]> git.uio.no Git - u/mrichter/AliRoot.git/blame - STEER/STEERBase/AliExternalTrackParam.cxx
New splines and first eta maps for the 2013 pPb runs (Benjamin)
[u/mrichter/AliRoot.git] / STEER / STEERBase / AliExternalTrackParam.cxx
CommitLineData
51ad6848 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18///////////////////////////////////////////////////////////////////////////////
19// //
49d13e89 20// Implementation of the external track parameterisation class. //
51ad6848 21// //
49d13e89 22// This parameterisation is used to exchange tracks between the detectors. //
23// A set of functions returning the position and the momentum of tracks //
24// in the global coordinate system as well as the track impact parameters //
25// are implemented.
26// Origin: I.Belikov, CERN, Jouri.Belikov@cern.ch //
51ad6848 27///////////////////////////////////////////////////////////////////////////////
86be8934 28#include <cassert>
29
30#include <TVectorD.h>
4b189f98 31#include <TMatrixDSym.h>
d46683db 32#include <TPolyMarker3D.h>
33#include <TVector3.h>
cfdb62d4 34#include <TMatrixD.h>
d46683db 35
51ad6848 36#include "AliExternalTrackParam.h"
58e536c5 37#include "AliVVertex.h"
6c94f330 38#include "AliLog.h"
51ad6848 39
40ClassImp(AliExternalTrackParam)
41
ed5f2849 42Double32_t AliExternalTrackParam::fgMostProbablePt=kMostProbablePt;
f2cef1b5 43Bool_t AliExternalTrackParam::fgUseLogTermMS = kFALSE;;
51ad6848 44//_____________________________________________________________________________
90e48c0c 45AliExternalTrackParam::AliExternalTrackParam() :
4f6e22bd 46 AliVTrack(),
90e48c0c 47 fX(0),
c9ec41e8 48 fAlpha(0)
51ad6848 49{
90e48c0c 50 //
51 // default constructor
52 //
c9ec41e8 53 for (Int_t i = 0; i < 5; i++) fP[i] = 0;
54 for (Int_t i = 0; i < 15; i++) fC[i] = 0;
51ad6848 55}
56
6c94f330 57//_____________________________________________________________________________
58AliExternalTrackParam::AliExternalTrackParam(const AliExternalTrackParam &track):
4f6e22bd 59 AliVTrack(track),
6c94f330 60 fX(track.fX),
61 fAlpha(track.fAlpha)
62{
63 //
64 // copy constructor
65 //
66 for (Int_t i = 0; i < 5; i++) fP[i] = track.fP[i];
67 for (Int_t i = 0; i < 15; i++) fC[i] = track.fC[i];
86be8934 68 CheckCovariance();
6c94f330 69}
70
def9660e 71//_____________________________________________________________________________
72AliExternalTrackParam& AliExternalTrackParam::operator=(const AliExternalTrackParam &trkPar)
73{
74 //
75 // assignment operator
76 //
77
78 if (this!=&trkPar) {
4f6e22bd 79 AliVTrack::operator=(trkPar);
def9660e 80 fX = trkPar.fX;
81 fAlpha = trkPar.fAlpha;
82
83 for (Int_t i = 0; i < 5; i++) fP[i] = trkPar.fP[i];
84 for (Int_t i = 0; i < 15; i++) fC[i] = trkPar.fC[i];
86be8934 85 CheckCovariance();
def9660e 86 }
87
88 return *this;
89}
90
51ad6848 91//_____________________________________________________________________________
92AliExternalTrackParam::AliExternalTrackParam(Double_t x, Double_t alpha,
93 const Double_t param[5],
90e48c0c 94 const Double_t covar[15]) :
4f6e22bd 95 AliVTrack(),
90e48c0c 96 fX(x),
c9ec41e8 97 fAlpha(alpha)
51ad6848 98{
90e48c0c 99 //
100 // create external track parameters from given arguments
101 //
c9ec41e8 102 for (Int_t i = 0; i < 5; i++) fP[i] = param[i];
103 for (Int_t i = 0; i < 15; i++) fC[i] = covar[i];
86be8934 104 CheckCovariance();
51ad6848 105}
106
4ec1ca0f 107//_____________________________________________________________________________
108void AliExternalTrackParam::CopyFromVTrack(const AliVTrack *vTrack)
109{
110 //
111 // Recreate TrackParams from VTrack
112 // This is not a copy contructor !
113 //
114 if (!vTrack) {
115 AliError("Source VTrack is NULL");
116 return;
117 }
118 if (this==vTrack) {
119 AliError("Copy of itself is requested");
120 return;
121 }
122 //
123 if (vTrack->InheritsFrom(AliExternalTrackParam::Class())) {
124 AliDebug(1,"Source itself is AliExternalTrackParam, using assignment operator");
125 *this = *(AliExternalTrackParam*)vTrack;
126 return;
127 }
128 //
129 AliVTrack::operator=( *vTrack );
130 //
131 Double_t xyz[3],pxpypz[3],cv[21];
132 vTrack->GetXYZ(xyz);
133 pxpypz[0]=vTrack->Px();
134 pxpypz[1]=vTrack->Py();
135 pxpypz[2]=vTrack->Pz();
136 vTrack->GetCovarianceXYZPxPyPz(cv);
137 Short_t sign = (Short_t)vTrack->Charge();
138 Set(xyz,pxpypz,cv,sign);
139}
140
4f6e22bd 141//_____________________________________________________________________________
142AliExternalTrackParam::AliExternalTrackParam(const AliVTrack *vTrack) :
143 AliVTrack(),
144 fX(0.),
145 fAlpha(0.)
146{
147 //
610e3088 148 // Constructor from virtual track,
149 // This is not a copy contructor !
4f6e22bd 150 //
610e3088 151
152 if (vTrack->InheritsFrom("AliExternalTrackParam")) {
153 AliError("This is not a copy constructor. Use AliExternalTrackParam(const AliExternalTrackParam &) !");
154 AliWarning("Calling the default constructor...");
155 AliExternalTrackParam();
156 return;
157 }
158
892be05f 159 Double_t xyz[3],pxpypz[3],cv[21];
160 vTrack->GetXYZ(xyz);
161 pxpypz[0]=vTrack->Px();
162 pxpypz[1]=vTrack->Py();
163 pxpypz[2]=vTrack->Pz();
4f6e22bd 164 vTrack->GetCovarianceXYZPxPyPz(cv);
165 Short_t sign = (Short_t)vTrack->Charge();
166
167 Set(xyz,pxpypz,cv,sign);
168}
169
90e48c0c 170//_____________________________________________________________________________
da4e3deb 171AliExternalTrackParam::AliExternalTrackParam(Double_t xyz[3],Double_t pxpypz[3],
172 Double_t cv[21],Short_t sign) :
4f6e22bd 173 AliVTrack(),
da4e3deb 174 fX(0.),
175 fAlpha(0.)
4f6e22bd 176{
177 //
178 // constructor from the global parameters
179 //
180
181 Set(xyz,pxpypz,cv,sign);
182}
183
184//_____________________________________________________________________________
185void AliExternalTrackParam::Set(Double_t xyz[3],Double_t pxpypz[3],
186 Double_t cv[21],Short_t sign)
da4e3deb 187{
188 //
189 // create external track parameters from the global parameters
190 // x,y,z,px,py,pz and their 6x6 covariance matrix
191 // A.Dainese 10.10.08
192
aff56ff7 193 // Calculate alpha: the rotation angle of the corresponding local system.
194 //
195 // For global radial position inside the beam pipe, alpha is the
196 // azimuthal angle of the momentum projected on (x,y).
197 //
c99948ce 198 // For global radial position outside the ITS, alpha is the
aff56ff7 199 // azimuthal angle of the centre of the TPC sector in which the point
200 // xyz lies
201 //
4349f5a4 202 const double kSafe = 1e-5;
aff56ff7 203 Double_t radPos2 = xyz[0]*xyz[0]+xyz[1]*xyz[1];
c99948ce 204 Double_t radMax = 45.; // approximately ITS outer radius
4349f5a4 205 if (radPos2 < radMax*radMax) { // inside the ITS
aff56ff7 206 fAlpha = TMath::ATan2(pxpypz[1],pxpypz[0]);
c99948ce 207 } else { // outside the ITS
aff56ff7 208 Float_t phiPos = TMath::Pi()+TMath::ATan2(-xyz[1], -xyz[0]);
209 fAlpha =
210 TMath::DegToRad()*(20*((((Int_t)(phiPos*TMath::RadToDeg()))/20))+10);
211 }
4349f5a4 212 //
213 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
214 // protection: avoid alpha being too close to 0 or +-pi/2
215 if (TMath::Abs(sn)<kSafe) {
8defb4a0 216 if (fAlpha>0) fAlpha += fAlpha< TMath::Pi()/2. ? kSafe : -kSafe;
217 else fAlpha += fAlpha>-TMath::Pi()/2. ? -kSafe : kSafe;
4349f5a4 218 cs=TMath::Cos(fAlpha);
219 sn=TMath::Sin(fAlpha);
220 }
8defb4a0 221 else if (TMath::Abs(cs)<kSafe) {
222 if (fAlpha>0) fAlpha += fAlpha> TMath::Pi()/2. ? kSafe : -kSafe;
223 else fAlpha += fAlpha>-TMath::Pi()/2. ? kSafe : -kSafe;
4349f5a4 224 cs=TMath::Cos(fAlpha);
8defb4a0 225 sn=TMath::Sin(fAlpha);
4349f5a4 226 }
da4e3deb 227 // Get the vertex of origin and the momentum
228 TVector3 ver(xyz[0],xyz[1],xyz[2]);
229 TVector3 mom(pxpypz[0],pxpypz[1],pxpypz[2]);
4349f5a4 230 //
231 // avoid momenta along axis
232 if (TMath::Abs(mom[0])<kSafe) mom[0] = TMath::Sign(kSafe*TMath::Abs(mom[1]), mom[0]);
233 if (TMath::Abs(mom[1])<kSafe) mom[1] = TMath::Sign(kSafe*TMath::Abs(mom[0]), mom[1]);
da4e3deb 234
235 // Rotate to the local coordinate system
236 ver.RotateZ(-fAlpha);
237 mom.RotateZ(-fAlpha);
238
239 // x of the reference plane
240 fX = ver.X();
241
242 Double_t charge = (Double_t)sign;
243
244 fP[0] = ver.Y();
245 fP[1] = ver.Z();
246 fP[2] = TMath::Sin(mom.Phi());
247 fP[3] = mom.Pz()/mom.Pt();
248 fP[4] = TMath::Sign(1/mom.Pt(),charge);
249
250 // Covariance matrix (formulas to be simplified)
251
752303df 252 if (TMath::Abs( 1-fP[2]) < kSafe) fP[2] = 1.- kSafe; //Protection
253 else if (TMath::Abs(-1-fP[2]) < kSafe) fP[2] =-1.+ kSafe; //Protection
254
da4e3deb 255 Double_t pt=1./TMath::Abs(fP[4]);
da4e3deb 256 Double_t r=TMath::Sqrt((1.-fP[2])*(1.+fP[2]));
257
258 Double_t m00=-sn;// m10=cs;
259 Double_t m23=-pt*(sn + fP[2]*cs/r), m43=-pt*pt*(r*cs - fP[2]*sn);
260 Double_t m24= pt*(cs - fP[2]*sn/r), m44=-pt*pt*(r*sn + fP[2]*cs);
261 Double_t m35=pt, m45=-pt*pt*fP[3];
262
263 m43*=GetSign();
264 m44*=GetSign();
265 m45*=GetSign();
266
267 Double_t cv34 = TMath::Sqrt(cv[3 ]*cv[3 ]+cv[4 ]*cv[4 ]);
268 Double_t a1=cv[13]-cv[9]*(m23*m44+m43*m24)/m23/m43;
269 Double_t a2=m23*m24-m23*(m23*m44+m43*m24)/m43;
270 Double_t a3=m43*m44-m43*(m23*m44+m43*m24)/m23;
271 Double_t a4=cv[14]-2.*cv[9]*m24*m44/m23/m43;
272 Double_t a5=m24*m24-2.*m24*m44*m23/m43;
273 Double_t a6=m44*m44-2.*m24*m44*m43/m23;
274
275 fC[0 ] = cv[0 ]+cv[2 ];
276 fC[1 ] = TMath::Sign(cv34,cv[3 ]/m00);
277 fC[2 ] = cv[5 ];
278 fC[3 ] = (cv[10]/m44-cv[6]/m43)/(m24/m44-m23/m43)/m00;
279 fC[10] = (cv[6]/m00-fC[3 ]*m23)/m43;
280 fC[6 ] = (cv[15]/m00-fC[10]*m45)/m35;
281 fC[4 ] = (cv[12]-cv[8]*m44/m43)/(m24-m23*m44/m43);
282 fC[11] = (cv[8]-fC[4]*m23)/m43;
283 fC[7 ] = cv[17]/m35-fC[11]*m45/m35;
284 fC[5 ] = TMath::Abs((a4-a6*a1/a3)/(a5-a6*a2/a3));
285 fC[14] = TMath::Abs(a1/a3-a2*fC[5]/a3);
286 fC[12] = (cv[9]-fC[5]*m23*m23-fC[14]*m43*m43)/m23/m43;
287 Double_t b1=cv[18]-fC[12]*m23*m45-fC[14]*m43*m45;
288 Double_t b2=m23*m35;
289 Double_t b3=m43*m35;
290 Double_t b4=cv[19]-fC[12]*m24*m45-fC[14]*m44*m45;
291 Double_t b5=m24*m35;
292 Double_t b6=m44*m35;
293 fC[8 ] = (b4-b6*b1/b3)/(b5-b6*b2/b3);
294 fC[13] = b1/b3-b2*fC[8]/b3;
295 fC[9 ] = TMath::Abs((cv[20]-fC[14]*(m45*m45)-fC[13]*2.*m35*m45)/(m35*m35));
4f6e22bd 296
86be8934 297 CheckCovariance();
298
4f6e22bd 299 return;
da4e3deb 300}
301
51ad6848 302//_____________________________________________________________________________
c9ec41e8 303void AliExternalTrackParam::Reset() {
1530f89c 304 //
305 // Resets all the parameters to 0
306 //
c9ec41e8 307 fX=fAlpha=0.;
308 for (Int_t i = 0; i < 5; i++) fP[i] = 0;
309 for (Int_t i = 0; i < 15; i++) fC[i] = 0;
51ad6848 310}
311
3775b0ca 312//_____________________________________________________________________________
313void AliExternalTrackParam::AddCovariance(const Double_t c[15]) {
314 //
315 // Add "something" to the track covarince matrix.
316 // May be needed to account for unknown mis-calibration/mis-alignment
317 //
318 fC[0] +=c[0];
319 fC[1] +=c[1]; fC[2] +=c[2];
320 fC[3] +=c[3]; fC[4] +=c[4]; fC[5] +=c[5];
321 fC[6] +=c[6]; fC[7] +=c[7]; fC[8] +=c[8]; fC[9] +=c[9];
322 fC[10]+=c[10]; fC[11]+=c[11]; fC[12]+=c[12]; fC[13]+=c[13]; fC[14]+=c[14];
86be8934 323 CheckCovariance();
3775b0ca 324}
325
326
c9ec41e8 327Double_t AliExternalTrackParam::GetP() const {
328 //---------------------------------------------------------------------
329 // This function returns the track momentum
330 // Results for (nearly) straight tracks are meaningless !
331 //---------------------------------------------------------------------
06fb4a2f 332 if (TMath::Abs(fP[4])<=kAlmost0) return kVeryBig;
c9ec41e8 333 return TMath::Sqrt(1.+ fP[3]*fP[3])/TMath::Abs(fP[4]);
51ad6848 334}
335
1d99986f 336Double_t AliExternalTrackParam::Get1P() const {
337 //---------------------------------------------------------------------
338 // This function returns the 1/(track momentum)
339 //---------------------------------------------------------------------
340 return TMath::Abs(fP[4])/TMath::Sqrt(1.+ fP[3]*fP[3]);
341}
342
c9ec41e8 343//_______________________________________________________________________
c7bafca9 344Double_t AliExternalTrackParam::GetD(Double_t x,Double_t y,Double_t b) const {
c9ec41e8 345 //------------------------------------------------------------------
346 // This function calculates the transverse impact parameter
347 // with respect to a point with global coordinates (x,y)
348 // in the magnetic field "b" (kG)
349 //------------------------------------------------------------------
5773defd 350 if (TMath::Abs(b) < kAlmost0Field) return GetLinearD(x,y);
1530f89c 351 Double_t rp4=GetC(b);
c9ec41e8 352
353 Double_t xt=fX, yt=fP[0];
354
355 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
356 Double_t a = x*cs + y*sn;
357 y = -x*sn + y*cs; x=a;
358 xt-=x; yt-=y;
359
bfd20868 360 sn=rp4*xt - fP[2]; cs=rp4*yt + TMath::Sqrt((1.- fP[2])*(1.+fP[2]));
361 a=2*(xt*fP[2] - yt*TMath::Sqrt((1.-fP[2])*(1.+fP[2])))-rp4*(xt*xt + yt*yt);
1530f89c 362 return -a/(1 + TMath::Sqrt(sn*sn + cs*cs));
363}
364
365//_______________________________________________________________________
366void AliExternalTrackParam::
367GetDZ(Double_t x, Double_t y, Double_t z, Double_t b, Float_t dz[2]) const {
368 //------------------------------------------------------------------
369 // This function calculates the transverse and longitudinal impact parameters
370 // with respect to a point with global coordinates (x,y)
371 // in the magnetic field "b" (kG)
372 //------------------------------------------------------------------
bfd20868 373 Double_t f1 = fP[2], r1 = TMath::Sqrt((1.-f1)*(1.+f1));
1530f89c 374 Double_t xt=fX, yt=fP[0];
375 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
376 Double_t a = x*cs + y*sn;
377 y = -x*sn + y*cs; x=a;
378 xt-=x; yt-=y;
379
380 Double_t rp4=GetC(b);
381 if ((TMath::Abs(b) < kAlmost0Field) || (TMath::Abs(rp4) < kAlmost0)) {
382 dz[0] = -(xt*f1 - yt*r1);
383 dz[1] = fP[1] + (dz[0]*f1 - xt)/r1*fP[3] - z;
384 return;
385 }
386
387 sn=rp4*xt - f1; cs=rp4*yt + r1;
388 a=2*(xt*f1 - yt*r1)-rp4*(xt*xt + yt*yt);
389 Double_t rr=TMath::Sqrt(sn*sn + cs*cs);
390 dz[0] = -a/(1 + rr);
bfd20868 391 Double_t f2 = -sn/rr, r2 = TMath::Sqrt((1.-f2)*(1.+f2));
1530f89c 392 dz[1] = fP[1] + fP[3]/rp4*TMath::ASin(f2*r1 - f1*r2) - z;
51ad6848 393}
394
49d13e89 395//_______________________________________________________________________
396Double_t AliExternalTrackParam::GetLinearD(Double_t xv,Double_t yv) const {
397 //------------------------------------------------------------------
398 // This function calculates the transverse impact parameter
399 // with respect to a point with global coordinates (xv,yv)
400 // neglecting the track curvature.
401 //------------------------------------------------------------------
402 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
403 Double_t x= xv*cs + yv*sn;
404 Double_t y=-xv*sn + yv*cs;
405
bfd20868 406 Double_t d = (fX-x)*fP[2] - (fP[0]-y)*TMath::Sqrt((1.-fP[2])*(1.+fP[2]));
49d13e89 407
1530f89c 408 return -d;
49d13e89 409}
410
b8e07ed6 411Bool_t AliExternalTrackParam::CorrectForMeanMaterialdEdx
412(Double_t xOverX0, Double_t xTimesRho, Double_t mass,
413 Double_t dEdx,
414 Bool_t anglecorr) {
116b445b 415 //------------------------------------------------------------------
416 // This function corrects the track parameters for the crossed material.
417 // "xOverX0" - X/X0, the thickness in units of the radiation length.
2b99ff83 418 // "xTimesRho" - is the product length*density (g/cm^2).
419 // It should be passed as negative when propagating tracks
420 // from the intreaction point to the outside of the central barrel.
116b445b 421 // "mass" - the mass of this particle (GeV/c^2).
b8e07ed6 422 // "dEdx" - mean enery loss (GeV/(g/cm^2)
423 // "anglecorr" - switch for the angular correction
116b445b 424 //------------------------------------------------------------------
425 Double_t &fP2=fP[2];
426 Double_t &fP3=fP[3];
427 Double_t &fP4=fP[4];
428
429 Double_t &fC22=fC[5];
430 Double_t &fC33=fC[9];
431 Double_t &fC43=fC[13];
432 Double_t &fC44=fC[14];
433
7dded1d5 434 //Apply angle correction, if requested
435 if(anglecorr) {
bfd20868 436 Double_t angle=TMath::Sqrt((1.+ fP3*fP3)/((1-fP2)*(1.+fP2)));
7dded1d5 437 xOverX0 *=angle;
438 xTimesRho *=angle;
439 }
440
116b445b 441 Double_t p=GetP();
442 Double_t p2=p*p;
443 Double_t beta2=p2/(p2 + mass*mass);
116b445b 444
9f2bec63 445 //Calculating the multiple scattering corrections******************
446 Double_t cC22 = 0.;
447 Double_t cC33 = 0.;
448 Double_t cC43 = 0.;
449 Double_t cC44 = 0.;
116b445b 450 if (xOverX0 != 0) {
f2cef1b5 451 //Double_t theta2=1.0259e-6*14*14/28/(beta2*p2)*TMath::Abs(d)*9.36*2.33;
452 Double_t theta2=0.0136*0.0136/(beta2*p2)*TMath::Abs(xOverX0);
453 if (GetUseLogTermMS()) {
454 double lt = 1+0.038*TMath::Log(TMath::Abs(xOverX0));
455 if (lt>0) theta2 *= lt*lt;
456 }
457 if(theta2>TMath::Pi()*TMath::Pi()) return kFALSE;
458 cC22 = theta2*((1.-fP2)*(1.+fP2))*(1. + fP3*fP3);
459 cC33 = theta2*(1. + fP3*fP3)*(1. + fP3*fP3);
460 cC43 = theta2*fP3*fP4*(1. + fP3*fP3);
461 cC44 = theta2*fP3*fP4*fP3*fP4;
116b445b 462 }
463
9f2bec63 464 //Calculating the energy loss corrections************************
465 Double_t cP4=1.;
116b445b 466 if ((xTimesRho != 0.) && (beta2 < 1.)) {
b8e07ed6 467 Double_t dE=dEdx*xTimesRho;
116b445b 468 Double_t e=TMath::Sqrt(p2 + mass*mass);
469 if ( TMath::Abs(dE) > 0.3*e ) return kFALSE; //30% energy loss is too much!
c9038cae 470 //cP4 = (1.- e/p2*dE);
76ece3d8 471 if ( (1.+ dE/p2*(dE + 2*e)) < 0. ) return kFALSE;
c9038cae 472 cP4 = 1./TMath::Sqrt(1.+ dE/p2*(dE + 2*e)); //A precise formula by Ruben !
9f2bec63 473 if (TMath::Abs(fP4*cP4)>100.) return kFALSE; //Do not track below 10 MeV/c
4b2fa3ce 474
116b445b 475
476 // Approximate energy loss fluctuation (M.Ivanov)
477 const Double_t knst=0.07; // To be tuned.
478 Double_t sigmadE=knst*TMath::Sqrt(TMath::Abs(dE));
9f2bec63 479 cC44 += ((sigmadE*e/p2*fP4)*(sigmadE*e/p2*fP4));
116b445b 480
481 }
482
9f2bec63 483 //Applying the corrections*****************************
484 fC22 += cC22;
485 fC33 += cC33;
486 fC43 += cC43;
487 fC44 += cC44;
488 fP4 *= cP4;
489
86be8934 490 CheckCovariance();
491
116b445b 492 return kTRUE;
493}
494
b8e07ed6 495Bool_t AliExternalTrackParam::CorrectForMeanMaterial
496(Double_t xOverX0, Double_t xTimesRho, Double_t mass,
497 Bool_t anglecorr,
498 Double_t (*Bethe)(Double_t)) {
499 //------------------------------------------------------------------
500 // This function corrects the track parameters for the crossed material.
501 // "xOverX0" - X/X0, the thickness in units of the radiation length.
502 // "xTimesRho" - is the product length*density (g/cm^2).
2b99ff83 503 // It should be passed as negative when propagating tracks
504 // from the intreaction point to the outside of the central barrel.
b8e07ed6 505 // "mass" - the mass of this particle (GeV/c^2).
506 // "anglecorr" - switch for the angular correction
507 // "Bethe" - function calculating the energy loss (GeV/(g/cm^2))
508 //------------------------------------------------------------------
509
510 Double_t bg=GetP()/mass;
511 Double_t dEdx=Bethe(bg);
512
513 return CorrectForMeanMaterialdEdx(xOverX0,xTimesRho,mass,dEdx,anglecorr);
514}
515
516Bool_t AliExternalTrackParam::CorrectForMeanMaterialZA
517(Double_t xOverX0, Double_t xTimesRho, Double_t mass,
518 Double_t zOverA,
519 Double_t density,
520 Double_t exEnergy,
521 Double_t jp1,
522 Double_t jp2,
523 Bool_t anglecorr) {
524 //------------------------------------------------------------------
525 // This function corrects the track parameters for the crossed material
526 // using the full Geant-like Bethe-Bloch formula parameterization
527 // "xOverX0" - X/X0, the thickness in units of the radiation length.
528 // "xTimesRho" - is the product length*density (g/cm^2).
2b99ff83 529 // It should be passed as negative when propagating tracks
530 // from the intreaction point to the outside of the central barrel.
b8e07ed6 531 // "mass" - the mass of this particle (GeV/c^2).
532 // "density" - mean density (g/cm^3)
533 // "zOverA" - mean Z/A
534 // "exEnergy" - mean exitation energy (GeV)
535 // "jp1" - density effect first junction point
536 // "jp2" - density effect second junction point
537 // "anglecorr" - switch for the angular correction
538 //
539 // The default values of the parameters are for silicon
540 //
541 //------------------------------------------------------------------
542
543 Double_t bg=GetP()/mass;
544 Double_t dEdx=BetheBlochGeant(bg,density,jp1,jp2,exEnergy,zOverA);
545
546 return CorrectForMeanMaterialdEdx(xOverX0,xTimesRho,mass,dEdx,anglecorr);
547}
548
549
116b445b 550
ee5dba5e 551Bool_t AliExternalTrackParam::CorrectForMaterial
552(Double_t d, Double_t x0, Double_t mass, Double_t (*Bethe)(Double_t)) {
c7bafca9 553 //------------------------------------------------------------------
116b445b 554 // Deprecated function !
555 // Better use CorrectForMeanMaterial instead of it.
556 //
c7bafca9 557 // This function corrects the track parameters for the crossed material
558 // "d" - the thickness (fraction of the radiation length)
2b99ff83 559 // It should be passed as negative when propagating tracks
560 // from the intreaction point to the outside of the central barrel.
c7bafca9 561 // "x0" - the radiation length (g/cm^2)
562 // "mass" - the mass of this particle (GeV/c^2)
563 //------------------------------------------------------------------
c7bafca9 564
b8e07ed6 565 return CorrectForMeanMaterial(d,x0*d,mass,kTRUE,Bethe);
c7bafca9 566
c7bafca9 567}
568
9c56b409 569Double_t AliExternalTrackParam::BetheBlochAleph(Double_t bg,
570 Double_t kp1,
571 Double_t kp2,
572 Double_t kp3,
573 Double_t kp4,
574 Double_t kp5) {
575 //
576 // This is the empirical ALEPH parameterization of the Bethe-Bloch formula.
577 // It is normalized to 1 at the minimum.
578 //
579 // bg - beta*gamma
580 //
581 // The default values for the kp* parameters are for ALICE TPC.
582 // The returned value is in MIP units
583 //
584
585 Double_t beta = bg/TMath::Sqrt(1.+ bg*bg);
586
587 Double_t aa = TMath::Power(beta,kp4);
588 Double_t bb = TMath::Power(1./bg,kp5);
589
590 bb=TMath::Log(kp3+bb);
591
592 return (kp2-aa-bb)*kp1/aa;
593}
594
595Double_t AliExternalTrackParam::BetheBlochGeant(Double_t bg,
596 Double_t kp0,
597 Double_t kp1,
598 Double_t kp2,
599 Double_t kp3,
600 Double_t kp4) {
601 //
602 // This is the parameterization of the Bethe-Bloch formula inspired by Geant.
603 //
604 // bg - beta*gamma
605 // kp0 - density [g/cm^3]
606 // kp1 - density effect first junction point
607 // kp2 - density effect second junction point
608 // kp3 - mean excitation energy [GeV]
609 // kp4 - mean Z/A
610 //
611 // The default values for the kp* parameters are for silicon.
612 // The returned value is in [GeV/(g/cm^2)].
613 //
614
615 const Double_t mK = 0.307075e-3; // [GeV*cm^2/g]
616 const Double_t me = 0.511e-3; // [GeV/c^2]
617 const Double_t rho = kp0;
618 const Double_t x0 = kp1*2.303;
619 const Double_t x1 = kp2*2.303;
620 const Double_t mI = kp3;
621 const Double_t mZA = kp4;
622 const Double_t bg2 = bg*bg;
623 const Double_t maxT= 2*me*bg2; // neglecting the electron mass
624
625 //*** Density effect
626 Double_t d2=0.;
627 const Double_t x=TMath::Log(bg);
628 const Double_t lhwI=TMath::Log(28.816*1e-9*TMath::Sqrt(rho*mZA)/mI);
629 if (x > x1) {
630 d2 = lhwI + x - 0.5;
631 } else if (x > x0) {
632 const Double_t r=(x1-x)/(x1-x0);
633 d2 = lhwI + x - 0.5 + (0.5 - lhwI - x0)*r*r*r;
634 }
635
636 return mK*mZA*(1+bg2)/bg2*
637 (0.5*TMath::Log(2*me*bg2*maxT/(mI*mI)) - bg2/(1+bg2) - d2);
638}
639
d46683db 640Double_t AliExternalTrackParam::BetheBlochSolid(Double_t bg) {
ee5dba5e 641 //------------------------------------------------------------------
d46683db 642 // This is an approximation of the Bethe-Bloch formula,
643 // reasonable for solid materials.
644 // All the parameters are, in fact, for Si.
9b655cba 645 // The returned value is in [GeV/(g/cm^2)]
ee5dba5e 646 //------------------------------------------------------------------
a821848c 647
9c56b409 648 return BetheBlochGeant(bg);
d46683db 649}
ee5dba5e 650
d46683db 651Double_t AliExternalTrackParam::BetheBlochGas(Double_t bg) {
652 //------------------------------------------------------------------
653 // This is an approximation of the Bethe-Bloch formula,
654 // reasonable for gas materials.
655 // All the parameters are, in fact, for Ne.
9b655cba 656 // The returned value is in [GeV/(g/cm^2)]
d46683db 657 //------------------------------------------------------------------
658
659 const Double_t rho = 0.9e-3;
660 const Double_t x0 = 2.;
661 const Double_t x1 = 4.;
662 const Double_t mI = 140.e-9;
663 const Double_t mZA = 0.49555;
664
9c56b409 665 return BetheBlochGeant(bg,rho,x0,x1,mI,mZA);
ee5dba5e 666}
667
49d13e89 668Bool_t AliExternalTrackParam::Rotate(Double_t alpha) {
669 //------------------------------------------------------------------
670 // Transform this track to the local coord. system rotated
671 // by angle "alpha" (rad) with respect to the global coord. system.
672 //------------------------------------------------------------------
dfcef74c 673 if (TMath::Abs(fP[2]) >= kAlmost1) {
674 AliError(Form("Precondition is not satisfied: |sin(phi)|>1 ! %f",fP[2]));
675 return kFALSE;
676 }
677
49d13e89 678 if (alpha < -TMath::Pi()) alpha += 2*TMath::Pi();
679 else if (alpha >= TMath::Pi()) alpha -= 2*TMath::Pi();
680
681 Double_t &fP0=fP[0];
682 Double_t &fP2=fP[2];
683 Double_t &fC00=fC[0];
684 Double_t &fC10=fC[1];
685 Double_t &fC20=fC[3];
686 Double_t &fC21=fC[4];
687 Double_t &fC22=fC[5];
688 Double_t &fC30=fC[6];
689 Double_t &fC32=fC[8];
690 Double_t &fC40=fC[10];
691 Double_t &fC42=fC[12];
692
693 Double_t x=fX;
694 Double_t ca=TMath::Cos(alpha-fAlpha), sa=TMath::Sin(alpha-fAlpha);
bfd20868 695 Double_t sf=fP2, cf=TMath::Sqrt((1.- fP2)*(1.+fP2)); // Improve precision
07dfd570 696 // RS: check if rotation does no invalidate track model (cos(local_phi)>=0, i.e. particle
697 // direction in local frame is along the X axis
698 if ((cf*ca+sf*sa)<0) {
1450dc8a 699 AliDebug(1,Form("Rotation failed: local cos(phi) would become %.2f",cf*ca+sf*sa));
07dfd570 700 return kFALSE;
701 }
702 //
dfcef74c 703 Double_t tmp=sf*ca - cf*sa;
6e50abb1 704
7248cf51 705 if (TMath::Abs(tmp) >= kAlmost1) {
706 if (TMath::Abs(tmp) > 1.+ Double_t(FLT_EPSILON))
707 AliWarning(Form("Rotation failed ! %.10e",tmp));
0b69bbb2 708 return kFALSE;
709 }
49d13e89 710 fAlpha = alpha;
711 fX = x*ca + fP0*sa;
712 fP0= -x*sa + fP0*ca;
dfcef74c 713 fP2= tmp;
49d13e89 714
06fb4a2f 715 if (TMath::Abs(cf)<kAlmost0) {
716 AliError(Form("Too small cosine value %f",cf));
717 cf = kAlmost0;
718 }
719
49d13e89 720 Double_t rr=(ca+sf/cf*sa);
721
722 fC00 *= (ca*ca);
723 fC10 *= ca;
724 fC20 *= ca*rr;
725 fC21 *= rr;
726 fC22 *= rr*rr;
727 fC30 *= ca;
728 fC32 *= rr;
729 fC40 *= ca;
730 fC42 *= rr;
731
86be8934 732 CheckCovariance();
733
49d13e89 734 return kTRUE;
735}
736
2d2fd909 737Bool_t AliExternalTrackParam::Invert() {
738 //------------------------------------------------------------------
739 // Transform this track to the local coord. system rotated by 180 deg.
740 //------------------------------------------------------------------
741 fX = -fX;
742 fAlpha += TMath::Pi();
743 while (fAlpha < -TMath::Pi()) fAlpha += 2*TMath::Pi();
744 while (fAlpha >= TMath::Pi()) fAlpha -= 2*TMath::Pi();
745 //
746 fP[0] = -fP[0];
6e50abb1 747 //fP[2] = -fP[2];
2d2fd909 748 fP[3] = -fP[3];
749 fP[4] = -fP[4];
750 //
6e50abb1 751 fC[1] = -fC[1]; // since the fP1 and fP2 are not inverted, their covariances with others change sign
752 fC[3] = -fC[3];
2d2fd909 753 fC[7] = -fC[7];
6e50abb1 754 fC[8] = -fC[8];
2d2fd909 755 fC[11] = -fC[11];
6e50abb1 756 fC[12] = -fC[12];
2d2fd909 757 //
758 return kTRUE;
759}
760
49d13e89 761Bool_t AliExternalTrackParam::PropagateTo(Double_t xk, Double_t b) {
762 //----------------------------------------------------------------
763 // Propagate this track to the plane X=xk (cm) in the field "b" (kG)
764 //----------------------------------------------------------------
49d13e89 765 Double_t dx=xk-fX;
e421f556 766 if (TMath::Abs(dx)<=kAlmost0) return kTRUE;
18ebc5ef 767
1530f89c 768 Double_t crv=GetC(b);
5773defd 769 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
770
2de63fc5 771 Double_t x2r = crv*dx;
772 Double_t f1=fP[2], f2=f1 + x2r;
bbefa4c4 773 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
49d13e89 774 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
4349f5a4 775 if (TMath::Abs(fP[4])< kAlmost0) return kFALSE;
49d13e89 776
777 Double_t &fP0=fP[0], &fP1=fP[1], &fP2=fP[2], &fP3=fP[3], &fP4=fP[4];
778 Double_t
779 &fC00=fC[0],
780 &fC10=fC[1], &fC11=fC[2],
781 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
782 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
783 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
784
bfd20868 785 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
4349f5a4 786 if (TMath::Abs(r1)<kAlmost0) return kFALSE;
787 if (TMath::Abs(r2)<kAlmost0) return kFALSE;
49d13e89 788
789 fX=xk;
2de63fc5 790 double dy2dx = (f1+f2)/(r1+r2);
791 fP0 += dx*dy2dx;
792 if (TMath::Abs(x2r)<0.05) {
793 fP1 += dx*(r2 + f2*dy2dx)*fP3; // Many thanks to P.Hristov !
794 fP2 += x2r;
795 }
796 else {
797 // for small dx/R the linear apporximation of the arc by the segment is OK,
798 // but at large dx/R the error is very large and leads to incorrect Z propagation
799 // angle traversed delta = 2*asin(dist_start_end / R / 2), hence the arc is: R*deltaPhi
800 // The dist_start_end is obtained from sqrt(dx^2+dy^2) = x/(r1+r2)*sqrt(2+f1*f2+r1*r2)
801 // Similarly, the rotation angle in linear in dx only for dx<<R
802 double chord = dx*TMath::Sqrt(1+dy2dx*dy2dx); // distance from old position to new one
803 double rot = 2*TMath::ASin(0.5*chord*crv); // angular difference seen from the circle center
804 fP1 += rot/crv*fP3;
805 fP2 = TMath::Sin(rot + TMath::ASin(fP2));
806 }
49d13e89 807
808 //f = F - 1
e804766b 809 /*
49d13e89 810 Double_t f02= dx/(r1*r1*r1); Double_t cc=crv/fP4;
811 Double_t f04=0.5*dx*dx/(r1*r1*r1); f04*=cc;
812 Double_t f12= dx*fP3*f1/(r1*r1*r1);
813 Double_t f14=0.5*dx*dx*fP3*f1/(r1*r1*r1); f14*=cc;
814 Double_t f13= dx/r1;
815 Double_t f24= dx; f24*=cc;
e804766b 816 */
817 Double_t rinv = 1./r1;
818 Double_t r3inv = rinv*rinv*rinv;
819 Double_t f24= x2r/fP4;
820 Double_t f02= dx*r3inv;
821 Double_t f04=0.5*f24*f02;
822 Double_t f12= f02*fP3*f1;
823 Double_t f14=0.5*f24*f02*fP3*f1;
824 Double_t f13= dx*rinv;
825
49d13e89 826 //b = C*ft
827 Double_t b00=f02*fC20 + f04*fC40, b01=f12*fC20 + f14*fC40 + f13*fC30;
828 Double_t b02=f24*fC40;
829 Double_t b10=f02*fC21 + f04*fC41, b11=f12*fC21 + f14*fC41 + f13*fC31;
830 Double_t b12=f24*fC41;
831 Double_t b20=f02*fC22 + f04*fC42, b21=f12*fC22 + f14*fC42 + f13*fC32;
832 Double_t b22=f24*fC42;
833 Double_t b40=f02*fC42 + f04*fC44, b41=f12*fC42 + f14*fC44 + f13*fC43;
834 Double_t b42=f24*fC44;
835 Double_t b30=f02*fC32 + f04*fC43, b31=f12*fC32 + f14*fC43 + f13*fC33;
836 Double_t b32=f24*fC43;
837
838 //a = f*b = f*C*ft
839 Double_t a00=f02*b20+f04*b40,a01=f02*b21+f04*b41,a02=f02*b22+f04*b42;
840 Double_t a11=f12*b21+f14*b41+f13*b31,a12=f12*b22+f14*b42+f13*b32;
841 Double_t a22=f24*b42;
842
843 //F*C*Ft = C + (b + bt + a)
844 fC00 += b00 + b00 + a00;
845 fC10 += b10 + b01 + a01;
846 fC20 += b20 + b02 + a02;
847 fC30 += b30;
848 fC40 += b40;
849 fC11 += b11 + b11 + a11;
850 fC21 += b21 + b12 + a12;
851 fC31 += b31;
852 fC41 += b41;
853 fC22 += b22 + b22 + a22;
854 fC32 += b32;
855 fC42 += b42;
856
86be8934 857 CheckCovariance();
858
49d13e89 859 return kTRUE;
860}
861
599b440e 862Bool_t AliExternalTrackParam::PropagateParamOnlyTo(Double_t xk, Double_t b) {
863 //----------------------------------------------------------------
864 // Propagate this track to the plane X=xk (cm) in the field "b" (kG)
865 // Only parameters are propagated, not the matrix. To be used for small
866 // distances only (<mm, i.e. misalignment)
867 //----------------------------------------------------------------
868 Double_t dx=xk-fX;
869 if (TMath::Abs(dx)<=kAlmost0) return kTRUE;
870
871 Double_t crv=GetC(b);
872 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
873
874 Double_t x2r = crv*dx;
875 Double_t f1=fP[2], f2=f1 + x2r;
876 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
877 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
878 if (TMath::Abs(fP[4])< kAlmost0) return kFALSE;
879
880 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
881 if (TMath::Abs(r1)<kAlmost0) return kFALSE;
882 if (TMath::Abs(r2)<kAlmost0) return kFALSE;
883
884 fX=xk;
885 double dy2dx = (f1+f2)/(r1+r2);
886 fP[0] += dx*dy2dx;
887 fP[1] += dx*(r2 + f2*dy2dx)*fP[3]; // Many thanks to P.Hristov !
888 fP[2] += x2r;
889
890 return kTRUE;
891}
892
9f2bec63 893Bool_t
894AliExternalTrackParam::Propagate(Double_t alpha, Double_t x, Double_t b) {
895 //------------------------------------------------------------------
896 // Transform this track to the local coord. system rotated
897 // by angle "alpha" (rad) with respect to the global coord. system,
898 // and propagate this track to the plane X=xk (cm) in the field "b" (kG)
899 //------------------------------------------------------------------
900
901 //Save the parameters
902 Double_t as=fAlpha;
903 Double_t xs=fX;
904 Double_t ps[5], cs[15];
905 for (Int_t i=0; i<5; i++) ps[i]=fP[i];
906 for (Int_t i=0; i<15; i++) cs[i]=fC[i];
907
908 if (Rotate(alpha))
909 if (PropagateTo(x,b)) return kTRUE;
910
911 //Restore the parameters, if the operation failed
912 fAlpha=as;
913 fX=xs;
914 for (Int_t i=0; i<5; i++) fP[i]=ps[i];
915 for (Int_t i=0; i<15; i++) fC[i]=cs[i];
916 return kFALSE;
917}
918
266a0f9b 919Bool_t AliExternalTrackParam::PropagateBxByBz
920(Double_t alpha, Double_t x, Double_t b[3]) {
921 //------------------------------------------------------------------
922 // Transform this track to the local coord. system rotated
923 // by angle "alpha" (rad) with respect to the global coord. system,
924 // and propagate this track to the plane X=xk (cm),
925 // taking into account all three components of the B field, "b[3]" (kG)
926 //------------------------------------------------------------------
927
928 //Save the parameters
929 Double_t as=fAlpha;
930 Double_t xs=fX;
931 Double_t ps[5], cs[15];
932 for (Int_t i=0; i<5; i++) ps[i]=fP[i];
933 for (Int_t i=0; i<15; i++) cs[i]=fC[i];
934
935 if (Rotate(alpha))
936 if (PropagateToBxByBz(x,b)) return kTRUE;
937
938 //Restore the parameters, if the operation failed
939 fAlpha=as;
940 fX=xs;
941 for (Int_t i=0; i<5; i++) fP[i]=ps[i];
942 for (Int_t i=0; i<15; i++) fC[i]=cs[i];
943 return kFALSE;
944}
945
9f2bec63 946
052daaff 947void AliExternalTrackParam::Propagate(Double_t len, Double_t x[3],
948Double_t p[3], Double_t bz) const {
949 //+++++++++++++++++++++++++++++++++++++++++
950 // Origin: K. Shileev (Kirill.Shileev@cern.ch)
951 // Extrapolate track along simple helix in magnetic field
952 // Arguments: len -distance alogn helix, [cm]
953 // bz - mag field, [kGaus]
954 // Returns: x and p contain extrapolated positon and momentum
955 // The momentum returned for straight-line tracks is meaningless !
956 //+++++++++++++++++++++++++++++++++++++++++
957 GetXYZ(x);
958
2258e165 959 if (OneOverPt() < kAlmost0 || TMath::Abs(bz) < kAlmost0Field || GetC(bz) < kAlmost0){ //straight-line tracks
052daaff 960 Double_t unit[3]; GetDirection(unit);
961 x[0]+=unit[0]*len;
962 x[1]+=unit[1]*len;
963 x[2]+=unit[2]*len;
964
965 p[0]=unit[0]/kAlmost0;
966 p[1]=unit[1]/kAlmost0;
967 p[2]=unit[2]/kAlmost0;
968 } else {
969 GetPxPyPz(p);
970 Double_t pp=GetP();
971 Double_t a = -kB2C*bz*GetSign();
972 Double_t rho = a/pp;
973 x[0] += p[0]*TMath::Sin(rho*len)/a - p[1]*(1-TMath::Cos(rho*len))/a;
974 x[1] += p[1]*TMath::Sin(rho*len)/a + p[0]*(1-TMath::Cos(rho*len))/a;
975 x[2] += p[2]*len/pp;
976
977 Double_t p0=p[0];
978 p[0] = p0 *TMath::Cos(rho*len) - p[1]*TMath::Sin(rho*len);
979 p[1] = p[1]*TMath::Cos(rho*len) + p0 *TMath::Sin(rho*len);
980 }
981}
982
983Bool_t AliExternalTrackParam::Intersect(Double_t pnt[3], Double_t norm[3],
984Double_t bz) const {
985 //+++++++++++++++++++++++++++++++++++++++++
986 // Origin: K. Shileev (Kirill.Shileev@cern.ch)
987 // Finds point of intersection (if exists) of the helix with the plane.
988 // Stores result in fX and fP.
989 // Arguments: planePoint,planeNorm - the plane defined by any plane's point
990 // and vector, normal to the plane
991 // Returns: kTrue if helix intersects the plane, kFALSE otherwise.
992 //+++++++++++++++++++++++++++++++++++++++++
993 Double_t x0[3]; GetXYZ(x0); //get track position in MARS
994
995 //estimates initial helix length up to plane
996 Double_t s=
997 (pnt[0]-x0[0])*norm[0] + (pnt[1]-x0[1])*norm[1] + (pnt[2]-x0[2])*norm[2];
998 Double_t dist=99999,distPrev=dist;
999 Double_t x[3],p[3];
1000 while(TMath::Abs(dist)>0.00001){
1001 //calculates helix at the distance s from x0 ALONG the helix
1002 Propagate(s,x,p,bz);
1003
1004 //distance between current helix position and plane
1005 dist=(x[0]-pnt[0])*norm[0]+(x[1]-pnt[1])*norm[1]+(x[2]-pnt[2])*norm[2];
1006
1007 if(TMath::Abs(dist) >= TMath::Abs(distPrev)) {return kFALSE;}
1008 distPrev=dist;
1009 s-=dist;
1010 }
1011 //on exit pnt is intersection point,norm is track vector at that point,
1012 //all in MARS
1013 for (Int_t i=0; i<3; i++) {pnt[i]=x[i]; norm[i]=p[i];}
1014 return kTRUE;
1015}
1016
49d13e89 1017Double_t
1018AliExternalTrackParam::GetPredictedChi2(Double_t p[2],Double_t cov[3]) const {
1019 //----------------------------------------------------------------
1020 // Estimate the chi2 of the space point "p" with the cov. matrix "cov"
1021 //----------------------------------------------------------------
1022 Double_t sdd = fC[0] + cov[0];
1023 Double_t sdz = fC[1] + cov[1];
1024 Double_t szz = fC[2] + cov[2];
1025 Double_t det = sdd*szz - sdz*sdz;
1026
1027 if (TMath::Abs(det) < kAlmost0) return kVeryBig;
1028
1029 Double_t d = fP[0] - p[0];
1030 Double_t z = fP[1] - p[1];
1031
1032 return (d*szz*d - 2*d*sdz*z + z*sdd*z)/det;
1033}
1034
4b189f98 1035Double_t AliExternalTrackParam::
1036GetPredictedChi2(Double_t p[3],Double_t covyz[3],Double_t covxyz[3]) const {
1037 //----------------------------------------------------------------
1038 // Estimate the chi2 of the 3D space point "p" and
1e023a36 1039 // the full covariance matrix "covyz" and "covxyz"
4b189f98 1040 //
1041 // Cov(x,x) ... : covxyz[0]
1042 // Cov(y,x) ... : covxyz[1] covyz[0]
1043 // Cov(z,x) ... : covxyz[2] covyz[1] covyz[2]
1044 //----------------------------------------------------------------
1045
1046 Double_t res[3] = {
1047 GetX() - p[0],
1048 GetY() - p[1],
1049 GetZ() - p[2]
1050 };
1051
1052 Double_t f=GetSnp();
1053 if (TMath::Abs(f) >= kAlmost1) return kVeryBig;
bfd20868 1054 Double_t r=TMath::Sqrt((1.-f)*(1.+f));
4b189f98 1055 Double_t a=f/r, b=GetTgl()/r;
1056
1057 Double_t s2=333.*333.; //something reasonably big (cm^2)
1058
1059 TMatrixDSym v(3);
1060 v(0,0)= s2; v(0,1)= a*s2; v(0,2)= b*s2;;
1061 v(1,0)=a*s2; v(1,1)=a*a*s2 + GetSigmaY2(); v(1,2)=a*b*s2 + GetSigmaZY();
1062 v(2,0)=b*s2; v(2,1)=a*b*s2 + GetSigmaZY(); v(2,2)=b*b*s2 + GetSigmaZ2();
1063
1064 v(0,0)+=covxyz[0]; v(0,1)+=covxyz[1]; v(0,2)+=covxyz[2];
1065 v(1,0)+=covxyz[1]; v(1,1)+=covyz[0]; v(1,2)+=covyz[1];
1066 v(2,0)+=covxyz[2]; v(2,1)+=covyz[1]; v(2,2)+=covyz[2];
1067
1068 v.Invert();
1069 if (!v.IsValid()) return kVeryBig;
1070
1071 Double_t chi2=0.;
1072 for (Int_t i = 0; i < 3; i++)
1073 for (Int_t j = 0; j < 3; j++) chi2 += res[i]*res[j]*v(i,j);
1074
1075 return chi2;
acdfbc78 1076}
1077
1078Double_t AliExternalTrackParam::
1079GetPredictedChi2(const AliExternalTrackParam *t) const {
1080 //----------------------------------------------------------------
1081 // Estimate the chi2 (5 dof) of this track with respect to the track
1082 // given by the argument.
1083 // The two tracks must be in the same reference system
1084 // and estimated at the same reference plane.
1085 //----------------------------------------------------------------
1086
1087 if (TMath::Abs(1. - t->GetAlpha()/GetAlpha()) > FLT_EPSILON) {
1088 AliError("The reference systems of the tracks differ !");
1089 return kVeryBig;
1090 }
1091 if (TMath::Abs(1. - t->GetX()/GetX()) > FLT_EPSILON) {
1092 AliError("The reference of the tracks planes differ !");
1093 return kVeryBig;
1094 }
1095
1096 TMatrixDSym c(5);
1097 c(0,0)=GetSigmaY2();
1098 c(1,0)=GetSigmaZY(); c(1,1)=GetSigmaZ2();
1099 c(2,0)=GetSigmaSnpY(); c(2,1)=GetSigmaSnpZ(); c(2,2)=GetSigmaSnp2();
1100 c(3,0)=GetSigmaTglY(); c(3,1)=GetSigmaTglZ(); c(3,2)=GetSigmaTglSnp(); c(3,3)=GetSigmaTgl2();
1101 c(4,0)=GetSigma1PtY(); c(4,1)=GetSigma1PtZ(); c(4,2)=GetSigma1PtSnp(); c(4,3)=GetSigma1PtTgl(); c(4,4)=GetSigma1Pt2();
1102
1103 c(0,0)+=t->GetSigmaY2();
1104 c(1,0)+=t->GetSigmaZY(); c(1,1)+=t->GetSigmaZ2();
1105 c(2,0)+=t->GetSigmaSnpY();c(2,1)+=t->GetSigmaSnpZ();c(2,2)+=t->GetSigmaSnp2();
1106 c(3,0)+=t->GetSigmaTglY();c(3,1)+=t->GetSigmaTglZ();c(3,2)+=t->GetSigmaTglSnp();c(3,3)+=t->GetSigmaTgl2();
1107 c(4,0)+=t->GetSigma1PtY();c(4,1)+=t->GetSigma1PtZ();c(4,2)+=t->GetSigma1PtSnp();c(4,3)+=t->GetSigma1PtTgl();c(4,4)+=t->GetSigma1Pt2();
1108 c(0,1)=c(1,0);
1109 c(0,2)=c(2,0); c(1,2)=c(2,1);
1110 c(0,3)=c(3,0); c(1,3)=c(3,1); c(2,3)=c(3,2);
1111 c(0,4)=c(4,0); c(1,4)=c(4,1); c(2,4)=c(4,2); c(3,4)=c(4,3);
1112
1113 c.Invert();
1114 if (!c.IsValid()) return kVeryBig;
1115
1116
1117 Double_t res[5] = {
1118 GetY() - t->GetY(),
1119 GetZ() - t->GetZ(),
1120 GetSnp() - t->GetSnp(),
1121 GetTgl() - t->GetTgl(),
1122 GetSigned1Pt() - t->GetSigned1Pt()
1123 };
4b189f98 1124
acdfbc78 1125 Double_t chi2=0.;
1126 for (Int_t i = 0; i < 5; i++)
1127 for (Int_t j = 0; j < 5; j++) chi2 += res[i]*res[j]*c(i,j);
4b189f98 1128
acdfbc78 1129 return chi2;
4b189f98 1130}
1131
1e023a36 1132Bool_t AliExternalTrackParam::
1133PropagateTo(Double_t p[3],Double_t covyz[3],Double_t covxyz[3],Double_t bz) {
1134 //----------------------------------------------------------------
1135 // Propagate this track to the plane
1136 // the 3D space point "p" (with the covariance matrix "covyz" and "covxyz")
1137 // belongs to.
1138 // The magnetic field is "bz" (kG)
1139 //
1140 // The track curvature and the change of the covariance matrix
1141 // of the track parameters are negleted !
1142 // (So the "step" should be small compared with 1/curvature)
1143 //----------------------------------------------------------------
1144
1145 Double_t f=GetSnp();
1146 if (TMath::Abs(f) >= kAlmost1) return kFALSE;
bfd20868 1147 Double_t r=TMath::Sqrt((1.-f)*(1.+f));
1e023a36 1148 Double_t a=f/r, b=GetTgl()/r;
1149
1150 Double_t s2=333.*333.; //something reasonably big (cm^2)
1151
1152 TMatrixDSym tV(3);
1153 tV(0,0)= s2; tV(0,1)= a*s2; tV(0,2)= b*s2;
1154 tV(1,0)=a*s2; tV(1,1)=a*a*s2; tV(1,2)=a*b*s2;
1155 tV(2,0)=b*s2; tV(2,1)=a*b*s2; tV(2,2)=b*b*s2;
1156
1157 TMatrixDSym pV(3);
1158 pV(0,0)=covxyz[0]; pV(0,1)=covxyz[1]; pV(0,2)=covxyz[2];
1159 pV(1,0)=covxyz[1]; pV(1,1)=covyz[0]; pV(1,2)=covyz[1];
1160 pV(2,0)=covxyz[2]; pV(2,1)=covyz[1]; pV(2,2)=covyz[2];
1161
1162 TMatrixDSym tpV(tV);
1163 tpV+=pV;
1164 tpV.Invert();
1165 if (!tpV.IsValid()) return kFALSE;
1166
1167 TMatrixDSym pW(3),tW(3);
1168 for (Int_t i=0; i<3; i++)
1169 for (Int_t j=0; j<3; j++) {
1170 pW(i,j)=tW(i,j)=0.;
1171 for (Int_t k=0; k<3; k++) {
1172 pW(i,j) += tV(i,k)*tpV(k,j);
1173 tW(i,j) += pV(i,k)*tpV(k,j);
1174 }
1175 }
1176
1177 Double_t t[3] = {GetX(), GetY(), GetZ()};
1178
1179 Double_t x=0.;
1180 for (Int_t i=0; i<3; i++) x += (tW(0,i)*t[i] + pW(0,i)*p[i]);
1181 Double_t crv=GetC(bz);
1182 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
1183 f += crv*(x-fX);
1184 if (TMath::Abs(f) >= kAlmost1) return kFALSE;
1185 fX=x;
1186
1187 fP[0]=0.;
1188 for (Int_t i=0; i<3; i++) fP[0] += (tW(1,i)*t[i] + pW(1,i)*p[i]);
1189 fP[1]=0.;
1190 for (Int_t i=0; i<3; i++) fP[1] += (tW(2,i)*t[i] + pW(2,i)*p[i]);
1191
1192 return kTRUE;
1193}
1194
e23a38cb 1195Double_t *AliExternalTrackParam::GetResiduals(
1196Double_t *p,Double_t *cov,Bool_t updated) const {
1197 //------------------------------------------------------------------
1198 // Returns the track residuals with the space point "p" having
1199 // the covariance matrix "cov".
1200 // If "updated" is kTRUE, the track parameters expected to be updated,
1201 // otherwise they must be predicted.
1202 //------------------------------------------------------------------
1203 static Double_t res[2];
1204
1205 Double_t r00=cov[0], r01=cov[1], r11=cov[2];
1206 if (updated) {
1207 r00-=fC[0]; r01-=fC[1]; r11-=fC[2];
1208 } else {
1209 r00+=fC[0]; r01+=fC[1]; r11+=fC[2];
1210 }
1211 Double_t det=r00*r11 - r01*r01;
1212
1213 if (TMath::Abs(det) < kAlmost0) return 0;
1214
1215 Double_t tmp=r00; r00=r11/det; r11=tmp/det;
f0fbf964 1216
1217 if (r00 < 0.) return 0;
1218 if (r11 < 0.) return 0;
1219
e23a38cb 1220 Double_t dy = fP[0] - p[0];
1221 Double_t dz = fP[1] - p[1];
1222
1223 res[0]=dy*TMath::Sqrt(r00);
1224 res[1]=dz*TMath::Sqrt(r11);
1225
1226 return res;
1227}
1228
49d13e89 1229Bool_t AliExternalTrackParam::Update(Double_t p[2], Double_t cov[3]) {
1230 //------------------------------------------------------------------
1231 // Update the track parameters with the space point "p" having
1232 // the covariance matrix "cov"
1233 //------------------------------------------------------------------
1234 Double_t &fP0=fP[0], &fP1=fP[1], &fP2=fP[2], &fP3=fP[3], &fP4=fP[4];
1235 Double_t
1236 &fC00=fC[0],
1237 &fC10=fC[1], &fC11=fC[2],
1238 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
1239 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
1240 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
1241
1242 Double_t r00=cov[0], r01=cov[1], r11=cov[2];
1243 r00+=fC00; r01+=fC10; r11+=fC11;
1244 Double_t det=r00*r11 - r01*r01;
1245
1246 if (TMath::Abs(det) < kAlmost0) return kFALSE;
1247
1248
1249 Double_t tmp=r00; r00=r11/det; r11=tmp/det; r01=-r01/det;
1250
1251 Double_t k00=fC00*r00+fC10*r01, k01=fC00*r01+fC10*r11;
1252 Double_t k10=fC10*r00+fC11*r01, k11=fC10*r01+fC11*r11;
1253 Double_t k20=fC20*r00+fC21*r01, k21=fC20*r01+fC21*r11;
1254 Double_t k30=fC30*r00+fC31*r01, k31=fC30*r01+fC31*r11;
1255 Double_t k40=fC40*r00+fC41*r01, k41=fC40*r01+fC41*r11;
1256
1257 Double_t dy=p[0] - fP0, dz=p[1] - fP1;
1258 Double_t sf=fP2 + k20*dy + k21*dz;
1259 if (TMath::Abs(sf) > kAlmost1) return kFALSE;
1260
1261 fP0 += k00*dy + k01*dz;
1262 fP1 += k10*dy + k11*dz;
1263 fP2 = sf;
1264 fP3 += k30*dy + k31*dz;
1265 fP4 += k40*dy + k41*dz;
1266
1267 Double_t c01=fC10, c02=fC20, c03=fC30, c04=fC40;
1268 Double_t c12=fC21, c13=fC31, c14=fC41;
1269
1270 fC00-=k00*fC00+k01*fC10; fC10-=k00*c01+k01*fC11;
1271 fC20-=k00*c02+k01*c12; fC30-=k00*c03+k01*c13;
1272 fC40-=k00*c04+k01*c14;
1273
1274 fC11-=k10*c01+k11*fC11;
1275 fC21-=k10*c02+k11*c12; fC31-=k10*c03+k11*c13;
1276 fC41-=k10*c04+k11*c14;
1277
1278 fC22-=k20*c02+k21*c12; fC32-=k20*c03+k21*c13;
1279 fC42-=k20*c04+k21*c14;
1280
1281 fC33-=k30*c03+k31*c13;
1282 fC43-=k30*c04+k31*c14;
599b440e 1283
49d13e89 1284 fC44-=k40*c04+k41*c14;
1285
86be8934 1286 CheckCovariance();
1287
49d13e89 1288 return kTRUE;
1289}
1290
c7bafca9 1291void
1292AliExternalTrackParam::GetHelixParameters(Double_t hlx[6], Double_t b) const {
1293 //--------------------------------------------------------------------
1294 // External track parameters -> helix parameters
1295 // "b" - magnetic field (kG)
1296 //--------------------------------------------------------------------
1297 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
1298
1530f89c 1299 hlx[0]=fP[0]; hlx[1]=fP[1]; hlx[2]=fP[2]; hlx[3]=fP[3];
c7bafca9 1300
1301 hlx[5]=fX*cs - hlx[0]*sn; // x0
1302 hlx[0]=fX*sn + hlx[0]*cs; // y0
1303//hlx[1]= // z0
1304 hlx[2]=TMath::ASin(hlx[2]) + fAlpha; // phi0
1305//hlx[3]= // tgl
1530f89c 1306 hlx[4]=GetC(b); // C
c7bafca9 1307}
1308
1309
1310static void Evaluate(const Double_t *h, Double_t t,
1311 Double_t r[3], //radius vector
1312 Double_t g[3], //first defivatives
1313 Double_t gg[3]) //second derivatives
1314{
1315 //--------------------------------------------------------------------
1316 // Calculate position of a point on a track and some derivatives
1317 //--------------------------------------------------------------------
1318 Double_t phase=h[4]*t+h[2];
1319 Double_t sn=TMath::Sin(phase), cs=TMath::Cos(phase);
1320
ba4550c4 1321 r[0] = h[5];
1322 r[1] = h[0];
1323 if (TMath::Abs(h[4])>kAlmost0) {
1324 r[0] += (sn - h[6])/h[4];
1325 r[1] -= (cs - h[7])/h[4];
1326 }
c7bafca9 1327 r[2] = h[1] + h[3]*t;
1328
1329 g[0] = cs; g[1]=sn; g[2]=h[3];
1330
1331 gg[0]=-h[4]*sn; gg[1]=h[4]*cs; gg[2]=0.;
1332}
1333
1334Double_t AliExternalTrackParam::GetDCA(const AliExternalTrackParam *p,
1335Double_t b, Double_t &xthis, Double_t &xp) const {
1336 //------------------------------------------------------------
1337 // Returns the (weighed !) distance of closest approach between
1338 // this track and the track "p".
1339 // Other returned values:
1340 // xthis, xt - coordinates of tracks' reference planes at the DCA
1341 //-----------------------------------------------------------
1342 Double_t dy2=GetSigmaY2() + p->GetSigmaY2();
1343 Double_t dz2=GetSigmaZ2() + p->GetSigmaZ2();
1344 Double_t dx2=dy2;
1345
c7bafca9 1346 Double_t p1[8]; GetHelixParameters(p1,b);
1347 p1[6]=TMath::Sin(p1[2]); p1[7]=TMath::Cos(p1[2]);
1348 Double_t p2[8]; p->GetHelixParameters(p2,b);
1349 p2[6]=TMath::Sin(p2[2]); p2[7]=TMath::Cos(p2[2]);
1350
1351
1352 Double_t r1[3],g1[3],gg1[3]; Double_t t1=0.;
1353 Evaluate(p1,t1,r1,g1,gg1);
1354 Double_t r2[3],g2[3],gg2[3]; Double_t t2=0.;
1355 Evaluate(p2,t2,r2,g2,gg2);
1356
1357 Double_t dx=r2[0]-r1[0], dy=r2[1]-r1[1], dz=r2[2]-r1[2];
1358 Double_t dm=dx*dx/dx2 + dy*dy/dy2 + dz*dz/dz2;
1359
1360 Int_t max=27;
1361 while (max--) {
1362 Double_t gt1=-(dx*g1[0]/dx2 + dy*g1[1]/dy2 + dz*g1[2]/dz2);
1363 Double_t gt2=+(dx*g2[0]/dx2 + dy*g2[1]/dy2 + dz*g2[2]/dz2);
1364 Double_t h11=(g1[0]*g1[0] - dx*gg1[0])/dx2 +
1365 (g1[1]*g1[1] - dy*gg1[1])/dy2 +
1366 (g1[2]*g1[2] - dz*gg1[2])/dz2;
1367 Double_t h22=(g2[0]*g2[0] + dx*gg2[0])/dx2 +
1368 (g2[1]*g2[1] + dy*gg2[1])/dy2 +
1369 (g2[2]*g2[2] + dz*gg2[2])/dz2;
1370 Double_t h12=-(g1[0]*g2[0]/dx2 + g1[1]*g2[1]/dy2 + g1[2]*g2[2]/dz2);
1371
1372 Double_t det=h11*h22-h12*h12;
1373
1374 Double_t dt1,dt2;
1375 if (TMath::Abs(det)<1.e-33) {
1376 //(quasi)singular Hessian
1377 dt1=-gt1; dt2=-gt2;
1378 } else {
1379 dt1=-(gt1*h22 - gt2*h12)/det;
1380 dt2=-(h11*gt2 - h12*gt1)/det;
1381 }
1382
1383 if ((dt1*gt1+dt2*gt2)>0) {dt1=-dt1; dt2=-dt2;}
1384
1385 //check delta(phase1) ?
1386 //check delta(phase2) ?
1387
1388 if (TMath::Abs(dt1)/(TMath::Abs(t1)+1.e-3) < 1.e-4)
1389 if (TMath::Abs(dt2)/(TMath::Abs(t2)+1.e-3) < 1.e-4) {
1390 if ((gt1*gt1+gt2*gt2) > 1.e-4/dy2/dy2)
358f16ae 1391 AliDebug(1," stopped at not a stationary point !");
c7bafca9 1392 Double_t lmb=h11+h22; lmb=lmb-TMath::Sqrt(lmb*lmb-4*det);
1393 if (lmb < 0.)
358f16ae 1394 AliDebug(1," stopped at not a minimum !");
c7bafca9 1395 break;
1396 }
1397
1398 Double_t dd=dm;
1399 for (Int_t div=1 ; ; div*=2) {
1400 Evaluate(p1,t1+dt1,r1,g1,gg1);
1401 Evaluate(p2,t2+dt2,r2,g2,gg2);
1402 dx=r2[0]-r1[0]; dy=r2[1]-r1[1]; dz=r2[2]-r1[2];
1403 dd=dx*dx/dx2 + dy*dy/dy2 + dz*dz/dz2;
1404 if (dd<dm) break;
1405 dt1*=0.5; dt2*=0.5;
1406 if (div>512) {
358f16ae 1407 AliDebug(1," overshoot !"); break;
c7bafca9 1408 }
1409 }
1410 dm=dd;
1411
1412 t1+=dt1;
1413 t2+=dt2;
1414
1415 }
1416
358f16ae 1417 if (max<=0) AliDebug(1," too many iterations !");
c7bafca9 1418
1419 Double_t cs=TMath::Cos(GetAlpha());
1420 Double_t sn=TMath::Sin(GetAlpha());
1421 xthis=r1[0]*cs + r1[1]*sn;
1422
1423 cs=TMath::Cos(p->GetAlpha());
1424 sn=TMath::Sin(p->GetAlpha());
1425 xp=r2[0]*cs + r2[1]*sn;
1426
1427 return TMath::Sqrt(dm*TMath::Sqrt(dy2*dz2));
1428}
1429
1430Double_t AliExternalTrackParam::
1431PropagateToDCA(AliExternalTrackParam *p, Double_t b) {
1432 //--------------------------------------------------------------
1433 // Propagates this track and the argument track to the position of the
1434 // distance of closest approach.
1435 // Returns the (weighed !) distance of closest approach.
1436 //--------------------------------------------------------------
1437 Double_t xthis,xp;
1438 Double_t dca=GetDCA(p,b,xthis,xp);
1439
1440 if (!PropagateTo(xthis,b)) {
1441 //AliWarning(" propagation failed !");
1442 return 1e+33;
1443 }
1444
1445 if (!p->PropagateTo(xp,b)) {
1446 //AliWarning(" propagation failed !";
1447 return 1e+33;
1448 }
1449
1450 return dca;
1451}
1452
1453
58e536c5 1454Bool_t AliExternalTrackParam::PropagateToDCA(const AliVVertex *vtx,
e99a34df 1455Double_t b, Double_t maxd, Double_t dz[2], Double_t covar[3]) {
f76701bf 1456 //
e99a34df 1457 // Propagate this track to the DCA to vertex "vtx",
f76701bf 1458 // if the (rough) transverse impact parameter is not bigger then "maxd".
1459 // Magnetic field is "b" (kG).
1460 //
1461 // a) The track gets extapolated to the DCA to the vertex.
1462 // b) The impact parameters and their covariance matrix are calculated.
1463 //
1464 // In the case of success, the returned value is kTRUE
1465 // (otherwise, it's kFALSE)
1466 //
1467 Double_t alpha=GetAlpha();
1468 Double_t sn=TMath::Sin(alpha), cs=TMath::Cos(alpha);
1469 Double_t x=GetX(), y=GetParameter()[0], snp=GetParameter()[2];
58e536c5 1470 Double_t xv= vtx->GetX()*cs + vtx->GetY()*sn;
1471 Double_t yv=-vtx->GetX()*sn + vtx->GetY()*cs, zv=vtx->GetZ();
f76701bf 1472 x-=xv; y-=yv;
1473
1474 //Estimate the impact parameter neglecting the track curvature
bfd20868 1475 Double_t d=TMath::Abs(x*snp - y*TMath::Sqrt((1.-snp)*(1.+snp)));
f76701bf 1476 if (d > maxd) return kFALSE;
1477
1478 //Propagate to the DCA
2258e165 1479 Double_t crv=GetC(b);
e99a34df 1480 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
1481
bfd20868 1482 Double_t tgfv=-(crv*x - snp)/(crv*y + TMath::Sqrt((1.-snp)*(1.+snp)));
1483 sn=tgfv/TMath::Sqrt(1.+ tgfv*tgfv); cs=TMath::Sqrt((1.-sn)*(1.+sn));
e99a34df 1484 if (TMath::Abs(tgfv)>0.) cs = sn/tgfv;
1485 else cs=1.;
f76701bf 1486
1487 x = xv*cs + yv*sn;
1488 yv=-xv*sn + yv*cs; xv=x;
1489
1490 if (!Propagate(alpha+TMath::ASin(sn),xv,b)) return kFALSE;
266a0f9b 1491
1492 if (dz==0) return kTRUE;
1493 dz[0] = GetParameter()[0] - yv;
1494 dz[1] = GetParameter()[1] - zv;
1495
1496 if (covar==0) return kTRUE;
1497 Double_t cov[6]; vtx->GetCovarianceMatrix(cov);
1498
1499 //***** Improvements by A.Dainese
1500 alpha=GetAlpha(); sn=TMath::Sin(alpha); cs=TMath::Cos(alpha);
1501 Double_t s2ylocvtx = cov[0]*sn*sn + cov[2]*cs*cs - 2.*cov[1]*cs*sn;
1502 covar[0] = GetCovariance()[0] + s2ylocvtx; // neglecting correlations
1503 covar[1] = GetCovariance()[1]; // between (x,y) and z
1504 covar[2] = GetCovariance()[2] + cov[5]; // in vertex's covariance matrix
1505 //*****
1506
1507 return kTRUE;
1508}
1509
1510Bool_t AliExternalTrackParam::PropagateToDCABxByBz(const AliVVertex *vtx,
1511Double_t b[3], Double_t maxd, Double_t dz[2], Double_t covar[3]) {
1512 //
1513 // Propagate this track to the DCA to vertex "vtx",
1514 // if the (rough) transverse impact parameter is not bigger then "maxd".
1515 //
1516 // This function takes into account all three components of the magnetic
1517 // field given by the b[3] arument (kG)
1518 //
1519 // a) The track gets extapolated to the DCA to the vertex.
1520 // b) The impact parameters and their covariance matrix are calculated.
1521 //
1522 // In the case of success, the returned value is kTRUE
1523 // (otherwise, it's kFALSE)
1524 //
1525 Double_t alpha=GetAlpha();
1526 Double_t sn=TMath::Sin(alpha), cs=TMath::Cos(alpha);
1527 Double_t x=GetX(), y=GetParameter()[0], snp=GetParameter()[2];
1528 Double_t xv= vtx->GetX()*cs + vtx->GetY()*sn;
1529 Double_t yv=-vtx->GetX()*sn + vtx->GetY()*cs, zv=vtx->GetZ();
1530 x-=xv; y-=yv;
1531
1532 //Estimate the impact parameter neglecting the track curvature
bfd20868 1533 Double_t d=TMath::Abs(x*snp - y*TMath::Sqrt((1.-snp)*(1.+snp)));
266a0f9b 1534 if (d > maxd) return kFALSE;
1535
1536 //Propagate to the DCA
8567bf39 1537 Double_t crv=GetC(b[2]);
1538 if (TMath::Abs(b[2]) < kAlmost0Field) crv=0.;
266a0f9b 1539
bfd20868 1540 Double_t tgfv=-(crv*x - snp)/(crv*y + TMath::Sqrt((1.-snp)*(1.+snp)));
1541 sn=tgfv/TMath::Sqrt(1.+ tgfv*tgfv); cs=TMath::Sqrt((1.-sn)*(1.+sn));
266a0f9b 1542 if (TMath::Abs(tgfv)>0.) cs = sn/tgfv;
1543 else cs=1.;
1544
1545 x = xv*cs + yv*sn;
1546 yv=-xv*sn + yv*cs; xv=x;
1547
1548 if (!PropagateBxByBz(alpha+TMath::ASin(sn),xv,b)) return kFALSE;
e99a34df 1549
1550 if (dz==0) return kTRUE;
1551 dz[0] = GetParameter()[0] - yv;
1552 dz[1] = GetParameter()[1] - zv;
1553
1554 if (covar==0) return kTRUE;
58e536c5 1555 Double_t cov[6]; vtx->GetCovarianceMatrix(cov);
e99a34df 1556
1557 //***** Improvements by A.Dainese
1558 alpha=GetAlpha(); sn=TMath::Sin(alpha); cs=TMath::Cos(alpha);
1559 Double_t s2ylocvtx = cov[0]*sn*sn + cov[2]*cs*cs - 2.*cov[1]*cs*sn;
1560 covar[0] = GetCovariance()[0] + s2ylocvtx; // neglecting correlations
1561 covar[1] = GetCovariance()[1]; // between (x,y) and z
1562 covar[2] = GetCovariance()[2] + cov[5]; // in vertex's covariance matrix
1563 //*****
1564
29fbcc93 1565 return kTRUE;
f76701bf 1566}
1567
b1149664 1568void AliExternalTrackParam::GetDirection(Double_t d[3]) const {
1569 //----------------------------------------------------------------
1570 // This function returns a unit vector along the track direction
1571 // in the global coordinate system.
1572 //----------------------------------------------------------------
1573 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
1574 Double_t snp=fP[2];
bfd20868 1575 Double_t csp =TMath::Sqrt((1.-snp)*(1.+snp));
b1149664 1576 Double_t norm=TMath::Sqrt(1.+ fP[3]*fP[3]);
1577 d[0]=(csp*cs - snp*sn)/norm;
1578 d[1]=(snp*cs + csp*sn)/norm;
1579 d[2]=fP[3]/norm;
1580}
1581
c683ddc2 1582Bool_t AliExternalTrackParam::GetPxPyPz(Double_t p[3]) const {
c9ec41e8 1583 //---------------------------------------------------------------------
1584 // This function returns the global track momentum components
1585 // Results for (nearly) straight tracks are meaningless !
1586 //---------------------------------------------------------------------
1587 p[0]=fP[4]; p[1]=fP[2]; p[2]=fP[3];
1588 return Local2GlobalMomentum(p,fAlpha);
1589}
a5e407e9 1590
def9660e 1591Double_t AliExternalTrackParam::Px() const {
957fb479 1592 //---------------------------------------------------------------------
1593 // Returns x-component of momentum
1594 // Result for (nearly) straight tracks is meaningless !
1595 //---------------------------------------------------------------------
def9660e 1596
957fb479 1597 Double_t p[3]={kVeryBig,kVeryBig,kVeryBig};
def9660e 1598 GetPxPyPz(p);
1599
1600 return p[0];
1601}
1602
1603Double_t AliExternalTrackParam::Py() const {
957fb479 1604 //---------------------------------------------------------------------
1605 // Returns y-component of momentum
1606 // Result for (nearly) straight tracks is meaningless !
1607 //---------------------------------------------------------------------
def9660e 1608
957fb479 1609 Double_t p[3]={kVeryBig,kVeryBig,kVeryBig};
def9660e 1610 GetPxPyPz(p);
1611
1612 return p[1];
1613}
1614
c683ddc2 1615Double_t AliExternalTrackParam::Xv() const {
1616 //---------------------------------------------------------------------
1617 // Returns x-component of first track point
1618 //---------------------------------------------------------------------
1619
1620 Double_t r[3]={0.,0.,0.};
1621 GetXYZ(r);
1622
1623 return r[0];
1624}
1625
1626Double_t AliExternalTrackParam::Yv() const {
1627 //---------------------------------------------------------------------
1628 // Returns y-component of first track point
1629 //---------------------------------------------------------------------
1630
1631 Double_t r[3]={0.,0.,0.};
1632 GetXYZ(r);
1633
1634 return r[1];
1635}
1636
def9660e 1637Double_t AliExternalTrackParam::Theta() const {
1638 // return theta angle of momentum
1639
7cdd0c20 1640 return 0.5*TMath::Pi() - TMath::ATan(fP[3]);
def9660e 1641}
1642
1643Double_t AliExternalTrackParam::Phi() const {
957fb479 1644 //---------------------------------------------------------------------
1645 // Returns the azimuthal angle of momentum
1646 // 0 <= phi < 2*pi
1647 //---------------------------------------------------------------------
def9660e 1648
957fb479 1649 Double_t phi=TMath::ASin(fP[2]) + fAlpha;
1650 if (phi<0.) phi+=2.*TMath::Pi();
1651 else if (phi>=2.*TMath::Pi()) phi-=2.*TMath::Pi();
1652
1653 return phi;
def9660e 1654}
1655
1656Double_t AliExternalTrackParam::M() const {
1657 // return particle mass
1658
1659 // No mass information available so far.
1660 // Redifine in derived class!
1661
1662 return -999.;
1663}
1664
1665Double_t AliExternalTrackParam::E() const {
1666 // return particle energy
1667
1668 // No PID information available so far.
1669 // Redifine in derived class!
1670
1671 return -999.;
1672}
1673
1674Double_t AliExternalTrackParam::Eta() const {
1675 // return pseudorapidity
1676
1677 return -TMath::Log(TMath::Tan(0.5 * Theta()));
1678}
1679
1680Double_t AliExternalTrackParam::Y() const {
1681 // return rapidity
1682
1683 // No PID information available so far.
1684 // Redifine in derived class!
1685
1686 return -999.;
1687}
1688
c9ec41e8 1689Bool_t AliExternalTrackParam::GetXYZ(Double_t *r) const {
1690 //---------------------------------------------------------------------
1691 // This function returns the global track position
1692 //---------------------------------------------------------------------
1693 r[0]=fX; r[1]=fP[0]; r[2]=fP[1];
1694 return Local2GlobalPosition(r,fAlpha);
51ad6848 1695}
1696
c9ec41e8 1697Bool_t AliExternalTrackParam::GetCovarianceXYZPxPyPz(Double_t cv[21]) const {
1698 //---------------------------------------------------------------------
1699 // This function returns the global covariance matrix of the track params
1700 //
1701 // Cov(x,x) ... : cv[0]
1702 // Cov(y,x) ... : cv[1] cv[2]
1703 // Cov(z,x) ... : cv[3] cv[4] cv[5]
1704 // Cov(px,x)... : cv[6] cv[7] cv[8] cv[9]
1705 // Cov(py,x)... : cv[10] cv[11] cv[12] cv[13] cv[14]
1706 // Cov(pz,x)... : cv[15] cv[16] cv[17] cv[18] cv[19] cv[20]
a5e407e9 1707 //
c9ec41e8 1708 // Results for (nearly) straight tracks are meaningless !
1709 //---------------------------------------------------------------------
e421f556 1710 if (TMath::Abs(fP[4])<=kAlmost0) {
c9ec41e8 1711 for (Int_t i=0; i<21; i++) cv[i]=0.;
1712 return kFALSE;
a5e407e9 1713 }
49d13e89 1714 if (TMath::Abs(fP[2]) > kAlmost1) {
c9ec41e8 1715 for (Int_t i=0; i<21; i++) cv[i]=0.;
1716 return kFALSE;
1717 }
1718 Double_t pt=1./TMath::Abs(fP[4]);
1719 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
92934324 1720 Double_t r=TMath::Sqrt((1.-fP[2])*(1.+fP[2]));
c9ec41e8 1721
1722 Double_t m00=-sn, m10=cs;
1723 Double_t m23=-pt*(sn + fP[2]*cs/r), m43=-pt*pt*(r*cs - fP[2]*sn);
1724 Double_t m24= pt*(cs - fP[2]*sn/r), m44=-pt*pt*(r*sn + fP[2]*cs);
1725 Double_t m35=pt, m45=-pt*pt*fP[3];
1726
854d5d49 1727 m43*=GetSign();
1728 m44*=GetSign();
1729 m45*=GetSign();
1730
c9ec41e8 1731 cv[0 ] = fC[0]*m00*m00;
1732 cv[1 ] = fC[0]*m00*m10;
1733 cv[2 ] = fC[0]*m10*m10;
1734 cv[3 ] = fC[1]*m00;
1735 cv[4 ] = fC[1]*m10;
1736 cv[5 ] = fC[2];
1737 cv[6 ] = m00*(fC[3]*m23 + fC[10]*m43);
1738 cv[7 ] = m10*(fC[3]*m23 + fC[10]*m43);
1739 cv[8 ] = fC[4]*m23 + fC[11]*m43;
1740 cv[9 ] = m23*(fC[5]*m23 + fC[12]*m43) + m43*(fC[12]*m23 + fC[14]*m43);
1741 cv[10] = m00*(fC[3]*m24 + fC[10]*m44);
1742 cv[11] = m10*(fC[3]*m24 + fC[10]*m44);
1743 cv[12] = fC[4]*m24 + fC[11]*m44;
1744 cv[13] = m23*(fC[5]*m24 + fC[12]*m44) + m43*(fC[12]*m24 + fC[14]*m44);
1745 cv[14] = m24*(fC[5]*m24 + fC[12]*m44) + m44*(fC[12]*m24 + fC[14]*m44);
1746 cv[15] = m00*(fC[6]*m35 + fC[10]*m45);
1747 cv[16] = m10*(fC[6]*m35 + fC[10]*m45);
1748 cv[17] = fC[7]*m35 + fC[11]*m45;
1749 cv[18] = m23*(fC[8]*m35 + fC[12]*m45) + m43*(fC[13]*m35 + fC[14]*m45);
1750 cv[19] = m24*(fC[8]*m35 + fC[12]*m45) + m44*(fC[13]*m35 + fC[14]*m45);
1751 cv[20] = m35*(fC[9]*m35 + fC[13]*m45) + m45*(fC[13]*m35 + fC[14]*m45);
51ad6848 1752
c9ec41e8 1753 return kTRUE;
51ad6848 1754}
1755
51ad6848 1756
c9ec41e8 1757Bool_t
1758AliExternalTrackParam::GetPxPyPzAt(Double_t x, Double_t b, Double_t *p) const {
1759 //---------------------------------------------------------------------
1760 // This function returns the global track momentum extrapolated to
1761 // the radial position "x" (cm) in the magnetic field "b" (kG)
1762 //---------------------------------------------------------------------
c9ec41e8 1763 p[0]=fP[4];
1530f89c 1764 p[1]=fP[2]+(x-fX)*GetC(b);
c9ec41e8 1765 p[2]=fP[3];
1766 return Local2GlobalMomentum(p,fAlpha);
51ad6848 1767}
1768
7cf7bb6c 1769Bool_t
1770AliExternalTrackParam::GetYAt(Double_t x, Double_t b, Double_t &y) const {
1771 //---------------------------------------------------------------------
1772 // This function returns the local Y-coordinate of the intersection
1773 // point between this track and the reference plane "x" (cm).
1774 // Magnetic field "b" (kG)
1775 //---------------------------------------------------------------------
1776 Double_t dx=x-fX;
1777 if(TMath::Abs(dx)<=kAlmost0) {y=fP[0]; return kTRUE;}
1778
1530f89c 1779 Double_t f1=fP[2], f2=f1 + dx*GetC(b);
7cf7bb6c 1780
1781 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
1782 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
1783
60e55aee 1784 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
7cf7bb6c 1785 y = fP[0] + dx*(f1+f2)/(r1+r2);
1786 return kTRUE;
1787}
1788
6c94f330 1789Bool_t
1790AliExternalTrackParam::GetZAt(Double_t x, Double_t b, Double_t &z) const {
1791 //---------------------------------------------------------------------
1792 // This function returns the local Z-coordinate of the intersection
1793 // point between this track and the reference plane "x" (cm).
1794 // Magnetic field "b" (kG)
1795 //---------------------------------------------------------------------
1796 Double_t dx=x-fX;
1797 if(TMath::Abs(dx)<=kAlmost0) {z=fP[1]; return kTRUE;}
1798
2258e165 1799 Double_t f1=fP[2], f2=f1 + dx*GetC(b);
6c94f330 1800
1801 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
1802 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
1803
60e55aee 1804 Double_t r1=sqrt((1.-f1)*(1.+f1)), r2=sqrt((1.-f2)*(1.+f2));
6c94f330 1805 z = fP[1] + dx*(r2 + f2*(f1+f2)/(r1+r2))*fP[3]; // Many thanks to P.Hristov !
1806 return kTRUE;
1807}
1808
c9ec41e8 1809Bool_t
1810AliExternalTrackParam::GetXYZAt(Double_t x, Double_t b, Double_t *r) const {
1811 //---------------------------------------------------------------------
1812 // This function returns the global track position extrapolated to
1813 // the radial position "x" (cm) in the magnetic field "b" (kG)
1814 //---------------------------------------------------------------------
c9ec41e8 1815 Double_t dx=x-fX;
e421f556 1816 if(TMath::Abs(dx)<=kAlmost0) return GetXYZ(r);
1817
1530f89c 1818 Double_t f1=fP[2], f2=f1 + dx*GetC(b);
c9ec41e8 1819
e421f556 1820 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
49d13e89 1821 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
c9ec41e8 1822
60e55aee 1823 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
c9ec41e8 1824 r[0] = x;
1825 r[1] = fP[0] + dx*(f1+f2)/(r1+r2);
f90a11c9 1826 r[2] = fP[1] + dx*(r2 + f2*(f1+f2)/(r1+r2))*fP[3];//Thanks to Andrea & Peter
1827
c9ec41e8 1828 return Local2GlobalPosition(r,fAlpha);
51ad6848 1829}
1830
51ad6848 1831//_____________________________________________________________________________
1832void AliExternalTrackParam::Print(Option_t* /*option*/) const
1833{
1834// print the parameters and the covariance matrix
1835
1836 printf("AliExternalTrackParam: x = %-12g alpha = %-12g\n", fX, fAlpha);
1837 printf(" parameters: %12g %12g %12g %12g %12g\n",
c9ec41e8 1838 fP[0], fP[1], fP[2], fP[3], fP[4]);
1839 printf(" covariance: %12g\n", fC[0]);
1840 printf(" %12g %12g\n", fC[1], fC[2]);
1841 printf(" %12g %12g %12g\n", fC[3], fC[4], fC[5]);
51ad6848 1842 printf(" %12g %12g %12g %12g\n",
c9ec41e8 1843 fC[6], fC[7], fC[8], fC[9]);
51ad6848 1844 printf(" %12g %12g %12g %12g %12g\n",
c9ec41e8 1845 fC[10], fC[11], fC[12], fC[13], fC[14]);
51ad6848 1846}
5b77d93c 1847
c194ba83 1848Double_t AliExternalTrackParam::GetSnpAt(Double_t x,Double_t b) const {
1849 //
1850 // Get sinus at given x
1851 //
1530f89c 1852 Double_t crv=GetC(b);
c194ba83 1853 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
1854 Double_t dx = x-fX;
1855 Double_t res = fP[2]+dx*crv;
1856 return res;
1857}
bf00ebb8 1858
1859Bool_t AliExternalTrackParam::GetDistance(AliExternalTrackParam *param2, Double_t x, Double_t dist[3], Double_t bz){
1860 //------------------------------------------------------------------------
1861 // Get the distance between two tracks at the local position x
1862 // working in the local frame of this track.
1863 // Origin : Marian.Ivanov@cern.ch
1864 //-----------------------------------------------------------------------
1865 Double_t xyz[3];
1866 Double_t xyz2[3];
1867 xyz[0]=x;
1868 if (!GetYAt(x,bz,xyz[1])) return kFALSE;
1869 if (!GetZAt(x,bz,xyz[2])) return kFALSE;
1870 //
1871 //
1872 if (TMath::Abs(GetAlpha()-param2->GetAlpha())<kAlmost0){
1873 xyz2[0]=x;
1874 if (!param2->GetYAt(x,bz,xyz2[1])) return kFALSE;
1875 if (!param2->GetZAt(x,bz,xyz2[2])) return kFALSE;
1876 }else{
1877 //
1878 Double_t xyz1[3];
1879 Double_t dfi = param2->GetAlpha()-GetAlpha();
1880 Double_t ca = TMath::Cos(dfi), sa = TMath::Sin(dfi);
1881 xyz2[0] = xyz[0]*ca+xyz[1]*sa;
1882 xyz2[1] = -xyz[0]*sa+xyz[1]*ca;
1883 //
1884 xyz1[0]=xyz2[0];
1885 if (!param2->GetYAt(xyz2[0],bz,xyz1[1])) return kFALSE;
1886 if (!param2->GetZAt(xyz2[0],bz,xyz1[2])) return kFALSE;
1887 //
1888 xyz2[0] = xyz1[0]*ca-xyz1[1]*sa;
1889 xyz2[1] = +xyz1[0]*sa+xyz1[1]*ca;
1890 xyz2[2] = xyz1[2];
1891 }
1892 dist[0] = xyz[0]-xyz2[0];
1893 dist[1] = xyz[1]-xyz2[1];
1894 dist[2] = xyz[2]-xyz2[2];
1895
1896 return kTRUE;
1897}
0c19adf7 1898
1899
1900//
1901// Draw functionality.
1902// Origin: Marian Ivanov, Marian.Ivanov@cern.ch
1903//
1904
1905void AliExternalTrackParam::DrawTrack(Float_t magf, Float_t minR, Float_t maxR, Float_t stepR){
1906 //
1907 // Draw track line
1908 //
1909 if (minR>maxR) return ;
1910 if (stepR<=0) return ;
1911 Int_t npoints = TMath::Nint((maxR-minR)/stepR)+1;
1912 if (npoints<1) return;
1913 TPolyMarker3D *polymarker = new TPolyMarker3D(npoints);
1914 FillPolymarker(polymarker, magf,minR,maxR,stepR);
1915 polymarker->Draw();
1916}
1917
1918//
1919void AliExternalTrackParam::FillPolymarker(TPolyMarker3D *pol, Float_t magF, Float_t minR, Float_t maxR, Float_t stepR){
1920 //
1921 // Fill points in the polymarker
1922 //
1923 Int_t counter=0;
1924 for (Double_t r=minR; r<maxR; r+=stepR){
1925 Double_t point[3];
1926 GetXYZAt(r,magF,point);
1927 pol->SetPoint(counter,point[0],point[1], point[2]);
047640da 1928 // printf("xyz\t%f\t%f\t%f\n",point[0], point[1],point[2]);
0c19adf7 1929 counter++;
1930 }
1931}
0e8460af 1932
1933Int_t AliExternalTrackParam::GetIndex(Int_t i, Int_t j) const {
1934 //
1935 Int_t min = TMath::Min(i,j);
1936 Int_t max = TMath::Max(i,j);
1937
1938 return min+(max+1)*max/2;
1939}
8b6e3369 1940
1941
1942void AliExternalTrackParam::g3helx3(Double_t qfield,
1943 Double_t step,
1944 Double_t vect[7]) {
1945/******************************************************************
1946 * *
1947 * GEANT3 tracking routine in a constant field oriented *
1948 * along axis 3 *
1949 * Tracking is performed with a conventional *
1950 * helix step method *
1951 * *
1952 * Authors R.Brun, M.Hansroul ********* *
1953 * Rewritten V.Perevoztchikov *
1954 * *
1955 * Rewritten in C++ by I.Belikov *
1956 * *
1957 * qfield (kG) - particle charge times magnetic field *
1958 * step (cm) - step length along the helix *
1959 * vect[7](cm,GeV/c) - input/output x, y, z, px/p, py/p ,pz/p, p *
1960 * *
1961 ******************************************************************/
1962 const Int_t ix=0, iy=1, iz=2, ipx=3, ipy=4, ipz=5, ipp=6;
bfd20868 1963 const Double_t kOvSqSix=TMath::Sqrt(1./6.);
8b6e3369 1964
1965 Double_t cosx=vect[ipx], cosy=vect[ipy], cosz=vect[ipz];
1966
1967 Double_t rho = qfield*kB2C/vect[ipp];
1968 Double_t tet = rho*step;
1969
1970 Double_t tsint, sintt, sint, cos1t;
2de63fc5 1971 if (TMath::Abs(tet) > 0.03) {
8b6e3369 1972 sint = TMath::Sin(tet);
1973 sintt = sint/tet;
1974 tsint = (tet - sint)/tet;
1975 Double_t t=TMath::Sin(0.5*tet);
1976 cos1t = 2*t*t/tet;
1977 } else {
1978 tsint = tet*tet/6.;
bfd20868 1979 sintt = (1.-tet*kOvSqSix)*(1.+tet*kOvSqSix); // 1.- tsint;
8b6e3369 1980 sint = tet*sintt;
1981 cos1t = 0.5*tet;
1982 }
1983
1984 Double_t f1 = step*sintt;
1985 Double_t f2 = step*cos1t;
1986 Double_t f3 = step*tsint*cosz;
1987 Double_t f4 = -tet*cos1t;
1988 Double_t f5 = sint;
1989
1990 vect[ix] += f1*cosx - f2*cosy;
1991 vect[iy] += f1*cosy + f2*cosx;
1992 vect[iz] += f1*cosz + f3;
1993
1994 vect[ipx] += f4*cosx - f5*cosy;
1995 vect[ipy] += f4*cosy + f5*cosx;
1996
1997}
1998
1999Bool_t AliExternalTrackParam::PropagateToBxByBz(Double_t xk, const Double_t b[3]) {
2000 //----------------------------------------------------------------
2001 // Extrapolate this track to the plane X=xk in the field b[].
2002 //
2003 // X [cm] is in the "tracking coordinate system" of this track.
2004 // b[]={Bx,By,Bz} [kG] is in the Global coordidate system.
2005 //----------------------------------------------------------------
2006
2007 Double_t dx=xk-fX;
2008 if (TMath::Abs(dx)<=kAlmost0) return kTRUE;
7e1b73dd 2009 if (TMath::Abs(fP[4])<=kAlmost0) return kFALSE;
ef3508c5 2010 // Do not propagate tracks outside the ALICE detector
2011 if (TMath::Abs(dx)>1e5 ||
2012 TMath::Abs(GetY())>1e5 ||
2013 TMath::Abs(GetZ())>1e5) {
2014 AliWarning(Form("Anomalous track, target X:%f",xk));
2015 Print();
2016 return kFALSE;
2017 }
8b6e3369 2018
2019 Double_t crv=GetC(b[2]);
2020 if (TMath::Abs(b[2]) < kAlmost0Field) crv=0.;
2021
2de63fc5 2022 Double_t x2r = crv*dx;
2023 Double_t f1=fP[2], f2=f1 + x2r;
8b6e3369 2024 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
2025 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
2026
2027
2028 // Estimate the covariance matrix
2029 Double_t &fP3=fP[3], &fP4=fP[4];
2030 Double_t
2031 &fC00=fC[0],
2032 &fC10=fC[1], &fC11=fC[2],
2033 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
2034 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
2035 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
2036
bfd20868 2037 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
8b6e3369 2038
2039 //f = F - 1
e804766b 2040 /*
8b6e3369 2041 Double_t f02= dx/(r1*r1*r1); Double_t cc=crv/fP4;
2042 Double_t f04=0.5*dx*dx/(r1*r1*r1); f04*=cc;
2043 Double_t f12= dx*fP3*f1/(r1*r1*r1);
2044 Double_t f14=0.5*dx*dx*fP3*f1/(r1*r1*r1); f14*=cc;
2045 Double_t f13= dx/r1;
2046 Double_t f24= dx; f24*=cc;
e804766b 2047 */
2048 Double_t rinv = 1./r1;
2049 Double_t r3inv = rinv*rinv*rinv;
2050 Double_t f24= x2r/fP4;
2051 Double_t f02= dx*r3inv;
2052 Double_t f04=0.5*f24*f02;
2053 Double_t f12= f02*fP3*f1;
2054 Double_t f14=0.5*f24*f02*fP3*f1;
2055 Double_t f13= dx*rinv;
2056
8b6e3369 2057 //b = C*ft
2058 Double_t b00=f02*fC20 + f04*fC40, b01=f12*fC20 + f14*fC40 + f13*fC30;
2059 Double_t b02=f24*fC40;
2060 Double_t b10=f02*fC21 + f04*fC41, b11=f12*fC21 + f14*fC41 + f13*fC31;
2061 Double_t b12=f24*fC41;
2062 Double_t b20=f02*fC22 + f04*fC42, b21=f12*fC22 + f14*fC42 + f13*fC32;
2063 Double_t b22=f24*fC42;
2064 Double_t b40=f02*fC42 + f04*fC44, b41=f12*fC42 + f14*fC44 + f13*fC43;
2065 Double_t b42=f24*fC44;
2066 Double_t b30=f02*fC32 + f04*fC43, b31=f12*fC32 + f14*fC43 + f13*fC33;
2067 Double_t b32=f24*fC43;
2068
2069 //a = f*b = f*C*ft
2070 Double_t a00=f02*b20+f04*b40,a01=f02*b21+f04*b41,a02=f02*b22+f04*b42;
2071 Double_t a11=f12*b21+f14*b41+f13*b31,a12=f12*b22+f14*b42+f13*b32;
2072 Double_t a22=f24*b42;
2073
2074 //F*C*Ft = C + (b + bt + a)
2075 fC00 += b00 + b00 + a00;
2076 fC10 += b10 + b01 + a01;
2077 fC20 += b20 + b02 + a02;
2078 fC30 += b30;
2079 fC40 += b40;
2080 fC11 += b11 + b11 + a11;
2081 fC21 += b21 + b12 + a12;
2082 fC31 += b31;
2083 fC41 += b41;
2084 fC22 += b22 + b22 + a22;
2085 fC32 += b32;
2086 fC42 += b42;
2087
86be8934 2088 CheckCovariance();
8b6e3369 2089
2090 // Appoximate step length
2de63fc5 2091 double dy2dx = (f1+f2)/(r1+r2);
2092 Double_t step = (TMath::Abs(x2r)<0.05) ? dx*TMath::Abs(r2 + f2*dy2dx) // chord
2093 : 2.*TMath::ASin(0.5*dx*TMath::Sqrt(1.+dy2dx*dy2dx)*crv)/crv; // arc
8b6e3369 2094 step *= TMath::Sqrt(1.+ GetTgl()*GetTgl());
2095
8b6e3369 2096 // Get the track's (x,y,z) and (px,py,pz) in the Global System
2097 Double_t r[3]; GetXYZ(r);
2098 Double_t p[3]; GetPxPyPz(p);
2099 Double_t pp=GetP();
2100 p[0] /= pp;
2101 p[1] /= pp;
2102 p[2] /= pp;
2103
2104
2105 // Rotate to the system where Bx=By=0.
2106 Double_t bt=TMath::Sqrt(b[0]*b[0] + b[1]*b[1]);
2107 Double_t cosphi=1., sinphi=0.;
2108 if (bt > kAlmost0) {cosphi=b[0]/bt; sinphi=b[1]/bt;}
2109 Double_t bb=TMath::Sqrt(b[0]*b[0] + b[1]*b[1] + b[2]*b[2]);
2110 Double_t costet=1., sintet=0.;
2111 if (bb > kAlmost0) {costet=b[2]/bb; sintet=bt/bb;}
2112 Double_t vect[7];
2113
2114 vect[0] = costet*cosphi*r[0] + costet*sinphi*r[1] - sintet*r[2];
2115 vect[1] = -sinphi*r[0] + cosphi*r[1];
2116 vect[2] = sintet*cosphi*r[0] + sintet*sinphi*r[1] + costet*r[2];
2117
2118 vect[3] = costet*cosphi*p[0] + costet*sinphi*p[1] - sintet*p[2];
2119 vect[4] = -sinphi*p[0] + cosphi*p[1];
2120 vect[5] = sintet*cosphi*p[0] + sintet*sinphi*p[1] + costet*p[2];
2121
2122 vect[6] = pp;
2123
2124
2125 // Do the helix step
2126 g3helx3(GetSign()*bb,step,vect);
2127
2128
2129 // Rotate back to the Global System
2130 r[0] = cosphi*costet*vect[0] - sinphi*vect[1] + cosphi*sintet*vect[2];
2131 r[1] = sinphi*costet*vect[0] + cosphi*vect[1] + sinphi*sintet*vect[2];
2132 r[2] = -sintet*vect[0] + costet*vect[2];
2133
2134 p[0] = cosphi*costet*vect[3] - sinphi*vect[4] + cosphi*sintet*vect[5];
2135 p[1] = sinphi*costet*vect[3] + cosphi*vect[4] + sinphi*sintet*vect[5];
2136 p[2] = -sintet*vect[3] + costet*vect[5];
2137
2138
2139 // Rotate back to the Tracking System
2140 Double_t cosalp = TMath::Cos(fAlpha);
2141 Double_t sinalp =-TMath::Sin(fAlpha);
2142
2143 Double_t
2144 t = cosalp*r[0] - sinalp*r[1];
2145 r[1] = sinalp*r[0] + cosalp*r[1];
2146 r[0] = t;
2147
2148 t = cosalp*p[0] - sinalp*p[1];
2149 p[1] = sinalp*p[0] + cosalp*p[1];
2150 p[0] = t;
2151
2152
2153 // Do the final correcting step to the target plane (linear approximation)
2154 Double_t x=r[0], y=r[1], z=r[2];
2155 if (TMath::Abs(dx) > kAlmost0) {
2156 if (TMath::Abs(p[0]) < kAlmost0) return kFALSE;
2157 dx = xk - r[0];
2158 x += dx;
2159 y += p[1]/p[0]*dx;
2160 z += p[2]/p[0]*dx;
2161 }
2162
2163
2164 // Calculate the track parameters
2165 t=TMath::Sqrt(p[0]*p[0] + p[1]*p[1]);
2166 fX = x;
2167 fP[0] = y;
2168 fP[1] = z;
2169 fP[2] = p[1]/t;
2170 fP[3] = p[2]/t;
2171 fP[4] = GetSign()/(t*pp);
2172
2173 return kTRUE;
2174}
2175
cfdb62d4 2176Bool_t AliExternalTrackParam::Translate(Double_t *vTrasl,Double_t *covV){
2177 //
2178 //Translation: in the event mixing, the tracks can be shifted
2179 //of the difference among primary vertices (vTrasl) and
2180 //the covariance matrix is changed accordingly
2181 //(covV = covariance of the primary vertex).
2182 //Origin: "Romita, Rossella" <R.Romita@gsi.de>
2183 //
2184 TVector3 translation;
2185 // vTrasl coordinates in the local system
2186 translation.SetXYZ(vTrasl[0],vTrasl[1],vTrasl[2]);
2187 translation.RotateZ(-fAlpha);
2188 translation.GetXYZ(vTrasl);
2189
2190 //compute the new x,y,z of the track
5a87bb3d 2191 Double_t newX=fX-vTrasl[0];
2192 Double_t newY=fP[0]-vTrasl[1];
2193 Double_t newZ=fP[1]-vTrasl[2];
cfdb62d4 2194
2195 //define the new parameters
5a87bb3d 2196 Double_t newParam[5];
2197 newParam[0]=newY;
2198 newParam[1]=newZ;
2199 newParam[2]=fP[2];
2200 newParam[3]=fP[3];
2201 newParam[4]=fP[4];
cfdb62d4 2202
2203 // recompute the covariance matrix:
2204 // 1. covV in the local system
2205 Double_t cosRot=TMath::Cos(fAlpha), sinRot=TMath::Sin(fAlpha);
2206 TMatrixD qQi(3,3);
2207 qQi(0,0) = cosRot;
2208 qQi(0,1) = sinRot;
2209 qQi(0,2) = 0.;
2210 qQi(1,0) = -sinRot;
2211 qQi(1,1) = cosRot;
2212 qQi(1,2) = 0.;
2213 qQi(2,0) = 0.;
2214 qQi(2,1) = 0.;
2215 qQi(2,2) = 1.;
2216 TMatrixD uUi(3,3);
2217 uUi(0,0) = covV[0];
2218 uUi(0,0) = covV[0];
2219 uUi(1,0) = covV[1];
2220 uUi(0,1) = covV[1];
2221 uUi(2,0) = covV[3];
2222 uUi(0,2) = covV[3];
2223 uUi(1,1) = covV[2];
2224 uUi(2,2) = covV[5];
2225 uUi(1,2) = covV[4];
2226 if(uUi.Determinant() <= 0.) {return kFALSE;}
2227 TMatrixD uUiQi(uUi,TMatrixD::kMult,qQi);
2228 TMatrixD m(qQi,TMatrixD::kTransposeMult,uUiQi);
2229
2230 //2. compute the new covariance matrix of the track
2231 Double_t sigmaXX=m(0,0);
2232 Double_t sigmaXZ=m(2,0);
2233 Double_t sigmaXY=m(1,0);
2234 Double_t sigmaYY=GetSigmaY2()+m(1,1);
2235 Double_t sigmaYZ=fC[1]+m(1,2);
2236 Double_t sigmaZZ=fC[2]+m(2,2);
2237 Double_t covarianceYY=sigmaYY + (-1.)*((sigmaXY*sigmaXY)/sigmaXX);
2238 Double_t covarianceYZ=sigmaYZ-(sigmaXZ*sigmaXY/sigmaXX);
2239 Double_t covarianceZZ=sigmaZZ-((sigmaXZ*sigmaXZ)/sigmaXX);
2240
2241 Double_t newCov[15];
2242 newCov[0]=covarianceYY;
2243 newCov[1]=covarianceYZ;
2244 newCov[2]=covarianceZZ;
2245 for(Int_t i=3;i<15;i++){
2246 newCov[i]=fC[i];
2247 }
2248
2249 // set the new parameters
2250
5a87bb3d 2251 Set(newX,fAlpha,newParam,newCov);
cfdb62d4 2252
2253 return kTRUE;
2254 }
86be8934 2255
2256void AliExternalTrackParam::CheckCovariance() {
2257
2258 // This function forces the diagonal elements of the covariance matrix to be positive.
2259 // In case the diagonal element is bigger than the maximal allowed value, it is set to
2260 // the limit and the off-diagonal elements that correspond to it are set to zero.
2261
2262 fC[0] = TMath::Abs(fC[0]);
2263 if (fC[0]>kC0max) {
2264 fC[0] = kC0max;
2265 fC[1] = 0;
2266 fC[3] = 0;
2267 fC[6] = 0;
2268 fC[10] = 0;
2269 }
2270 fC[2] = TMath::Abs(fC[2]);
2271 if (fC[2]>kC2max) {
2272 fC[2] = kC2max;
2273 fC[1] = 0;
2274 fC[4] = 0;
2275 fC[7] = 0;
2276 fC[11] = 0;
2277 }
2278 fC[5] = TMath::Abs(fC[5]);
2279 if (fC[5]>kC5max) {
2280 fC[5] = kC5max;
2281 fC[3] = 0;
2282 fC[4] = 0;
2283 fC[8] = 0;
2284 fC[12] = 0;
2285 }
2286 fC[9] = TMath::Abs(fC[9]);
2287 if (fC[9]>kC9max) {
2288 fC[9] = kC9max;
2289 fC[6] = 0;
2290 fC[7] = 0;
2291 fC[8] = 0;
2292 fC[13] = 0;
2293 }
2294 fC[14] = TMath::Abs(fC[14]);
2295 if (fC[14]>kC14max) {
2296 fC[14] = kC14max;
2297 fC[10] = 0;
2298 fC[11] = 0;
2299 fC[12] = 0;
2300 fC[13] = 0;
2301 }
2302
2303 // The part below is used for tests and normally is commented out
2304// TMatrixDSym m(5);
2305// TVectorD eig(5);
2306
2307// m(0,0)=fC[0];
2308// m(1,0)=fC[1]; m(1,1)=fC[2];
2309// m(2,0)=fC[3]; m(2,1)=fC[4]; m(2,2)=fC[5];
2310// m(3,0)=fC[6]; m(3,1)=fC[7]; m(3,2)=fC[8]; m(3,3)=fC[9];
2311// m(4,0)=fC[10]; m(4,1)=fC[11]; m(4,2)=fC[12]; m(4,3)=fC[13]; m(4,4)=fC[14];
2312
2313// m(0,1)=m(1,0);
2314// m(0,2)=m(2,0); m(1,2)=m(2,1);
2315// m(0,3)=m(3,0); m(1,3)=m(3,1); m(2,3)=m(3,2);
2316// m(0,4)=m(4,0); m(1,4)=m(4,1); m(2,4)=m(4,2); m(3,4)=m(4,3);
2317// m.EigenVectors(eig);
2318
2319// // assert(eig(0)>=0 && eig(1)>=0 && eig(2)>=0 && eig(3)>=0 && eig(4)>=0);
2320// if (!(eig(0)>=0 && eig(1)>=0 && eig(2)>=0 && eig(3)>=0 && eig(4)>=0)) {
2321// AliWarning("Negative eigenvalues of the covariance matrix!");
2322// this->Print();
2323// eig.Print();
2324// }
2325}
4c3dc2a0 2326
2327Bool_t AliExternalTrackParam::ConstrainToVertex(const AliVVertex* vtx, Double_t b[3])
2328{
2329 // Constrain TPC inner params constrained
2330 //
2331 if (!vtx)
2332 return kFALSE;
2333
2334 Double_t dz[2], cov[3];
2335 if (!PropagateToDCABxByBz(vtx, b, 3, dz, cov))
2336 return kFALSE;
2337
2338 Double_t covar[6];
2339 vtx->GetCovarianceMatrix(covar);
2340
2341 Double_t p[2]= { fP[0] - dz[0], fP[1] - dz[1] };
2342 Double_t c[3]= { covar[2], 0., covar[5] };
2343
2344 Double_t chi2C = GetPredictedChi2(p,c);
2345 if (chi2C>kVeryBig)
2346 return kFALSE;
2347
2348 if (!Update(p,c))
2349 return kFALSE;
2350
2351 return kTRUE;
2352}
70580f26 2353
2354//___________________________________________________________________________________________
2355Bool_t AliExternalTrackParam::GetXatLabR(Double_t r,Double_t &x, Double_t bz, Int_t dir) const
2356{
2357 // Get local X of the track position estimated at the radius lab radius r.
2358 // The track curvature is accounted exactly
2359 //
2360 // The flag "dir" can be used to remove the ambiguity of which intersection to take (out of 2 possible)
2361 // 0 - take the intersection closest to the current track position
2362 // >0 - go along the track (increasing fX)
2363 // <0 - go backward (decreasing fX)
2364 //
2365 const Double_t &fy=fP[0], &sn = fP[2];
2366 //
2367 double crv = GetC(bz);
2368 if (TMath::Abs(crv)<=kAlmost0) { // this is a straight track
2369 if (TMath::Abs(sn)>=kAlmost1) { // || to Y axis
2370 double det = (r-fX)*(r+fX);
2371 if (det<0) return kFALSE; // does not reach raduis r
2372 x = fX;
2373 if (dir==0) return kTRUE;
2374 det = TMath::Sqrt(det);
2375 if (dir>0) { // along the track direction
2376 if (sn>0) {if (fy>det) return kFALSE;} // track is along Y axis and above the circle
2377 else {if (fy<-det) return kFALSE;} // track is against Y axis amd belo the circle
2378 }
e804766b 2379 else { // agains track direction
70580f26 2380 if (sn>0) {if (fy<-det) return kFALSE;} // track is along Y axis
2381 else if (fy>det) return kFALSE; // track is against Y axis
2382 }
2383 }
2384 else if (TMath::Abs(sn)<=kAlmost0) { // || to X axis
2385 double det = (r-fy)*(r+fy);
2386 if (det<0) return kFALSE; // does not reach raduis r
2387 det = TMath::Sqrt(det);
2388 if (!dir) {
2389 x = fX>0 ? det : -det; // choose the solution requiring the smalest step
2390 return kTRUE;
2391 }
2392 else if (dir>0) { // along the track direction
2393 if (fX > det) return kFALSE; // current point is in on the right from the circle
2394 else if (fX <-det) x = -det; // on the left
2395 else x = det; // within the circle
2396 }
2397 else { // against the track direction
2398 if (fX <-det) return kFALSE;
2399 else if (fX > det) x = det;
2400 else x = -det;
2401 }
2402 }
2403 else { // general case of straight line
2404 double cs = TMath::Sqrt((1-sn)*(1+sn));
2405 double xsyc = fX*sn-fy*cs;
2406 double det = (r-xsyc)*(r+xsyc);
2407 if (det<0) return kFALSE; // does not reach raduis r
2408 det = TMath::Sqrt(det);
2409 double xcys = fX*cs+fy*sn;
2410 double t = -xcys;
2411 if (dir==0) t += t>0 ? -det:det; // chose the solution requiring the smalest step
2412 else if (dir>0) { // go in increasing fX direction. ( t+-det > 0)
2413 if (t>=-det) t += -det; // take minimal step giving t>0
2414 else return kFALSE; // both solutions have negative t
2415 }
2416 else { // go in increasing fX direction. (t+-det < 0)
2417 if (t<det) t -= det; // take minimal step giving t<0
2418 else return kFALSE; // both solutions have positive t
2419 }
2420 x = fX + cs*t;
2421 }
2422 }
2423 else { // helix
2424 // get center of the track circle
2425 double tR = 1./crv; // track radius (for the moment signed)
2426 double cs = TMath::Sqrt((1-sn)*(1+sn));
2427 double x0 = fX - sn*tR;
2428 double y0 = fy + cs*tR;
2429 double r0 = TMath::Sqrt(x0*x0+y0*y0);
2430 // printf("Xc:%+e Yc:%+e\n",x0,y0);
2431 //
2432 if (r0<=kAlmost0) return kFALSE; // the track is concentric to circle
2433 tR = TMath::Abs(tR);
2434 double tR2r0 = tR/r0;
2435 double g = 0.5*(r*r/(r0*tR) - tR2r0 - 1./tR2r0);
2436 double det = (1.-g)*(1.+g);
2437 if (det<0) return kFALSE; // does not reach raduis r
2438 det = TMath::Sqrt(det);
2439 //
2440 // the intersection happens in 2 points: {x0+tR*C,y0+tR*S}
2441 // with C=f*c0+-|s0|*det and S=f*s0-+c0 sign(s0)*det
2442 // where s0 and c0 make direction for the circle center (=x0/r0 and y0/r0)
2443 //
2444 double tmp = 1.+g*tR2r0;
2445 x = x0*tmp;
2446 double y = y0*tmp;
2447 if (TMath::Abs(y0)>kAlmost0) { // when y0==0 the x,y is unique
2448 double dfx = tR2r0*TMath::Abs(y0)*det;
2449 double dfy = tR2r0*x0*TMath::Sign(det,y0);
2450 if (dir==0) { // chose the one which corresponds to smallest step
2451 double delta = (x-fX)*dfx-(y-fy)*dfy; // the choice of + in C will lead to smaller step if delta<0
2452 if (delta<0) x += dfx;
2453 else x -= dfx;
2454 }
2455 else if (dir>0) { // along track direction: x must be > fX
2456 x -= dfx; // try the smallest step (dfx is positive)
2457 if (x<fX && (x+=dfx+dfx)<fX) return kFALSE;
2458 }
2459 else { // backward: x must be < fX
2460 x += dfx; // try the smallest step (dfx is positive)
2461 if (x>fX && (x-=dfx+dfx)>fX) return kFALSE;
2462 }
2463 }
2464 else { // special case: track touching the circle just in 1 point
2465 if ( (dir>0&&x<fX) || (dir<0&&x>fX) ) return kFALSE;
2466 }
2467 }
2468 //
2469 return kTRUE;
2470}