]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TOF/AliTOFv0.cxx
Corrected Rotation Matrix and CVS log
[u/mrichter/AliRoot.git] / TOF / AliTOFv0.cxx
CommitLineData
4c039060 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
00e5f8d9 18Revision 1.10 1999/10/15 15:35:20 fca
19New version for frame1099 with and without holes
20
937fe4a4 21Revision 1.9 1999/09/29 09:24:33 fca
22Introduction of the Copyright and cvs Log
23
4c039060 24*/
25
fe4da5cc 26///////////////////////////////////////////////////////////////////////////////
27// //
937fe4a4 28// Time Of Flight: design of C.Williams FCA //
29// This class contains the functions for version 1 of the Time Of Flight //
fe4da5cc 30// detector. //
937fe4a4 31//
32// VERSION WITH 5 MODULES AND TILTED STRIPS
33//
34// WITH HOLES FOR PHOS AND HMPID inside the
35// SPACE FRAME WITH HOLES
36//
37//
38// Authors:
39//
40// Alessio Seganti
41// Domenico Vicinanza
42//
43// University of Salerno - Italy
44//
45//
fe4da5cc 46//Begin_Html
47/*
1439f98e 48<img src="picts/AliTOFv0Class.gif">
fe4da5cc 49*/
50//End_Html
51// //
52///////////////////////////////////////////////////////////////////////////////
53
54#include "AliTOFv0.h"
55#include "AliRun.h"
fe4da5cc 56#include "AliConst.h"
3fe3a833 57
fe4da5cc 58ClassImp(AliTOFv0)
59
60//_____________________________________________________________________________
151e057e 61AliTOFv0::AliTOFv0()
fe4da5cc 62{
63 //
64 // Default constructor
65 //
66}
67
68//_____________________________________________________________________________
69AliTOFv0::AliTOFv0(const char *name, const char *title)
70 : AliTOF(name,title)
71{
72 //
3fe3a833 73 // Standard constructor
fe4da5cc 74 //
75}
76
77//_____________________________________________________________________________
78void AliTOFv0::CreateGeometry()
79{
80 //
3fe3a833 81 // Create geometry for Time Of Flight version 0
82 //
fe4da5cc 83 //Begin_Html
84 /*
1439f98e 85 <img src="picts/AliTOFv0.gif">
fe4da5cc 86 */
87 //End_Html
88 //
937fe4a4 89 // Creates common geometry
fe4da5cc 90 //
3fe3a833 91 AliTOF::CreateGeometry();
fe4da5cc 92}
93
94//_____________________________________________________________________________
937fe4a4 95void AliTOFv0::TOFpc(Float_t xtof, Float_t ytof, Float_t zlen1,
96 Float_t zlen2, Float_t zlen3, Float_t ztof0)
fe4da5cc 97{
98 //
3fe3a833 99 // Definition of the Time Of Fligh Resistive Plate Chambers
937fe4a4 100 // xFLT, yFLT, zFLT - sizes of TOF modules (large)
3fe3a833 101
102 Float_t ycoor;
3fe3a833 103 Float_t par[10];
937fe4a4 104 Int_t idrotm[100];
105 Int_t nrot = 0;
3fe3a833 106
107 Int_t *idtmed = fIdtmed->GetArray()-499;
937fe4a4 108
109
110 par[0] = xtof / 2.;
111 par[1] = ytof / 2.;
112 par[2] = zlen1 / 2.;
113 gMC->Gsvolu("FTO1", "BOX ", idtmed[506], par, 3);
114 par[2] = zlen2 / 2.;
115 gMC->Gsvolu("FTO2", "BOX ", idtmed[506], par, 3);
116 par[2] = zlen3 / 2.;
117 gMC->Gsvolu("FTO3", "BOX ", idtmed[506], par, 3);
118
119
120// Positioning of modules
121
122 Float_t zcoor;
123
124 Float_t zcor1 = ztof0 - zlen1/2;
125 Float_t zcor2 = ztof0 - zlen1 - zlen2/2.;
126 Float_t zcor3 = 0.;
127
128 AliMatrix(idrotm[0], 90., 0., 0., 0., 90, -90.);
129 AliMatrix(idrotm[1], 90., 180., 0., 0., 90, 90.);
130 gMC->Gspos("FTO1", 1, "BTO1", 0, zcor1, 0, idrotm[0], "ONLY");
131 gMC->Gspos("FTO1", 2, "BTO1", 0, -zcor1, 0, idrotm[1], "ONLY");
132 zcoor = (zlen1/2.);
133 gMC->Gspos("FTO1", 1, "BTO2", 0, zcoor, 0, idrotm[0], "ONLY");
134 zcoor = 0.;
135 gMC->Gspos("FTO1", 1, "BTO3", 0, zcoor, 0, idrotm[0], "ONLY");
136
137 gMC->Gspos("FTO2", 1, "BTO1", 0, zcor2, 0, idrotm[0], "ONLY");
138 gMC->Gspos("FTO2", 2, "BTO1", 0, -zcor2, 0, idrotm[1], "ONLY");
139 zcoor = -zlen2/2.;
140 gMC->Gspos("FTO2", 0, "BTO2", 0, zcoor, 0, idrotm[0], "ONLY");
141
142 gMC->Gspos("FTO3", 0, "BTO1", 0, zcor3, 0, idrotm[0], "ONLY");
143
144// Subtraction the distance to TOF module boundaries
145
146 Float_t db = 7.;
147 Float_t xFLT, yFLT, zFLT1, zFLT2, zFLT3;
148
149 xFLT = xtof -(.5 +.5)*2;
150 yFLT = ytof;
151 zFLT1 = zlen1 - db;
152 zFLT2 = zlen2 - db;
153 zFLT3 = zlen3 - db;
154
155// Sizes of MRPC pads
156
157 Float_t yPad = 0.505;
3fe3a833 158
937fe4a4 159// Large not sensitive volumes with CO2
160 par[0] = xFLT/2;
161 par[1] = yFLT/2;
162
3fe3a833 163 cout <<"************************* TOF geometry **************************"<<endl;
937fe4a4 164
165 par[2] = (zFLT1 / 2.);
3fe3a833 166 gMC->Gsvolu("FLT1", "BOX ", idtmed[506], par, 3); // CO2
937fe4a4 167 gMC->Gspos("FLT1", 0, "FTO1", 0., 0., 0., 0, "ONLY");
168
169 par[2] = (zFLT2 / 2.);
3fe3a833 170 gMC->Gsvolu("FLT2", "BOX ", idtmed[506], par, 3); // CO2
937fe4a4 171 gMC->Gspos("FLT2", 0, "FTO2", 0., 0., 0., 0, "ONLY");
172
173 par[2] = (zFLT3 / 2.);
3fe3a833 174 gMC->Gsvolu("FLT3", "BOX ", idtmed[506], par, 3); // CO2
937fe4a4 175 gMC->Gspos("FLT3", 0, "FTO3", 0., 0., 0., 0, "ONLY");
176
3fe3a833 177////////// Layers before detector ////////////////////
937fe4a4 178
179// Alluminium layer in front 1.0 mm thick at the beginning
3fe3a833 180 par[0] = -1;
937fe4a4 181 par[1] = 0.1;
3fe3a833 182 par[2] = -1;
937fe4a4 183 ycoor = -yFLT/2 + par[1];
184 gMC->Gsvolu("FMY1", "BOX ", idtmed[508], par, 3); // Alluminium
3fe3a833 185 gMC->Gspos("FMY1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
937fe4a4 186 gMC->Gsvolu("FMY2", "BOX ", idtmed[508], par, 3); // Alluminium
3fe3a833 187 gMC->Gspos("FMY2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
937fe4a4 188 gMC->Gsvolu("FMY3", "BOX ", idtmed[508], par, 3); // Alluminium
3fe3a833 189 gMC->Gspos("FMY3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
937fe4a4 190
191// Honeycomb layer (1cm of special polyethilene)
3fe3a833 192 ycoor = ycoor + par[1];
193 par[0] = -1;
937fe4a4 194 par[1] = 0.5;
3fe3a833 195 par[2] = -1;
196 ycoor = ycoor + par[1];
197 gMC->Gsvolu("FPL1", "BOX ", idtmed[503], par, 3); // Hony
198 gMC->Gspos("FPL1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
199 gMC->Gsvolu("FPL2", "BOX ", idtmed[503], par, 3); // Hony
200 gMC->Gspos("FPL2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
201 gMC->Gsvolu("FPL3", "BOX ", idtmed[503], par, 3); // Hony
202 gMC->Gspos("FPL3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
937fe4a4 203
3fe3a833 204///////////////// Detector itself //////////////////////
937fe4a4 205
206 const Float_t StripWidth = 7.81;//cm
207 const Float_t DeadBound = 1.;//cm non-sensitive between the pad edge and the boundary of the strip
208 const Int_t nx = 40; // number of pads along x
209 const Int_t nz = 2; // number of pads along z
210 const Float_t Gap=4.; //cm distance between the strip axis
211 const Float_t Space = 5.5; //cm distance from the front plate of the box
212
213 Float_t zSenStrip;
214 zSenStrip = StripWidth-2*DeadBound;//cm
215
3fe3a833 216 par[0] = -1;
937fe4a4 217 par[1] = yPad/2;
218 par[2] = StripWidth/2.;
219
220 // Glass Layer of detector
221 gMC->Gsvolu("FSTR","BOX",idtmed[514],par,3);
222
223 // Freon for non-sesitive boundaries
3fe3a833 224 par[0] = -1;
937fe4a4 225 par[1] = 0.110/2;
3fe3a833 226 par[2] = -1;
937fe4a4 227 gMC->Gsvolu("FNSF","BOX",idtmed[512],par,3);
228 gMC->Gspos("FNSF",0,"FSTR",0.,0.,0.,0,"ONLY");
229 // Mylar for non-sesitive boundaries
230 par[1] = 0.025;
231 gMC->Gsvolu("FMYI","BOX",idtmed[510],par,3);
232 gMC->Gspos("FMYI",0,"FNSF",0.,0.,0.,0,"ONLY");
233
234 // Mylar for outer layers
235 par[1] = 0.035/2;
236 ycoor = -yPad/2.+par[1];
237 gMC->Gsvolu("FMYX","BOX",idtmed[510],par,3);
238 gMC->Gspos("FMYX",1,"FSTR",0.,ycoor,0.,0,"ONLY");
239 gMC->Gspos("FMYX",2,"FSTR",0.,-ycoor,0.,0,"ONLY");
240 ycoor += par[1];
241
242 // Graphyte layers
243 par[1] = 0.003/2;
244 ycoor += par[1];
245 gMC->Gsvolu("FGRL","BOX",idtmed[502],par,3);
246 gMC->Gspos("FGRL",1,"FSTR",0.,ycoor,0.,0,"ONLY");
247 gMC->Gspos("FGRL",2,"FSTR",0.,-ycoor,0.,0,"ONLY");
248
249 // Freon sensitive layer
3fe3a833 250 par[0] = -1;
937fe4a4 251 par[1] = 0.110/2.;
252 par[2] = zSenStrip/2.;
253 gMC->Gsvolu("FCFC","BOX",idtmed[513],par,3);
254 gMC->Gspos("FCFC",0,"FNSF",0.,0.,0.,0,"ONLY");
255
256 // Pad definition x & z
257 gMC->Gsdvn("FLZ","FCFC", nz, 3);
258 gMC->Gsdvn("FLX","FLZ" , nx, 1);
259
937fe4a4 260//// Positioning the Strips (FSTR) in the FLT volumes /////
261
262
263 // 3 (Central) Plate
264 Float_t t = zFLT1+zFLT2+zFLT3/2.+7.*2.5;//Half Width of Barrel
265 Float_t zpos = 0;
266 Float_t ang;
267 Float_t Offset;
268 Float_t last;
269 nrot = 0;
270 Int_t i=1,j=1;
271 zcoor=0;
272 Int_t UpDown=-1; // UpDown=-1 -> Upper strip, UpDown=+1 -> Lower strip
273
274 do{
275 ang = atan(zcoor/t);
00e5f8d9 276 ang = ang*kRaddeg;
277 AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang,90.);
278 AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang,90.);
937fe4a4 279 ycoor = -14.5+ Space; //2 cm over front plate
280 ycoor += (1-(UpDown+1)/2)*Gap;
281 gMC->Gspos("FSTR",j ,"FLT3",0.,ycoor, zcoor,idrotm[nrot], "ONLY");
282 gMC->Gspos("FSTR",j+1,"FLT3",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY");
00e5f8d9 283 ang = ang/kRaddeg;
937fe4a4 284
285 zcoor=zcoor-(zSenStrip/2)/TMath::Cos(ang)+UpDown*Gap*TMath::Tan(ang)-(zSenStrip/2)/TMath::Cos(ang);
286 UpDown*= -1; // Alternate strips
287 i++;
288 j+=2;
289 } while (zcoor-(StripWidth/2)*TMath::Cos(ang)>-t+zFLT1+zFLT2+7*2.5);
290
291 ycoor = -29./2.+ Space; //2 cm over front plate
292
293 // Plate 2
294 zpos = -zFLT3/2-7.;
295 ang = atan(zpos/sqrt(2*t*t-zpos*zpos));
296 Offset = StripWidth*TMath::Cos(ang)/2;
297 zpos -= Offset;
298 nrot = 0;
299 i=1;
300 // UpDown has not to be reinitialized, so that the arrangement of the strips can continue coherently
301
302 do {
303 ang = atan(zpos/sqrt(2*t*t-zpos*zpos));
00e5f8d9 304 ang = ang*kRaddeg;
305 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang,270.);
937fe4a4 306 ycoor = -29./2.+ Space ; //2 cm over front plate
307 ycoor += (1-(UpDown+1)/2)*Gap;
308 zcoor = zpos+(zFLT3/2.+7+zFLT2/2); // Moves to the system of the centre of the modulus FLT2
309 gMC->Gspos("FSTR",i, "FLT2", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
00e5f8d9 310 ang = ang/kRaddeg;
937fe4a4 311 zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)+UpDown*Gap*TMath::Tan(ang)-(zSenStrip/2)/TMath::Cos(ang);
312 last = StripWidth*TMath::Cos(ang)/2;
313 UpDown*=-1;
314 i++;
315 } while (zpos-(StripWidth/2)*TMath::Cos(ang)>-t+zFLT1+7);
316
317 // Plate 1
318 zpos = -t+zFLT1+3.5;
319 ang = atan(zpos/sqrt(2*t*t-zpos*zpos));
320 Offset = StripWidth*TMath::Cos(ang)/2.;
321 zpos -= Offset;
322 nrot = 0;
323 i=0;
324 ycoor= -29./2.+Space+Gap/2;
325
326 do {
327 ang = atan(zpos/sqrt(2*t*t-zpos*zpos));
00e5f8d9 328 ang = ang*kRaddeg;
329 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang,270.);
937fe4a4 330 i++;
331 zcoor = zpos+(zFLT1/2+zFLT2+zFLT3/2+7.*2.);
332 gMC->Gspos("FSTR",i, "FLT1", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
00e5f8d9 333 ang = ang /kRaddeg;
937fe4a4 334 zpos = zpos - zSenStrip/TMath::Cos(ang);
335 last = StripWidth*TMath::Cos(ang)/2.;
336 } while (zpos>-t+7.+last);
337
338printf("#######################################################\n");
339printf(" Distance from the bound of the FLT3: zFLT3- %f cm \n", zpos+(zSenStrip/2)/TMath::Cos(ang));
340 ang = atan(zpos/sqrt(2*t*t-zpos*zpos));
341 zpos = zpos - zSenStrip/TMath::Cos(ang);
342printf("NEXT Distance from the bound of the FLT3: zFLT3- %f cm \n", zpos+(zSenStrip/2)/TMath::Cos(ang));
343printf("#######################################################\n");
344
345////////// Layers after detector /////////////////
346
347// Honeycomb layer after (3cm)
348
349 Float_t OverSpace = Space + 7.3;
350/// StripWidth*TMath::Sin(ang) + 1.3;
351
352 par[0] = -1;
353 par[1] = 0.6;
3fe3a833 354 par[2] = -1;
937fe4a4 355 ycoor = -yFLT/2 + OverSpace + par[1];
3fe3a833 356 gMC->Gsvolu("FPE1", "BOX ", idtmed[503], par, 3); // Hony
357 gMC->Gspos("FPE1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
358 gMC->Gsvolu("FPE2", "BOX ", idtmed[503], par, 3); // Hony
359 gMC->Gspos("FPE2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
360 gMC->Gsvolu("FPE3", "BOX ", idtmed[503], par, 3); // Hony
361 gMC->Gspos("FPE3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
937fe4a4 362
363// Electronics (Cu) after
364 ycoor += par[1];
3fe3a833 365 par[0] = -1;
366 par[1] = 1.43*0.05 / 2.; // 5% of X0
367 par[2] = -1;
937fe4a4 368 ycoor += par[1];
3fe3a833 369 gMC->Gsvolu("FEC1", "BOX ", idtmed[501], par, 3); // Cu
370 gMC->Gspos("FEC1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
371 gMC->Gsvolu("FEC2", "BOX ", idtmed[501], par, 3); // Cu
372 gMC->Gspos("FEC2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
373 gMC->Gsvolu("FEC3", "BOX ", idtmed[501], par, 3); // Cu
374 gMC->Gspos("FEC3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
937fe4a4 375
376// Cooling water after
377 ycoor += par[1];
3fe3a833 378 par[0] = -1;
379 par[1] = 36.1*0.02 / 2.; // 2% of X0
380 par[2] = -1;
937fe4a4 381 ycoor += par[1];
3fe3a833 382 gMC->Gsvolu("FWA1", "BOX ", idtmed[515], par, 3); // Water
383 gMC->Gspos("FWA1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
384 gMC->Gsvolu("FWA2", "BOX ", idtmed[515], par, 3); // Water
385 gMC->Gspos("FWA2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
386 gMC->Gsvolu("FWA3", "BOX ", idtmed[515], par, 3); // Water
387 gMC->Gspos("FWA3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
937fe4a4 388
389//back plate honycomb (2cm)
3fe3a833 390 par[0] = -1;
391 par[1] = 2 / 2.;
392 par[2] = -1;
937fe4a4 393 ycoor = yFLT/2 - par[1];
3fe3a833 394 gMC->Gsvolu("FEG1", "BOX ", idtmed[503], par, 3); // Hony
395 gMC->Gspos("FEG1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
396 gMC->Gsvolu("FEG2", "BOX ", idtmed[503], par, 3); // Hony
397 gMC->Gspos("FEG2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
398 gMC->Gsvolu("FEG3", "BOX ", idtmed[503], par, 3); // Hony
399 gMC->Gspos("FEG3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
400}
fe4da5cc 401
3fe3a833 402//_____________________________________________________________________________
403void AliTOFv0::DrawModule()
404{
405 //
937fe4a4 406 // Draw a shaded view of the Time Of Flight version 1
3fe3a833 407 //
fe4da5cc 408 // Set everything unseen
cfce8870 409 gMC->Gsatt("*", "seen", -1);
fe4da5cc 410 //
411 // Set ALIC mother transparent
cfce8870 412 gMC->Gsatt("ALIC","SEEN",0);
fe4da5cc 413 //
414 // Set the volumes visible
3fe3a833 415 gMC->Gsatt("ALIC","SEEN",0);
416 gMC->Gsatt("FBAR","SEEN",1);
417 gMC->Gsatt("FTO1","SEEN",1);
418 gMC->Gsatt("FTO2","SEEN",1);
419 gMC->Gsatt("FTO3","SEEN",1);
cfce8870 420 gMC->Gsatt("FBT1","SEEN",1);
421 gMC->Gsatt("FBT2","SEEN",1);
422 gMC->Gsatt("FBT3","SEEN",1);
3fe3a833 423 gMC->Gsatt("FDT1","SEEN",1);
424 gMC->Gsatt("FDT2","SEEN",1);
425 gMC->Gsatt("FDT3","SEEN",1);
426 gMC->Gsatt("FLT1","SEEN",1);
427 gMC->Gsatt("FLT2","SEEN",1);
428 gMC->Gsatt("FLT3","SEEN",1);
937fe4a4 429 gMC->Gsatt("FPL1","SEEN",1);
430 gMC->Gsatt("FPL2","SEEN",1);
431 gMC->Gsatt("FPL3","SEEN",1);
432 gMC->Gsatt("FLD1","SEEN",1);
433 gMC->Gsatt("FLD2","SEEN",1);
434 gMC->Gsatt("FLD3","SEEN",1);
435 gMC->Gsatt("FLZ1","SEEN",1);
436 gMC->Gsatt("FLZ2","SEEN",1);
437 gMC->Gsatt("FLZ3","SEEN",1);
438 gMC->Gsatt("FLX1","SEEN",1);
439 gMC->Gsatt("FLX2","SEEN",1);
440 gMC->Gsatt("FLX3","SEEN",1);
441 gMC->Gsatt("FPA0","SEEN",1);
cfce8870 442 //
443 gMC->Gdopt("hide", "on");
444 gMC->Gdopt("shad", "on");
445 gMC->Gsatt("*", "fill", 7);
cfce8870 446 gMC->SetClipBox(".");
447 gMC->SetClipBox("*", 0, 1000, -1000, 1000, -1000, 1000);
448 gMC->DefaultRange();
449 gMC->Gdraw("alic", 40, 30, 0, 12, 9.5, .02, .02);
450 gMC->Gdhead(1111, "Time Of Flight");
451 gMC->Gdman(18, 4, "MAN");
452 gMC->Gdopt("hide","off");
fe4da5cc 453}
454
455//_____________________________________________________________________________
456void AliTOFv0::CreateMaterials()
457{
458 //
459 // Define materials for the Time Of Flight
460 //
461 AliTOF::CreateMaterials();
462}
463
464//_____________________________________________________________________________
465void AliTOFv0::Init()
466{
467 //
3fe3a833 468 // Initialise the detector after the geometry has been defined
fe4da5cc 469 //
fe4da5cc 470 AliTOF::Init();
3fe3a833 471 fIdFTO2=gMC->VolId("FTO2");
472 fIdFTO3=gMC->VolId("FTO3");
473 fIdFLT1=gMC->VolId("FLT1");
474 fIdFLT2=gMC->VolId("FLT2");
475 fIdFLT3=gMC->VolId("FLT3");
fe4da5cc 476}
477
478//_____________________________________________________________________________
479void AliTOFv0::StepManager()
480{
481 //
482 // Procedure called at each step in the Time Of Flight
3fe3a833 483 //
484 TLorentzVector mom, pos;
fe4da5cc 485 Float_t hits[8];
486 Int_t vol[3];
0a6d8768 487 Int_t copy, id, i;
ad51aeb0 488 Int_t *idtmed = fIdtmed->GetArray()-499;
3fe3a833 489 if(gMC->GetMedium()==idtmed[514-1] &&
0a6d8768 490 gMC->IsTrackEntering() && gMC->TrackCharge()
3fe3a833 491 && gMC->CurrentVolID(copy)==fIdSens) {
fe4da5cc 492 TClonesArray &lhits = *fHits;
493 //
494 // Record only charged tracks at entrance
3fe3a833 495 gMC->CurrentVolOffID(1,copy);
fe4da5cc 496 vol[2]=copy;
3fe3a833 497 gMC->CurrentVolOffID(3,copy);
498 vol[1]=copy;
499 id=gMC->CurrentVolOffID(8,copy);
500 vol[0]=copy;
501 if(id==fIdFTO3) {
502 vol[0]+=22;
503 id=gMC->CurrentVolOffID(5,copy);
504 if(id==fIdFLT3) vol[1]+=6;
505 } else if (id==fIdFTO2) {
506 vol[0]+=20;
507 id=gMC->CurrentVolOffID(5,copy);
508 if(id==fIdFLT2) vol[1]+=8;
509 } else {
510 id=gMC->CurrentVolOffID(5,copy);
511 if(id==fIdFLT1) vol[1]+=14;
512 }
0a6d8768 513 gMC->TrackPosition(pos);
514 gMC->TrackMomentum(mom);
3fe3a833 515 //
0a6d8768 516 Double_t ptot=mom.Rho();
517 Double_t norm=1/ptot;
518 for(i=0;i<3;++i) {
519 hits[i]=pos[i];
520 hits[i+3]=mom[i]*norm;
521 }
522 hits[6]=ptot;
523 hits[7]=pos[3];
fe4da5cc 524 new(lhits[fNhits++]) AliTOFhit(fIshunt,gAlice->CurrentTrack(),vol,hits);
525 }
526}
937fe4a4 527