*fC10; fC10-=k00*c01+k01*fC11;
1495 fC20-=k00*c02+k01*c12; fC30-=k00*c03+k01*c13;
1496 fC40-=k00*c04+k01*c14;
1497
1498 fC11-=k10*c01+k11*fC11;
1499 fC21-=k10*c02+k11*c12; fC31-=k10*c03+k11*c13;
1500 fC41-=k10*c04+k11*c14;
1501
1502 fC22-=k20*c02+k21*c12; fC32-=k20*c03+k21*c13;
1503 fC42-=k20*c04+k21*c14;
1504
1505 fC33-=k30*c03+k31*c13;
1506 fC43-=k30*c04+k31*c14;
599b440e 1507
49d13e89 1508 fC44-=k40*c04+k41*c14;
1509
86be8934 1510 CheckCovariance();
1511
49d13e89 1512 return kTRUE;
1513}
1514
c7bafca9 1515void
1516AliExternalTrackParam::GetHelixParameters(Double_t hlx[6], Double_t b) const {
1517 //--------------------------------------------------------------------
1518 // External track parameters -> helix parameters
1519 // "b" - magnetic field (kG)
1520 //--------------------------------------------------------------------
1521 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
1522
1530f89c 1523 hlx[0]=fP[0]; hlx[1]=fP[1]; hlx[2]=fP[2]; hlx[3]=fP[3];
c7bafca9 1524
1525 hlx[5]=fX*cs - hlx[0]*sn; // x0
1526 hlx[0]=fX*sn + hlx[0]*cs; // y0
1527//hlx[1]= // z0
1528 hlx[2]=TMath::ASin(hlx[2]) + fAlpha; // phi0
1529//hlx[3]= // tgl
1530f89c 1530 hlx[4]=GetC(b); // C
c7bafca9 1531}
1532
1533
1534static void Evaluate(const Double_t *h, Double_t t,
1535 Double_t r[3], //radius vector
1536 Double_t g[3], //first defivatives
1537 Double_t gg[3]) //second derivatives
1538{
1539 //--------------------------------------------------------------------
1540 // Calculate position of a point on a track and some derivatives
1541 //--------------------------------------------------------------------
1542 Double_t phase=h[4]*t+h[2];
1543 Double_t sn=TMath::Sin(phase), cs=TMath::Cos(phase);
1544
ba4550c4 1545 r[0] = h[5];
1546 r[1] = h[0];
1547 if (TMath::Abs(h[4])>kAlmost0) {
1548 r[0] += (sn - h[6])/h[4];
1549 r[1] -= (cs - h[7])/h[4];
1550 }
c7bafca9 1551 r[2] = h[1] + h[3]*t;
1552
1553 g[0] = cs; g[1]=sn; g[2]=h[3];
1554
1555 gg[0]=-h[4]*sn; gg[1]=h[4]*cs; gg[2]=0.;
1556}
1557
1558Double_t AliExternalTrackParam::GetDCA(const AliExternalTrackParam *p,
1559Double_t b, Double_t &xthis, Double_t &xp) const {
1560 //------------------------------------------------------------
1561 // Returns the (weighed !) distance of closest approach between
1562 // this track and the track "p".
1563 // Other returned values:
1564 // xthis, xt - coordinates of tracks' reference planes at the DCA
1565 //-----------------------------------------------------------
1566 Double_t dy2=GetSigmaY2() + p->GetSigmaY2();
1567 Double_t dz2=GetSigmaZ2() + p->GetSigmaZ2();
1568 Double_t dx2=dy2;
1569
c7bafca9 1570 Double_t p1[8]; GetHelixParameters(p1,b);
1571 p1[6]=TMath::Sin(p1[2]); p1[7]=TMath::Cos(p1[2]);
1572 Double_t p2[8]; p->GetHelixParameters(p2,b);
1573 p2[6]=TMath::Sin(p2[2]); p2[7]=TMath::Cos(p2[2]);
1574
1575
1576 Double_t r1[3],g1[3],gg1[3]; Double_t t1=0.;
1577 Evaluate(p1,t1,r1,g1,gg1);
1578 Double_t r2[3],g2[3],gg2[3]; Double_t t2=0.;
1579 Evaluate(p2,t2,r2,g2,gg2);
1580
1581 Double_t dx=r2[0]-r1[0], dy=r2[1]-r1[1], dz=r2[2]-r1[2];
1582 Double_t dm=dx*dx/dx2 + dy*dy/dy2 + dz*dz/dz2;
1583
1584 Int_t max=27;
1585 while (max--) {
1586 Double_t gt1=-(dx*g1[0]/dx2 + dy*g1[1]/dy2 + dz*g1[2]/dz2);
1587 Double_t gt2=+(dx*g2[0]/dx2 + dy*g2[1]/dy2 + dz*g2[2]/dz2);
1588 Double_t h11=(g1[0]*g1[0] - dx*gg1[0])/dx2 +
1589 (g1[1]*g1[1] - dy*gg1[1])/dy2 +
1590 (g1[2]*g1[2] - dz*gg1[2])/dz2;
1591 Double_t h22=(g2[0]*g2[0] + dx*gg2[0])/dx2 +
1592 (g2[1]*g2[1] + dy*gg2[1])/dy2 +
1593 (g2[2]*g2[2] + dz*gg2[2])/dz2;
1594 Double_t h12=-(g1[0]*g2[0]/dx2 + g1[1]*g2[1]/dy2 + g1[2]*g2[2]/dz2);
1595
1596 Double_t det=h11*h22-h12*h12;
1597
1598 Double_t dt1,dt2;
1599 if (TMath::Abs(det)<1.e-33) {
1600 //(quasi)singular Hessian
1601 dt1=-gt1; dt2=-gt2;
1602 } else {
1603 dt1=-(gt1*h22 - gt2*h12)/det;
1604 dt2=-(h11*gt2 - h12*gt1)/det;
1605 }
1606
1607 if ((dt1*gt1+dt2*gt2)>0) {dt1=-dt1; dt2=-dt2;}
1608
1609 //check delta(phase1) ?
1610 //check delta(phase2) ?
1611
1612 if (TMath::Abs(dt1)/(TMath::Abs(t1)+1.e-3) < 1.e-4)
1613 if (TMath::Abs(dt2)/(TMath::Abs(t2)+1.e-3) < 1.e-4) {
1614 if ((gt1*gt1+gt2*gt2) > 1.e-4/dy2/dy2)
358f16ae 1615 AliDebug(1," stopped at not a stationary point !");
c7bafca9 1616 Double_t lmb=h11+h22; lmb=lmb-TMath::Sqrt(lmb*lmb-4*det);
1617 if (lmb < 0.)
358f16ae 1618 AliDebug(1," stopped at not a minimum !");
c7bafca9 1619 break;
1620 }
1621
1622 Double_t dd=dm;
1623 for (Int_t div=1 ; ; div*=2) {
1624 Evaluate(p1,t1+dt1,r1,g1,gg1);
1625 Evaluate(p2,t2+dt2,r2,g2,gg2);
1626 dx=r2[0]-r1[0]; dy=r2[1]-r1[1]; dz=r2[2]-r1[2];
1627 dd=dx*dx/dx2 + dy*dy/dy2 + dz*dz/dz2;
1628 if (dd<dm) break;
1629 dt1*=0.5; dt2*=0.5;
1630 if (div>512) {
358f16ae 1631 AliDebug(1," overshoot !"); break;
c7bafca9 1632 }
1633 }
1634 dm=dd;
1635
1636 t1+=dt1;
1637 t2+=dt2;
1638
1639 }
1640
358f16ae 1641 if (max<=0) AliDebug(1," too many iterations !");
c7bafca9 1642
1643 Double_t cs=TMath::Cos(GetAlpha());
1644 Double_t sn=TMath::Sin(GetAlpha());
1645 xthis=r1[0]*cs + r1[1]*sn;
1646
1647 cs=TMath::Cos(p->GetAlpha());
1648 sn=TMath::Sin(p->GetAlpha());
1649 xp=r2[0]*cs + r2[1]*sn;
1650
1651 return TMath::Sqrt(dm*TMath::Sqrt(dy2*dz2));
1652}
1653
1654Double_t AliExternalTrackParam::
1655PropagateToDCA(AliExternalTrackParam *p, Double_t b) {
1656 //--------------------------------------------------------------
1657 // Propagates this track and the argument track to the position of the
1658 // distance of closest approach.
1659 // Returns the (weighed !) distance of closest approach.
1660 //--------------------------------------------------------------
1661 Double_t xthis,xp;
1662 Double_t dca=GetDCA(p,b,xthis,xp);
1663
1664 if (!PropagateTo(xthis,b)) {
1665 //AliWarning(" propagation failed !");
1666 return 1e+33;
1667 }
1668
1669 if (!p->PropagateTo(xp,b)) {
1670 //AliWarning(" propagation failed !";
1671 return 1e+33;
1672 }
1673
1674 return dca;
1675}
1676
1677
58e536c5 1678Bool_t AliExternalTrackParam::PropagateToDCA(const AliVVertex *vtx,
e99a34df 1679Double_t b, Double_t maxd, Double_t dz[2], Double_t covar[3]) {
f76701bf 1680 //
e99a34df 1681 // Propagate this track to the DCA to vertex "vtx",
f76701bf 1682 // if the (rough) transverse impact parameter is not bigger then "maxd".
1683 // Magnetic field is "b" (kG).
1684 //
1685 // a) The track gets extapolated to the DCA to the vertex.
1686 // b) The impact parameters and their covariance matrix are calculated.
1687 //
1688 // In the case of success, the returned value is kTRUE
1689 // (otherwise, it's kFALSE)
1690 //
1691 Double_t alpha=GetAlpha();
1692 Double_t sn=TMath::Sin(alpha), cs=TMath::Cos(alpha);
1693 Double_t x=GetX(), y=GetParameter()[0], snp=GetParameter()[2];
58e536c5 1694 Double_t xv= vtx->GetX()*cs + vtx->GetY()*sn;
1695 Double_t yv=-vtx->GetX()*sn + vtx->GetY()*cs, zv=vtx->GetZ();
f76701bf 1696 x-=xv; y-=yv;
1697
1698 //Estimate the impact parameter neglecting the track curvature
bfd20868 1699 Double_t d=TMath::Abs(x*snp - y*TMath::Sqrt((1.-snp)*(1.+snp)));
f76701bf 1700 if (d > maxd) return kFALSE;
1701
1702 //Propagate to the DCA
2258e165 1703 Double_t crv=GetC(b);
e99a34df 1704 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
1705
bfd20868 1706 Double_t tgfv=-(crv*x - snp)/(crv*y + TMath::Sqrt((1.-snp)*(1.+snp)));
1707 sn=tgfv/TMath::Sqrt(1.+ tgfv*tgfv); cs=TMath::Sqrt((1.-sn)*(1.+sn));
e99a34df 1708 if (TMath::Abs(tgfv)>0.) cs = sn/tgfv;
1709 else cs=1.;
f76701bf 1710
1711 x = xv*cs + yv*sn;
1712 yv=-xv*sn + yv*cs; xv=x;
1713
1714 if (!Propagate(alpha+TMath::ASin(sn),xv,b)) return kFALSE;
266a0f9b 1715
1716 if (dz==0) return kTRUE;
1717 dz[0] = GetParameter()[0] - yv;
1718 dz[1] = GetParameter()[1] - zv;
1719
1720 if (covar==0) return kTRUE;
1721 Double_t cov[6]; vtx->GetCovarianceMatrix(cov);
1722
1723 //***** Improvements by A.Dainese
1724 alpha=GetAlpha(); sn=TMath::Sin(alpha); cs=TMath::Cos(alpha);
1725 Double_t s2ylocvtx = cov[0]*sn*sn + cov[2]*cs*cs - 2.*cov[1]*cs*sn;
1726 covar[0] = GetCovariance()[0] + s2ylocvtx; // neglecting correlations
1727 covar[1] = GetCovariance()[1]; // between (x,y) and z
1728 covar[2] = GetCovariance()[2] + cov[5]; // in vertex's covariance matrix
1729 //*****
1730
1731 return kTRUE;
1732}
1733
1734Bool_t AliExternalTrackParam::PropagateToDCABxByBz(const AliVVertex *vtx,
1735Double_t b[3], Double_t maxd, Double_t dz[2], Double_t covar[3]) {
1736 //
1737 // Propagate this track to the DCA to vertex "vtx",
1738 // if the (rough) transverse impact parameter is not bigger then "maxd".
1739 //
1740 // This function takes into account all three components of the magnetic
1741 // field given by the b[3] arument (kG)
1742 //
1743 // a) The track gets extapolated to the DCA to the vertex.
1744 // b) The impact parameters and their covariance matrix are calculated.
1745 //
1746 // In the case of success, the returned value is kTRUE
1747 // (otherwise, it's kFALSE)
1748 //
1749 Double_t alpha=GetAlpha();
1750 Double_t sn=TMath::Sin(alpha), cs=TMath::Cos(alpha);
1751 Double_t x=GetX(), y=GetParameter()[0], snp=GetParameter()[2];
1752 Double_t xv= vtx->GetX()*cs + vtx->GetY()*sn;
1753 Double_t yv=-vtx->GetX()*sn + vtx->GetY()*cs, zv=vtx->GetZ();
1754 x-=xv; y-=yv;
1755
1756 //Estimate the impact parameter neglecting the track curvature
bfd20868 1757 Double_t d=TMath::Abs(x*snp - y*TMath::Sqrt((1.-snp)*(1.+snp)));
266a0f9b 1758 if (d > maxd) return kFALSE;
1759
1760 //Propagate to the DCA
8567bf39 1761 Double_t crv=GetC(b[2]);
1762 if (TMath::Abs(b[2]) < kAlmost0Field) crv=0.;
266a0f9b 1763
bfd20868 1764 Double_t tgfv=-(crv*x - snp)/(crv*y + TMath::Sqrt((1.-snp)*(1.+snp)));
1765 sn=tgfv/TMath::Sqrt(1.+ tgfv*tgfv); cs=TMath::Sqrt((1.-sn)*(1.+sn));
266a0f9b 1766 if (TMath::Abs(tgfv)>0.) cs = sn/tgfv;
1767 else cs=1.;
1768
1769 x = xv*cs + yv*sn;
1770 yv=-xv*sn + yv*cs; xv=x;
1771
1772 if (!PropagateBxByBz(alpha+TMath::ASin(sn),xv,b)) return kFALSE;
e99a34df 1773
1774 if (dz==0) return kTRUE;
1775 dz[0] = GetParameter()[0] - yv;
1776 dz[1] = GetParameter()[1] - zv;
1777
1778 if (covar==0) return kTRUE;
58e536c5 1779 Double_t cov[6]; vtx->GetCovarianceMatrix(cov);
e99a34df 1780
1781 //***** Improvements by A.Dainese
1782 alpha=GetAlpha(); sn=TMath::Sin(alpha); cs=TMath::Cos(alpha);
1783 Double_t s2ylocvtx = cov[0]*sn*sn + cov[2]*cs*cs - 2.*cov[1]*cs*sn;
1784 covar[0] = GetCovariance()[0] + s2ylocvtx; // neglecting correlations
1785 covar[1] = GetCovariance()[1]; // between (x,y) and z
1786 covar[2] = GetCovariance()[2] + cov[5]; // in vertex's covariance matrix
1787 //*****
1788
29fbcc93 1789 return kTRUE;
f76701bf 1790}
1791
b1149664 1792void AliExternalTrackParam::GetDirection(Double_t d[3]) const {
1793 //----------------------------------------------------------------
1794 // This function returns a unit vector along the track direction
1795 // in the global coordinate system.
1796 //----------------------------------------------------------------
1797 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
1798 Double_t snp=fP[2];
bfd20868 1799 Double_t csp =TMath::Sqrt((1.-snp)*(1.+snp));
b1149664 1800 Double_t norm=TMath::Sqrt(1.+ fP[3]*fP[3]);
1801 d[0]=(csp*cs - snp*sn)/norm;
1802 d[1]=(snp*cs + csp*sn)/norm;
1803 d[2]=fP[3]/norm;
1804}
1805
c683ddc2 1806Bool_t AliExternalTrackParam::GetPxPyPz(Double_t p[3]) const {
c9ec41e8 1807 //---------------------------------------------------------------------
1808 // This function returns the global track momentum components
1809 // Results for (nearly) straight tracks are meaningless !
1810 //---------------------------------------------------------------------
1811 p[0]=fP[4]; p[1]=fP[2]; p[2]=fP[3];
1812 return Local2GlobalMomentum(p,fAlpha);
1813}
a5e407e9 1814
def9660e 1815Double_t AliExternalTrackParam::Px() const {
957fb479 1816 //---------------------------------------------------------------------
1817 // Returns x-component of momentum
1818 // Result for (nearly) straight tracks is meaningless !
1819 //---------------------------------------------------------------------
def9660e 1820
957fb479 1821 Double_t p[3]={kVeryBig,kVeryBig,kVeryBig};
def9660e 1822 GetPxPyPz(p);
1823
1824 return p[0];
1825}
1826
1827Double_t AliExternalTrackParam::Py() const {
957fb479 1828 //---------------------------------------------------------------------
1829 // Returns y-component of momentum
1830 // Result for (nearly) straight tracks is meaningless !
1831 //---------------------------------------------------------------------
def9660e 1832
957fb479 1833 Double_t p[3]={kVeryBig,kVeryBig,kVeryBig};
def9660e 1834 GetPxPyPz(p);
1835
1836 return p[1];
1837}
1838
c683ddc2 1839Double_t AliExternalTrackParam::Xv() const {
1840 //---------------------------------------------------------------------
1841 // Returns x-component of first track point
1842 //---------------------------------------------------------------------
1843
1844 Double_t r[3]={0.,0.,0.};
1845 GetXYZ(r);
1846
1847 return r[0];
1848}
1849
1850Double_t AliExternalTrackParam::Yv() const {
1851 //---------------------------------------------------------------------
1852 // Returns y-component of first track point
1853 //---------------------------------------------------------------------
1854
1855 Double_t r[3]={0.,0.,0.};
1856 GetXYZ(r);
1857
1858 return r[1];
1859}
1860
def9660e 1861Double_t AliExternalTrackParam::Theta() const {
1862 // return theta angle of momentum
1863
7cdd0c20 1864 return 0.5*TMath::Pi() - TMath::ATan(fP[3]);
def9660e 1865}
1866
1867Double_t AliExternalTrackParam::Phi() const {
957fb479 1868 //---------------------------------------------------------------------
1869 // Returns the azimuthal angle of momentum
1870 // 0 <= phi < 2*pi
1871 //---------------------------------------------------------------------
def9660e 1872
957fb479 1873 Double_t phi=TMath::ASin(fP[2]) + fAlpha;
1874 if (phi<0.) phi+=2.*TMath::Pi();
1875 else if (phi>=2.*TMath::Pi()) phi-=2.*TMath::Pi();
1876
1877 return phi;
def9660e 1878}
1879
d80701d6 1880Double_t AliExternalTrackParam::PhiPos() const {
1881 //---------------------------------------------------------------------
1882 // Returns the azimuthal angle of position
1883 // 0 <= phi < 2*pi
1884 //---------------------------------------------------------------------
1885 Double_t r[3]={0.,0.,0.};
1886 GetXYZ(r);
1887 Double_t phi=TMath::ATan2(r[1],r[0]);
1888 if (phi<0.) phi+=2.*TMath::Pi();
1889
1890 return phi;
1891}
1892
def9660e 1893Double_t AliExternalTrackParam::M() const {
1894 // return particle mass
1895
1896 // No mass information available so far.
1897 // Redifine in derived class!
1898
1899 return -999.;
1900}
1901
1902Double_t AliExternalTrackParam::E() const {
1903 // return particle energy
1904
1905 // No PID information available so far.
1906 // Redifine in derived class!
1907
1908 return -999.;
1909}
1910
1911Double_t AliExternalTrackParam::Eta() const {
1912 // return pseudorapidity
1913
1914 return -TMath::Log(TMath::Tan(0.5 * Theta()));
1915}
1916
1917Double_t AliExternalTrackParam::Y() const {
1918 // return rapidity
1919
1920 // No PID information available so far.
1921 // Redifine in derived class!
1922
1923 return -999.;
1924}
1925
c9ec41e8 1926Bool_t AliExternalTrackParam::GetXYZ(Double_t *r) const {
1927 //---------------------------------------------------------------------
1928 // This function returns the global track position
1929 //---------------------------------------------------------------------
1930 r[0]=fX; r[1]=fP[0]; r[2]=fP[1];
1931 return Local2GlobalPosition(r,fAlpha);
51ad6848 1932}
1933
c9ec41e8 1934Bool_t AliExternalTrackParam::GetCovarianceXYZPxPyPz(Double_t cv[21]) const {
1935 //---------------------------------------------------------------------
1936 // This function returns the global covariance matrix of the track params
1937 //
1938 // Cov(x,x) ... : cv[0]
1939 // Cov(y,x) ... : cv[1] cv[2]
1940 // Cov(z,x) ... : cv[3] cv[4] cv[5]
1941 // Cov(px,x)... : cv[6] cv[7] cv[8] cv[9]
1942 // Cov(py,x)... : cv[10] cv[11] cv[12] cv[13] cv[14]
1943 // Cov(pz,x)... : cv[15] cv[16] cv[17] cv[18] cv[19] cv[20]
a5e407e9 1944 //
c9ec41e8 1945 // Results for (nearly) straight tracks are meaningless !
1946 //---------------------------------------------------------------------
e421f556 1947 if (TMath::Abs(fP[4])<=kAlmost0) {
c9ec41e8 1948 for (Int_t i=0; i<21; i++) cv[i]=0.;
1949 return kFALSE;
a5e407e9 1950 }
49d13e89 1951 if (TMath::Abs(fP[2]) > kAlmost1) {
c9ec41e8 1952 for (Int_t i=0; i<21; i++) cv[i]=0.;
1953 return kFALSE;
1954 }
1955 Double_t pt=1./TMath::Abs(fP[4]);
1956 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
92934324 1957 Double_t r=TMath::Sqrt((1.-fP[2])*(1.+fP[2]));
c9ec41e8 1958
1959 Double_t m00=-sn, m10=cs;
1960 Double_t m23=-pt*(sn + fP[2]*cs/r), m43=-pt*pt*(r*cs - fP[2]*sn);
1961 Double_t m24= pt*(cs - fP[2]*sn/r), m44=-pt*pt*(r*sn + fP[2]*cs);
1962 Double_t m35=pt, m45=-pt*pt*fP[3];
1963
854d5d49 1964 m43*=GetSign();
1965 m44*=GetSign();
1966 m45*=GetSign();
1967
c9ec41e8 1968 cv[0 ] = fC[0]*m00*m00;
1969 cv[1 ] = fC[0]*m00*m10;
1970 cv[2 ] = fC[0]*m10*m10;
1971 cv[3 ] = fC[1]*m00;
1972 cv[4 ] = fC[1]*m10;
1973 cv[5 ] = fC[2];
1974 cv[6 ] = m00*(fC[3]*m23 + fC[10]*m43);
1975 cv[7 ] = m10*(fC[3]*m23 + fC[10]*m43);
1976 cv[8 ] = fC[4]*m23 + fC[11]*m43;
1977 cv[9 ] = m23*(fC[5]*m23 + fC[12]*m43) + m43*(fC[12]*m23 + fC[14]*m43);
1978 cv[10] = m00*(fC[3]*m24 + fC[10]*m44);
1979 cv[11] = m10*(fC[3]*m24 + fC[10]*m44);
1980 cv[12] = fC[4]*m24 + fC[11]*m44;
1981 cv[13] = m23*(fC[5]*m24 + fC[12]*m44) + m43*(fC[12]*m24 + fC[14]*m44);
1982 cv[14] = m24*(fC[5]*m24 + fC[12]*m44) + m44*(fC[12]*m24 + fC[14]*m44);
1983 cv[15] = m00*(fC[6]*m35 + fC[10]*m45);
1984 cv[16] = m10*(fC[6]*m35 + fC[10]*m45);
1985 cv[17] = fC[7]*m35 + fC[11]*m45;
1986 cv[18] = m23*(fC[8]*m35 + fC[12]*m45) + m43*(fC[13]*m35 + fC[14]*m45);
1987 cv[19] = m24*(fC[8]*m35 + fC[12]*m45) + m44*(fC[13]*m35 + fC[14]*m45);
1988 cv[20] = m35*(fC[9]*m35 + fC[13]*m45) + m45*(fC[13]*m35 + fC[14]*m45);
51ad6848 1989
c9ec41e8 1990 return kTRUE;
51ad6848 1991}
1992
51ad6848 1993
c9ec41e8 1994Bool_t
1995AliExternalTrackParam::GetPxPyPzAt(Double_t x, Double_t b, Double_t *p) const {
1996 //---------------------------------------------------------------------
1997 // This function returns the global track momentum extrapolated to
1998 // the radial position "x" (cm) in the magnetic field "b" (kG)
1999 //---------------------------------------------------------------------
c9ec41e8 2000 p[0]=fP[4];
1530f89c 2001 p[1]=fP[2]+(x-fX)*GetC(b);
c9ec41e8 2002 p[2]=fP[3];
2003 return Local2GlobalMomentum(p,fAlpha);
51ad6848 2004}
2005
7cf7bb6c 2006Bool_t
2007AliExternalTrackParam::GetYAt(Double_t x, Double_t b, Double_t &y) const {
2008 //---------------------------------------------------------------------
2009 // This function returns the local Y-coordinate of the intersection
2010 // point between this track and the reference plane "x" (cm).
2011 // Magnetic field "b" (kG)
2012 //---------------------------------------------------------------------
2013 Double_t dx=x-fX;
2014 if(TMath::Abs(dx)<=kAlmost0) {y=fP[0]; return kTRUE;}
2015
1530f89c 2016 Double_t f1=fP[2], f2=f1 + dx*GetC(b);
7cf7bb6c 2017
2018 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
2019 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
2020
60e55aee 2021 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
7cf7bb6c 2022 y = fP[0] + dx*(f1+f2)/(r1+r2);
2023 return kTRUE;
2024}
2025
6c94f330 2026Bool_t
2027AliExternalTrackParam::GetZAt(Double_t x, Double_t b, Double_t &z) const {
2028 //---------------------------------------------------------------------
2029 // This function returns the local Z-coordinate of the intersection
2030 // point between this track and the reference plane "x" (cm).
2031 // Magnetic field "b" (kG)
2032 //---------------------------------------------------------------------
2033 Double_t dx=x-fX;
2034 if(TMath::Abs(dx)<=kAlmost0) {z=fP[1]; return kTRUE;}
2035
71cec41f 2036 Double_t crv=GetC(b);
2037 Double_t x2r = crv*dx;
2038 Double_t f1=fP[2], f2=f1 + x2r;
6c94f330 2039
2040 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
2041 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
2042
60e55aee 2043 Double_t r1=sqrt((1.-f1)*(1.+f1)), r2=sqrt((1.-f2)*(1.+f2));
71cec41f 2044 double dy2dx = (f1+f2)/(r1+r2);
2045 if (TMath::Abs(x2r)<0.05) {
2046 z = fP[1] + dx*(r2 + f2*dy2dx)*fP[3]; // Many thanks to P.Hristov !
2047 }
2048 else {
2049 // for small dx/R the linear apporximation of the arc by the segment is OK,
2050 // but at large dx/R the error is very large and leads to incorrect Z propagation
2051 // angle traversed delta = 2*asin(dist_start_end / R / 2), hence the arc is: R*deltaPhi
2052 // The dist_start_end is obtained from sqrt(dx^2+dy^2) = x/(r1+r2)*sqrt(2+f1*f2+r1*r2)
2053 // Similarly, the rotation angle in linear in dx only for dx<<R
2054 double chord = dx*TMath::Sqrt(1+dy2dx*dy2dx); // distance from old position to new one
2055 double rot = 2*TMath::ASin(0.5*chord*crv); // angular difference seen from the circle center
2056 z = fP[1] + rot/crv*fP[3];
2057 }
6c94f330 2058 return kTRUE;
2059}
2060
c9ec41e8 2061Bool_t
2062AliExternalTrackParam::GetXYZAt(Double_t x, Double_t b, Double_t *r) const {
2063 //---------------------------------------------------------------------
2064 // This function returns the global track position extrapolated to
2065 // the radial position "x" (cm) in the magnetic field "b" (kG)
2066 //---------------------------------------------------------------------
c9ec41e8 2067 Double_t dx=x-fX;
e421f556 2068 if(TMath::Abs(dx)<=kAlmost0) return GetXYZ(r);
2069
71cec41f 2070 Double_t crv=GetC(b);
2071 Double_t x2r = crv*dx;
2072 Double_t f1=fP[2], f2=f1 + dx*crv;
c9ec41e8 2073
e421f556 2074 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
49d13e89 2075 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
c9ec41e8 2076
60e55aee 2077 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
71cec41f 2078 double dy2dx = (f1+f2)/(r1+r2);
c9ec41e8 2079 r[0] = x;
71cec41f 2080 r[1] = fP[0] + dx*dy2dx;
2081 if (TMath::Abs(x2r)<0.05) {
2082 r[2] = fP[1] + dx*(r2 + f2*dy2dx)*fP[3];//Thanks to Andrea & Peter
2083 }
2084 else {
2085 // for small dx/R the linear apporximation of the arc by the segment is OK,
2086 // but at large dx/R the error is very large and leads to incorrect Z propagation
2087 // angle traversed delta = 2*asin(dist_start_end / R / 2), hence the arc is: R*deltaPhi
2088 // The dist_start_end is obtained from sqrt(dx^2+dy^2) = x/(r1+r2)*sqrt(2+f1*f2+r1*r2)
2089 // Similarly, the rotation angle in linear in dx only for dx<<R
2090 double chord = dx*TMath::Sqrt(1+dy2dx*dy2dx); // distance from old position to new one
2091 double rot = 2*TMath::ASin(0.5*chord*crv); // angular difference seen from the circle center
2092 r[2] = fP[1] + rot/crv*fP[3];
2093 }
f90a11c9 2094
c9ec41e8 2095 return Local2GlobalPosition(r,fAlpha);
51ad6848 2096}
2097
51ad6848 2098//_____________________________________________________________________________
2099void AliExternalTrackParam::Print(Option_t* /*option*/) const
2100{
2101// print the parameters and the covariance matrix
2102
2103 printf("AliExternalTrackParam: x = %-12g alpha = %-12g\n", fX, fAlpha);
2104 printf(" parameters: %12g %12g %12g %12g %12g\n",
c9ec41e8 2105 fP[0], fP[1], fP[2], fP[3], fP[4]);
2106 printf(" covariance: %12g\n", fC[0]);
2107 printf(" %12g %12g\n", fC[1], fC[2]);
2108 printf(" %12g %12g %12g\n", fC[3], fC[4], fC[5]);
51ad6848 2109 printf(" %12g %12g %12g %12g\n",
c9ec41e8 2110 fC[6], fC[7], fC[8], fC[9]);
51ad6848 2111 printf(" %12g %12g %12g %12g %12g\n",
c9ec41e8 2112 fC[10], fC[11], fC[12], fC[13], fC[14]);
51ad6848 2113}
5b77d93c 2114
c194ba83 2115Double_t AliExternalTrackParam::GetSnpAt(Double_t x,Double_t b) const {
2116 //
2117 // Get sinus at given x
2118 //
1530f89c 2119 Double_t crv=GetC(b);
c194ba83 2120 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
2121 Double_t dx = x-fX;
2122 Double_t res = fP[2]+dx*crv;
2123 return res;
2124}
bf00ebb8 2125
2126Bool_t AliExternalTrackParam::GetDistance(AliExternalTrackParam *param2, Double_t x, Double_t dist[3], Double_t bz){
2127 //------------------------------------------------------------------------
2128 // Get the distance between two tracks at the local position x
2129 // working in the local frame of this track.
2130 // Origin : Marian.Ivanov@cern.ch
2131 //-----------------------------------------------------------------------
2132 Double_t xyz[3];
2133 Double_t xyz2[3];
2134 xyz[0]=x;
2135 if (!GetYAt(x,bz,xyz[1])) return kFALSE;
2136 if (!GetZAt(x,bz,xyz[2])) return kFALSE;
2137 //
2138 //
2139 if (TMath::Abs(GetAlpha()-param2->GetAlpha())<kAlmost0){
2140 xyz2[0]=x;
2141 if (!param2->GetYAt(x,bz,xyz2[1])) return kFALSE;
2142 if (!param2->GetZAt(x,bz,xyz2[2])) return kFALSE;
2143 }else{
2144 //
2145 Double_t xyz1[3];
2146 Double_t dfi = param2->GetAlpha()-GetAlpha();
2147 Double_t ca = TMath::Cos(dfi), sa = TMath::Sin(dfi);
2148 xyz2[0] = xyz[0]*ca+xyz[1]*sa;
2149 xyz2[1] = -xyz[0]*sa+xyz[1]*ca;
2150 //
2151 xyz1[0]=xyz2[0];
2152 if (!param2->GetYAt(xyz2[0],bz,xyz1[1])) return kFALSE;
2153 if (!param2->GetZAt(xyz2[0],bz,xyz1[2])) return kFALSE;
2154 //
2155 xyz2[0] = xyz1[0]*ca-xyz1[1]*sa;
2156 xyz2[1] = +xyz1[0]*sa+xyz1[1]*ca;
2157 xyz2[2] = xyz1[2];
2158 }
2159 dist[0] = xyz[0]-xyz2[0];
2160 dist[1] = xyz[1]-xyz2[1];
2161 dist[2] = xyz[2]-xyz2[2];
2162
2163 return kTRUE;
2164}
0c19adf7 2165
2166
2167//
2168// Draw functionality.
2169// Origin: Marian Ivanov, Marian.Ivanov@cern.ch
2170//
2171
2172void AliExternalTrackParam::DrawTrack(Float_t magf, Float_t minR, Float_t maxR, Float_t stepR){
2173 //
2174 // Draw track line
2175 //
2176 if (minR>maxR) return ;
2177 if (stepR<=0) return ;
2178 Int_t npoints = TMath::Nint((maxR-minR)/stepR)+1;
2179 if (npoints<1) return;
2180 TPolyMarker3D *polymarker = new TPolyMarker3D(npoints);
2181 FillPolymarker(polymarker, magf,minR,maxR,stepR);
2182 polymarker->Draw();
2183}
2184
2185//
2186void AliExternalTrackParam::FillPolymarker(TPolyMarker3D *pol, Float_t magF, Float_t minR, Float_t maxR, Float_t stepR){
2187 //
2188 // Fill points in the polymarker
2189 //
2190 Int_t counter=0;
2191 for (Double_t r=minR; r<maxR; r+=stepR){
2192 Double_t point[3];
2193 GetXYZAt(r,magF,point);
2194 pol->SetPoint(counter,point[0],point[1], point[2]);
047640da 2195 // printf("xyz\t%f\t%f\t%f\n",point[0], point[1],point[2]);
0c19adf7 2196 counter++;
2197 }
2198}
0e8460af 2199
2200Int_t AliExternalTrackParam::GetIndex(Int_t i, Int_t j) const {
2201 //
2202 Int_t min = TMath::Min(i,j);
2203 Int_t max = TMath::Max(i,j);
2204
2205 return min+(max+1)*max/2;
2206}
8b6e3369 2207
2208
2209void AliExternalTrackParam::g3helx3(Double_t qfield,
2210 Double_t step,
2211 Double_t vect[7]) {
2212/******************************************************************
2213 * *
2214 * GEANT3 tracking routine in a constant field oriented *
2215 * along axis 3 *
2216 * Tracking is performed with a conventional *
2217 * helix step method *
2218 * *
2219 * Authors R.Brun, M.Hansroul ********* *
2220 * Rewritten V.Perevoztchikov *
2221 * *
2222 * Rewritten in C++ by I.Belikov *
2223 * *
2224 * qfield (kG) - particle charge times magnetic field *
2225 * step (cm) - step length along the helix *
2226 * vect[7](cm,GeV/c) - input/output x, y, z, px/p, py/p ,pz/p, p *
2227 * *
2228 ******************************************************************/
2229 const Int_t ix=0, iy=1, iz=2, ipx=3, ipy=4, ipz=5, ipp=6;
bfd20868 2230 const Double_t kOvSqSix=TMath::Sqrt(1./6.);
8b6e3369 2231
2232 Double_t cosx=vect[ipx], cosy=vect[ipy], cosz=vect[ipz];
2233
2234 Double_t rho = qfield*kB2C/vect[ipp];
2235 Double_t tet = rho*step;
2236
2237 Double_t tsint, sintt, sint, cos1t;
2de63fc5 2238 if (TMath::Abs(tet) > 0.03) {
8b6e3369 2239 sint = TMath::Sin(tet);
2240 sintt = sint/tet;
2241 tsint = (tet - sint)/tet;
2242 Double_t t=TMath::Sin(0.5*tet);
2243 cos1t = 2*t*t/tet;
2244 } else {
2245 tsint = tet*tet/6.;
bfd20868 2246 sintt = (1.-tet*kOvSqSix)*(1.+tet*kOvSqSix); // 1.- tsint;
8b6e3369 2247 sint = tet*sintt;
2248 cos1t = 0.5*tet;
2249 }
2250
2251 Double_t f1 = step*sintt;
2252 Double_t f2 = step*cos1t;
2253 Double_t f3 = step*tsint*cosz;
2254 Double_t f4 = -tet*cos1t;
2255 Double_t f5 = sint;
2256
2257 vect[ix] += f1*cosx - f2*cosy;
2258 vect[iy] += f1*cosy + f2*cosx;
2259 vect[iz] += f1*cosz + f3;
2260
2261 vect[ipx] += f4*cosx - f5*cosy;
2262 vect[ipy] += f4*cosy + f5*cosx;
2263
2264}
2265
2266Bool_t AliExternalTrackParam::PropagateToBxByBz(Double_t xk, const Double_t b[3]) {
2267 //----------------------------------------------------------------
2268 // Extrapolate this track to the plane X=xk in the field b[].
2269 //
2270 // X [cm] is in the "tracking coordinate system" of this track.
2271 // b[]={Bx,By,Bz} [kG] is in the Global coordidate system.
2272 //----------------------------------------------------------------
2273
2274 Double_t dx=xk-fX;
2275 if (TMath::Abs(dx)<=kAlmost0) return kTRUE;
7e1b73dd 2276 if (TMath::Abs(fP[4])<=kAlmost0) return kFALSE;
ef3508c5 2277 // Do not propagate tracks outside the ALICE detector
2278 if (TMath::Abs(dx)>1e5 ||
2279 TMath::Abs(GetY())>1e5 ||
2280 TMath::Abs(GetZ())>1e5) {
2281 AliWarning(Form("Anomalous track, target X:%f",xk));
2282 Print();
2283 return kFALSE;
2284 }
8b6e3369 2285
2286 Double_t crv=GetC(b[2]);
2287 if (TMath::Abs(b[2]) < kAlmost0Field) crv=0.;
2288
2de63fc5 2289 Double_t x2r = crv*dx;
2290 Double_t f1=fP[2], f2=f1 + x2r;
8b6e3369 2291 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
2292 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
2293
2294
2295 // Estimate the covariance matrix
2296 Double_t &fP3=fP[3], &fP4=fP[4];
2297 Double_t
2298 &fC00=fC[0],
2299 &fC10=fC[1], &fC11=fC[2],
2300 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
2301 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
2302 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
2303
bfd20868 2304 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
8b6e3369 2305
2306 //f = F - 1
e804766b 2307 /*
8b6e3369 2308 Double_t f02= dx/(r1*r1*r1); Double_t cc=crv/fP4;
2309 Double_t f04=0.5*dx*dx/(r1*r1*r1); f04*=cc;
2310 Double_t f12= dx*fP3*f1/(r1*r1*r1);
2311 Double_t f14=0.5*dx*dx*fP3*f1/(r1*r1*r1); f14*=cc;
2312 Double_t f13= dx/r1;
2313 Double_t f24= dx; f24*=cc;
e804766b 2314 */
2315 Double_t rinv = 1./r1;
2316 Double_t r3inv = rinv*rinv*rinv;
2317 Double_t f24= x2r/fP4;
2318 Double_t f02= dx*r3inv;
2319 Double_t f04=0.5*f24*f02;
2320 Double_t f12= f02*fP3*f1;
2321 Double_t f14=0.5*f24*f02*fP3*f1;
2322 Double_t f13= dx*rinv;
2323
8b6e3369 2324 //b = C*ft
2325 Double_t b00=f02*fC20 + f04*fC40, b01=f12*fC20 + f14*fC40 + f13*fC30;
2326 Double_t b02=f24*fC40;
2327 Double_t b10=f02*fC21 + f04*fC41, b11=f12*fC21 + f14*fC41 + f13*fC31;
2328 Double_t b12=f24*fC41;
2329 Double_t b20=f02*fC22 + f04*fC42, b21=f12*fC22 + f14*fC42 + f13*fC32;
2330 Double_t b22=f24*fC42;
2331 Double_t b40=f02*fC42 + f04*fC44, b41=f12*fC42 + f14*fC44 + f13*fC43;
2332 Double_t b42=f24*fC44;
2333 Double_t b30=f02*fC32 + f04*fC43, b31=f12*fC32 + f14*fC43 + f13*fC33;
2334 Double_t b32=f24*fC43;
2335
2336 //a = f*b = f*C*ft
2337 Double_t a00=f02*b20+f04*b40,a01=f02*b21+f04*b41,a02=f02*b22+f04*b42;
2338 Double_t a11=f12*b21+f14*b41+f13*b31,a12=f12*b22+f14*b42+f13*b32;
2339 Double_t a22=f24*b42;
2340
2341 //F*C*Ft = C + (b + bt + a)
2342 fC00 += b00 + b00 + a00;
2343 fC10 += b10 + b01 + a01;
2344 fC20 += b20 + b02 + a02;
2345 fC30 += b30;
2346 fC40 += b40;
2347 fC11 += b11 + b11 + a11;
2348 fC21 += b21 + b12 + a12;
2349 fC31 += b31;
2350 fC41 += b41;
2351 fC22 += b22 + b22 + a22;
2352 fC32 += b32;
2353 fC42 += b42;
2354
86be8934 2355 CheckCovariance();
8b6e3369 2356
2357 // Appoximate step length
2de63fc5 2358 double dy2dx = (f1+f2)/(r1+r2);
2359 Double_t step = (TMath::Abs(x2r)<0.05) ? dx*TMath::Abs(r2 + f2*dy2dx) // chord
2360 : 2.*TMath::ASin(0.5*dx*TMath::Sqrt(1.+dy2dx*dy2dx)*crv)/crv; // arc
8b6e3369 2361 step *= TMath::Sqrt(1.+ GetTgl()*GetTgl());
2362
8b6e3369 2363 // Get the track's (x,y,z) and (px,py,pz) in the Global System
2364 Double_t r[3]; GetXYZ(r);
2365 Double_t p[3]; GetPxPyPz(p);
2366 Double_t pp=GetP();
2367 p[0] /= pp;
2368 p[1] /= pp;
2369 p[2] /= pp;
2370
2371
2372 // Rotate to the system where Bx=By=0.
2373 Double_t bt=TMath::Sqrt(b[0]*b[0] + b[1]*b[1]);
2374 Double_t cosphi=1., sinphi=0.;
2375 if (bt > kAlmost0) {cosphi=b[0]/bt; sinphi=b[1]/bt;}
2376 Double_t bb=TMath::Sqrt(b[0]*b[0] + b[1]*b[1] + b[2]*b[2]);
2377 Double_t costet=1., sintet=0.;
2378 if (bb > kAlmost0) {costet=b[2]/bb; sintet=bt/bb;}
2379 Double_t vect[7];
2380
2381 vect[0] = costet*cosphi*r[0] + costet*sinphi*r[1] - sintet*r[2];
2382 vect[1] = -sinphi*r[0] + cosphi*r[1];
2383 vect[2] = sintet*cosphi*r[0] + sintet*sinphi*r[1] + costet*r[2];
2384
2385 vect[3] = costet*cosphi*p[0] + costet*sinphi*p[1] - sintet*p[2];
2386 vect[4] = -sinphi*p[0] + cosphi*p[1];
2387 vect[5] = sintet*cosphi*p[0] + sintet*sinphi*p[1] + costet*p[2];
2388
2389 vect[6] = pp;
2390
2391
2392 // Do the helix step
2393 g3helx3(GetSign()*bb,step,vect);
2394
2395
2396 // Rotate back to the Global System
2397 r[0] = cosphi*costet*vect[0] - sinphi*vect[1] + cosphi*sintet*vect[2];
2398 r[1] = sinphi*costet*vect[0] + cosphi*vect[1] + sinphi*sintet*vect[2];
2399 r[2] = -sintet*vect[0] + costet*vect[2];
2400
2401 p[0] = cosphi*costet*vect[3] - sinphi*vect[4] + cosphi*sintet*vect[5];
2402 p[1] = sinphi*costet*vect[3] + cosphi*vect[4] + sinphi*sintet*vect[5];
2403 p[2] = -sintet*vect[3] + costet*vect[5];
2404
2405
2406 // Rotate back to the Tracking System
2407 Double_t cosalp = TMath::Cos(fAlpha);
2408 Double_t sinalp =-TMath::Sin(fAlpha);
2409
2410 Double_t
2411 t = cosalp*r[0] - sinalp*r[1];
2412 r[1] = sinalp*r[0] + cosalp*r[1];
2413 r[0] = t;
2414
2415 t = cosalp*p[0] - sinalp*p[1];
2416 p[1] = sinalp*p[0] + cosalp*p[1];
2417 p[0] = t;
2418
2419
2420 // Do the final correcting step to the target plane (linear approximation)
2421 Double_t x=r[0], y=r[1], z=r[2];
2422 if (TMath::Abs(dx) > kAlmost0) {
2423 if (TMath::Abs(p[0]) < kAlmost0) return kFALSE;
2424 dx = xk - r[0];
2425 x += dx;
2426 y += p[1]/p[0]*dx;
2427 z += p[2]/p[0]*dx;
2428 }
2429
2430
2431 // Calculate the track parameters
2432 t=TMath::Sqrt(p[0]*p[0] + p[1]*p[1]);
2433 fX = x;
2434 fP[0] = y;
2435 fP[1] = z;
2436 fP[2] = p[1]/t;
2437 fP[3] = p[2]/t;
2438 fP[4] = GetSign()/(t*pp);
2439
2440 return kTRUE;
2441}
2442
e0302afb 2443Bool_t AliExternalTrackParam::PropagateParamOnlyBxByBzTo(Double_t xk, const Double_t b[3]) {
2444 //----------------------------------------------------------------
2445 // Extrapolate this track params (w/o cov matrix) to the plane X=xk in the field b[].
2446 //
2447 // X [cm] is in the "tracking coordinate system" of this track.
2448 // b[]={Bx,By,Bz} [kG] is in the Global coordidate system.
2449 //----------------------------------------------------------------
2450
2451 Double_t dx=xk-fX;
2452 if (TMath::Abs(dx)<=kAlmost0) return kTRUE;
2453 if (TMath::Abs(fP[4])<=kAlmost0) return kFALSE;
2454 // Do not propagate tracks outside the ALICE detector
2455 if (TMath::Abs(dx)>1e5 ||
2456 TMath::Abs(GetY())>1e5 ||
2457 TMath::Abs(GetZ())>1e5) {
2458 AliWarning(Form("Anomalous track, target X:%f",xk));
2459 Print();
2460 return kFALSE;
2461 }
2462
2463 Double_t crv=GetC(b[2]);
2464 if (TMath::Abs(b[2]) < kAlmost0Field) crv=0.;
2465
2466 Double_t x2r = crv*dx;
2467 Double_t f1=fP[2], f2=f1 + x2r;
2468 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
2469 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
2470 //
2471 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
2472 //
2473 // Appoximate step length
2474 double dy2dx = (f1+f2)/(r1+r2);
2475 Double_t step = (TMath::Abs(x2r)<0.05) ? dx*TMath::Abs(r2 + f2*dy2dx) // chord
2476 : 2.*TMath::ASin(0.5*dx*TMath::Sqrt(1.+dy2dx*dy2dx)*crv)/crv; // arc
2477 step *= TMath::Sqrt(1.+ GetTgl()*GetTgl());
2478
2479 // Get the track's (x,y,z) and (px,py,pz) in the Global System
2480 Double_t r[3]; GetXYZ(r);
2481 Double_t p[3]; GetPxPyPz(p);
2482 Double_t pp=GetP();
2483 p[0] /= pp;
2484 p[1] /= pp;
2485 p[2] /= pp;
2486
2487 // Rotate to the system where Bx=By=0.
2488 Double_t bt=TMath::Sqrt(b[0]*b[0] + b[1]*b[1]);
2489 Double_t cosphi=1., sinphi=0.;
2490 if (bt > kAlmost0) {cosphi=b[0]/bt; sinphi=b[1]/bt;}
2491 Double_t bb=TMath::Sqrt(b[0]*b[0] + b[1]*b[1] + b[2]*b[2]);
2492 Double_t costet=1., sintet=0.;
2493 if (bb > kAlmost0) {costet=b[2]/bb; sintet=bt/bb;}
2494 Double_t vect[7];
2495
2496 vect[0] = costet*cosphi*r[0] + costet*sinphi*r[1] - sintet*r[2];
2497 vect[1] = -sinphi*r[0] + cosphi*r[1];
2498 vect[2] = sintet*cosphi*r[0] + sintet*sinphi*r[1] + costet*r[2];
2499
2500 vect[3] = costet*cosphi*p[0] + costet*sinphi*p[1] - sintet*p[2];
2501 vect[4] = -sinphi*p[0] + cosphi*p[1];
2502 vect[5] = sintet*cosphi*p[0] + sintet*sinphi*p[1] + costet*p[2];
2503
2504 vect[6] = pp;
2505
2506 // Do the helix step
2507 g3helx3(GetSign()*bb,step,vect);
2508
2509 // Rotate back to the Global System
2510 r[0] = cosphi*costet*vect[0] - sinphi*vect[1] + cosphi*sintet*vect[2];
2511 r[1] = sinphi*costet*vect[0] + cosphi*vect[1] + sinphi*sintet*vect[2];
2512 r[2] = -sintet*vect[0] + costet*vect[2];
2513
2514 p[0] = cosphi*costet*vect[3] - sinphi*vect[4] + cosphi*sintet*vect[5];
2515 p[1] = sinphi*costet*vect[3] + cosphi*vect[4] + sinphi*sintet*vect[5];
2516 p[2] = -sintet*vect[3] + costet*vect[5];
2517
2518 // Rotate back to the Tracking System
2519 Double_t cosalp = TMath::Cos(fAlpha);
2520 Double_t sinalp =-TMath::Sin(fAlpha);
2521
2522 Double_t
2523 t = cosalp*r[0] - sinalp*r[1];
2524 r[1] = sinalp*r[0] + cosalp*r[1];
2525 r[0] = t;
2526
2527 t = cosalp*p[0] - sinalp*p[1];
2528 p[1] = sinalp*p[0] + cosalp*p[1];
2529 p[0] = t;
2530
2531 // Do the final correcting step to the target plane (linear approximation)
2532 Double_t x=r[0], y=r[1], z=r[2];
2533 if (TMath::Abs(dx) > kAlmost0) {
2534 if (TMath::Abs(p[0]) < kAlmost0) return kFALSE;
2535 dx = xk - r[0];
2536 x += dx;
2537 y += p[1]/p[0]*dx;
2538 z += p[2]/p[0]*dx;
2539 }
2540
2541
2542 // Calculate the track parameters
2543 t=TMath::Sqrt(p[0]*p[0] + p[1]*p[1]);
2544 fX = x;
2545 fP[0] = y;
2546 fP[1] = z;
2547 fP[2] = p[1]/t;
2548 fP[3] = p[2]/t;
2549 fP[4] = GetSign()/(t*pp);
2550
2551 return kTRUE;
2552}
2553
2554
cfdb62d4 2555Bool_t AliExternalTrackParam::Translate(Double_t *vTrasl,Double_t *covV){
2556 //
2557 //Translation: in the event mixing, the tracks can be shifted
2558 //of the difference among primary vertices (vTrasl) and
2559 //the covariance matrix is changed accordingly
2560 //(covV = covariance of the primary vertex).
2561 //Origin: "Romita, Rossella" <R.Romita@gsi.de>
2562 //
2563 TVector3 translation;
2564 // vTrasl coordinates in the local system
2565 translation.SetXYZ(vTrasl[0],vTrasl[1],vTrasl[2]);
2566 translation.RotateZ(-fAlpha);
2567 translation.GetXYZ(vTrasl);
2568
2569 //compute the new x,y,z of the track
5a87bb3d 2570 Double_t newX=fX-vTrasl[0];
2571 Double_t newY=fP[0]-vTrasl[1];
2572 Double_t newZ=fP[1]-vTrasl[2];
cfdb62d4 2573
2574 //define the new parameters
5a87bb3d 2575 Double_t newParam[5];
2576 newParam[0]=newY;
2577 newParam[1]=newZ;
2578 newParam[2]=fP[2];
2579 newParam[3]=fP[3];
2580 newParam[4]=fP[4];
cfdb62d4 2581
2582 // recompute the covariance matrix:
2583 // 1. covV in the local system
2584 Double_t cosRot=TMath::Cos(fAlpha), sinRot=TMath::Sin(fAlpha);
2585 TMatrixD qQi(3,3);
2586 qQi(0,0) = cosRot;
2587 qQi(0,1) = sinRot;
2588 qQi(0,2) = 0.;
2589 qQi(1,0) = -sinRot;
2590 qQi(1,1) = cosRot;
2591 qQi(1,2) = 0.;
2592 qQi(2,0) = 0.;
2593 qQi(2,1) = 0.;
2594 qQi(2,2) = 1.;
2595 TMatrixD uUi(3,3);
2596 uUi(0,0) = covV[0];
2597 uUi(0,0) = covV[0];
2598 uUi(1,0) = covV[1];
2599 uUi(0,1) = covV[1];
2600 uUi(2,0) = covV[3];
2601 uUi(0,2) = covV[3];
2602 uUi(1,1) = covV[2];
2603 uUi(2,2) = covV[5];
2604 uUi(1,2) = covV[4];
2605 if(uUi.Determinant() <= 0.) {return kFALSE;}
2606 TMatrixD uUiQi(uUi,TMatrixD::kMult,qQi);
2607 TMatrixD m(qQi,TMatrixD::kTransposeMult,uUiQi);
2608
2609 //2. compute the new covariance matrix of the track
2610 Double_t sigmaXX=m(0,0);
2611 Double_t sigmaXZ=m(2,0);
2612 Double_t sigmaXY=m(1,0);
2613 Double_t sigmaYY=GetSigmaY2()+m(1,1);
2614 Double_t sigmaYZ=fC[1]+m(1,2);
2615 Double_t sigmaZZ=fC[2]+m(2,2);
2616 Double_t covarianceYY=sigmaYY + (-1.)*((sigmaXY*sigmaXY)/sigmaXX);
2617 Double_t covarianceYZ=sigmaYZ-(sigmaXZ*sigmaXY/sigmaXX);
2618 Double_t covarianceZZ=sigmaZZ-((sigmaXZ*sigmaXZ)/sigmaXX);
2619
2620 Double_t newCov[15];
2621 newCov[0]=covarianceYY;
2622 newCov[1]=covarianceYZ;
2623 newCov[2]=covarianceZZ;
2624 for(Int_t i=3;i<15;i++){
2625 newCov[i]=fC[i];
2626 }
2627
2628 // set the new parameters
2629
5a87bb3d 2630 Set(newX,fAlpha,newParam,newCov);
cfdb62d4 2631
2632 return kTRUE;
2633 }
86be8934 2634
2635void AliExternalTrackParam::CheckCovariance() {
2636
2637 // This function forces the diagonal elements of the covariance matrix to be positive.
2638 // In case the diagonal element is bigger than the maximal allowed value, it is set to
2639 // the limit and the off-diagonal elements that correspond to it are set to zero.
2640
32e55f82 2641 fC[0] = TMath::Abs(fC[0]);
2642 if (fC[0]>kC0max) {
2643 double scl = TMath::Sqrt(kC0max/fC[0]);
2644 fC[0] = kC0max;
2645 fC[1] *= scl;
2646 fC[3] *= scl;
2647 fC[6] *= scl;
2648 fC[10] *= scl;
2649 }
2650 fC[2] = TMath::Abs(fC[2]);
2651 if (fC[2]>kC2max) {
2652 double scl = TMath::Sqrt(kC2max/fC[2]);
2653 fC[2] = kC2max;
2654 fC[1] *= scl;
2655 fC[4] *= scl;
2656 fC[7] *= scl;
2657 fC[11] *= scl;
2658 }
2659 fC[5] = TMath::Abs(fC[5]);
2660 if (fC[5]>kC5max) {
2661 double scl = TMath::Sqrt(kC5max/fC[5]);
2662 fC[5] = kC5max;
2663 fC[3] *= scl;
2664 fC[4] *= scl;
2665 fC[8] *= scl;
2666 fC[12] *= scl;
2667 }
2668 fC[9] = TMath::Abs(fC[9]);
2669 if (fC[9]>kC9max) {
2670 double scl = TMath::Sqrt(kC9max/fC[9]);
2671 fC[9] = kC9max;
2672 fC[6] *= scl;
2673 fC[7] *= scl;
2674 fC[8] *= scl;
2675 fC[13] *= scl;
2676 }
2677 fC[14] = TMath::Abs(fC[14]);
2678 if (fC[14]>kC14max) {
2679 double scl = TMath::Sqrt(kC14max/fC[14]);
2680 fC[14] = kC14max;
2681 fC[10] *= scl;
2682 fC[11] *= scl;
2683 fC[12] *= scl;
2684 fC[13] *= scl;
2685 }
2686
86be8934 2687 // The part below is used for tests and normally is commented out
2688// TMatrixDSym m(5);
2689// TVectorD eig(5);
2690
2691// m(0,0)=fC[0];
2692// m(1,0)=fC[1]; m(1,1)=fC[2];
2693// m(2,0)=fC[3]; m(2,1)=fC[4]; m(2,2)=fC[5];
2694// m(3,0)=fC[6]; m(3,1)=fC[7]; m(3,2)=fC[8]; m(3,3)=fC[9];
2695// m(4,0)=fC[10]; m(4,1)=fC[11]; m(4,2)=fC[12]; m(4,3)=fC[13]; m(4,4)=fC[14];
2696
2697// m(0,1)=m(1,0);
2698// m(0,2)=m(2,0); m(1,2)=m(2,1);
2699// m(0,3)=m(3,0); m(1,3)=m(3,1); m(2,3)=m(3,2);
2700// m(0,4)=m(4,0); m(1,4)=m(4,1); m(2,4)=m(4,2); m(3,4)=m(4,3);
2701// m.EigenVectors(eig);
2702
2703// // assert(eig(0)>=0 && eig(1)>=0 && eig(2)>=0 && eig(3)>=0 && eig(4)>=0);
2704// if (!(eig(0)>=0 && eig(1)>=0 && eig(2)>=0 && eig(3)>=0 && eig(4)>=0)) {
2705// AliWarning("Negative eigenvalues of the covariance matrix!");
2706// this->Print();
2707// eig.Print();
2708// }
2709}
4c3dc2a0 2710
2711Bool_t AliExternalTrackParam::ConstrainToVertex(const AliVVertex* vtx, Double_t b[3])
2712{
2713 // Constrain TPC inner params constrained
2714 //
2715 if (!vtx)
2716 return kFALSE;
2717
2718 Double_t dz[2], cov[3];
2719 if (!PropagateToDCABxByBz(vtx, b, 3, dz, cov))
2720 return kFALSE;
2721
2722 Double_t covar[6];
2723 vtx->GetCovarianceMatrix(covar);
2724
2725 Double_t p[2]= { fP[0] - dz[0], fP[1] - dz[1] };
2726 Double_t c[3]= { covar[2], 0., covar[5] };
2727
2728 Double_t chi2C = GetPredictedChi2(p,c);
2729 if (chi2C>kVeryBig)
2730 return kFALSE;
2731
2732 if (!Update(p,c))
2733 return kFALSE;
2734
2735 return kTRUE;
2736}
70580f26 2737
2738//___________________________________________________________________________________________
2739Bool_t AliExternalTrackParam::GetXatLabR(Double_t r,Double_t &x, Double_t bz, Int_t dir) const
2740{
2741 // Get local X of the track position estimated at the radius lab radius r.
2742 // The track curvature is accounted exactly
2743 //
2744 // The flag "dir" can be used to remove the ambiguity of which intersection to take (out of 2 possible)
2745 // 0 - take the intersection closest to the current track position
2746 // >0 - go along the track (increasing fX)
2747 // <0 - go backward (decreasing fX)
2748 //
2749 const Double_t &fy=fP[0], &sn = fP[2];
45fa8186 2750 const double kEps = 1.e-6;
70580f26 2751 //
2752 double crv = GetC(bz);
45fa8186 2753 if (TMath::Abs(crv)>kAlmost0) { // helix
2754 // get center of the track circle
2755 double tR = 1./crv; // track radius (for the moment signed)
2756 double cs = TMath::Sqrt((1-sn)*(1+sn));
2757 double x0 = fX - sn*tR;
2758 double y0 = fy + cs*tR;
2759 double r0 = TMath::Sqrt(x0*x0+y0*y0);
2760 // printf("Xc:%+e Yc:%+e tR:%e r0:%e\n",x0,y0,tR,r0);
2761 //
2762 if (r0<=kAlmost0) return kFALSE; // the track is concentric to circle
2763 tR = TMath::Abs(tR);
2764 double tR2r0=1.,g=0,tmp=0;
2765 if (TMath::Abs(tR-r0)>kEps) {
2766 tR2r0 = tR/r0;
2767 g = 0.5*(r*r/(r0*tR) - tR2r0 - 1./tR2r0);
2768 tmp = 1.+g*tR2r0;
2769 }
2770 else {
2771 tR2r0 = 1.0;
2772 g = 0.5*r*r/(r0*tR) - 1;
2773 tmp = 0.5*r*r/(r0*r0);
2774 }
2775 double det = (1.-g)*(1.+g);
2776 if (det<0) return kFALSE; // does not reach raduis r
2777 det = TMath::Sqrt(det);
2778 //
2779 // the intersection happens in 2 points: {x0+tR*C,y0+tR*S}
2780 // with C=f*c0+-|s0|*det and S=f*s0-+c0 sign(s0)*det
2781 // where s0 and c0 make direction for the circle center (=x0/r0 and y0/r0)
2782 //
2783 x = x0*tmp;
2784 double y = y0*tmp;
2785 if (TMath::Abs(y0)>kAlmost0) { // when y0==0 the x,y is unique
2786 double dfx = tR2r0*TMath::Abs(y0)*det;
2787 double dfy = tR2r0*x0*TMath::Sign(det,y0);
2788 if (dir==0) { // chose the one which corresponds to smallest step
2789 double delta = (x-fX)*dfx-(y-fy)*dfy; // the choice of + in C will lead to smaller step if delta<0
2790 if (delta<0) x += dfx;
2791 else x -= dfx;
2792 }
2793 else if (dir>0) { // along track direction: x must be > fX
2794 x -= dfx; // try the smallest step (dfx is positive)
2795 double dfeps = fX-x; // handle special case of very small step
0ce0138a 2796 if (dfeps<-kEps) return kTRUE;
2797 if (TMath::Abs(dfeps)<kEps && // are we already in right r?
2798 TMath::Abs(fX*fX+fy*fy - r*r)<kEps) return fX;
35cb72bc 2799 x += dfx+dfx;
2800 if (x-fX>0) return kTRUE;
2801 if (x-fX<-kEps) return kFALSE;
2802 x = fX; // don't move
45fa8186 2803 }
2804 else { // backward: x must be < fX
2805 x += dfx; // try the smallest step (dfx is positive)
2806 double dfeps = x-fX; // handle special case of very small step
0ce0138a 2807 if (dfeps<-kEps) return kTRUE;
2808 if (TMath::Abs(dfeps)<kEps && // are we already in right r?
2809 TMath::Abs(fX*fX+fy*fy - r*r)<kEps) return fX;
35cb72bc 2810 x-=dfx+dfx;
2811 if (x-fX<0) return kTRUE;
2812 if (x-fX>kEps) return kFALSE;
2813 x = fX; // don't move
45fa8186 2814 }
2815 }
2816 else { // special case: track touching the circle just in 1 point
2817 if ( (dir>0&&x<fX) || (dir<0&&x>fX) ) return kFALSE;
2818 }
2819 }
2820 else { // this is a straight track
70580f26 2821 if (TMath::Abs(sn)>=kAlmost1) { // || to Y axis
2822 double det = (r-fX)*(r+fX);
2823 if (det<0) return kFALSE; // does not reach raduis r
2824 x = fX;
2825 if (dir==0) return kTRUE;
2826 det = TMath::Sqrt(det);
2827 if (dir>0) { // along the track direction
2828 if (sn>0) {if (fy>det) return kFALSE;} // track is along Y axis and above the circle
2829 else {if (fy<-det) return kFALSE;} // track is against Y axis amd belo the circle
2830 }
45fa8186 2831 else if(dir>0) { // agains track direction
70580f26 2832 if (sn>0) {if (fy<-det) return kFALSE;} // track is along Y axis
2833 else if (fy>det) return kFALSE; // track is against Y axis
2834 }
2835 }
2836 else if (TMath::Abs(sn)<=kAlmost0) { // || to X axis
2837 double det = (r-fy)*(r+fy);
2838 if (det<0) return kFALSE; // does not reach raduis r
2839 det = TMath::Sqrt(det);
2840 if (!dir) {
2841 x = fX>0 ? det : -det; // choose the solution requiring the smalest step
2842 return kTRUE;
2843 }
2844 else if (dir>0) { // along the track direction
2845 if (fX > det) return kFALSE; // current point is in on the right from the circle
2846 else if (fX <-det) x = -det; // on the left
2847 else x = det; // within the circle
2848 }
2849 else { // against the track direction
2850 if (fX <-det) return kFALSE;
2851 else if (fX > det) x = det;
2852 else x = -det;
2853 }
2854 }
2855 else { // general case of straight line
2856 double cs = TMath::Sqrt((1-sn)*(1+sn));
2857 double xsyc = fX*sn-fy*cs;
2858 double det = (r-xsyc)*(r+xsyc);
2859 if (det<0) return kFALSE; // does not reach raduis r
2860 det = TMath::Sqrt(det);
2861 double xcys = fX*cs+fy*sn;
2862 double t = -xcys;
2863 if (dir==0) t += t>0 ? -det:det; // chose the solution requiring the smalest step
2864 else if (dir>0) { // go in increasing fX direction. ( t+-det > 0)
2865 if (t>=-det) t += -det; // take minimal step giving t>0
2866 else return kFALSE; // both solutions have negative t
2867 }
2868 else { // go in increasing fX direction. (t+-det < 0)
2869 if (t<det) t -= det; // take minimal step giving t<0
2870 else return kFALSE; // both solutions have positive t
2871 }
2872 x = fX + cs*t;
2873 }
2874 }
70580f26 2875 //
2876 return kTRUE;
2877}
7d2e151a 2878//_________________________________________________________
2879Bool_t AliExternalTrackParam::GetXYZatR(Double_t xr,Double_t bz, Double_t *xyz, Double_t* alpSect) const
1445f03c 2880{
7d2e151a 2881 // This method has 3 modes of behaviour
2882 // 1) xyz[3] array is provided but alpSect pointer is 0: calculate the position of track intersection
2883 // with circle of radius xr and fill it in xyz array
2884 // 2) alpSect pointer is provided: find alpha of the sector where the track reaches local coordinate xr
2885 // Note that in this case xr is NOT the radius but the local coordinate.
2886 // If the xyz array is provided, it will be filled by track lab coordinates at local X in this sector
2887 // 3) Neither alpSect nor xyz pointers are provided: just check if the track reaches radius xr
1445f03c 2888 //
1445f03c 2889 //
7d2e151a 2890 double crv = GetC(bz);
2891 if ( (TMath::Abs(bz))<kAlmost0Field ) crv=0.;
2892 const double &fy = fP[0];
2893 const double &fz = fP[1];
2894 const double &sn = fP[2];
2895 const double &tgl = fP[3];
2896 //
2897 // general circle parameterization:
2898 // x = (r0+tR)cos(phi0) - tR cos(t+phi0)
2899 // y = (r0+tR)sin(phi0) - tR sin(t+phi0)
2900 // where qb is the sign of the curvature, tR is the track's signed radius and r0
2901 // is the DCA of helix to origin
2902 //
2903 double tR = 1./crv; // track radius signed
2904 double cs = TMath::Sqrt((1-sn)*(1+sn));
2905 double x0 = fX - sn*tR; // helix center coordinates
2906 double y0 = fy + cs*tR;
2907 double phi0 = TMath::ATan2(y0,x0); // angle of PCA wrt to the origin
2908 if (tR<0) phi0 += TMath::Pi();
2909 if (phi0 > TMath::Pi()) phi0 -= 2.*TMath::Pi();
2910 else if (phi0 <-TMath::Pi()) phi0 += 2.*TMath::Pi();
2911 double cs0 = TMath::Cos(phi0);
2912 double sn0 = TMath::Sin(phi0);
2913 double r0 = x0*cs0 + y0*sn0 - tR; // DCA to origin
2914 double r2R = 1.+r0/tR;
2915 //
2916 //
2917 if (r2R<kAlmost0) return kFALSE; // helix is centered at the origin, no specific intersection with other concetric circle
2918 if (!xyz && !alpSect) return kTRUE;
2919 double xr2R = xr/tR;
2920 double r2Ri = 1./r2R;
2921 // the intersection cos(t) = [1 + (r0/tR+1)^2 - (r0/tR)^2]/[2(1+r0/tR)]
2922 double cosT = 0.5*(r2R + (1-xr2R*xr2R)*r2Ri);
2923 if ( TMath::Abs(cosT)>kAlmost1 ) {
2924 // printf("Does not reach : %f %f\n",r0,tR);
2925 return kFALSE; // track does not reach the radius xr
1445f03c 2926 }
2927 //
7d2e151a 2928 double t = TMath::ACos(cosT);
2929 if (tR<0) t = -t;
2930 // intersection point
2931 double xyzi[3];
2932 xyzi[0] = x0 - tR*TMath::Cos(t+phi0);
2933 xyzi[1] = y0 - tR*TMath::Sin(t+phi0);
2934 if (xyz) { // if postition is requested, then z is needed:
2935 double t0 = TMath::ATan2(cs,-sn) - phi0;
2936 double z0 = fz - t0*tR*tgl;
2937 xyzi[2] = z0 + tR*t*tgl;
1445f03c 2938 }
7d2e151a 2939 else xyzi[2] = 0;
2940 //
2941 Local2GlobalPosition(xyzi,fAlpha);
2942 //
2943 if (xyz) {
2944 xyz[0] = xyzi[0];
2945 xyz[1] = xyzi[1];
2946 xyz[2] = xyzi[2];
1445f03c 2947 }
7d2e151a 2948 //
2949 if (alpSect) {
2950 double &alp = *alpSect;
2951 // determine the sector of crossing
2952 double phiPos = TMath::Pi()+TMath::ATan2(-xyzi[1],-xyzi[0]);
2953 int sect = ((Int_t)(phiPos*TMath::RadToDeg()))/20;
2954 alp = TMath::DegToRad()*(20*sect+10);
2955 double x2r,f1,f2,r1,r2,dx,dy2dx,yloc=0, ylocMax = xr*TMath::Tan(TMath::Pi()/18); // min max Y within sector at given X
2956 //
2957 while(1) {
2958 Double_t ca=TMath::Cos(alp-fAlpha), sa=TMath::Sin(alp-fAlpha);
2959 if ((cs*ca+sn*sa)<0) {
2960 AliDebug(1,Form("Rotation to target sector impossible: local cos(phi) would become %.2f",cs*ca+sn*sa));
2961 return kFALSE;
2962 }
2963 //
2964 f1 = sn*ca - cs*sa;
2965 if (TMath::Abs(f1) >= kAlmost1) {
2966 AliDebug(1,Form("Rotation to target sector impossible: local sin(phi) would become %.2f",f1));
2967 return kFALSE;
2968 }
2969 //
2970 double tmpX = fX*ca + fy*sa;
2971 double tmpY = -fX*sa + fy*ca;
2972 //
2973 // estimate Y at X=xr
2974 dx=xr-tmpX;
2975 x2r = crv*dx;
2976 f2=f1 + x2r;
2977 if (TMath::Abs(f2) >= kAlmost1) {
2978 AliDebug(1,Form("Propagation in target sector failed ! %.10e",f2));
2979 return kFALSE;
2980 }
2981 r1 = TMath::Sqrt((1.-f1)*(1.+f1));
2982 r2 = TMath::Sqrt((1.-f2)*(1.+f2));
2983 dy2dx = (f1+f2)/(r1+r2);
2984 yloc = tmpY + dx*dy2dx;
2985 if (yloc>ylocMax) {alp += 2*TMath::Pi()/18; sect++;}
2986 else if (yloc<-ylocMax) {alp -= 2*TMath::Pi()/18; sect--;}
2987 else break;
2988 if (alp >= TMath::Pi()) alp -= 2*TMath::Pi();
2989 else if (alp < -TMath::Pi()) alp += 2*TMath::Pi();
2990 // if (sect>=18) sect = 0;
2991 // if (sect<=0) sect = 17;
2992 }
2993 //
2994 // if alpha was requested, then recalculate the position at intersection in sector
2995 if (xyz) {
2996 xyz[0] = xr;
2997 xyz[1] = yloc;
2998 if (TMath::Abs(x2r)<0.05) xyz[2] = fz + dx*(r2 + f2*dy2dx)*tgl;
2999 else {
3000 // for small dx/R the linear apporximation of the arc by the segment is OK,
3001 // but at large dx/R the error is very large and leads to incorrect Z propagation
3002 // angle traversed delta = 2*asin(dist_start_end / R / 2), hence the arc is: R*deltaPhi
3003 // The dist_start_end is obtained from sqrt(dx^2+dy^2) = x/(r1+r2)*sqrt(2+f1*f2+r1*r2)
3004 // Similarly, the rotation angle in linear in dx only for dx<<R
3005 double chord = dx*TMath::Sqrt(1+dy2dx*dy2dx); // distance from old position to new one
3006 double rot = 2*TMath::ASin(0.5*chord*crv); // angular difference seen from the circle center
3007 xyz[2] = fz + rot/crv*tgl;
3008 }
3009 Local2GlobalPosition(xyz,alp);
3010 }
1445f03c 3011 }
7d2e151a 3012 return kTRUE;
3013 //
1445f03c 3014}
b8b98dc2 3015
3016
3017Double_t AliExternalTrackParam::GetParameterAtRadius(Double_t r, Double_t bz, Int_t parType) const
3018{
3019 //
3020 // Get track parameters at the radius of interest.
3021 // Given function is aimed to be used to interactivelly (tree->Draw())
3022 // access track properties at different radii
3023 //
3024 // TO BE USED WITH SPECICAL CARE -
3025 // it is aimed to be used for rough calculation as constant field and
3026 // no correction for material is used
3027 //
3028 // r - radius of interest
3029 // bz - magentic field
3030 // retun values dependens on parType:
3031 // parType = 0 -gx
3032 // parType = 1 -gy
3033 // parType = 2 -gz
3034 //
3035 // parType = 3 -pgx
3036 // parType = 4 -pgy
3037 // parType = 5 -pgz
3038 //
3039 // parType = 6 - r
3040 // parType = 7 - global position phi
3041 // parType = 8 - global direction phi
3042 // parType = 9 - direction phi- positionphi
3043 if (parType<0) {
3044 parType=-1;
3045 return 0;
3046 }
3047 Double_t xyz[3];
3048 Double_t pxyz[3];
3049 Double_t localX=0;
3050 Bool_t res = GetXatLabR(r,localX,bz,1);
3051 if (!res) {
3052 parType=-1;
3053 return 0;
3054 }
3055 //
3056 // position parameters
3057 //
3058 GetXYZAt(localX,bz,xyz);
3059 if (parType<3) {
3060 return xyz[parType];
3061 }
3062
3063 if (parType==6) return TMath::Sqrt(xyz[0]*xyz[0]+xyz[1]*xyz[1]);
3064 if (parType==7) return TMath::ATan2(xyz[1],xyz[0]);
3065 //
3066 // momenta parameters
3067 //
3068 GetPxPyPzAt(localX,bz,pxyz);
3069 if (parType==8) return TMath::ATan2(pxyz[1],pxyz[0]);
3070 if (parType==9) {
3071 Double_t diff = TMath::ATan2(pxyz[1],pxyz[0])-TMath::ATan2(xyz[1],xyz[0]);
3072 if (diff>TMath::Pi()) diff-=TMath::TwoPi();
3073 if (diff<-TMath::Pi()) diff+=TMath::TwoPi();
3074 return diff;
3075 }
3076 if (parType>=3&&parType<6) {
3077 return pxyz[parType%3];
3078 }
3079 return 0;
3080}