]> git.uio.no Git - u/mrichter/AliRoot.git/blame - STEER/STEERBase/AliExternalTrackParam.cxx
New method Invert() for changing alpha by pi (forbiden operation via Rotate())
[u/mrichter/AliRoot.git] / STEER / STEERBase / AliExternalTrackParam.cxx
CommitLineData
51ad6848 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18///////////////////////////////////////////////////////////////////////////////
19// //
49d13e89 20// Implementation of the external track parameterisation class. //
51ad6848 21// //
49d13e89 22// This parameterisation is used to exchange tracks between the detectors. //
23// A set of functions returning the position and the momentum of tracks //
24// in the global coordinate system as well as the track impact parameters //
25// are implemented.
26// Origin: I.Belikov, CERN, Jouri.Belikov@cern.ch //
51ad6848 27///////////////////////////////////////////////////////////////////////////////
86be8934 28#include <cassert>
29
30#include <TVectorD.h>
4b189f98 31#include <TMatrixDSym.h>
d46683db 32#include <TPolyMarker3D.h>
33#include <TVector3.h>
cfdb62d4 34#include <TMatrixD.h>
d46683db 35
51ad6848 36#include "AliExternalTrackParam.h"
58e536c5 37#include "AliVVertex.h"
6c94f330 38#include "AliLog.h"
51ad6848 39
40ClassImp(AliExternalTrackParam)
41
ed5f2849 42Double32_t AliExternalTrackParam::fgMostProbablePt=kMostProbablePt;
f2cef1b5 43Bool_t AliExternalTrackParam::fgUseLogTermMS = kFALSE;;
51ad6848 44//_____________________________________________________________________________
90e48c0c 45AliExternalTrackParam::AliExternalTrackParam() :
4f6e22bd 46 AliVTrack(),
90e48c0c 47 fX(0),
c9ec41e8 48 fAlpha(0)
51ad6848 49{
90e48c0c 50 //
51 // default constructor
52 //
c9ec41e8 53 for (Int_t i = 0; i < 5; i++) fP[i] = 0;
54 for (Int_t i = 0; i < 15; i++) fC[i] = 0;
51ad6848 55}
56
6c94f330 57//_____________________________________________________________________________
58AliExternalTrackParam::AliExternalTrackParam(const AliExternalTrackParam &track):
4f6e22bd 59 AliVTrack(track),
6c94f330 60 fX(track.fX),
61 fAlpha(track.fAlpha)
62{
63 //
64 // copy constructor
65 //
66 for (Int_t i = 0; i < 5; i++) fP[i] = track.fP[i];
67 for (Int_t i = 0; i < 15; i++) fC[i] = track.fC[i];
86be8934 68 CheckCovariance();
6c94f330 69}
70
def9660e 71//_____________________________________________________________________________
72AliExternalTrackParam& AliExternalTrackParam::operator=(const AliExternalTrackParam &trkPar)
73{
74 //
75 // assignment operator
76 //
77
78 if (this!=&trkPar) {
4f6e22bd 79 AliVTrack::operator=(trkPar);
def9660e 80 fX = trkPar.fX;
81 fAlpha = trkPar.fAlpha;
82
83 for (Int_t i = 0; i < 5; i++) fP[i] = trkPar.fP[i];
84 for (Int_t i = 0; i < 15; i++) fC[i] = trkPar.fC[i];
86be8934 85 CheckCovariance();
def9660e 86 }
87
88 return *this;
89}
90
51ad6848 91//_____________________________________________________________________________
92AliExternalTrackParam::AliExternalTrackParam(Double_t x, Double_t alpha,
93 const Double_t param[5],
90e48c0c 94 const Double_t covar[15]) :
4f6e22bd 95 AliVTrack(),
90e48c0c 96 fX(x),
c9ec41e8 97 fAlpha(alpha)
51ad6848 98{
90e48c0c 99 //
100 // create external track parameters from given arguments
101 //
c9ec41e8 102 for (Int_t i = 0; i < 5; i++) fP[i] = param[i];
103 for (Int_t i = 0; i < 15; i++) fC[i] = covar[i];
86be8934 104 CheckCovariance();
51ad6848 105}
106
4ec1ca0f 107//_____________________________________________________________________________
108void AliExternalTrackParam::CopyFromVTrack(const AliVTrack *vTrack)
109{
110 //
111 // Recreate TrackParams from VTrack
112 // This is not a copy contructor !
113 //
114 if (!vTrack) {
115 AliError("Source VTrack is NULL");
116 return;
117 }
118 if (this==vTrack) {
119 AliError("Copy of itself is requested");
120 return;
121 }
122 //
123 if (vTrack->InheritsFrom(AliExternalTrackParam::Class())) {
124 AliDebug(1,"Source itself is AliExternalTrackParam, using assignment operator");
125 *this = *(AliExternalTrackParam*)vTrack;
126 return;
127 }
128 //
129 AliVTrack::operator=( *vTrack );
130 //
131 Double_t xyz[3],pxpypz[3],cv[21];
132 vTrack->GetXYZ(xyz);
133 pxpypz[0]=vTrack->Px();
134 pxpypz[1]=vTrack->Py();
135 pxpypz[2]=vTrack->Pz();
136 vTrack->GetCovarianceXYZPxPyPz(cv);
137 Short_t sign = (Short_t)vTrack->Charge();
138 Set(xyz,pxpypz,cv,sign);
139}
140
4f6e22bd 141//_____________________________________________________________________________
142AliExternalTrackParam::AliExternalTrackParam(const AliVTrack *vTrack) :
143 AliVTrack(),
144 fX(0.),
145 fAlpha(0.)
146{
147 //
610e3088 148 // Constructor from virtual track,
149 // This is not a copy contructor !
4f6e22bd 150 //
610e3088 151
152 if (vTrack->InheritsFrom("AliExternalTrackParam")) {
153 AliError("This is not a copy constructor. Use AliExternalTrackParam(const AliExternalTrackParam &) !");
154 AliWarning("Calling the default constructor...");
155 AliExternalTrackParam();
156 return;
157 }
158
892be05f 159 Double_t xyz[3],pxpypz[3],cv[21];
160 vTrack->GetXYZ(xyz);
161 pxpypz[0]=vTrack->Px();
162 pxpypz[1]=vTrack->Py();
163 pxpypz[2]=vTrack->Pz();
4f6e22bd 164 vTrack->GetCovarianceXYZPxPyPz(cv);
165 Short_t sign = (Short_t)vTrack->Charge();
166
167 Set(xyz,pxpypz,cv,sign);
168}
169
90e48c0c 170//_____________________________________________________________________________
da4e3deb 171AliExternalTrackParam::AliExternalTrackParam(Double_t xyz[3],Double_t pxpypz[3],
172 Double_t cv[21],Short_t sign) :
4f6e22bd 173 AliVTrack(),
da4e3deb 174 fX(0.),
175 fAlpha(0.)
4f6e22bd 176{
177 //
178 // constructor from the global parameters
179 //
180
181 Set(xyz,pxpypz,cv,sign);
182}
183
184//_____________________________________________________________________________
185void AliExternalTrackParam::Set(Double_t xyz[3],Double_t pxpypz[3],
186 Double_t cv[21],Short_t sign)
da4e3deb 187{
188 //
189 // create external track parameters from the global parameters
190 // x,y,z,px,py,pz and their 6x6 covariance matrix
191 // A.Dainese 10.10.08
192
aff56ff7 193 // Calculate alpha: the rotation angle of the corresponding local system.
194 //
195 // For global radial position inside the beam pipe, alpha is the
196 // azimuthal angle of the momentum projected on (x,y).
197 //
c99948ce 198 // For global radial position outside the ITS, alpha is the
aff56ff7 199 // azimuthal angle of the centre of the TPC sector in which the point
200 // xyz lies
201 //
4349f5a4 202 const double kSafe = 1e-5;
aff56ff7 203 Double_t radPos2 = xyz[0]*xyz[0]+xyz[1]*xyz[1];
c99948ce 204 Double_t radMax = 45.; // approximately ITS outer radius
4349f5a4 205 if (radPos2 < radMax*radMax) { // inside the ITS
aff56ff7 206 fAlpha = TMath::ATan2(pxpypz[1],pxpypz[0]);
c99948ce 207 } else { // outside the ITS
aff56ff7 208 Float_t phiPos = TMath::Pi()+TMath::ATan2(-xyz[1], -xyz[0]);
209 fAlpha =
210 TMath::DegToRad()*(20*((((Int_t)(phiPos*TMath::RadToDeg()))/20))+10);
211 }
4349f5a4 212 //
213 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
214 // protection: avoid alpha being too close to 0 or +-pi/2
215 if (TMath::Abs(sn)<kSafe) {
216 fAlpha = kSafe;
217 cs=TMath::Cos(fAlpha);
218 sn=TMath::Sin(fAlpha);
219 }
220 else if (cs<kSafe) {
221 fAlpha -= TMath::Sign(kSafe, fAlpha);
222 cs=TMath::Cos(fAlpha);
223 sn=TMath::Sin(fAlpha);
224 }
da4e3deb 225 // Get the vertex of origin and the momentum
226 TVector3 ver(xyz[0],xyz[1],xyz[2]);
227 TVector3 mom(pxpypz[0],pxpypz[1],pxpypz[2]);
4349f5a4 228 //
229 // avoid momenta along axis
230 if (TMath::Abs(mom[0])<kSafe) mom[0] = TMath::Sign(kSafe*TMath::Abs(mom[1]), mom[0]);
231 if (TMath::Abs(mom[1])<kSafe) mom[1] = TMath::Sign(kSafe*TMath::Abs(mom[0]), mom[1]);
da4e3deb 232
233 // Rotate to the local coordinate system
234 ver.RotateZ(-fAlpha);
235 mom.RotateZ(-fAlpha);
236
237 // x of the reference plane
238 fX = ver.X();
239
240 Double_t charge = (Double_t)sign;
241
242 fP[0] = ver.Y();
243 fP[1] = ver.Z();
244 fP[2] = TMath::Sin(mom.Phi());
245 fP[3] = mom.Pz()/mom.Pt();
246 fP[4] = TMath::Sign(1/mom.Pt(),charge);
247
248 // Covariance matrix (formulas to be simplified)
249
752303df 250 if (TMath::Abs( 1-fP[2]) < kSafe) fP[2] = 1.- kSafe; //Protection
251 else if (TMath::Abs(-1-fP[2]) < kSafe) fP[2] =-1.+ kSafe; //Protection
252
da4e3deb 253 Double_t pt=1./TMath::Abs(fP[4]);
da4e3deb 254 Double_t r=TMath::Sqrt((1.-fP[2])*(1.+fP[2]));
255
256 Double_t m00=-sn;// m10=cs;
257 Double_t m23=-pt*(sn + fP[2]*cs/r), m43=-pt*pt*(r*cs - fP[2]*sn);
258 Double_t m24= pt*(cs - fP[2]*sn/r), m44=-pt*pt*(r*sn + fP[2]*cs);
259 Double_t m35=pt, m45=-pt*pt*fP[3];
260
261 m43*=GetSign();
262 m44*=GetSign();
263 m45*=GetSign();
264
265 Double_t cv34 = TMath::Sqrt(cv[3 ]*cv[3 ]+cv[4 ]*cv[4 ]);
266 Double_t a1=cv[13]-cv[9]*(m23*m44+m43*m24)/m23/m43;
267 Double_t a2=m23*m24-m23*(m23*m44+m43*m24)/m43;
268 Double_t a3=m43*m44-m43*(m23*m44+m43*m24)/m23;
269 Double_t a4=cv[14]-2.*cv[9]*m24*m44/m23/m43;
270 Double_t a5=m24*m24-2.*m24*m44*m23/m43;
271 Double_t a6=m44*m44-2.*m24*m44*m43/m23;
272
273 fC[0 ] = cv[0 ]+cv[2 ];
274 fC[1 ] = TMath::Sign(cv34,cv[3 ]/m00);
275 fC[2 ] = cv[5 ];
276 fC[3 ] = (cv[10]/m44-cv[6]/m43)/(m24/m44-m23/m43)/m00;
277 fC[10] = (cv[6]/m00-fC[3 ]*m23)/m43;
278 fC[6 ] = (cv[15]/m00-fC[10]*m45)/m35;
279 fC[4 ] = (cv[12]-cv[8]*m44/m43)/(m24-m23*m44/m43);
280 fC[11] = (cv[8]-fC[4]*m23)/m43;
281 fC[7 ] = cv[17]/m35-fC[11]*m45/m35;
282 fC[5 ] = TMath::Abs((a4-a6*a1/a3)/(a5-a6*a2/a3));
283 fC[14] = TMath::Abs(a1/a3-a2*fC[5]/a3);
284 fC[12] = (cv[9]-fC[5]*m23*m23-fC[14]*m43*m43)/m23/m43;
285 Double_t b1=cv[18]-fC[12]*m23*m45-fC[14]*m43*m45;
286 Double_t b2=m23*m35;
287 Double_t b3=m43*m35;
288 Double_t b4=cv[19]-fC[12]*m24*m45-fC[14]*m44*m45;
289 Double_t b5=m24*m35;
290 Double_t b6=m44*m35;
291 fC[8 ] = (b4-b6*b1/b3)/(b5-b6*b2/b3);
292 fC[13] = b1/b3-b2*fC[8]/b3;
293 fC[9 ] = TMath::Abs((cv[20]-fC[14]*(m45*m45)-fC[13]*2.*m35*m45)/(m35*m35));
4f6e22bd 294
86be8934 295 CheckCovariance();
296
4f6e22bd 297 return;
da4e3deb 298}
299
51ad6848 300//_____________________________________________________________________________
c9ec41e8 301void AliExternalTrackParam::Reset() {
1530f89c 302 //
303 // Resets all the parameters to 0
304 //
c9ec41e8 305 fX=fAlpha=0.;
306 for (Int_t i = 0; i < 5; i++) fP[i] = 0;
307 for (Int_t i = 0; i < 15; i++) fC[i] = 0;
51ad6848 308}
309
3775b0ca 310//_____________________________________________________________________________
311void AliExternalTrackParam::AddCovariance(const Double_t c[15]) {
312 //
313 // Add "something" to the track covarince matrix.
314 // May be needed to account for unknown mis-calibration/mis-alignment
315 //
316 fC[0] +=c[0];
317 fC[1] +=c[1]; fC[2] +=c[2];
318 fC[3] +=c[3]; fC[4] +=c[4]; fC[5] +=c[5];
319 fC[6] +=c[6]; fC[7] +=c[7]; fC[8] +=c[8]; fC[9] +=c[9];
320 fC[10]+=c[10]; fC[11]+=c[11]; fC[12]+=c[12]; fC[13]+=c[13]; fC[14]+=c[14];
86be8934 321 CheckCovariance();
3775b0ca 322}
323
324
c9ec41e8 325Double_t AliExternalTrackParam::GetP() const {
326 //---------------------------------------------------------------------
327 // This function returns the track momentum
328 // Results for (nearly) straight tracks are meaningless !
329 //---------------------------------------------------------------------
06fb4a2f 330 if (TMath::Abs(fP[4])<=kAlmost0) return kVeryBig;
c9ec41e8 331 return TMath::Sqrt(1.+ fP[3]*fP[3])/TMath::Abs(fP[4]);
51ad6848 332}
333
1d99986f 334Double_t AliExternalTrackParam::Get1P() const {
335 //---------------------------------------------------------------------
336 // This function returns the 1/(track momentum)
337 //---------------------------------------------------------------------
338 return TMath::Abs(fP[4])/TMath::Sqrt(1.+ fP[3]*fP[3]);
339}
340
c9ec41e8 341//_______________________________________________________________________
c7bafca9 342Double_t AliExternalTrackParam::GetD(Double_t x,Double_t y,Double_t b) const {
c9ec41e8 343 //------------------------------------------------------------------
344 // This function calculates the transverse impact parameter
345 // with respect to a point with global coordinates (x,y)
346 // in the magnetic field "b" (kG)
347 //------------------------------------------------------------------
5773defd 348 if (TMath::Abs(b) < kAlmost0Field) return GetLinearD(x,y);
1530f89c 349 Double_t rp4=GetC(b);
c9ec41e8 350
351 Double_t xt=fX, yt=fP[0];
352
353 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
354 Double_t a = x*cs + y*sn;
355 y = -x*sn + y*cs; x=a;
356 xt-=x; yt-=y;
357
bfd20868 358 sn=rp4*xt - fP[2]; cs=rp4*yt + TMath::Sqrt((1.- fP[2])*(1.+fP[2]));
359 a=2*(xt*fP[2] - yt*TMath::Sqrt((1.-fP[2])*(1.+fP[2])))-rp4*(xt*xt + yt*yt);
1530f89c 360 return -a/(1 + TMath::Sqrt(sn*sn + cs*cs));
361}
362
363//_______________________________________________________________________
364void AliExternalTrackParam::
365GetDZ(Double_t x, Double_t y, Double_t z, Double_t b, Float_t dz[2]) const {
366 //------------------------------------------------------------------
367 // This function calculates the transverse and longitudinal impact parameters
368 // with respect to a point with global coordinates (x,y)
369 // in the magnetic field "b" (kG)
370 //------------------------------------------------------------------
bfd20868 371 Double_t f1 = fP[2], r1 = TMath::Sqrt((1.-f1)*(1.+f1));
1530f89c 372 Double_t xt=fX, yt=fP[0];
373 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
374 Double_t a = x*cs + y*sn;
375 y = -x*sn + y*cs; x=a;
376 xt-=x; yt-=y;
377
378 Double_t rp4=GetC(b);
379 if ((TMath::Abs(b) < kAlmost0Field) || (TMath::Abs(rp4) < kAlmost0)) {
380 dz[0] = -(xt*f1 - yt*r1);
381 dz[1] = fP[1] + (dz[0]*f1 - xt)/r1*fP[3] - z;
382 return;
383 }
384
385 sn=rp4*xt - f1; cs=rp4*yt + r1;
386 a=2*(xt*f1 - yt*r1)-rp4*(xt*xt + yt*yt);
387 Double_t rr=TMath::Sqrt(sn*sn + cs*cs);
388 dz[0] = -a/(1 + rr);
bfd20868 389 Double_t f2 = -sn/rr, r2 = TMath::Sqrt((1.-f2)*(1.+f2));
1530f89c 390 dz[1] = fP[1] + fP[3]/rp4*TMath::ASin(f2*r1 - f1*r2) - z;
51ad6848 391}
392
49d13e89 393//_______________________________________________________________________
394Double_t AliExternalTrackParam::GetLinearD(Double_t xv,Double_t yv) const {
395 //------------------------------------------------------------------
396 // This function calculates the transverse impact parameter
397 // with respect to a point with global coordinates (xv,yv)
398 // neglecting the track curvature.
399 //------------------------------------------------------------------
400 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
401 Double_t x= xv*cs + yv*sn;
402 Double_t y=-xv*sn + yv*cs;
403
bfd20868 404 Double_t d = (fX-x)*fP[2] - (fP[0]-y)*TMath::Sqrt((1.-fP[2])*(1.+fP[2]));
49d13e89 405
1530f89c 406 return -d;
49d13e89 407}
408
b8e07ed6 409Bool_t AliExternalTrackParam::CorrectForMeanMaterialdEdx
410(Double_t xOverX0, Double_t xTimesRho, Double_t mass,
411 Double_t dEdx,
412 Bool_t anglecorr) {
116b445b 413 //------------------------------------------------------------------
414 // This function corrects the track parameters for the crossed material.
415 // "xOverX0" - X/X0, the thickness in units of the radiation length.
2b99ff83 416 // "xTimesRho" - is the product length*density (g/cm^2).
417 // It should be passed as negative when propagating tracks
418 // from the intreaction point to the outside of the central barrel.
116b445b 419 // "mass" - the mass of this particle (GeV/c^2).
b8e07ed6 420 // "dEdx" - mean enery loss (GeV/(g/cm^2)
421 // "anglecorr" - switch for the angular correction
116b445b 422 //------------------------------------------------------------------
423 Double_t &fP2=fP[2];
424 Double_t &fP3=fP[3];
425 Double_t &fP4=fP[4];
426
427 Double_t &fC22=fC[5];
428 Double_t &fC33=fC[9];
429 Double_t &fC43=fC[13];
430 Double_t &fC44=fC[14];
431
7dded1d5 432 //Apply angle correction, if requested
433 if(anglecorr) {
bfd20868 434 Double_t angle=TMath::Sqrt((1.+ fP3*fP3)/((1-fP2)*(1.+fP2)));
7dded1d5 435 xOverX0 *=angle;
436 xTimesRho *=angle;
437 }
438
116b445b 439 Double_t p=GetP();
440 Double_t p2=p*p;
441 Double_t beta2=p2/(p2 + mass*mass);
116b445b 442
9f2bec63 443 //Calculating the multiple scattering corrections******************
444 Double_t cC22 = 0.;
445 Double_t cC33 = 0.;
446 Double_t cC43 = 0.;
447 Double_t cC44 = 0.;
116b445b 448 if (xOverX0 != 0) {
f2cef1b5 449 //Double_t theta2=1.0259e-6*14*14/28/(beta2*p2)*TMath::Abs(d)*9.36*2.33;
450 Double_t theta2=0.0136*0.0136/(beta2*p2)*TMath::Abs(xOverX0);
451 if (GetUseLogTermMS()) {
452 double lt = 1+0.038*TMath::Log(TMath::Abs(xOverX0));
453 if (lt>0) theta2 *= lt*lt;
454 }
455 if(theta2>TMath::Pi()*TMath::Pi()) return kFALSE;
456 cC22 = theta2*((1.-fP2)*(1.+fP2))*(1. + fP3*fP3);
457 cC33 = theta2*(1. + fP3*fP3)*(1. + fP3*fP3);
458 cC43 = theta2*fP3*fP4*(1. + fP3*fP3);
459 cC44 = theta2*fP3*fP4*fP3*fP4;
116b445b 460 }
461
9f2bec63 462 //Calculating the energy loss corrections************************
463 Double_t cP4=1.;
116b445b 464 if ((xTimesRho != 0.) && (beta2 < 1.)) {
b8e07ed6 465 Double_t dE=dEdx*xTimesRho;
116b445b 466 Double_t e=TMath::Sqrt(p2 + mass*mass);
467 if ( TMath::Abs(dE) > 0.3*e ) return kFALSE; //30% energy loss is too much!
c9038cae 468 //cP4 = (1.- e/p2*dE);
76ece3d8 469 if ( (1.+ dE/p2*(dE + 2*e)) < 0. ) return kFALSE;
c9038cae 470 cP4 = 1./TMath::Sqrt(1.+ dE/p2*(dE + 2*e)); //A precise formula by Ruben !
9f2bec63 471 if (TMath::Abs(fP4*cP4)>100.) return kFALSE; //Do not track below 10 MeV/c
4b2fa3ce 472
116b445b 473
474 // Approximate energy loss fluctuation (M.Ivanov)
475 const Double_t knst=0.07; // To be tuned.
476 Double_t sigmadE=knst*TMath::Sqrt(TMath::Abs(dE));
9f2bec63 477 cC44 += ((sigmadE*e/p2*fP4)*(sigmadE*e/p2*fP4));
116b445b 478
479 }
480
9f2bec63 481 //Applying the corrections*****************************
482 fC22 += cC22;
483 fC33 += cC33;
484 fC43 += cC43;
485 fC44 += cC44;
486 fP4 *= cP4;
487
86be8934 488 CheckCovariance();
489
116b445b 490 return kTRUE;
491}
492
b8e07ed6 493Bool_t AliExternalTrackParam::CorrectForMeanMaterial
494(Double_t xOverX0, Double_t xTimesRho, Double_t mass,
495 Bool_t anglecorr,
496 Double_t (*Bethe)(Double_t)) {
497 //------------------------------------------------------------------
498 // This function corrects the track parameters for the crossed material.
499 // "xOverX0" - X/X0, the thickness in units of the radiation length.
500 // "xTimesRho" - is the product length*density (g/cm^2).
2b99ff83 501 // It should be passed as negative when propagating tracks
502 // from the intreaction point to the outside of the central barrel.
b8e07ed6 503 // "mass" - the mass of this particle (GeV/c^2).
504 // "anglecorr" - switch for the angular correction
505 // "Bethe" - function calculating the energy loss (GeV/(g/cm^2))
506 //------------------------------------------------------------------
507
508 Double_t bg=GetP()/mass;
509 Double_t dEdx=Bethe(bg);
510
511 return CorrectForMeanMaterialdEdx(xOverX0,xTimesRho,mass,dEdx,anglecorr);
512}
513
514Bool_t AliExternalTrackParam::CorrectForMeanMaterialZA
515(Double_t xOverX0, Double_t xTimesRho, Double_t mass,
516 Double_t zOverA,
517 Double_t density,
518 Double_t exEnergy,
519 Double_t jp1,
520 Double_t jp2,
521 Bool_t anglecorr) {
522 //------------------------------------------------------------------
523 // This function corrects the track parameters for the crossed material
524 // using the full Geant-like Bethe-Bloch formula parameterization
525 // "xOverX0" - X/X0, the thickness in units of the radiation length.
526 // "xTimesRho" - is the product length*density (g/cm^2).
2b99ff83 527 // It should be passed as negative when propagating tracks
528 // from the intreaction point to the outside of the central barrel.
b8e07ed6 529 // "mass" - the mass of this particle (GeV/c^2).
530 // "density" - mean density (g/cm^3)
531 // "zOverA" - mean Z/A
532 // "exEnergy" - mean exitation energy (GeV)
533 // "jp1" - density effect first junction point
534 // "jp2" - density effect second junction point
535 // "anglecorr" - switch for the angular correction
536 //
537 // The default values of the parameters are for silicon
538 //
539 //------------------------------------------------------------------
540
541 Double_t bg=GetP()/mass;
542 Double_t dEdx=BetheBlochGeant(bg,density,jp1,jp2,exEnergy,zOverA);
543
544 return CorrectForMeanMaterialdEdx(xOverX0,xTimesRho,mass,dEdx,anglecorr);
545}
546
547
116b445b 548
ee5dba5e 549Bool_t AliExternalTrackParam::CorrectForMaterial
550(Double_t d, Double_t x0, Double_t mass, Double_t (*Bethe)(Double_t)) {
c7bafca9 551 //------------------------------------------------------------------
116b445b 552 // Deprecated function !
553 // Better use CorrectForMeanMaterial instead of it.
554 //
c7bafca9 555 // This function corrects the track parameters for the crossed material
556 // "d" - the thickness (fraction of the radiation length)
2b99ff83 557 // It should be passed as negative when propagating tracks
558 // from the intreaction point to the outside of the central barrel.
c7bafca9 559 // "x0" - the radiation length (g/cm^2)
560 // "mass" - the mass of this particle (GeV/c^2)
561 //------------------------------------------------------------------
c7bafca9 562
b8e07ed6 563 return CorrectForMeanMaterial(d,x0*d,mass,kTRUE,Bethe);
c7bafca9 564
c7bafca9 565}
566
9c56b409 567Double_t AliExternalTrackParam::BetheBlochAleph(Double_t bg,
568 Double_t kp1,
569 Double_t kp2,
570 Double_t kp3,
571 Double_t kp4,
572 Double_t kp5) {
573 //
574 // This is the empirical ALEPH parameterization of the Bethe-Bloch formula.
575 // It is normalized to 1 at the minimum.
576 //
577 // bg - beta*gamma
578 //
579 // The default values for the kp* parameters are for ALICE TPC.
580 // The returned value is in MIP units
581 //
582
583 Double_t beta = bg/TMath::Sqrt(1.+ bg*bg);
584
585 Double_t aa = TMath::Power(beta,kp4);
586 Double_t bb = TMath::Power(1./bg,kp5);
587
588 bb=TMath::Log(kp3+bb);
589
590 return (kp2-aa-bb)*kp1/aa;
591}
592
593Double_t AliExternalTrackParam::BetheBlochGeant(Double_t bg,
594 Double_t kp0,
595 Double_t kp1,
596 Double_t kp2,
597 Double_t kp3,
598 Double_t kp4) {
599 //
600 // This is the parameterization of the Bethe-Bloch formula inspired by Geant.
601 //
602 // bg - beta*gamma
603 // kp0 - density [g/cm^3]
604 // kp1 - density effect first junction point
605 // kp2 - density effect second junction point
606 // kp3 - mean excitation energy [GeV]
607 // kp4 - mean Z/A
608 //
609 // The default values for the kp* parameters are for silicon.
610 // The returned value is in [GeV/(g/cm^2)].
611 //
612
613 const Double_t mK = 0.307075e-3; // [GeV*cm^2/g]
614 const Double_t me = 0.511e-3; // [GeV/c^2]
615 const Double_t rho = kp0;
616 const Double_t x0 = kp1*2.303;
617 const Double_t x1 = kp2*2.303;
618 const Double_t mI = kp3;
619 const Double_t mZA = kp4;
620 const Double_t bg2 = bg*bg;
621 const Double_t maxT= 2*me*bg2; // neglecting the electron mass
622
623 //*** Density effect
624 Double_t d2=0.;
625 const Double_t x=TMath::Log(bg);
626 const Double_t lhwI=TMath::Log(28.816*1e-9*TMath::Sqrt(rho*mZA)/mI);
627 if (x > x1) {
628 d2 = lhwI + x - 0.5;
629 } else if (x > x0) {
630 const Double_t r=(x1-x)/(x1-x0);
631 d2 = lhwI + x - 0.5 + (0.5 - lhwI - x0)*r*r*r;
632 }
633
634 return mK*mZA*(1+bg2)/bg2*
635 (0.5*TMath::Log(2*me*bg2*maxT/(mI*mI)) - bg2/(1+bg2) - d2);
636}
637
d46683db 638Double_t AliExternalTrackParam::BetheBlochSolid(Double_t bg) {
ee5dba5e 639 //------------------------------------------------------------------
d46683db 640 // This is an approximation of the Bethe-Bloch formula,
641 // reasonable for solid materials.
642 // All the parameters are, in fact, for Si.
9b655cba 643 // The returned value is in [GeV/(g/cm^2)]
ee5dba5e 644 //------------------------------------------------------------------
a821848c 645
9c56b409 646 return BetheBlochGeant(bg);
d46683db 647}
ee5dba5e 648
d46683db 649Double_t AliExternalTrackParam::BetheBlochGas(Double_t bg) {
650 //------------------------------------------------------------------
651 // This is an approximation of the Bethe-Bloch formula,
652 // reasonable for gas materials.
653 // All the parameters are, in fact, for Ne.
9b655cba 654 // The returned value is in [GeV/(g/cm^2)]
d46683db 655 //------------------------------------------------------------------
656
657 const Double_t rho = 0.9e-3;
658 const Double_t x0 = 2.;
659 const Double_t x1 = 4.;
660 const Double_t mI = 140.e-9;
661 const Double_t mZA = 0.49555;
662
9c56b409 663 return BetheBlochGeant(bg,rho,x0,x1,mI,mZA);
ee5dba5e 664}
665
49d13e89 666Bool_t AliExternalTrackParam::Rotate(Double_t alpha) {
667 //------------------------------------------------------------------
668 // Transform this track to the local coord. system rotated
669 // by angle "alpha" (rad) with respect to the global coord. system.
670 //------------------------------------------------------------------
dfcef74c 671 if (TMath::Abs(fP[2]) >= kAlmost1) {
672 AliError(Form("Precondition is not satisfied: |sin(phi)|>1 ! %f",fP[2]));
673 return kFALSE;
674 }
675
49d13e89 676 if (alpha < -TMath::Pi()) alpha += 2*TMath::Pi();
677 else if (alpha >= TMath::Pi()) alpha -= 2*TMath::Pi();
678
679 Double_t &fP0=fP[0];
680 Double_t &fP2=fP[2];
681 Double_t &fC00=fC[0];
682 Double_t &fC10=fC[1];
683 Double_t &fC20=fC[3];
684 Double_t &fC21=fC[4];
685 Double_t &fC22=fC[5];
686 Double_t &fC30=fC[6];
687 Double_t &fC32=fC[8];
688 Double_t &fC40=fC[10];
689 Double_t &fC42=fC[12];
690
691 Double_t x=fX;
692 Double_t ca=TMath::Cos(alpha-fAlpha), sa=TMath::Sin(alpha-fAlpha);
bfd20868 693 Double_t sf=fP2, cf=TMath::Sqrt((1.- fP2)*(1.+fP2)); // Improve precision
49d13e89 694
07dfd570 695 // RS: check if rotation does no invalidate track model (cos(local_phi)>=0, i.e. particle
696 // direction in local frame is along the X axis
697 if ((cf*ca+sf*sa)<0) {
1450dc8a 698 AliDebug(1,Form("Rotation failed: local cos(phi) would become %.2f",cf*ca+sf*sa));
07dfd570 699 return kFALSE;
700 }
701 //
dfcef74c 702 Double_t tmp=sf*ca - cf*sa;
7248cf51 703 if (TMath::Abs(tmp) >= kAlmost1) {
704 if (TMath::Abs(tmp) > 1.+ Double_t(FLT_EPSILON))
705 AliWarning(Form("Rotation failed ! %.10e",tmp));
0b69bbb2 706 return kFALSE;
707 }
dfcef74c 708
49d13e89 709 fAlpha = alpha;
710 fX = x*ca + fP0*sa;
711 fP0= -x*sa + fP0*ca;
dfcef74c 712 fP2= tmp;
49d13e89 713
06fb4a2f 714 if (TMath::Abs(cf)<kAlmost0) {
715 AliError(Form("Too small cosine value %f",cf));
716 cf = kAlmost0;
717 }
718
49d13e89 719 Double_t rr=(ca+sf/cf*sa);
720
721 fC00 *= (ca*ca);
722 fC10 *= ca;
723 fC20 *= ca*rr;
724 fC21 *= rr;
725 fC22 *= rr*rr;
726 fC30 *= ca;
727 fC32 *= rr;
728 fC40 *= ca;
729 fC42 *= rr;
730
86be8934 731 CheckCovariance();
732
49d13e89 733 return kTRUE;
734}
735
2d2fd909 736Bool_t AliExternalTrackParam::Invert() {
737 //------------------------------------------------------------------
738 // Transform this track to the local coord. system rotated by 180 deg.
739 //------------------------------------------------------------------
740 fX = -fX;
741 fAlpha += TMath::Pi();
742 while (fAlpha < -TMath::Pi()) fAlpha += 2*TMath::Pi();
743 while (fAlpha >= TMath::Pi()) fAlpha -= 2*TMath::Pi();
744 //
745 fP[0] = -fP[0];
746 fP[2] = -fP[2];
747 fP[3] = -fP[3];
748 fP[4] = -fP[4];
749 //
750 fC[1] = -fC[1]; // since the Z coordinate is not inverted, the covariances with Z should be inverted
751 fC[4] = -fC[4];
752 fC[7] = -fC[7];
753 fC[11] = -fC[11];
754 //
755 return kTRUE;
756}
757
49d13e89 758Bool_t AliExternalTrackParam::PropagateTo(Double_t xk, Double_t b) {
759 //----------------------------------------------------------------
760 // Propagate this track to the plane X=xk (cm) in the field "b" (kG)
761 //----------------------------------------------------------------
49d13e89 762 Double_t dx=xk-fX;
e421f556 763 if (TMath::Abs(dx)<=kAlmost0) return kTRUE;
18ebc5ef 764
1530f89c 765 Double_t crv=GetC(b);
5773defd 766 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
767
2de63fc5 768 Double_t x2r = crv*dx;
769 Double_t f1=fP[2], f2=f1 + x2r;
bbefa4c4 770 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
49d13e89 771 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
4349f5a4 772 if (TMath::Abs(fP[4])< kAlmost0) return kFALSE;
49d13e89 773
774 Double_t &fP0=fP[0], &fP1=fP[1], &fP2=fP[2], &fP3=fP[3], &fP4=fP[4];
775 Double_t
776 &fC00=fC[0],
777 &fC10=fC[1], &fC11=fC[2],
778 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
779 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
780 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
781
bfd20868 782 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
4349f5a4 783 if (TMath::Abs(r1)<kAlmost0) return kFALSE;
784 if (TMath::Abs(r2)<kAlmost0) return kFALSE;
49d13e89 785
786 fX=xk;
2de63fc5 787 double dy2dx = (f1+f2)/(r1+r2);
788 fP0 += dx*dy2dx;
789 if (TMath::Abs(x2r)<0.05) {
790 fP1 += dx*(r2 + f2*dy2dx)*fP3; // Many thanks to P.Hristov !
791 fP2 += x2r;
792 }
793 else {
794 // for small dx/R the linear apporximation of the arc by the segment is OK,
795 // but at large dx/R the error is very large and leads to incorrect Z propagation
796 // angle traversed delta = 2*asin(dist_start_end / R / 2), hence the arc is: R*deltaPhi
797 // The dist_start_end is obtained from sqrt(dx^2+dy^2) = x/(r1+r2)*sqrt(2+f1*f2+r1*r2)
798 // Similarly, the rotation angle in linear in dx only for dx<<R
799 double chord = dx*TMath::Sqrt(1+dy2dx*dy2dx); // distance from old position to new one
800 double rot = 2*TMath::ASin(0.5*chord*crv); // angular difference seen from the circle center
801 fP1 += rot/crv*fP3;
802 fP2 = TMath::Sin(rot + TMath::ASin(fP2));
803 }
49d13e89 804
805 //f = F - 1
806
807 Double_t f02= dx/(r1*r1*r1); Double_t cc=crv/fP4;
808 Double_t f04=0.5*dx*dx/(r1*r1*r1); f04*=cc;
809 Double_t f12= dx*fP3*f1/(r1*r1*r1);
810 Double_t f14=0.5*dx*dx*fP3*f1/(r1*r1*r1); f14*=cc;
811 Double_t f13= dx/r1;
812 Double_t f24= dx; f24*=cc;
813
814 //b = C*ft
815 Double_t b00=f02*fC20 + f04*fC40, b01=f12*fC20 + f14*fC40 + f13*fC30;
816 Double_t b02=f24*fC40;
817 Double_t b10=f02*fC21 + f04*fC41, b11=f12*fC21 + f14*fC41 + f13*fC31;
818 Double_t b12=f24*fC41;
819 Double_t b20=f02*fC22 + f04*fC42, b21=f12*fC22 + f14*fC42 + f13*fC32;
820 Double_t b22=f24*fC42;
821 Double_t b40=f02*fC42 + f04*fC44, b41=f12*fC42 + f14*fC44 + f13*fC43;
822 Double_t b42=f24*fC44;
823 Double_t b30=f02*fC32 + f04*fC43, b31=f12*fC32 + f14*fC43 + f13*fC33;
824 Double_t b32=f24*fC43;
825
826 //a = f*b = f*C*ft
827 Double_t a00=f02*b20+f04*b40,a01=f02*b21+f04*b41,a02=f02*b22+f04*b42;
828 Double_t a11=f12*b21+f14*b41+f13*b31,a12=f12*b22+f14*b42+f13*b32;
829 Double_t a22=f24*b42;
830
831 //F*C*Ft = C + (b + bt + a)
832 fC00 += b00 + b00 + a00;
833 fC10 += b10 + b01 + a01;
834 fC20 += b20 + b02 + a02;
835 fC30 += b30;
836 fC40 += b40;
837 fC11 += b11 + b11 + a11;
838 fC21 += b21 + b12 + a12;
839 fC31 += b31;
840 fC41 += b41;
841 fC22 += b22 + b22 + a22;
842 fC32 += b32;
843 fC42 += b42;
844
86be8934 845 CheckCovariance();
846
49d13e89 847 return kTRUE;
848}
849
9f2bec63 850Bool_t
851AliExternalTrackParam::Propagate(Double_t alpha, Double_t x, Double_t b) {
852 //------------------------------------------------------------------
853 // Transform this track to the local coord. system rotated
854 // by angle "alpha" (rad) with respect to the global coord. system,
855 // and propagate this track to the plane X=xk (cm) in the field "b" (kG)
856 //------------------------------------------------------------------
857
858 //Save the parameters
859 Double_t as=fAlpha;
860 Double_t xs=fX;
861 Double_t ps[5], cs[15];
862 for (Int_t i=0; i<5; i++) ps[i]=fP[i];
863 for (Int_t i=0; i<15; i++) cs[i]=fC[i];
864
865 if (Rotate(alpha))
866 if (PropagateTo(x,b)) return kTRUE;
867
868 //Restore the parameters, if the operation failed
869 fAlpha=as;
870 fX=xs;
871 for (Int_t i=0; i<5; i++) fP[i]=ps[i];
872 for (Int_t i=0; i<15; i++) fC[i]=cs[i];
873 return kFALSE;
874}
875
266a0f9b 876Bool_t AliExternalTrackParam::PropagateBxByBz
877(Double_t alpha, Double_t x, Double_t b[3]) {
878 //------------------------------------------------------------------
879 // Transform this track to the local coord. system rotated
880 // by angle "alpha" (rad) with respect to the global coord. system,
881 // and propagate this track to the plane X=xk (cm),
882 // taking into account all three components of the B field, "b[3]" (kG)
883 //------------------------------------------------------------------
884
885 //Save the parameters
886 Double_t as=fAlpha;
887 Double_t xs=fX;
888 Double_t ps[5], cs[15];
889 for (Int_t i=0; i<5; i++) ps[i]=fP[i];
890 for (Int_t i=0; i<15; i++) cs[i]=fC[i];
891
892 if (Rotate(alpha))
893 if (PropagateToBxByBz(x,b)) return kTRUE;
894
895 //Restore the parameters, if the operation failed
896 fAlpha=as;
897 fX=xs;
898 for (Int_t i=0; i<5; i++) fP[i]=ps[i];
899 for (Int_t i=0; i<15; i++) fC[i]=cs[i];
900 return kFALSE;
901}
902
9f2bec63 903
052daaff 904void AliExternalTrackParam::Propagate(Double_t len, Double_t x[3],
905Double_t p[3], Double_t bz) const {
906 //+++++++++++++++++++++++++++++++++++++++++
907 // Origin: K. Shileev (Kirill.Shileev@cern.ch)
908 // Extrapolate track along simple helix in magnetic field
909 // Arguments: len -distance alogn helix, [cm]
910 // bz - mag field, [kGaus]
911 // Returns: x and p contain extrapolated positon and momentum
912 // The momentum returned for straight-line tracks is meaningless !
913 //+++++++++++++++++++++++++++++++++++++++++
914 GetXYZ(x);
915
2258e165 916 if (OneOverPt() < kAlmost0 || TMath::Abs(bz) < kAlmost0Field || GetC(bz) < kAlmost0){ //straight-line tracks
052daaff 917 Double_t unit[3]; GetDirection(unit);
918 x[0]+=unit[0]*len;
919 x[1]+=unit[1]*len;
920 x[2]+=unit[2]*len;
921
922 p[0]=unit[0]/kAlmost0;
923 p[1]=unit[1]/kAlmost0;
924 p[2]=unit[2]/kAlmost0;
925 } else {
926 GetPxPyPz(p);
927 Double_t pp=GetP();
928 Double_t a = -kB2C*bz*GetSign();
929 Double_t rho = a/pp;
930 x[0] += p[0]*TMath::Sin(rho*len)/a - p[1]*(1-TMath::Cos(rho*len))/a;
931 x[1] += p[1]*TMath::Sin(rho*len)/a + p[0]*(1-TMath::Cos(rho*len))/a;
932 x[2] += p[2]*len/pp;
933
934 Double_t p0=p[0];
935 p[0] = p0 *TMath::Cos(rho*len) - p[1]*TMath::Sin(rho*len);
936 p[1] = p[1]*TMath::Cos(rho*len) + p0 *TMath::Sin(rho*len);
937 }
938}
939
940Bool_t AliExternalTrackParam::Intersect(Double_t pnt[3], Double_t norm[3],
941Double_t bz) const {
942 //+++++++++++++++++++++++++++++++++++++++++
943 // Origin: K. Shileev (Kirill.Shileev@cern.ch)
944 // Finds point of intersection (if exists) of the helix with the plane.
945 // Stores result in fX and fP.
946 // Arguments: planePoint,planeNorm - the plane defined by any plane's point
947 // and vector, normal to the plane
948 // Returns: kTrue if helix intersects the plane, kFALSE otherwise.
949 //+++++++++++++++++++++++++++++++++++++++++
950 Double_t x0[3]; GetXYZ(x0); //get track position in MARS
951
952 //estimates initial helix length up to plane
953 Double_t s=
954 (pnt[0]-x0[0])*norm[0] + (pnt[1]-x0[1])*norm[1] + (pnt[2]-x0[2])*norm[2];
955 Double_t dist=99999,distPrev=dist;
956 Double_t x[3],p[3];
957 while(TMath::Abs(dist)>0.00001){
958 //calculates helix at the distance s from x0 ALONG the helix
959 Propagate(s,x,p,bz);
960
961 //distance between current helix position and plane
962 dist=(x[0]-pnt[0])*norm[0]+(x[1]-pnt[1])*norm[1]+(x[2]-pnt[2])*norm[2];
963
964 if(TMath::Abs(dist) >= TMath::Abs(distPrev)) {return kFALSE;}
965 distPrev=dist;
966 s-=dist;
967 }
968 //on exit pnt is intersection point,norm is track vector at that point,
969 //all in MARS
970 for (Int_t i=0; i<3; i++) {pnt[i]=x[i]; norm[i]=p[i];}
971 return kTRUE;
972}
973
49d13e89 974Double_t
975AliExternalTrackParam::GetPredictedChi2(Double_t p[2],Double_t cov[3]) const {
976 //----------------------------------------------------------------
977 // Estimate the chi2 of the space point "p" with the cov. matrix "cov"
978 //----------------------------------------------------------------
979 Double_t sdd = fC[0] + cov[0];
980 Double_t sdz = fC[1] + cov[1];
981 Double_t szz = fC[2] + cov[2];
982 Double_t det = sdd*szz - sdz*sdz;
983
984 if (TMath::Abs(det) < kAlmost0) return kVeryBig;
985
986 Double_t d = fP[0] - p[0];
987 Double_t z = fP[1] - p[1];
988
989 return (d*szz*d - 2*d*sdz*z + z*sdd*z)/det;
990}
991
4b189f98 992Double_t AliExternalTrackParam::
993GetPredictedChi2(Double_t p[3],Double_t covyz[3],Double_t covxyz[3]) const {
994 //----------------------------------------------------------------
995 // Estimate the chi2 of the 3D space point "p" and
1e023a36 996 // the full covariance matrix "covyz" and "covxyz"
4b189f98 997 //
998 // Cov(x,x) ... : covxyz[0]
999 // Cov(y,x) ... : covxyz[1] covyz[0]
1000 // Cov(z,x) ... : covxyz[2] covyz[1] covyz[2]
1001 //----------------------------------------------------------------
1002
1003 Double_t res[3] = {
1004 GetX() - p[0],
1005 GetY() - p[1],
1006 GetZ() - p[2]
1007 };
1008
1009 Double_t f=GetSnp();
1010 if (TMath::Abs(f) >= kAlmost1) return kVeryBig;
bfd20868 1011 Double_t r=TMath::Sqrt((1.-f)*(1.+f));
4b189f98 1012 Double_t a=f/r, b=GetTgl()/r;
1013
1014 Double_t s2=333.*333.; //something reasonably big (cm^2)
1015
1016 TMatrixDSym v(3);
1017 v(0,0)= s2; v(0,1)= a*s2; v(0,2)= b*s2;;
1018 v(1,0)=a*s2; v(1,1)=a*a*s2 + GetSigmaY2(); v(1,2)=a*b*s2 + GetSigmaZY();
1019 v(2,0)=b*s2; v(2,1)=a*b*s2 + GetSigmaZY(); v(2,2)=b*b*s2 + GetSigmaZ2();
1020
1021 v(0,0)+=covxyz[0]; v(0,1)+=covxyz[1]; v(0,2)+=covxyz[2];
1022 v(1,0)+=covxyz[1]; v(1,1)+=covyz[0]; v(1,2)+=covyz[1];
1023 v(2,0)+=covxyz[2]; v(2,1)+=covyz[1]; v(2,2)+=covyz[2];
1024
1025 v.Invert();
1026 if (!v.IsValid()) return kVeryBig;
1027
1028 Double_t chi2=0.;
1029 for (Int_t i = 0; i < 3; i++)
1030 for (Int_t j = 0; j < 3; j++) chi2 += res[i]*res[j]*v(i,j);
1031
1032 return chi2;
acdfbc78 1033}
1034
1035Double_t AliExternalTrackParam::
1036GetPredictedChi2(const AliExternalTrackParam *t) const {
1037 //----------------------------------------------------------------
1038 // Estimate the chi2 (5 dof) of this track with respect to the track
1039 // given by the argument.
1040 // The two tracks must be in the same reference system
1041 // and estimated at the same reference plane.
1042 //----------------------------------------------------------------
1043
1044 if (TMath::Abs(1. - t->GetAlpha()/GetAlpha()) > FLT_EPSILON) {
1045 AliError("The reference systems of the tracks differ !");
1046 return kVeryBig;
1047 }
1048 if (TMath::Abs(1. - t->GetX()/GetX()) > FLT_EPSILON) {
1049 AliError("The reference of the tracks planes differ !");
1050 return kVeryBig;
1051 }
1052
1053 TMatrixDSym c(5);
1054 c(0,0)=GetSigmaY2();
1055 c(1,0)=GetSigmaZY(); c(1,1)=GetSigmaZ2();
1056 c(2,0)=GetSigmaSnpY(); c(2,1)=GetSigmaSnpZ(); c(2,2)=GetSigmaSnp2();
1057 c(3,0)=GetSigmaTglY(); c(3,1)=GetSigmaTglZ(); c(3,2)=GetSigmaTglSnp(); c(3,3)=GetSigmaTgl2();
1058 c(4,0)=GetSigma1PtY(); c(4,1)=GetSigma1PtZ(); c(4,2)=GetSigma1PtSnp(); c(4,3)=GetSigma1PtTgl(); c(4,4)=GetSigma1Pt2();
1059
1060 c(0,0)+=t->GetSigmaY2();
1061 c(1,0)+=t->GetSigmaZY(); c(1,1)+=t->GetSigmaZ2();
1062 c(2,0)+=t->GetSigmaSnpY();c(2,1)+=t->GetSigmaSnpZ();c(2,2)+=t->GetSigmaSnp2();
1063 c(3,0)+=t->GetSigmaTglY();c(3,1)+=t->GetSigmaTglZ();c(3,2)+=t->GetSigmaTglSnp();c(3,3)+=t->GetSigmaTgl2();
1064 c(4,0)+=t->GetSigma1PtY();c(4,1)+=t->GetSigma1PtZ();c(4,2)+=t->GetSigma1PtSnp();c(4,3)+=t->GetSigma1PtTgl();c(4,4)+=t->GetSigma1Pt2();
1065 c(0,1)=c(1,0);
1066 c(0,2)=c(2,0); c(1,2)=c(2,1);
1067 c(0,3)=c(3,0); c(1,3)=c(3,1); c(2,3)=c(3,2);
1068 c(0,4)=c(4,0); c(1,4)=c(4,1); c(2,4)=c(4,2); c(3,4)=c(4,3);
1069
1070 c.Invert();
1071 if (!c.IsValid()) return kVeryBig;
1072
1073
1074 Double_t res[5] = {
1075 GetY() - t->GetY(),
1076 GetZ() - t->GetZ(),
1077 GetSnp() - t->GetSnp(),
1078 GetTgl() - t->GetTgl(),
1079 GetSigned1Pt() - t->GetSigned1Pt()
1080 };
4b189f98 1081
acdfbc78 1082 Double_t chi2=0.;
1083 for (Int_t i = 0; i < 5; i++)
1084 for (Int_t j = 0; j < 5; j++) chi2 += res[i]*res[j]*c(i,j);
4b189f98 1085
acdfbc78 1086 return chi2;
4b189f98 1087}
1088
1e023a36 1089Bool_t AliExternalTrackParam::
1090PropagateTo(Double_t p[3],Double_t covyz[3],Double_t covxyz[3],Double_t bz) {
1091 //----------------------------------------------------------------
1092 // Propagate this track to the plane
1093 // the 3D space point "p" (with the covariance matrix "covyz" and "covxyz")
1094 // belongs to.
1095 // The magnetic field is "bz" (kG)
1096 //
1097 // The track curvature and the change of the covariance matrix
1098 // of the track parameters are negleted !
1099 // (So the "step" should be small compared with 1/curvature)
1100 //----------------------------------------------------------------
1101
1102 Double_t f=GetSnp();
1103 if (TMath::Abs(f) >= kAlmost1) return kFALSE;
bfd20868 1104 Double_t r=TMath::Sqrt((1.-f)*(1.+f));
1e023a36 1105 Double_t a=f/r, b=GetTgl()/r;
1106
1107 Double_t s2=333.*333.; //something reasonably big (cm^2)
1108
1109 TMatrixDSym tV(3);
1110 tV(0,0)= s2; tV(0,1)= a*s2; tV(0,2)= b*s2;
1111 tV(1,0)=a*s2; tV(1,1)=a*a*s2; tV(1,2)=a*b*s2;
1112 tV(2,0)=b*s2; tV(2,1)=a*b*s2; tV(2,2)=b*b*s2;
1113
1114 TMatrixDSym pV(3);
1115 pV(0,0)=covxyz[0]; pV(0,1)=covxyz[1]; pV(0,2)=covxyz[2];
1116 pV(1,0)=covxyz[1]; pV(1,1)=covyz[0]; pV(1,2)=covyz[1];
1117 pV(2,0)=covxyz[2]; pV(2,1)=covyz[1]; pV(2,2)=covyz[2];
1118
1119 TMatrixDSym tpV(tV);
1120 tpV+=pV;
1121 tpV.Invert();
1122 if (!tpV.IsValid()) return kFALSE;
1123
1124 TMatrixDSym pW(3),tW(3);
1125 for (Int_t i=0; i<3; i++)
1126 for (Int_t j=0; j<3; j++) {
1127 pW(i,j)=tW(i,j)=0.;
1128 for (Int_t k=0; k<3; k++) {
1129 pW(i,j) += tV(i,k)*tpV(k,j);
1130 tW(i,j) += pV(i,k)*tpV(k,j);
1131 }
1132 }
1133
1134 Double_t t[3] = {GetX(), GetY(), GetZ()};
1135
1136 Double_t x=0.;
1137 for (Int_t i=0; i<3; i++) x += (tW(0,i)*t[i] + pW(0,i)*p[i]);
1138 Double_t crv=GetC(bz);
1139 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
1140 f += crv*(x-fX);
1141 if (TMath::Abs(f) >= kAlmost1) return kFALSE;
1142 fX=x;
1143
1144 fP[0]=0.;
1145 for (Int_t i=0; i<3; i++) fP[0] += (tW(1,i)*t[i] + pW(1,i)*p[i]);
1146 fP[1]=0.;
1147 for (Int_t i=0; i<3; i++) fP[1] += (tW(2,i)*t[i] + pW(2,i)*p[i]);
1148
1149 return kTRUE;
1150}
1151
e23a38cb 1152Double_t *AliExternalTrackParam::GetResiduals(
1153Double_t *p,Double_t *cov,Bool_t updated) const {
1154 //------------------------------------------------------------------
1155 // Returns the track residuals with the space point "p" having
1156 // the covariance matrix "cov".
1157 // If "updated" is kTRUE, the track parameters expected to be updated,
1158 // otherwise they must be predicted.
1159 //------------------------------------------------------------------
1160 static Double_t res[2];
1161
1162 Double_t r00=cov[0], r01=cov[1], r11=cov[2];
1163 if (updated) {
1164 r00-=fC[0]; r01-=fC[1]; r11-=fC[2];
1165 } else {
1166 r00+=fC[0]; r01+=fC[1]; r11+=fC[2];
1167 }
1168 Double_t det=r00*r11 - r01*r01;
1169
1170 if (TMath::Abs(det) < kAlmost0) return 0;
1171
1172 Double_t tmp=r00; r00=r11/det; r11=tmp/det;
f0fbf964 1173
1174 if (r00 < 0.) return 0;
1175 if (r11 < 0.) return 0;
1176
e23a38cb 1177 Double_t dy = fP[0] - p[0];
1178 Double_t dz = fP[1] - p[1];
1179
1180 res[0]=dy*TMath::Sqrt(r00);
1181 res[1]=dz*TMath::Sqrt(r11);
1182
1183 return res;
1184}
1185
49d13e89 1186Bool_t AliExternalTrackParam::Update(Double_t p[2], Double_t cov[3]) {
1187 //------------------------------------------------------------------
1188 // Update the track parameters with the space point "p" having
1189 // the covariance matrix "cov"
1190 //------------------------------------------------------------------
1191 Double_t &fP0=fP[0], &fP1=fP[1], &fP2=fP[2], &fP3=fP[3], &fP4=fP[4];
1192 Double_t
1193 &fC00=fC[0],
1194 &fC10=fC[1], &fC11=fC[2],
1195 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
1196 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
1197 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
1198
1199 Double_t r00=cov[0], r01=cov[1], r11=cov[2];
1200 r00+=fC00; r01+=fC10; r11+=fC11;
1201 Double_t det=r00*r11 - r01*r01;
1202
1203 if (TMath::Abs(det) < kAlmost0) return kFALSE;
1204
1205
1206 Double_t tmp=r00; r00=r11/det; r11=tmp/det; r01=-r01/det;
1207
1208 Double_t k00=fC00*r00+fC10*r01, k01=fC00*r01+fC10*r11;
1209 Double_t k10=fC10*r00+fC11*r01, k11=fC10*r01+fC11*r11;
1210 Double_t k20=fC20*r00+fC21*r01, k21=fC20*r01+fC21*r11;
1211 Double_t k30=fC30*r00+fC31*r01, k31=fC30*r01+fC31*r11;
1212 Double_t k40=fC40*r00+fC41*r01, k41=fC40*r01+fC41*r11;
1213
1214 Double_t dy=p[0] - fP0, dz=p[1] - fP1;
1215 Double_t sf=fP2 + k20*dy + k21*dz;
1216 if (TMath::Abs(sf) > kAlmost1) return kFALSE;
1217
1218 fP0 += k00*dy + k01*dz;
1219 fP1 += k10*dy + k11*dz;
1220 fP2 = sf;
1221 fP3 += k30*dy + k31*dz;
1222 fP4 += k40*dy + k41*dz;
1223
1224 Double_t c01=fC10, c02=fC20, c03=fC30, c04=fC40;
1225 Double_t c12=fC21, c13=fC31, c14=fC41;
1226
1227 fC00-=k00*fC00+k01*fC10; fC10-=k00*c01+k01*fC11;
1228 fC20-=k00*c02+k01*c12; fC30-=k00*c03+k01*c13;
1229 fC40-=k00*c04+k01*c14;
1230
1231 fC11-=k10*c01+k11*fC11;
1232 fC21-=k10*c02+k11*c12; fC31-=k10*c03+k11*c13;
1233 fC41-=k10*c04+k11*c14;
1234
1235 fC22-=k20*c02+k21*c12; fC32-=k20*c03+k21*c13;
1236 fC42-=k20*c04+k21*c14;
1237
1238 fC33-=k30*c03+k31*c13;
1239 fC43-=k30*c04+k31*c14;
1240
1241 fC44-=k40*c04+k41*c14;
1242
86be8934 1243 CheckCovariance();
1244
49d13e89 1245 return kTRUE;
1246}
1247
c7bafca9 1248void
1249AliExternalTrackParam::GetHelixParameters(Double_t hlx[6], Double_t b) const {
1250 //--------------------------------------------------------------------
1251 // External track parameters -> helix parameters
1252 // "b" - magnetic field (kG)
1253 //--------------------------------------------------------------------
1254 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
1255
1530f89c 1256 hlx[0]=fP[0]; hlx[1]=fP[1]; hlx[2]=fP[2]; hlx[3]=fP[3];
c7bafca9 1257
1258 hlx[5]=fX*cs - hlx[0]*sn; // x0
1259 hlx[0]=fX*sn + hlx[0]*cs; // y0
1260//hlx[1]= // z0
1261 hlx[2]=TMath::ASin(hlx[2]) + fAlpha; // phi0
1262//hlx[3]= // tgl
1530f89c 1263 hlx[4]=GetC(b); // C
c7bafca9 1264}
1265
1266
1267static void Evaluate(const Double_t *h, Double_t t,
1268 Double_t r[3], //radius vector
1269 Double_t g[3], //first defivatives
1270 Double_t gg[3]) //second derivatives
1271{
1272 //--------------------------------------------------------------------
1273 // Calculate position of a point on a track and some derivatives
1274 //--------------------------------------------------------------------
1275 Double_t phase=h[4]*t+h[2];
1276 Double_t sn=TMath::Sin(phase), cs=TMath::Cos(phase);
1277
ba4550c4 1278 r[0] = h[5];
1279 r[1] = h[0];
1280 if (TMath::Abs(h[4])>kAlmost0) {
1281 r[0] += (sn - h[6])/h[4];
1282 r[1] -= (cs - h[7])/h[4];
1283 }
c7bafca9 1284 r[2] = h[1] + h[3]*t;
1285
1286 g[0] = cs; g[1]=sn; g[2]=h[3];
1287
1288 gg[0]=-h[4]*sn; gg[1]=h[4]*cs; gg[2]=0.;
1289}
1290
1291Double_t AliExternalTrackParam::GetDCA(const AliExternalTrackParam *p,
1292Double_t b, Double_t &xthis, Double_t &xp) const {
1293 //------------------------------------------------------------
1294 // Returns the (weighed !) distance of closest approach between
1295 // this track and the track "p".
1296 // Other returned values:
1297 // xthis, xt - coordinates of tracks' reference planes at the DCA
1298 //-----------------------------------------------------------
1299 Double_t dy2=GetSigmaY2() + p->GetSigmaY2();
1300 Double_t dz2=GetSigmaZ2() + p->GetSigmaZ2();
1301 Double_t dx2=dy2;
1302
c7bafca9 1303 Double_t p1[8]; GetHelixParameters(p1,b);
1304 p1[6]=TMath::Sin(p1[2]); p1[7]=TMath::Cos(p1[2]);
1305 Double_t p2[8]; p->GetHelixParameters(p2,b);
1306 p2[6]=TMath::Sin(p2[2]); p2[7]=TMath::Cos(p2[2]);
1307
1308
1309 Double_t r1[3],g1[3],gg1[3]; Double_t t1=0.;
1310 Evaluate(p1,t1,r1,g1,gg1);
1311 Double_t r2[3],g2[3],gg2[3]; Double_t t2=0.;
1312 Evaluate(p2,t2,r2,g2,gg2);
1313
1314 Double_t dx=r2[0]-r1[0], dy=r2[1]-r1[1], dz=r2[2]-r1[2];
1315 Double_t dm=dx*dx/dx2 + dy*dy/dy2 + dz*dz/dz2;
1316
1317 Int_t max=27;
1318 while (max--) {
1319 Double_t gt1=-(dx*g1[0]/dx2 + dy*g1[1]/dy2 + dz*g1[2]/dz2);
1320 Double_t gt2=+(dx*g2[0]/dx2 + dy*g2[1]/dy2 + dz*g2[2]/dz2);
1321 Double_t h11=(g1[0]*g1[0] - dx*gg1[0])/dx2 +
1322 (g1[1]*g1[1] - dy*gg1[1])/dy2 +
1323 (g1[2]*g1[2] - dz*gg1[2])/dz2;
1324 Double_t h22=(g2[0]*g2[0] + dx*gg2[0])/dx2 +
1325 (g2[1]*g2[1] + dy*gg2[1])/dy2 +
1326 (g2[2]*g2[2] + dz*gg2[2])/dz2;
1327 Double_t h12=-(g1[0]*g2[0]/dx2 + g1[1]*g2[1]/dy2 + g1[2]*g2[2]/dz2);
1328
1329 Double_t det=h11*h22-h12*h12;
1330
1331 Double_t dt1,dt2;
1332 if (TMath::Abs(det)<1.e-33) {
1333 //(quasi)singular Hessian
1334 dt1=-gt1; dt2=-gt2;
1335 } else {
1336 dt1=-(gt1*h22 - gt2*h12)/det;
1337 dt2=-(h11*gt2 - h12*gt1)/det;
1338 }
1339
1340 if ((dt1*gt1+dt2*gt2)>0) {dt1=-dt1; dt2=-dt2;}
1341
1342 //check delta(phase1) ?
1343 //check delta(phase2) ?
1344
1345 if (TMath::Abs(dt1)/(TMath::Abs(t1)+1.e-3) < 1.e-4)
1346 if (TMath::Abs(dt2)/(TMath::Abs(t2)+1.e-3) < 1.e-4) {
1347 if ((gt1*gt1+gt2*gt2) > 1.e-4/dy2/dy2)
358f16ae 1348 AliDebug(1," stopped at not a stationary point !");
c7bafca9 1349 Double_t lmb=h11+h22; lmb=lmb-TMath::Sqrt(lmb*lmb-4*det);
1350 if (lmb < 0.)
358f16ae 1351 AliDebug(1," stopped at not a minimum !");
c7bafca9 1352 break;
1353 }
1354
1355 Double_t dd=dm;
1356 for (Int_t div=1 ; ; div*=2) {
1357 Evaluate(p1,t1+dt1,r1,g1,gg1);
1358 Evaluate(p2,t2+dt2,r2,g2,gg2);
1359 dx=r2[0]-r1[0]; dy=r2[1]-r1[1]; dz=r2[2]-r1[2];
1360 dd=dx*dx/dx2 + dy*dy/dy2 + dz*dz/dz2;
1361 if (dd<dm) break;
1362 dt1*=0.5; dt2*=0.5;
1363 if (div>512) {
358f16ae 1364 AliDebug(1," overshoot !"); break;
c7bafca9 1365 }
1366 }
1367 dm=dd;
1368
1369 t1+=dt1;
1370 t2+=dt2;
1371
1372 }
1373
358f16ae 1374 if (max<=0) AliDebug(1," too many iterations !");
c7bafca9 1375
1376 Double_t cs=TMath::Cos(GetAlpha());
1377 Double_t sn=TMath::Sin(GetAlpha());
1378 xthis=r1[0]*cs + r1[1]*sn;
1379
1380 cs=TMath::Cos(p->GetAlpha());
1381 sn=TMath::Sin(p->GetAlpha());
1382 xp=r2[0]*cs + r2[1]*sn;
1383
1384 return TMath::Sqrt(dm*TMath::Sqrt(dy2*dz2));
1385}
1386
1387Double_t AliExternalTrackParam::
1388PropagateToDCA(AliExternalTrackParam *p, Double_t b) {
1389 //--------------------------------------------------------------
1390 // Propagates this track and the argument track to the position of the
1391 // distance of closest approach.
1392 // Returns the (weighed !) distance of closest approach.
1393 //--------------------------------------------------------------
1394 Double_t xthis,xp;
1395 Double_t dca=GetDCA(p,b,xthis,xp);
1396
1397 if (!PropagateTo(xthis,b)) {
1398 //AliWarning(" propagation failed !");
1399 return 1e+33;
1400 }
1401
1402 if (!p->PropagateTo(xp,b)) {
1403 //AliWarning(" propagation failed !";
1404 return 1e+33;
1405 }
1406
1407 return dca;
1408}
1409
1410
58e536c5 1411Bool_t AliExternalTrackParam::PropagateToDCA(const AliVVertex *vtx,
e99a34df 1412Double_t b, Double_t maxd, Double_t dz[2], Double_t covar[3]) {
f76701bf 1413 //
e99a34df 1414 // Propagate this track to the DCA to vertex "vtx",
f76701bf 1415 // if the (rough) transverse impact parameter is not bigger then "maxd".
1416 // Magnetic field is "b" (kG).
1417 //
1418 // a) The track gets extapolated to the DCA to the vertex.
1419 // b) The impact parameters and their covariance matrix are calculated.
1420 //
1421 // In the case of success, the returned value is kTRUE
1422 // (otherwise, it's kFALSE)
1423 //
1424 Double_t alpha=GetAlpha();
1425 Double_t sn=TMath::Sin(alpha), cs=TMath::Cos(alpha);
1426 Double_t x=GetX(), y=GetParameter()[0], snp=GetParameter()[2];
58e536c5 1427 Double_t xv= vtx->GetX()*cs + vtx->GetY()*sn;
1428 Double_t yv=-vtx->GetX()*sn + vtx->GetY()*cs, zv=vtx->GetZ();
f76701bf 1429 x-=xv; y-=yv;
1430
1431 //Estimate the impact parameter neglecting the track curvature
bfd20868 1432 Double_t d=TMath::Abs(x*snp - y*TMath::Sqrt((1.-snp)*(1.+snp)));
f76701bf 1433 if (d > maxd) return kFALSE;
1434
1435 //Propagate to the DCA
2258e165 1436 Double_t crv=GetC(b);
e99a34df 1437 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
1438
bfd20868 1439 Double_t tgfv=-(crv*x - snp)/(crv*y + TMath::Sqrt((1.-snp)*(1.+snp)));
1440 sn=tgfv/TMath::Sqrt(1.+ tgfv*tgfv); cs=TMath::Sqrt((1.-sn)*(1.+sn));
e99a34df 1441 if (TMath::Abs(tgfv)>0.) cs = sn/tgfv;
1442 else cs=1.;
f76701bf 1443
1444 x = xv*cs + yv*sn;
1445 yv=-xv*sn + yv*cs; xv=x;
1446
1447 if (!Propagate(alpha+TMath::ASin(sn),xv,b)) return kFALSE;
266a0f9b 1448
1449 if (dz==0) return kTRUE;
1450 dz[0] = GetParameter()[0] - yv;
1451 dz[1] = GetParameter()[1] - zv;
1452
1453 if (covar==0) return kTRUE;
1454 Double_t cov[6]; vtx->GetCovarianceMatrix(cov);
1455
1456 //***** Improvements by A.Dainese
1457 alpha=GetAlpha(); sn=TMath::Sin(alpha); cs=TMath::Cos(alpha);
1458 Double_t s2ylocvtx = cov[0]*sn*sn + cov[2]*cs*cs - 2.*cov[1]*cs*sn;
1459 covar[0] = GetCovariance()[0] + s2ylocvtx; // neglecting correlations
1460 covar[1] = GetCovariance()[1]; // between (x,y) and z
1461 covar[2] = GetCovariance()[2] + cov[5]; // in vertex's covariance matrix
1462 //*****
1463
1464 return kTRUE;
1465}
1466
1467Bool_t AliExternalTrackParam::PropagateToDCABxByBz(const AliVVertex *vtx,
1468Double_t b[3], Double_t maxd, Double_t dz[2], Double_t covar[3]) {
1469 //
1470 // Propagate this track to the DCA to vertex "vtx",
1471 // if the (rough) transverse impact parameter is not bigger then "maxd".
1472 //
1473 // This function takes into account all three components of the magnetic
1474 // field given by the b[3] arument (kG)
1475 //
1476 // a) The track gets extapolated to the DCA to the vertex.
1477 // b) The impact parameters and their covariance matrix are calculated.
1478 //
1479 // In the case of success, the returned value is kTRUE
1480 // (otherwise, it's kFALSE)
1481 //
1482 Double_t alpha=GetAlpha();
1483 Double_t sn=TMath::Sin(alpha), cs=TMath::Cos(alpha);
1484 Double_t x=GetX(), y=GetParameter()[0], snp=GetParameter()[2];
1485 Double_t xv= vtx->GetX()*cs + vtx->GetY()*sn;
1486 Double_t yv=-vtx->GetX()*sn + vtx->GetY()*cs, zv=vtx->GetZ();
1487 x-=xv; y-=yv;
1488
1489 //Estimate the impact parameter neglecting the track curvature
bfd20868 1490 Double_t d=TMath::Abs(x*snp - y*TMath::Sqrt((1.-snp)*(1.+snp)));
266a0f9b 1491 if (d > maxd) return kFALSE;
1492
1493 //Propagate to the DCA
8567bf39 1494 Double_t crv=GetC(b[2]);
1495 if (TMath::Abs(b[2]) < kAlmost0Field) crv=0.;
266a0f9b 1496
bfd20868 1497 Double_t tgfv=-(crv*x - snp)/(crv*y + TMath::Sqrt((1.-snp)*(1.+snp)));
1498 sn=tgfv/TMath::Sqrt(1.+ tgfv*tgfv); cs=TMath::Sqrt((1.-sn)*(1.+sn));
266a0f9b 1499 if (TMath::Abs(tgfv)>0.) cs = sn/tgfv;
1500 else cs=1.;
1501
1502 x = xv*cs + yv*sn;
1503 yv=-xv*sn + yv*cs; xv=x;
1504
1505 if (!PropagateBxByBz(alpha+TMath::ASin(sn),xv,b)) return kFALSE;
e99a34df 1506
1507 if (dz==0) return kTRUE;
1508 dz[0] = GetParameter()[0] - yv;
1509 dz[1] = GetParameter()[1] - zv;
1510
1511 if (covar==0) return kTRUE;
58e536c5 1512 Double_t cov[6]; vtx->GetCovarianceMatrix(cov);
e99a34df 1513
1514 //***** Improvements by A.Dainese
1515 alpha=GetAlpha(); sn=TMath::Sin(alpha); cs=TMath::Cos(alpha);
1516 Double_t s2ylocvtx = cov[0]*sn*sn + cov[2]*cs*cs - 2.*cov[1]*cs*sn;
1517 covar[0] = GetCovariance()[0] + s2ylocvtx; // neglecting correlations
1518 covar[1] = GetCovariance()[1]; // between (x,y) and z
1519 covar[2] = GetCovariance()[2] + cov[5]; // in vertex's covariance matrix
1520 //*****
1521
29fbcc93 1522 return kTRUE;
f76701bf 1523}
1524
b1149664 1525void AliExternalTrackParam::GetDirection(Double_t d[3]) const {
1526 //----------------------------------------------------------------
1527 // This function returns a unit vector along the track direction
1528 // in the global coordinate system.
1529 //----------------------------------------------------------------
1530 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
1531 Double_t snp=fP[2];
bfd20868 1532 Double_t csp =TMath::Sqrt((1.-snp)*(1.+snp));
b1149664 1533 Double_t norm=TMath::Sqrt(1.+ fP[3]*fP[3]);
1534 d[0]=(csp*cs - snp*sn)/norm;
1535 d[1]=(snp*cs + csp*sn)/norm;
1536 d[2]=fP[3]/norm;
1537}
1538
c683ddc2 1539Bool_t AliExternalTrackParam::GetPxPyPz(Double_t p[3]) const {
c9ec41e8 1540 //---------------------------------------------------------------------
1541 // This function returns the global track momentum components
1542 // Results for (nearly) straight tracks are meaningless !
1543 //---------------------------------------------------------------------
1544 p[0]=fP[4]; p[1]=fP[2]; p[2]=fP[3];
1545 return Local2GlobalMomentum(p,fAlpha);
1546}
a5e407e9 1547
def9660e 1548Double_t AliExternalTrackParam::Px() const {
957fb479 1549 //---------------------------------------------------------------------
1550 // Returns x-component of momentum
1551 // Result for (nearly) straight tracks is meaningless !
1552 //---------------------------------------------------------------------
def9660e 1553
957fb479 1554 Double_t p[3]={kVeryBig,kVeryBig,kVeryBig};
def9660e 1555 GetPxPyPz(p);
1556
1557 return p[0];
1558}
1559
1560Double_t AliExternalTrackParam::Py() const {
957fb479 1561 //---------------------------------------------------------------------
1562 // Returns y-component of momentum
1563 // Result for (nearly) straight tracks is meaningless !
1564 //---------------------------------------------------------------------
def9660e 1565
957fb479 1566 Double_t p[3]={kVeryBig,kVeryBig,kVeryBig};
def9660e 1567 GetPxPyPz(p);
1568
1569 return p[1];
1570}
1571
c683ddc2 1572Double_t AliExternalTrackParam::Xv() const {
1573 //---------------------------------------------------------------------
1574 // Returns x-component of first track point
1575 //---------------------------------------------------------------------
1576
1577 Double_t r[3]={0.,0.,0.};
1578 GetXYZ(r);
1579
1580 return r[0];
1581}
1582
1583Double_t AliExternalTrackParam::Yv() const {
1584 //---------------------------------------------------------------------
1585 // Returns y-component of first track point
1586 //---------------------------------------------------------------------
1587
1588 Double_t r[3]={0.,0.,0.};
1589 GetXYZ(r);
1590
1591 return r[1];
1592}
1593
def9660e 1594Double_t AliExternalTrackParam::Theta() const {
1595 // return theta angle of momentum
1596
7cdd0c20 1597 return 0.5*TMath::Pi() - TMath::ATan(fP[3]);
def9660e 1598}
1599
1600Double_t AliExternalTrackParam::Phi() const {
957fb479 1601 //---------------------------------------------------------------------
1602 // Returns the azimuthal angle of momentum
1603 // 0 <= phi < 2*pi
1604 //---------------------------------------------------------------------
def9660e 1605
957fb479 1606 Double_t phi=TMath::ASin(fP[2]) + fAlpha;
1607 if (phi<0.) phi+=2.*TMath::Pi();
1608 else if (phi>=2.*TMath::Pi()) phi-=2.*TMath::Pi();
1609
1610 return phi;
def9660e 1611}
1612
1613Double_t AliExternalTrackParam::M() const {
1614 // return particle mass
1615
1616 // No mass information available so far.
1617 // Redifine in derived class!
1618
1619 return -999.;
1620}
1621
1622Double_t AliExternalTrackParam::E() const {
1623 // return particle energy
1624
1625 // No PID information available so far.
1626 // Redifine in derived class!
1627
1628 return -999.;
1629}
1630
1631Double_t AliExternalTrackParam::Eta() const {
1632 // return pseudorapidity
1633
1634 return -TMath::Log(TMath::Tan(0.5 * Theta()));
1635}
1636
1637Double_t AliExternalTrackParam::Y() const {
1638 // return rapidity
1639
1640 // No PID information available so far.
1641 // Redifine in derived class!
1642
1643 return -999.;
1644}
1645
c9ec41e8 1646Bool_t AliExternalTrackParam::GetXYZ(Double_t *r) const {
1647 //---------------------------------------------------------------------
1648 // This function returns the global track position
1649 //---------------------------------------------------------------------
1650 r[0]=fX; r[1]=fP[0]; r[2]=fP[1];
1651 return Local2GlobalPosition(r,fAlpha);
51ad6848 1652}
1653
c9ec41e8 1654Bool_t AliExternalTrackParam::GetCovarianceXYZPxPyPz(Double_t cv[21]) const {
1655 //---------------------------------------------------------------------
1656 // This function returns the global covariance matrix of the track params
1657 //
1658 // Cov(x,x) ... : cv[0]
1659 // Cov(y,x) ... : cv[1] cv[2]
1660 // Cov(z,x) ... : cv[3] cv[4] cv[5]
1661 // Cov(px,x)... : cv[6] cv[7] cv[8] cv[9]
1662 // Cov(py,x)... : cv[10] cv[11] cv[12] cv[13] cv[14]
1663 // Cov(pz,x)... : cv[15] cv[16] cv[17] cv[18] cv[19] cv[20]
a5e407e9 1664 //
c9ec41e8 1665 // Results for (nearly) straight tracks are meaningless !
1666 //---------------------------------------------------------------------
e421f556 1667 if (TMath::Abs(fP[4])<=kAlmost0) {
c9ec41e8 1668 for (Int_t i=0; i<21; i++) cv[i]=0.;
1669 return kFALSE;
a5e407e9 1670 }
49d13e89 1671 if (TMath::Abs(fP[2]) > kAlmost1) {
c9ec41e8 1672 for (Int_t i=0; i<21; i++) cv[i]=0.;
1673 return kFALSE;
1674 }
1675 Double_t pt=1./TMath::Abs(fP[4]);
1676 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
92934324 1677 Double_t r=TMath::Sqrt((1.-fP[2])*(1.+fP[2]));
c9ec41e8 1678
1679 Double_t m00=-sn, m10=cs;
1680 Double_t m23=-pt*(sn + fP[2]*cs/r), m43=-pt*pt*(r*cs - fP[2]*sn);
1681 Double_t m24= pt*(cs - fP[2]*sn/r), m44=-pt*pt*(r*sn + fP[2]*cs);
1682 Double_t m35=pt, m45=-pt*pt*fP[3];
1683
854d5d49 1684 m43*=GetSign();
1685 m44*=GetSign();
1686 m45*=GetSign();
1687
c9ec41e8 1688 cv[0 ] = fC[0]*m00*m00;
1689 cv[1 ] = fC[0]*m00*m10;
1690 cv[2 ] = fC[0]*m10*m10;
1691 cv[3 ] = fC[1]*m00;
1692 cv[4 ] = fC[1]*m10;
1693 cv[5 ] = fC[2];
1694 cv[6 ] = m00*(fC[3]*m23 + fC[10]*m43);
1695 cv[7 ] = m10*(fC[3]*m23 + fC[10]*m43);
1696 cv[8 ] = fC[4]*m23 + fC[11]*m43;
1697 cv[9 ] = m23*(fC[5]*m23 + fC[12]*m43) + m43*(fC[12]*m23 + fC[14]*m43);
1698 cv[10] = m00*(fC[3]*m24 + fC[10]*m44);
1699 cv[11] = m10*(fC[3]*m24 + fC[10]*m44);
1700 cv[12] = fC[4]*m24 + fC[11]*m44;
1701 cv[13] = m23*(fC[5]*m24 + fC[12]*m44) + m43*(fC[12]*m24 + fC[14]*m44);
1702 cv[14] = m24*(fC[5]*m24 + fC[12]*m44) + m44*(fC[12]*m24 + fC[14]*m44);
1703 cv[15] = m00*(fC[6]*m35 + fC[10]*m45);
1704 cv[16] = m10*(fC[6]*m35 + fC[10]*m45);
1705 cv[17] = fC[7]*m35 + fC[11]*m45;
1706 cv[18] = m23*(fC[8]*m35 + fC[12]*m45) + m43*(fC[13]*m35 + fC[14]*m45);
1707 cv[19] = m24*(fC[8]*m35 + fC[12]*m45) + m44*(fC[13]*m35 + fC[14]*m45);
1708 cv[20] = m35*(fC[9]*m35 + fC[13]*m45) + m45*(fC[13]*m35 + fC[14]*m45);
51ad6848 1709
c9ec41e8 1710 return kTRUE;
51ad6848 1711}
1712
51ad6848 1713
c9ec41e8 1714Bool_t
1715AliExternalTrackParam::GetPxPyPzAt(Double_t x, Double_t b, Double_t *p) const {
1716 //---------------------------------------------------------------------
1717 // This function returns the global track momentum extrapolated to
1718 // the radial position "x" (cm) in the magnetic field "b" (kG)
1719 //---------------------------------------------------------------------
c9ec41e8 1720 p[0]=fP[4];
1530f89c 1721 p[1]=fP[2]+(x-fX)*GetC(b);
c9ec41e8 1722 p[2]=fP[3];
1723 return Local2GlobalMomentum(p,fAlpha);
51ad6848 1724}
1725
7cf7bb6c 1726Bool_t
1727AliExternalTrackParam::GetYAt(Double_t x, Double_t b, Double_t &y) const {
1728 //---------------------------------------------------------------------
1729 // This function returns the local Y-coordinate of the intersection
1730 // point between this track and the reference plane "x" (cm).
1731 // Magnetic field "b" (kG)
1732 //---------------------------------------------------------------------
1733 Double_t dx=x-fX;
1734 if(TMath::Abs(dx)<=kAlmost0) {y=fP[0]; return kTRUE;}
1735
1530f89c 1736 Double_t f1=fP[2], f2=f1 + dx*GetC(b);
7cf7bb6c 1737
1738 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
1739 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
1740
60e55aee 1741 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
7cf7bb6c 1742 y = fP[0] + dx*(f1+f2)/(r1+r2);
1743 return kTRUE;
1744}
1745
6c94f330 1746Bool_t
1747AliExternalTrackParam::GetZAt(Double_t x, Double_t b, Double_t &z) const {
1748 //---------------------------------------------------------------------
1749 // This function returns the local Z-coordinate of the intersection
1750 // point between this track and the reference plane "x" (cm).
1751 // Magnetic field "b" (kG)
1752 //---------------------------------------------------------------------
1753 Double_t dx=x-fX;
1754 if(TMath::Abs(dx)<=kAlmost0) {z=fP[1]; return kTRUE;}
1755
2258e165 1756 Double_t f1=fP[2], f2=f1 + dx*GetC(b);
6c94f330 1757
1758 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
1759 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
1760
60e55aee 1761 Double_t r1=sqrt((1.-f1)*(1.+f1)), r2=sqrt((1.-f2)*(1.+f2));
6c94f330 1762 z = fP[1] + dx*(r2 + f2*(f1+f2)/(r1+r2))*fP[3]; // Many thanks to P.Hristov !
1763 return kTRUE;
1764}
1765
c9ec41e8 1766Bool_t
1767AliExternalTrackParam::GetXYZAt(Double_t x, Double_t b, Double_t *r) const {
1768 //---------------------------------------------------------------------
1769 // This function returns the global track position extrapolated to
1770 // the radial position "x" (cm) in the magnetic field "b" (kG)
1771 //---------------------------------------------------------------------
c9ec41e8 1772 Double_t dx=x-fX;
e421f556 1773 if(TMath::Abs(dx)<=kAlmost0) return GetXYZ(r);
1774
1530f89c 1775 Double_t f1=fP[2], f2=f1 + dx*GetC(b);
c9ec41e8 1776
e421f556 1777 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
49d13e89 1778 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
c9ec41e8 1779
60e55aee 1780 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
c9ec41e8 1781 r[0] = x;
1782 r[1] = fP[0] + dx*(f1+f2)/(r1+r2);
f90a11c9 1783 r[2] = fP[1] + dx*(r2 + f2*(f1+f2)/(r1+r2))*fP[3];//Thanks to Andrea & Peter
1784
c9ec41e8 1785 return Local2GlobalPosition(r,fAlpha);
51ad6848 1786}
1787
51ad6848 1788//_____________________________________________________________________________
1789void AliExternalTrackParam::Print(Option_t* /*option*/) const
1790{
1791// print the parameters and the covariance matrix
1792
1793 printf("AliExternalTrackParam: x = %-12g alpha = %-12g\n", fX, fAlpha);
1794 printf(" parameters: %12g %12g %12g %12g %12g\n",
c9ec41e8 1795 fP[0], fP[1], fP[2], fP[3], fP[4]);
1796 printf(" covariance: %12g\n", fC[0]);
1797 printf(" %12g %12g\n", fC[1], fC[2]);
1798 printf(" %12g %12g %12g\n", fC[3], fC[4], fC[5]);
51ad6848 1799 printf(" %12g %12g %12g %12g\n",
c9ec41e8 1800 fC[6], fC[7], fC[8], fC[9]);
51ad6848 1801 printf(" %12g %12g %12g %12g %12g\n",
c9ec41e8 1802 fC[10], fC[11], fC[12], fC[13], fC[14]);
51ad6848 1803}
5b77d93c 1804
c194ba83 1805Double_t AliExternalTrackParam::GetSnpAt(Double_t x,Double_t b) const {
1806 //
1807 // Get sinus at given x
1808 //
1530f89c 1809 Double_t crv=GetC(b);
c194ba83 1810 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
1811 Double_t dx = x-fX;
1812 Double_t res = fP[2]+dx*crv;
1813 return res;
1814}
bf00ebb8 1815
1816Bool_t AliExternalTrackParam::GetDistance(AliExternalTrackParam *param2, Double_t x, Double_t dist[3], Double_t bz){
1817 //------------------------------------------------------------------------
1818 // Get the distance between two tracks at the local position x
1819 // working in the local frame of this track.
1820 // Origin : Marian.Ivanov@cern.ch
1821 //-----------------------------------------------------------------------
1822 Double_t xyz[3];
1823 Double_t xyz2[3];
1824 xyz[0]=x;
1825 if (!GetYAt(x,bz,xyz[1])) return kFALSE;
1826 if (!GetZAt(x,bz,xyz[2])) return kFALSE;
1827 //
1828 //
1829 if (TMath::Abs(GetAlpha()-param2->GetAlpha())<kAlmost0){
1830 xyz2[0]=x;
1831 if (!param2->GetYAt(x,bz,xyz2[1])) return kFALSE;
1832 if (!param2->GetZAt(x,bz,xyz2[2])) return kFALSE;
1833 }else{
1834 //
1835 Double_t xyz1[3];
1836 Double_t dfi = param2->GetAlpha()-GetAlpha();
1837 Double_t ca = TMath::Cos(dfi), sa = TMath::Sin(dfi);
1838 xyz2[0] = xyz[0]*ca+xyz[1]*sa;
1839 xyz2[1] = -xyz[0]*sa+xyz[1]*ca;
1840 //
1841 xyz1[0]=xyz2[0];
1842 if (!param2->GetYAt(xyz2[0],bz,xyz1[1])) return kFALSE;
1843 if (!param2->GetZAt(xyz2[0],bz,xyz1[2])) return kFALSE;
1844 //
1845 xyz2[0] = xyz1[0]*ca-xyz1[1]*sa;
1846 xyz2[1] = +xyz1[0]*sa+xyz1[1]*ca;
1847 xyz2[2] = xyz1[2];
1848 }
1849 dist[0] = xyz[0]-xyz2[0];
1850 dist[1] = xyz[1]-xyz2[1];
1851 dist[2] = xyz[2]-xyz2[2];
1852
1853 return kTRUE;
1854}
0c19adf7 1855
1856
1857//
1858// Draw functionality.
1859// Origin: Marian Ivanov, Marian.Ivanov@cern.ch
1860//
1861
1862void AliExternalTrackParam::DrawTrack(Float_t magf, Float_t minR, Float_t maxR, Float_t stepR){
1863 //
1864 // Draw track line
1865 //
1866 if (minR>maxR) return ;
1867 if (stepR<=0) return ;
1868 Int_t npoints = TMath::Nint((maxR-minR)/stepR)+1;
1869 if (npoints<1) return;
1870 TPolyMarker3D *polymarker = new TPolyMarker3D(npoints);
1871 FillPolymarker(polymarker, magf,minR,maxR,stepR);
1872 polymarker->Draw();
1873}
1874
1875//
1876void AliExternalTrackParam::FillPolymarker(TPolyMarker3D *pol, Float_t magF, Float_t minR, Float_t maxR, Float_t stepR){
1877 //
1878 // Fill points in the polymarker
1879 //
1880 Int_t counter=0;
1881 for (Double_t r=minR; r<maxR; r+=stepR){
1882 Double_t point[3];
1883 GetXYZAt(r,magF,point);
1884 pol->SetPoint(counter,point[0],point[1], point[2]);
047640da 1885 // printf("xyz\t%f\t%f\t%f\n",point[0], point[1],point[2]);
0c19adf7 1886 counter++;
1887 }
1888}
0e8460af 1889
1890Int_t AliExternalTrackParam::GetIndex(Int_t i, Int_t j) const {
1891 //
1892 Int_t min = TMath::Min(i,j);
1893 Int_t max = TMath::Max(i,j);
1894
1895 return min+(max+1)*max/2;
1896}
8b6e3369 1897
1898
1899void AliExternalTrackParam::g3helx3(Double_t qfield,
1900 Double_t step,
1901 Double_t vect[7]) {
1902/******************************************************************
1903 * *
1904 * GEANT3 tracking routine in a constant field oriented *
1905 * along axis 3 *
1906 * Tracking is performed with a conventional *
1907 * helix step method *
1908 * *
1909 * Authors R.Brun, M.Hansroul ********* *
1910 * Rewritten V.Perevoztchikov *
1911 * *
1912 * Rewritten in C++ by I.Belikov *
1913 * *
1914 * qfield (kG) - particle charge times magnetic field *
1915 * step (cm) - step length along the helix *
1916 * vect[7](cm,GeV/c) - input/output x, y, z, px/p, py/p ,pz/p, p *
1917 * *
1918 ******************************************************************/
1919 const Int_t ix=0, iy=1, iz=2, ipx=3, ipy=4, ipz=5, ipp=6;
bfd20868 1920 const Double_t kOvSqSix=TMath::Sqrt(1./6.);
8b6e3369 1921
1922 Double_t cosx=vect[ipx], cosy=vect[ipy], cosz=vect[ipz];
1923
1924 Double_t rho = qfield*kB2C/vect[ipp];
1925 Double_t tet = rho*step;
1926
1927 Double_t tsint, sintt, sint, cos1t;
2de63fc5 1928 if (TMath::Abs(tet) > 0.03) {
8b6e3369 1929 sint = TMath::Sin(tet);
1930 sintt = sint/tet;
1931 tsint = (tet - sint)/tet;
1932 Double_t t=TMath::Sin(0.5*tet);
1933 cos1t = 2*t*t/tet;
1934 } else {
1935 tsint = tet*tet/6.;
bfd20868 1936 sintt = (1.-tet*kOvSqSix)*(1.+tet*kOvSqSix); // 1.- tsint;
8b6e3369 1937 sint = tet*sintt;
1938 cos1t = 0.5*tet;
1939 }
1940
1941 Double_t f1 = step*sintt;
1942 Double_t f2 = step*cos1t;
1943 Double_t f3 = step*tsint*cosz;
1944 Double_t f4 = -tet*cos1t;
1945 Double_t f5 = sint;
1946
1947 vect[ix] += f1*cosx - f2*cosy;
1948 vect[iy] += f1*cosy + f2*cosx;
1949 vect[iz] += f1*cosz + f3;
1950
1951 vect[ipx] += f4*cosx - f5*cosy;
1952 vect[ipy] += f4*cosy + f5*cosx;
1953
1954}
1955
1956Bool_t AliExternalTrackParam::PropagateToBxByBz(Double_t xk, const Double_t b[3]) {
1957 //----------------------------------------------------------------
1958 // Extrapolate this track to the plane X=xk in the field b[].
1959 //
1960 // X [cm] is in the "tracking coordinate system" of this track.
1961 // b[]={Bx,By,Bz} [kG] is in the Global coordidate system.
1962 //----------------------------------------------------------------
1963
1964 Double_t dx=xk-fX;
1965 if (TMath::Abs(dx)<=kAlmost0) return kTRUE;
7e1b73dd 1966 if (TMath::Abs(fP[4])<=kAlmost0) return kFALSE;
ef3508c5 1967 // Do not propagate tracks outside the ALICE detector
1968 if (TMath::Abs(dx)>1e5 ||
1969 TMath::Abs(GetY())>1e5 ||
1970 TMath::Abs(GetZ())>1e5) {
1971 AliWarning(Form("Anomalous track, target X:%f",xk));
1972 Print();
1973 return kFALSE;
1974 }
8b6e3369 1975
1976 Double_t crv=GetC(b[2]);
1977 if (TMath::Abs(b[2]) < kAlmost0Field) crv=0.;
1978
2de63fc5 1979 Double_t x2r = crv*dx;
1980 Double_t f1=fP[2], f2=f1 + x2r;
8b6e3369 1981 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
1982 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
1983
1984
1985 // Estimate the covariance matrix
1986 Double_t &fP3=fP[3], &fP4=fP[4];
1987 Double_t
1988 &fC00=fC[0],
1989 &fC10=fC[1], &fC11=fC[2],
1990 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
1991 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
1992 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
1993
bfd20868 1994 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
8b6e3369 1995
1996 //f = F - 1
1997 Double_t f02= dx/(r1*r1*r1); Double_t cc=crv/fP4;
1998 Double_t f04=0.5*dx*dx/(r1*r1*r1); f04*=cc;
1999 Double_t f12= dx*fP3*f1/(r1*r1*r1);
2000 Double_t f14=0.5*dx*dx*fP3*f1/(r1*r1*r1); f14*=cc;
2001 Double_t f13= dx/r1;
2002 Double_t f24= dx; f24*=cc;
2003
2004 //b = C*ft
2005 Double_t b00=f02*fC20 + f04*fC40, b01=f12*fC20 + f14*fC40 + f13*fC30;
2006 Double_t b02=f24*fC40;
2007 Double_t b10=f02*fC21 + f04*fC41, b11=f12*fC21 + f14*fC41 + f13*fC31;
2008 Double_t b12=f24*fC41;
2009 Double_t b20=f02*fC22 + f04*fC42, b21=f12*fC22 + f14*fC42 + f13*fC32;
2010 Double_t b22=f24*fC42;
2011 Double_t b40=f02*fC42 + f04*fC44, b41=f12*fC42 + f14*fC44 + f13*fC43;
2012 Double_t b42=f24*fC44;
2013 Double_t b30=f02*fC32 + f04*fC43, b31=f12*fC32 + f14*fC43 + f13*fC33;
2014 Double_t b32=f24*fC43;
2015
2016 //a = f*b = f*C*ft
2017 Double_t a00=f02*b20+f04*b40,a01=f02*b21+f04*b41,a02=f02*b22+f04*b42;
2018 Double_t a11=f12*b21+f14*b41+f13*b31,a12=f12*b22+f14*b42+f13*b32;
2019 Double_t a22=f24*b42;
2020
2021 //F*C*Ft = C + (b + bt + a)
2022 fC00 += b00 + b00 + a00;
2023 fC10 += b10 + b01 + a01;
2024 fC20 += b20 + b02 + a02;
2025 fC30 += b30;
2026 fC40 += b40;
2027 fC11 += b11 + b11 + a11;
2028 fC21 += b21 + b12 + a12;
2029 fC31 += b31;
2030 fC41 += b41;
2031 fC22 += b22 + b22 + a22;
2032 fC32 += b32;
2033 fC42 += b42;
2034
86be8934 2035 CheckCovariance();
8b6e3369 2036
2037 // Appoximate step length
2de63fc5 2038 double dy2dx = (f1+f2)/(r1+r2);
2039 Double_t step = (TMath::Abs(x2r)<0.05) ? dx*TMath::Abs(r2 + f2*dy2dx) // chord
2040 : 2.*TMath::ASin(0.5*dx*TMath::Sqrt(1.+dy2dx*dy2dx)*crv)/crv; // arc
8b6e3369 2041 step *= TMath::Sqrt(1.+ GetTgl()*GetTgl());
2042
8b6e3369 2043 // Get the track's (x,y,z) and (px,py,pz) in the Global System
2044 Double_t r[3]; GetXYZ(r);
2045 Double_t p[3]; GetPxPyPz(p);
2046 Double_t pp=GetP();
2047 p[0] /= pp;
2048 p[1] /= pp;
2049 p[2] /= pp;
2050
2051
2052 // Rotate to the system where Bx=By=0.
2053 Double_t bt=TMath::Sqrt(b[0]*b[0] + b[1]*b[1]);
2054 Double_t cosphi=1., sinphi=0.;
2055 if (bt > kAlmost0) {cosphi=b[0]/bt; sinphi=b[1]/bt;}
2056 Double_t bb=TMath::Sqrt(b[0]*b[0] + b[1]*b[1] + b[2]*b[2]);
2057 Double_t costet=1., sintet=0.;
2058 if (bb > kAlmost0) {costet=b[2]/bb; sintet=bt/bb;}
2059 Double_t vect[7];
2060
2061 vect[0] = costet*cosphi*r[0] + costet*sinphi*r[1] - sintet*r[2];
2062 vect[1] = -sinphi*r[0] + cosphi*r[1];
2063 vect[2] = sintet*cosphi*r[0] + sintet*sinphi*r[1] + costet*r[2];
2064
2065 vect[3] = costet*cosphi*p[0] + costet*sinphi*p[1] - sintet*p[2];
2066 vect[4] = -sinphi*p[0] + cosphi*p[1];
2067 vect[5] = sintet*cosphi*p[0] + sintet*sinphi*p[1] + costet*p[2];
2068
2069 vect[6] = pp;
2070
2071
2072 // Do the helix step
2073 g3helx3(GetSign()*bb,step,vect);
2074
2075
2076 // Rotate back to the Global System
2077 r[0] = cosphi*costet*vect[0] - sinphi*vect[1] + cosphi*sintet*vect[2];
2078 r[1] = sinphi*costet*vect[0] + cosphi*vect[1] + sinphi*sintet*vect[2];
2079 r[2] = -sintet*vect[0] + costet*vect[2];
2080
2081 p[0] = cosphi*costet*vect[3] - sinphi*vect[4] + cosphi*sintet*vect[5];
2082 p[1] = sinphi*costet*vect[3] + cosphi*vect[4] + sinphi*sintet*vect[5];
2083 p[2] = -sintet*vect[3] + costet*vect[5];
2084
2085
2086 // Rotate back to the Tracking System
2087 Double_t cosalp = TMath::Cos(fAlpha);
2088 Double_t sinalp =-TMath::Sin(fAlpha);
2089
2090 Double_t
2091 t = cosalp*r[0] - sinalp*r[1];
2092 r[1] = sinalp*r[0] + cosalp*r[1];
2093 r[0] = t;
2094
2095 t = cosalp*p[0] - sinalp*p[1];
2096 p[1] = sinalp*p[0] + cosalp*p[1];
2097 p[0] = t;
2098
2099
2100 // Do the final correcting step to the target plane (linear approximation)
2101 Double_t x=r[0], y=r[1], z=r[2];
2102 if (TMath::Abs(dx) > kAlmost0) {
2103 if (TMath::Abs(p[0]) < kAlmost0) return kFALSE;
2104 dx = xk - r[0];
2105 x += dx;
2106 y += p[1]/p[0]*dx;
2107 z += p[2]/p[0]*dx;
2108 }
2109
2110
2111 // Calculate the track parameters
2112 t=TMath::Sqrt(p[0]*p[0] + p[1]*p[1]);
2113 fX = x;
2114 fP[0] = y;
2115 fP[1] = z;
2116 fP[2] = p[1]/t;
2117 fP[3] = p[2]/t;
2118 fP[4] = GetSign()/(t*pp);
2119
2120 return kTRUE;
2121}
2122
cfdb62d4 2123Bool_t AliExternalTrackParam::Translate(Double_t *vTrasl,Double_t *covV){
2124 //
2125 //Translation: in the event mixing, the tracks can be shifted
2126 //of the difference among primary vertices (vTrasl) and
2127 //the covariance matrix is changed accordingly
2128 //(covV = covariance of the primary vertex).
2129 //Origin: "Romita, Rossella" <R.Romita@gsi.de>
2130 //
2131 TVector3 translation;
2132 // vTrasl coordinates in the local system
2133 translation.SetXYZ(vTrasl[0],vTrasl[1],vTrasl[2]);
2134 translation.RotateZ(-fAlpha);
2135 translation.GetXYZ(vTrasl);
2136
2137 //compute the new x,y,z of the track
5a87bb3d 2138 Double_t newX=fX-vTrasl[0];
2139 Double_t newY=fP[0]-vTrasl[1];
2140 Double_t newZ=fP[1]-vTrasl[2];
cfdb62d4 2141
2142 //define the new parameters
5a87bb3d 2143 Double_t newParam[5];
2144 newParam[0]=newY;
2145 newParam[1]=newZ;
2146 newParam[2]=fP[2];
2147 newParam[3]=fP[3];
2148 newParam[4]=fP[4];
cfdb62d4 2149
2150 // recompute the covariance matrix:
2151 // 1. covV in the local system
2152 Double_t cosRot=TMath::Cos(fAlpha), sinRot=TMath::Sin(fAlpha);
2153 TMatrixD qQi(3,3);
2154 qQi(0,0) = cosRot;
2155 qQi(0,1) = sinRot;
2156 qQi(0,2) = 0.;
2157 qQi(1,0) = -sinRot;
2158 qQi(1,1) = cosRot;
2159 qQi(1,2) = 0.;
2160 qQi(2,0) = 0.;
2161 qQi(2,1) = 0.;
2162 qQi(2,2) = 1.;
2163 TMatrixD uUi(3,3);
2164 uUi(0,0) = covV[0];
2165 uUi(0,0) = covV[0];
2166 uUi(1,0) = covV[1];
2167 uUi(0,1) = covV[1];
2168 uUi(2,0) = covV[3];
2169 uUi(0,2) = covV[3];
2170 uUi(1,1) = covV[2];
2171 uUi(2,2) = covV[5];
2172 uUi(1,2) = covV[4];
2173 if(uUi.Determinant() <= 0.) {return kFALSE;}
2174 TMatrixD uUiQi(uUi,TMatrixD::kMult,qQi);
2175 TMatrixD m(qQi,TMatrixD::kTransposeMult,uUiQi);
2176
2177 //2. compute the new covariance matrix of the track
2178 Double_t sigmaXX=m(0,0);
2179 Double_t sigmaXZ=m(2,0);
2180 Double_t sigmaXY=m(1,0);
2181 Double_t sigmaYY=GetSigmaY2()+m(1,1);
2182 Double_t sigmaYZ=fC[1]+m(1,2);
2183 Double_t sigmaZZ=fC[2]+m(2,2);
2184 Double_t covarianceYY=sigmaYY + (-1.)*((sigmaXY*sigmaXY)/sigmaXX);
2185 Double_t covarianceYZ=sigmaYZ-(sigmaXZ*sigmaXY/sigmaXX);
2186 Double_t covarianceZZ=sigmaZZ-((sigmaXZ*sigmaXZ)/sigmaXX);
2187
2188 Double_t newCov[15];
2189 newCov[0]=covarianceYY;
2190 newCov[1]=covarianceYZ;
2191 newCov[2]=covarianceZZ;
2192 for(Int_t i=3;i<15;i++){
2193 newCov[i]=fC[i];
2194 }
2195
2196 // set the new parameters
2197
5a87bb3d 2198 Set(newX,fAlpha,newParam,newCov);
cfdb62d4 2199
2200 return kTRUE;
2201 }
86be8934 2202
2203void AliExternalTrackParam::CheckCovariance() {
2204
2205 // This function forces the diagonal elements of the covariance matrix to be positive.
2206 // In case the diagonal element is bigger than the maximal allowed value, it is set to
2207 // the limit and the off-diagonal elements that correspond to it are set to zero.
2208
2209 fC[0] = TMath::Abs(fC[0]);
2210 if (fC[0]>kC0max) {
2211 fC[0] = kC0max;
2212 fC[1] = 0;
2213 fC[3] = 0;
2214 fC[6] = 0;
2215 fC[10] = 0;
2216 }
2217 fC[2] = TMath::Abs(fC[2]);
2218 if (fC[2]>kC2max) {
2219 fC[2] = kC2max;
2220 fC[1] = 0;
2221 fC[4] = 0;
2222 fC[7] = 0;
2223 fC[11] = 0;
2224 }
2225 fC[5] = TMath::Abs(fC[5]);
2226 if (fC[5]>kC5max) {
2227 fC[5] = kC5max;
2228 fC[3] = 0;
2229 fC[4] = 0;
2230 fC[8] = 0;
2231 fC[12] = 0;
2232 }
2233 fC[9] = TMath::Abs(fC[9]);
2234 if (fC[9]>kC9max) {
2235 fC[9] = kC9max;
2236 fC[6] = 0;
2237 fC[7] = 0;
2238 fC[8] = 0;
2239 fC[13] = 0;
2240 }
2241 fC[14] = TMath::Abs(fC[14]);
2242 if (fC[14]>kC14max) {
2243 fC[14] = kC14max;
2244 fC[10] = 0;
2245 fC[11] = 0;
2246 fC[12] = 0;
2247 fC[13] = 0;
2248 }
2249
2250 // The part below is used for tests and normally is commented out
2251// TMatrixDSym m(5);
2252// TVectorD eig(5);
2253
2254// m(0,0)=fC[0];
2255// m(1,0)=fC[1]; m(1,1)=fC[2];
2256// m(2,0)=fC[3]; m(2,1)=fC[4]; m(2,2)=fC[5];
2257// m(3,0)=fC[6]; m(3,1)=fC[7]; m(3,2)=fC[8]; m(3,3)=fC[9];
2258// m(4,0)=fC[10]; m(4,1)=fC[11]; m(4,2)=fC[12]; m(4,3)=fC[13]; m(4,4)=fC[14];
2259
2260// m(0,1)=m(1,0);
2261// m(0,2)=m(2,0); m(1,2)=m(2,1);
2262// m(0,3)=m(3,0); m(1,3)=m(3,1); m(2,3)=m(3,2);
2263// m(0,4)=m(4,0); m(1,4)=m(4,1); m(2,4)=m(4,2); m(3,4)=m(4,3);
2264// m.EigenVectors(eig);
2265
2266// // assert(eig(0)>=0 && eig(1)>=0 && eig(2)>=0 && eig(3)>=0 && eig(4)>=0);
2267// if (!(eig(0)>=0 && eig(1)>=0 && eig(2)>=0 && eig(3)>=0 && eig(4)>=0)) {
2268// AliWarning("Negative eigenvalues of the covariance matrix!");
2269// this->Print();
2270// eig.Print();
2271// }
2272}
4c3dc2a0 2273
2274Bool_t AliExternalTrackParam::ConstrainToVertex(const AliVVertex* vtx, Double_t b[3])
2275{
2276 // Constrain TPC inner params constrained
2277 //
2278 if (!vtx)
2279 return kFALSE;
2280
2281 Double_t dz[2], cov[3];
2282 if (!PropagateToDCABxByBz(vtx, b, 3, dz, cov))
2283 return kFALSE;
2284
2285 Double_t covar[6];
2286 vtx->GetCovarianceMatrix(covar);
2287
2288 Double_t p[2]= { fP[0] - dz[0], fP[1] - dz[1] };
2289 Double_t c[3]= { covar[2], 0., covar[5] };
2290
2291 Double_t chi2C = GetPredictedChi2(p,c);
2292 if (chi2C>kVeryBig)
2293 return kFALSE;
2294
2295 if (!Update(p,c))
2296 return kFALSE;
2297
2298 return kTRUE;
2299}