]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TOF/AliTOFGeometry.cxx
Coding conventions
[u/mrichter/AliRoot.git] / TOF / AliTOFGeometry.cxx
CommitLineData
0f4a7374 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
9b49e4c9 18Revision 1.4 2004/04/13 09:42:51 decaro
19Track reconstruction code for TOF: updating
20
74ea065c 21Revision 1.3 2003/12/29 18:40:39 hristov
22Copy/paste error corrected
23
fb9747d4 24Revision 1.2 2003/12/29 17:26:01 hristov
25Using enum to initaialize static ints in the header file, the initialization of static floats moved to the implementation file
26
58eb5b61 27Revision 1.1 2003/12/29 15:18:03 decaro
28TOF geometry updating (addition of AliTOFGeometry)
29
0f4a7374 30Revision 0.01 2003/12/04 S.Arcelli
31Revision 0.02 2003/12/10 S.Arcelli:
32 Implement Global methods GetPos & GetDetID
33Revision 0.03 2003/12/14 S.Arcelli
34 Set Phi range [-180,180]->[0,360]
74ea065c 35Revision 0.03 2004/4/05 S.Arcelli
36 Implement Global methods IsInsideThePad
37 DistanceToPad
0f4a7374 38*/
39
40#include <stdlib.h>
41#include <Riostream.h>
42///////////////////////////////////////////////////////////////////////////////
43// //
44// TOF Geometry class //
45// //
46///////////////////////////////////////////////////////////////////////////////
47
48#include "AliConst.h"
49#include "AliTOFGeometry.h"
50
51ClassImp(AliTOFGeometry)
52
fb9747d4 53const Int_t AliTOFGeometry::fgkTimeDiff = 25000;// Min signal separation (ps)
58eb5b61 54
74ea065c 55const Float_t AliTOFGeometry::fgkxTOF = 371.; // Inner radius of the TOF for Reconstruction (cm)
fb9747d4 56const Float_t AliTOFGeometry::fgkRmin = 370.; // Inner radius of the TOF (cm)
57const Float_t AliTOFGeometry::fgkRmax = 399; // Outer radius of the TOF (cm)
58const Float_t AliTOFGeometry::fgkZlenA = 106.0;// length (cm) of the A module
59const Float_t AliTOFGeometry::fgkZlenB = 141.0;// length (cm) of the B module
60const Float_t AliTOFGeometry::fgkZlenC = 177.5;// length (cm) of the C module
61const Float_t AliTOFGeometry::fgkXPad = 2.5; // Pad size in the x direction (cm)
62const Float_t AliTOFGeometry::fgkZPad = 3.5; // Pad size in the z direction (cm)
63const Float_t AliTOFGeometry::fgkMaxhZtof = 371.5;// Max half z-size of TOF (cm)
58eb5b61 64
65
fb9747d4 66const Float_t AliTOFGeometry::fgkSigmaForTail1= 2.;//Sig1 for simulation of TDC tails
67const Float_t AliTOFGeometry::fgkSigmaForTail2= 0.5;//Sig2 for simulation of TDC tails
68const Float_t AliTOFGeometry::fgkSpeedOfLight = 0.299792458;// c (10^9 m/s)
69const Float_t AliTOFGeometry::fgkPionMass = 0.13957;// pion mass (Gev/c^2)
70const Float_t AliTOFGeometry::fgkKaonMass = 0.49368;// kaon mass (Gev/c^2)
71const Float_t AliTOFGeometry::fgkProtonMass = 0.93827;// proton mass (Gev/c^2)
72const Float_t AliTOFGeometry::fgkElectronMass = 0.00051;// electron mass (Gev/c^2)
73const Float_t AliTOFGeometry::fgkMuonMass = 0.10566;// muon mass (Gev/c^2)
58eb5b61 74
75
fb9747d4 76const Float_t AliTOFGeometry::fgkDprecMin = 0.0000075;//num.prec.tolerance on Thmin
77const Float_t AliTOFGeometry::fgkDprecMax = 0.0000100;//num.prec.tolerance on Thma
78const Float_t AliTOFGeometry::fgkDprecCen = 0.0000005;//num.prec.tolerance on <Theta>
58eb5b61 79
0f4a7374 80//_____________________________________________________________________________
81AliTOFGeometry::AliTOFGeometry()
82{
83 //
84 // AliTOFGeometry default constructor
85 //
86 Init();
87
88}
89
90//_____________________________________________________________________________
91AliTOFGeometry::~AliTOFGeometry()
92{
93 //
94 // AliTOFGeometry destructor
95 //
96
97}
98//_____________________________________________________________________________
99void AliTOFGeometry::Init()
100{
101 //
102 // Initialize strip Tilt Angles and Heights
103 //
104 // Strips Tilt Angles
105
74ea065c 106 Float_t const kangles[kNPlates][kMaxNstrip] ={
0f4a7374 107
108 {44.494, 43.725, 42.946, 42.156, 41.357, 40.548, 39.729, 38.899,
109 38.060, 37.211, 36.353, 35.484, 34.606, 33.719, 32.822, 31.916,
110 31.001, 30.077, 29.144, 28.202 },
111
112 {26.884, 25.922, 24.952, 23.975, 22.989, 22.320, 21.016, 20.309,
113 19.015, 18.270, 16.989, 16.205, 14.941, 14.117, 12.871, 12.008,
114 10.784, 9.8807, 8.681, 0.0 },
115
116 { 7.5835, 6.4124, 5.4058, 4.2809, 3.2448, 2.1424, 1.078, -0., -1.078,
117 -2.1424, -3.2448, -4.2809, -5.4058, -6.4124, -7.5835, 0.0, 0.0, 0.0,
118 0.0, 0.0 },
119
120 {-8.681, -9.8807, -10.784, -12.008, -12.871, -14.117, -14.941, -16.205,
121 -16.989, -18.27, -19.015, -20.309, -21.016, -22.32, -22.989,
122 -23.975, -24.952, -25.922, -26.884, 0. },
123
124 {-28.202, -29.144, -30.077, -31.001, -31.916, -32.822, -33.719, -34.606,
125 -35.484, -36.353, -37.211, -38.06, -38.899, -39.729, -40.548,
126 -41.357, -42.156, -42.946, -43.725, -44.494 }};
127
128
129 //Strips Heights
130
74ea065c 131 Float_t const kheights[kNPlates][kMaxNstrip]= {
0f4a7374 132
133 {-5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5,
134 -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5 },
135
136 {-6.3, -7.1, -7.9, -8.7, -9.5, -3, -9.5, -3, -9.5, -3,
137 -9.5, -3.0, -9.5, -3.0, -9.5, -3, -9.5, -3, -9 , 0.},
138
139 { -3, -9, -4.5, -9, -4.5, -9, -4.5, -9, -4.5, -9,
140 -4.5, -9, -4.5, -9, -3, 0.0, 0.0, 0.0, 0.0, 0.0 },
141
142 { -9, -3, -9.5, -3, -9.5, -3, -9.5, -3, -9.5, -3, -9.5,
143 -3, -9.5, -3, -9.5, -8.7, -7.9, -7.1, -6.3, 0. },
144
145 {-5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5,
146 -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5 }};
147
148
149 // Deposit in fAngles, fHeights
150
74ea065c 151 for (Int_t iplate = 0; iplate < kNPlates; iplate++) {
152 for (Int_t istrip = 0; istrip < kMaxNstrip; istrip++) {
153 fAngles[iplate][istrip] = kangles[iplate][istrip];
154 fHeights[iplate][istrip] = kheights[iplate][istrip];
0f4a7374 155 }
156 }
157
74ea065c 158 fPhiSec = 360./kNSectors;
159}
160
161//_____________________________________________________________________________
162Float_t AliTOFGeometry::DistanceToPad(Int_t *det, Float_t *pos)
163{
164//
165// Returns distance of space point with coor pos (x,y,z) (cm) wrt
166// pad with Detector Indices idet (iSect,iPlate,iStrip,iPadX,iPadZ)
167//
168
169 //Transform pos into Sector Frame
170
171 Float_t x = pos[0];
172 Float_t y = pos[1];
173 Float_t z = pos[2];
174
175 Float_t radius = TMath::Sqrt(x*x+y*y);
176 Float_t phi=TMath::ATan2(y,x);
177 if(phi<0) phi=2.*TMath::Pi()+phi;
178 // Get the local angle in the sector philoc
179 Float_t angle = phi*kRaddeg-( Int_t (kRaddeg*phi/20.) + 0.5)*fPhiSec;
180 Float_t xs = radius*TMath::Cos(angle/kRaddeg);
181 Float_t ys = radius*TMath::Sin(angle/kRaddeg);
182 Float_t zs = z;
183
184 // Do the same for the selected pad
185
186 Float_t g[3];
187 GetPos(det,g);
188
189 Float_t padRadius = TMath::Sqrt(g[0]*g[0]+g[1]*g[1]);
190 Float_t padPhi=TMath::ATan2(g[1],g[0]);
191 if(padPhi<0) padPhi=2.*TMath::Pi()+padPhi;
192 // Get the local angle in the sector philoc
193 Float_t padAngle = padPhi*kRaddeg-( Int_t (padPhi*kRaddeg/20.)+ 0.5) * fPhiSec;
194 Float_t padxs = padRadius*TMath::Cos(padAngle/kRaddeg);
195 Float_t padys = padRadius*TMath::Sin(padAngle/kRaddeg);
196 Float_t padzs = g[2];
197
198 //Now move to local pad coordinate frame. Translate:
199
200 Float_t xt = xs-padxs;
201 Float_t yt = ys-padys;
202 Float_t zt = zs-padzs;
203 //Now Rotate:
204
205 Float_t alpha = GetAngles(det[1],det[2]);
206 Float_t xr = xt*TMath::Cos(alpha/kRaddeg)+zt*TMath::Sin(alpha/kRaddeg);
207 Float_t yr = yt;
208 Float_t zr = -xt*TMath::Sin(alpha/kRaddeg)+zt*TMath::Cos(alpha/kRaddeg);
209
210 Float_t dist = TMath::Sqrt(xr*xr+yr*yr+zr*zr);
211 return dist;
212
213}
214
215
216//_____________________________________________________________________________
217Bool_t AliTOFGeometry::IsInsideThePad(Int_t *det, Float_t *pos)
218{
219//
220// Returns true if space point with coor pos (x,y,z) (cm) falls
221// inside pad with Detector Indices idet (iSect,iPlate,iStrip,iPadX,iPadZ)
222//
223
224 Bool_t isInside=false;
225
226
227 //Transform pos into Sector Frame
228
229 Float_t x = pos[0];
230 Float_t y = pos[1];
231 Float_t z = pos[2];
232
233 Float_t radius = TMath::Sqrt(x*x+y*y);
234 Float_t phi=TMath::ATan2(y,x);
235 if(phi<0) phi=2.*TMath::Pi()+phi;
236 // Get the local angle in the sector philoc
237 Float_t angle = phi*kRaddeg-( Int_t (kRaddeg*phi/20.) + 0.5) *fPhiSec;
238 Float_t xs = radius*TMath::Cos(angle/kRaddeg);
239 Float_t ys = radius*TMath::Sin(angle/kRaddeg);
240 Float_t zs = z;
241
242 // Do the same for the selected pad
243
244 Float_t g[3];
245 GetPos(det,g);
246
247 Float_t padRadius = TMath::Sqrt(g[0]*g[0]+g[1]*g[1]);
248 Float_t padPhi=TMath::ATan2(g[1],g[0]);
249 if(padPhi<0) padPhi=2.*TMath::Pi()+padPhi;
250 // Get the local angle in the sector philoc
251 Float_t padAngle = padPhi*kRaddeg-( Int_t (padPhi*kRaddeg/20.)+ 0.5) * fPhiSec;
252 Float_t padxs = padRadius*TMath::Cos(padAngle/kRaddeg);
253 Float_t padys = padRadius*TMath::Sin(padAngle/kRaddeg);
254 Float_t padzs = g[2];
255
256 //Now move to local pad coordinate frame. Translate:
257
258 Float_t xt = xs-padxs;
259 Float_t yt = ys-padys;
260 Float_t zt = zs-padzs;
261 //Now Rotate:
262
263 Float_t alpha = GetAngles(det[1],det[2]);
264 Float_t xr = xt*TMath::Cos(alpha/kRaddeg)+zt*TMath::Sin(alpha/kRaddeg);
265 Float_t yr = yt;
266 Float_t zr = -xt*TMath::Sin(alpha/kRaddeg)+zt*TMath::Cos(alpha/kRaddeg);
267
9b49e4c9 268 if(TMath::Abs(xr)<=0.75 && TMath::Abs(yr)<= (fgkXPad*0.5) && TMath::Abs(zr)<= (fgkZPad*0.5))
74ea065c 269 isInside=true;
270 return isInside;
271
0f4a7374 272}
273
274//_____________________________________________________________________________
275void AliTOFGeometry::GetPos(Int_t *det, Float_t *pos)
276{
277//
278// Returns space point coor (x,y,z) (cm) for Detector
279// Indices (iSect,iPlate,iStrip,iPadX,iPadZ)
280//
281
282 pos[0]=GetX(det);
283 pos[1]=GetY(det);
284 pos[2]=GetZ(det);
285
286}
287//_____________________________________________________________________________
288void AliTOFGeometry::GetDetID( Float_t *pos, Int_t *det)
289{
290 //
291 // Returns Detector Indices (iSect,iPlate,iStrip,iPadX,iPadZ)
292 // space point coor (x,y,z) (cm)
293
294
295 det[0]=GetSector(pos);
296 det[1]=GetPlate(pos);
297 det[2]=GetStrip(pos);
298 det[3]=GetPadZ(pos);
299 det[4]=GetPadX(pos);
300
301}
302//_____________________________________________________________________________
303Float_t AliTOFGeometry::GetX(Int_t *det)
304{
305 //
306 // Returns X coordinate (cm)
307 //
308
309 Int_t isector = det[0];
310 Int_t iplate = det[1];
311 Int_t istrip = det[2];
312 Int_t ipadz = det[3];
313 Int_t ipadx = det[4];
314
315 // Find out distance d on the plane wrt median phi:
74ea065c 316 Float_t d = (ipadx+0.5)*fgkXPad-(kNpadX*fgkXPad)*0.5;
0f4a7374 317
318 // The radius r in xy plane:
319 Float_t r = (fgkRmin+fgkRmax)/2.+fHeights[iplate][istrip]+
320 (ipadz-0.5)*fgkZPad*TMath::Sin(fAngles[iplate][istrip]/kRaddeg)-0.25;
321
322 // local azimuthal angle in the sector philoc
323 Float_t philoc = TMath:: ATan(d/r);
324
325 // azimuthal angle in the global frame phi
326 Float_t phi = philoc*kRaddeg+(isector+0.5 )*fPhiSec;
327
328 Float_t xCoor = r/TMath::Cos(philoc)*TMath::Cos(phi/kRaddeg);
329 return xCoor;
330
331}
332//_____________________________________________________________________________
333Float_t AliTOFGeometry::GetY(Int_t *det)
334{
335 //
336 // Returns Y coordinate (cm)
337 //
338
339 Int_t isector = det[0];
340 Int_t iplate = det[1];
341 Int_t istrip = det[2];
342 Int_t ipadz = det[3];
343 Int_t ipadx = det[4];
344
345 // Find out distance d on the plane wrt median phi:
74ea065c 346 Float_t d = (ipadx+0.5)*fgkXPad-(kNpadX*fgkXPad)*0.5;
0f4a7374 347
348 // The radius r in xy plane:
349 Float_t r = (fgkRmin+fgkRmax)/2.+fHeights[iplate][istrip]+
350 (ipadz-0.5)*fgkZPad*TMath::Sin(fAngles[iplate][istrip]/kRaddeg)-0.25;
351
352 // local azimuthal angle in the sector philoc
353 Float_t philoc = TMath:: ATan(d/r);
354
355 // azimuthal angle in the global frame phi
356 Float_t phi = philoc*kRaddeg+(isector+0.5 )*fPhiSec;
357
358 Float_t yCoor = r/TMath::Cos(philoc)*TMath::Sin(phi/kRaddeg);
359 return yCoor;
360
361}
362
363//_____________________________________________________________________________
364Float_t AliTOFGeometry::GetZ(Int_t *det)
365{
366 //
367 // Returns Z coordinate (cm)
368 //
369
370 Int_t iplate = det[1];
371 Int_t istrip = det[2];
372 Int_t ipadz = det[3];
373
374
375 // The radius r in xy plane:
376 Float_t r = (fgkRmin+fgkRmax)/2.+fHeights[iplate][istrip];
377
74ea065c 378 Float_t zCoor = r*TMath::Tan(0.5*TMath::Pi()-GetStripTheta(iplate,istrip))-
0f4a7374 379 (ipadz-0.5)*fgkZPad*TMath::Cos(fAngles[iplate][istrip]/kRaddeg);
380 return zCoor;
381
382}
383//_____________________________________________________________________________
384Int_t AliTOFGeometry::GetSector(Float_t *pos)
385{
386 //
387 // Returns the Sector index
388 //
389
390 Int_t iSect = -1;
391
392 Float_t x = pos[0];
393 Float_t y = pos[1];
394
395 Float_t phi = TMath::ATan2(y,x);
396 if(phi<0.) phi=2.*TMath::Pi()+phi;
397 iSect = (Int_t) (phi*kRaddeg/fPhiSec);
398
399 return iSect;
400
401}
402//_____________________________________________________________________________
403Int_t AliTOFGeometry::GetPadX(Float_t *pos)
404{
405 //
406 // Returns the Pad index along X
407 //
408
409 Int_t iPadX = -1;
410
411 Float_t x = pos[0];
412 Float_t y = pos[1];
413 Float_t z = pos[2];
414
415 Int_t isector = GetSector(pos);
416 if(isector == -1){
417 cout << "Detector Index could not be determined" << endl;
418 return iPadX;}
419 Int_t iplate = GetPlate(pos);
420 if(iplate == -1){
421 cout << "Detector Index could not be determined" << endl;
422 return iPadX;}
423 Int_t istrip = GetStrip(pos);
424 if(istrip == -1){
425 cout << "Detector Index could not be determined" << endl;
426 return iPadX;}
427
428
429 Float_t rho=TMath::Sqrt(x*x+y*y);
430 Float_t phi = TMath::ATan2(y,x);
431 if(phi<0.) phi=2.*TMath::Pi()+phi;
432
433 // Get the local angle in the sector philoc
434 Float_t philoc = phi*kRaddeg-(isector+0.5)*fPhiSec;
435 philoc*=TMath::Pi()/180.;
436 // theta projected on the median of the sector
437 Float_t theta = TMath::ATan2(rho*TMath::Cos(philoc),z);
438 // The radius r in xy plane:
439 Float_t r = (fgkRmin+fgkRmax)/2.+fHeights[iplate][istrip]+
440 (theta-GetStripTheta(iplate, istrip))/
441 (GetMaxStripTheta(iplate, istrip)-GetMinStripTheta(iplate, istrip))
442 * 2.*fgkZPad*TMath::Sin(fAngles[iplate][istrip]/kRaddeg)-0.25;
443
444 // Find out distance projected onto the strip plane
74ea065c 445 Float_t d = (r*TMath::Tan(philoc)+(kNpadX*fgkXPad)*0.5);
0f4a7374 446
447 iPadX = (Int_t) ( d/fgkXPad);
448 return iPadX;
449
450}
451//_____________________________________________________________________________
452Int_t AliTOFGeometry::GetPlate(Float_t *pos)
453{
454 //
455 // Returns the Plate index
456 //
457 Int_t iPlate=-1;
458
459 Int_t isector = GetSector(pos);
460 if(isector == -1){
461 cout << "Detector Index could not be determined" << endl;
462 return iPlate;}
463
464 Float_t x = pos[0];
465 Float_t y = pos[1];
466 Float_t z = pos[2];
467
468 Float_t rho=TMath::Sqrt(x*x+y*y);
469 Float_t phi=TMath::ATan2(y,x);
470 if(phi<0) phi=2.*TMath::Pi()+phi;
471 // Get the local angle in the sector philoc
472 Float_t philoc = phi*kRaddeg-(isector+0.5)*fPhiSec;
473 philoc*=TMath::Pi()/180.;
474 // theta projected on the median of the sector
475 Float_t theta=TMath::ATan2(rho*TMath::Cos(philoc),z);
476
74ea065c 477 for (Int_t i=0; i<kNPlates; i++){
0f4a7374 478 if ( GetMaxPlateTheta(i) >= theta &&
479 GetMinPlateTheta(i) <= theta)iPlate=i;
480 }
481
482 return iPlate;
483
484}
485//_____________________________________________________________________________
486Int_t AliTOFGeometry::GetStrip(Float_t *pos)
487{
488 //
489 // Returns the Strip index
490 //
491
492 Int_t iStrip=-1;
493
494
495 Int_t isector = GetSector(pos);
496 if(isector == -1){
497 cout << "Detector Index could not be determined" << endl;
498 return iStrip;}
499 Int_t iplate = GetPlate(pos);
500 if(iplate == -1){
501 cout << "Detector Index could not be determined" << endl;
502 return iStrip;}
503
504
505 Float_t x = pos[0];
506 Float_t y = pos[1];
507 Float_t z = pos[2];
508
509 Int_t nstrips=0;
74ea065c 510 if(iplate==0 || iplate == 4)nstrips=kNStripC;
511 if(iplate==1 || iplate == 3)nstrips=kNStripB;
512 if(iplate==2) nstrips=kNStripA;
0f4a7374 513
514 Float_t rho=TMath::Sqrt(x*x+y*y);
515 Float_t phi=TMath::ATan2(y,x);
516 if(phi<0) phi=2.*TMath::Pi()+phi;
517 // Get the local angle in the sector philoc
518 Float_t philoc = phi*kRaddeg-(isector+0.5)*fPhiSec;
519 philoc*=TMath::Pi()/180.;
520 // theta projected on the median of the sector
521 Float_t theta=TMath::ATan2(rho*TMath::Cos(philoc),z);
522
523 for (Int_t istrip=0; istrip<nstrips; istrip++){
524
525 if(
526 GetMaxStripTheta(iplate,istrip) >= theta
527 &&
528 GetMinStripTheta(iplate,istrip) <= theta ) iStrip = istrip;
529
530 }
531
532 return iStrip;
533}
534//_____________________________________________________________________________
535Int_t AliTOFGeometry::GetPadZ(Float_t *pos)
536{
537 //
538 // Returns the Pad index along Z
539 //
540 Int_t iPadZ = -1;
541
542 Int_t isector = GetSector(pos);
543 if(isector == -1){
544 cout << "Detector Index could not be determined" << endl;
545 return iPadZ;}
546 Int_t iplate = GetPlate(pos);
547 if(iplate == -1){
548 cout << "Detector Index could not be determined" << endl;
549 return iPadZ;}
550 Int_t istrip = GetStrip(pos);
551 if(istrip == -1){
552 cout << "Detector Index could not be determined" << endl;
553 return iPadZ;}
554
555
556 Float_t x = pos[0];
557 Float_t y = pos[1];
558 Float_t z = pos[2];
559
560 Float_t rho=TMath::Sqrt(x*x+y*y);
561 Float_t phi=TMath::ATan2(y,x);
562 if(phi<0) phi=2.*TMath::Pi()+phi;
563 Float_t philoc = phi*kRaddeg-(isector+0.5)*fPhiSec;
564 philoc*=TMath::Pi()/180.;
565 Float_t theta=TMath::ATan2(rho*TMath::Cos(philoc),z);
566
567 if (theta >= GetStripTheta(iplate, istrip))iPadZ=1;
568 else iPadZ=0;
569
570 return iPadZ;
571}
572//_____________________________________________________________________________
573Float_t AliTOFGeometry::GetMinPlateTheta(Int_t iPlate)
574{
575 //
576 // Returns the minimum theta angle of a given plate iPlate (rad)
577 //
578
579
580 Int_t index=0;
581
582 Float_t delta =0.;
583 if(iPlate==0)delta = -1. ;
584 if(iPlate==1)delta = -0.5;
585 if(iPlate==3)delta = +0.5;
586 if(iPlate==4)delta = +1. ;
587
588 Float_t z=(fgkRmin+2.)*TMath::Tan(fAngles[iPlate][index]/kRaddeg)+delta;
589 Float_t r=(fgkRmin+fgkRmax)/2.+fHeights[iPlate][index];
590 z =z+fgkZPad*TMath::Cos(fAngles[iPlate][index]/kRaddeg);
591 r =r-fgkZPad*TMath::Sin(fAngles[iPlate][index]/kRaddeg);
592
593 Float_t thmin = 0.5*TMath::Pi()-TMath::ATan(z/r)-fgkDprecMin;
594 return thmin;
595
596}
597//_____________________________________________________________________________
598Float_t AliTOFGeometry::GetMaxPlateTheta(Int_t iPlate)
599{
600 //
601 // Returns the maximum theta angle of a given plate iPlate (rad)
602
603 Int_t index=0;
74ea065c 604 if(iPlate==0 ||iPlate == 4)index=kNStripC-1;
605 if(iPlate==1 ||iPlate == 3)index=kNStripB-1;
606 if(iPlate==2) index=kNStripA-1;
0f4a7374 607
608 Float_t delta =0.;
609 if(iPlate==0)delta = -1. ;
610 if(iPlate==1)delta = -0.5;
611 if(iPlate==3)delta = +0.5;
612 if(iPlate==4)delta = +1. ;
613
614 Float_t z=(fgkRmin+2.)*TMath::Tan(fAngles[iPlate][index]/kRaddeg)+delta;
615 Float_t r=(fgkRmin+fgkRmax)/2.+fHeights[iPlate][index];
616 z =z-fgkZPad*TMath::Cos(fAngles[iPlate][index]/kRaddeg);
617 r= r+fgkZPad*TMath::Sin(fAngles[iPlate][index]/kRaddeg);
618
619 Float_t thmax = 0.5*TMath::Pi()-TMath::ATan(z/r)+fgkDprecMax;
620 return thmax;
621
622}
623//_____________________________________________________________________________
624Float_t AliTOFGeometry::GetMaxStripTheta(Int_t iPlate, Int_t iStrip)
625{
626 //
627 // Returns the maximum theta angle of a given strip iStrip (rad)
628 //
629
630
631 Float_t delta =0.;
632 if(iPlate==0)delta = -1. ;
633 if(iPlate==1)delta = -0.5;
634 if(iPlate==3)delta = +0.5;
635 if(iPlate==4)delta = +1. ;
636
637 Float_t r =(fgkRmin+fgkRmax)/2.+fHeights[iPlate][iStrip];
638 Float_t z =(fgkRmin+2.)*TMath::Tan(fAngles[iPlate][iStrip]/kRaddeg)+delta;
639 z = z-fgkZPad*TMath::Cos(fAngles[iPlate][iStrip]/kRaddeg);
640 r = r+fgkZPad*TMath::Sin(fAngles[iPlate][iStrip]/kRaddeg);
641 Float_t thmax =0.5*TMath::Pi()-TMath::ATan(z/r)+fgkDprecMax;
642 return thmax;
643
644}
645
646//_____________________________________________________________________________
647Float_t AliTOFGeometry::GetMinStripTheta(Int_t iPlate, Int_t iStrip)
648{
649 //
650 // Returns the minimum theta angle of a given Strip iStrip (rad)
651 //
652
653
654 Float_t delta =0.;
655 if(iPlate==0)delta = -1. ;
656 if(iPlate==1)delta = -0.5;
657 if(iPlate==3)delta = +0.5;
658 if(iPlate==4)delta = +1. ;
659
660
661 Float_t r =(fgkRmin+fgkRmax)/2.+fHeights[iPlate][iStrip];
662 Float_t z =(fgkRmin+2.)*TMath::Tan(fAngles[iPlate][iStrip]/kRaddeg)+delta;
663 z =z+fgkZPad*TMath::Cos(fAngles[iPlate][iStrip]/kRaddeg);
664 r =r-fgkZPad*TMath::Sin(fAngles[iPlate][iStrip]/kRaddeg);
665 Float_t thmin =0.5*TMath::Pi()-TMath::ATan(z/r)-fgkDprecMin;
666
667 return thmin;
668
669}
670
671
672//_____________________________________________________________________________
673Float_t AliTOFGeometry::GetStripTheta(Int_t iPlate, Int_t iStrip)
674{
675 //
676 // returns the median theta angle of a given strip iStrip (rad)
677 //
678
679
680 Float_t delta =0.;
681 if(iPlate==0)delta = -1. ;
682 if(iPlate==1)delta = -0.5;
683 if(iPlate==3)delta = +0.5;
684 if(iPlate==4)delta = +1. ;
685
686 Float_t r =(fgkRmin+fgkRmax)/2.+fHeights[iPlate][iStrip];
687 Float_t z =(fgkRmin+2.)*TMath::Tan(fAngles[iPlate][iStrip]/kRaddeg)+delta;
688 Float_t theta =0.5*TMath::Pi()-TMath::ATan(z/r);
689 if(iPlate != 2){
690 if(theta > 0.5*TMath::Pi() )theta+=fgkDprecCen;
691 if(theta < 0.5*TMath::Pi() )theta-=fgkDprecCen;
692 }
693 return theta;
694}
695
696
697