]> git.uio.no Git - u/mrichter/AliRoot.git/blame - EMCAL/AliEMCALRecoUtils.h
Updates D+ syst err
[u/mrichter/AliRoot.git] / EMCAL / AliEMCALRecoUtils.h
CommitLineData
d9b3567c 1#ifndef ALIEMCALRECOUTILS_H
2#define ALIEMCALRECOUTILS_H
3
4/* $Id: AliEMCALRecoUtils.h 33808 2009-07-15 09:48:08Z gconesab $ */
5
6///////////////////////////////////////////////////////////////////////////////
7//
8// Class AliEMCALRecoUtils
9// Some utilities to recalculate the cluster position or energy linearity
10//
11//
12// Author: Gustavo Conesa (LPSC- Grenoble)
b540d03f 13// Track matching part: Rongrong Ma (Yale)
d9b3567c 14///////////////////////////////////////////////////////////////////////////////
15
16//Root includes
01d44f1f 17#include <TNamed.h>
18#include <TMath.h>
7cdec71f 19class TObjArray;
20class TArrayI;
21class TArrayF;
01d44f1f 22#include <TH2I.h>
7cdec71f 23class TH2F;
01d44f1f 24#include <TRandom3.h>
d9b3567c 25
26//AliRoot includes
27class AliVCluster;
28class AliVCaloCells;
bd8c7aef 29class AliVEvent;
88b96ad8 30class AliESDEvent;
31#include "AliLog.h"
b540d03f 32
33// EMCAL includes
094786cc 34class AliEMCALGeometry;
83bfd77a 35class AliEMCALPIDUtils;
bd8c7aef 36class AliESDtrack;
bb6f5f0b 37class AliExternalTrackParam;
d9b3567c 38
39class AliEMCALRecoUtils : public TNamed {
40
41public:
42
43 AliEMCALRecoUtils();
44 AliEMCALRecoUtils(const AliEMCALRecoUtils&);
45 AliEMCALRecoUtils& operator=(const AliEMCALRecoUtils&);
b540d03f 46 virtual ~AliEMCALRecoUtils() ;
88b96ad8 47
48 void InitParameters();
49
01d44f1f 50 void Print(const Option_t*) const;
b540d03f 51
52 //enums
01d44f1f 53 enum NonlinearityFunctions{kPi0MC=0,kPi0GammaGamma=1,kPi0GammaConversion=2,kNoCorrection=3,kBeamTest=4,kBeamTestCorrected=5};
54 enum PositionAlgorithms{kUnchanged=-1,kPosTowerIndex=0, kPosTowerGlobal=1};
55 enum ParticleType{kPhoton=0, kElectron=1,kHadron =2, kUnknown=-1};
56 enum { kNCuts = 11 }; //track matching
0e7de35b 57 enum TrackCutsType{kTPCOnlyCut=0, kGlobalCut=1, kLooseCut=2};
b540d03f 58
59 //-----------------------------------------------------
d9b3567c 60 //Position recalculation
b540d03f 61 //-----------------------------------------------------
62
01d44f1f 63 void RecalculateClusterPosition (AliEMCALGeometry *geom, AliVCaloCells* cells, AliVCluster* clu);
094786cc 64 void RecalculateClusterPositionFromTowerIndex (AliEMCALGeometry *geom, AliVCaloCells* cells, AliVCluster* clu);
65 void RecalculateClusterPositionFromTowerGlobal(AliEMCALGeometry *geom, AliVCaloCells* cells, AliVCluster* clu);
66
01d44f1f 67 Float_t GetCellWeight(const Float_t eCell, const Float_t eCluster) const { return TMath::Max( 0., fW0 + TMath::Log( eCell / eCluster )) ; }
094786cc 68
69 Float_t GetDepth(const Float_t eCluster, const Int_t iParticle, const Int_t iSM) const ;
70
88b96ad8 71 void GetMaxEnergyCell(const AliEMCALGeometry *geom, AliVCaloCells* cells, const AliVCluster* clu,
cb231979 72 Int_t & absId, Int_t& iSupMod, Int_t& ieta, Int_t& iphi, Bool_t &shared);
d9b3567c 73
01d44f1f 74 Float_t GetMisalTransShift(const Int_t i) const { if(i < 15 ) { return fMisalTransShift[i] ; }
75 else { AliInfo(Form("Index %d larger than 15, do nothing\n",i)) ;
76 return 0. ; } }
77 Float_t* GetMisalTransShiftArray() { return fMisalTransShift ; }
d9b3567c 78
2a71e873 79 void SetMisalTransShift(const Int_t i, const Float_t shift) {
01d44f1f 80 if(i < 15 ) { fMisalTransShift[i] = shift ; }
81 else { AliInfo(Form("Index %d larger than 15, do nothing\n",i)) ; } }
82 void SetMisalTransShiftArray(Float_t * misal) { for(Int_t i = 0; i < 15; i++) fMisalTransShift[i] = misal[i] ; }
83
84 Float_t GetMisalRotShift(const Int_t i) const { if(i < 15 ) { return fMisalRotShift[i] ; }
85 else { AliInfo(Form("Index %d larger than 15, do nothing\n",i)) ;
86 return 0. ; } }
87
88 Float_t* GetMisalRotShiftArray() { return fMisalRotShift ; }
2a71e873 89
90 void SetMisalRotShift(const Int_t i, const Float_t shift) {
01d44f1f 91 if(i < 15 ) { fMisalRotShift[i] = shift ; }
92 else { AliInfo(Form("Index %d larger than 15, do nothing\n",i)) ; } }
93
94 void SetMisalRotShiftArray(Float_t * misal) { for(Int_t i = 0; i < 15; i++)fMisalRotShift[i] = misal[i] ; }
2a71e873 95
01d44f1f 96 Int_t GetParticleType() const { return fParticleType ; }
97 void SetParticleType(Int_t particle) { fParticleType = particle ; }
2a71e873 98
01d44f1f 99 Int_t GetPositionAlgorithm() const { return fPosAlgo ; }
100 void SetPositionAlgorithm(Int_t alg) { fPosAlgo = alg ; }
2a71e873 101
01d44f1f 102 Float_t GetW0() const { return fW0 ; }
103 void SetW0(Float_t w0) { fW0 = w0 ; }
094786cc 104
b540d03f 105 //-----------------------------------------------------
a7e5a381 106 // Non Linearity
b540d03f 107 //-----------------------------------------------------
108
01d44f1f 109 Float_t CorrectClusterEnergyLinearity(AliVCluster* clu) ;
d9b3567c 110
01d44f1f 111 Float_t GetNonLinearityParam(const Int_t i) const { if(i < 7 ){ return fNonLinearityParams[i] ; }
112 else { AliInfo(Form("Index %d larger than 7, do nothing\n",i)) ;
113 return 0. ; } }
d9b3567c 114 void SetNonLinearityParam(const Int_t i, const Float_t param) {
01d44f1f 115 if(i < 7 ){fNonLinearityParams[i] = param ; }
116 else { AliInfo(Form("Index %d larger than 7, do nothing\n",i)) ; } }
117 void InitNonLinearityParam();
7e0ecb89 118
01d44f1f 119 Int_t GetNonLinearityFunction() const { return fNonLinearityFunction ; }
120 void SetNonLinearityFunction(Int_t fun) { fNonLinearityFunction = fun ; InitNonLinearityParam() ; }
7e0ecb89 121
01d44f1f 122 void SetNonLinearityThreshold(Int_t threshold) { fNonLinearThreshold = threshold ; } //only for Alexie's non linearity correction
123 Int_t GetNonLinearityThreshold() const { return fNonLinearThreshold ; }
124//
125 //-----------------------------------------------------
126 // MC clusters energy smearing
127 //-----------------------------------------------------
128
88b96ad8 129 Float_t SmearClusterEnergy(const AliVCluster* clu) ;
01d44f1f 130 void SwitchOnClusterEnergySmearing() { fSmearClusterEnergy = kTRUE ; }
131 void SwitchOffClusterEnergySmearing() { fSmearClusterEnergy = kFALSE ; }
132 Bool_t IsClusterEnergySmeared() const { return fSmearClusterEnergy ; }
133 void SetSmearingParameters(Int_t i, Float_t param) { if(i < 3){ fSmearClusterParam[i] = param ; }
134 else { AliInfo(Form("Index %d larger than 2, do nothing\n",i)) ; } }
b540d03f 135 //-----------------------------------------------------
a7e5a381 136 // Recalibration
b540d03f 137 //-----------------------------------------------------
a7e5a381 138 Bool_t AcceptCalibrateCell(const Int_t absId, const Int_t bc,
139 Float_t & amp, Double_t & time, AliVCaloCells* cells) ; // Energy and Time
140 void RecalibrateCells(AliVCaloCells * cells, Int_t bc) ; // Energy and Time
88b96ad8 141 void RecalibrateClusterEnergy(const AliEMCALGeometry* geom, AliVCluster* cluster, AliVCaloCells * cells, const Int_t bc=-1) ; // Energy and time
841dbf60 142 void ResetCellsCalibrated() { fCellsRecalibrated = kFALSE; }
094786cc 143
a7e5a381 144 // Energy recalibration
01d44f1f 145 Bool_t IsRecalibrationOn() const { return fRecalibration ; }
146 void SwitchOffRecalibration() { fRecalibration = kFALSE ; }
147 void SwitchOnRecalibration() { fRecalibration = kTRUE ;
148 if(!fEMCALRecalibrationFactors)InitEMCALRecalibrationFactors() ; }
149 void InitEMCALRecalibrationFactors() ;
96957075 150
3bfc4732 151 TH2F * GetEMCALChannelRecalibrationFactors(Int_t iSM) const { return (TH2F*)fEMCALRecalibrationFactors->At(iSM) ; }
152 void SetEMCALChannelRecalibrationFactors(TObjArray *map) { fEMCALRecalibrationFactors = map ; }
153 void SetEMCALChannelRecalibrationFactors(Int_t iSM , TH2F* h) { fEMCALRecalibrationFactors->AddAt(h,iSM) ; }
154
01d44f1f 155 Float_t GetEMCALChannelRecalibrationFactor(Int_t iSM , Int_t iCol, Int_t iRow) const {
3bfc4732 156 if(fEMCALRecalibrationFactors)
157 return (Float_t) ((TH2F*)fEMCALRecalibrationFactors->At(iSM))->GetBinContent(iCol,iRow);
158 else return 1 ; }
094786cc 159
01d44f1f 160 void SetEMCALChannelRecalibrationFactor(Int_t iSM , Int_t iCol, Int_t iRow, Double_t c = 1) {
3bfc4732 161 if(!fEMCALRecalibrationFactors) InitEMCALRecalibrationFactors() ;
162 ((TH2F*)fEMCALRecalibrationFactors->At(iSM))->SetBinContent(iCol,iRow,c) ; }
163
164 //Recalibrate channels energy with run dependent corrections
165 void SwitchOffRunDepCorrection() { fUseRunCorrectionFactors = kFALSE ; }
166 void SwitchOnRunDepCorrection() { fUseRunCorrectionFactors = kTRUE ;
167 SwitchOnRecalibration() ; }
168 void SetRunDependentCorrections(Int_t runnumber);
169
a7e5a381 170 // Time Recalibration
88b96ad8 171 void RecalibrateCellTime(const Int_t absId, const Int_t bc, Double_t & time) const;
3bfc4732 172
173 Bool_t IsTimeRecalibrationOn() const { return fTimeRecalibration ; }
174 void SwitchOffTimeRecalibration() { fTimeRecalibration = kFALSE ; }
175 void SwitchOnTimeRecalibration() { fTimeRecalibration = kTRUE ;
176 if(!fEMCALTimeRecalibrationFactors)InitEMCALTimeRecalibrationFactors() ; }
177 void InitEMCALTimeRecalibrationFactors() ;
178
a7e5a381 179 Float_t GetEMCALChannelTimeRecalibrationFactor(const Int_t bc, const Int_t absID) const {
3bfc4732 180 if(fEMCALTimeRecalibrationFactors)
181 return (Float_t) ((TH1F*)fEMCALTimeRecalibrationFactors->At(bc))->GetBinContent(absID);
a7e5a381 182 else return 0 ; }
3bfc4732 183
a7e5a381 184 void SetEMCALChannelTimeRecalibrationFactor(const Int_t bc, const Int_t absID, Double_t c = 0) {
3bfc4732 185 if(!fEMCALTimeRecalibrationFactors) InitEMCALTimeRecalibrationFactors() ;
186 ((TH1F*)fEMCALTimeRecalibrationFactors->At(bc))->SetBinContent(absID,c) ; }
187
a7e5a381 188 TH1F * GetEMCALChannelTimeRecalibrationFactors(const Int_t bc)const { return (TH1F*)fEMCALTimeRecalibrationFactors->At(bc) ; }
189 void SetEMCALChannelTimeRecalibrationFactors(TObjArray *map) { fEMCALTimeRecalibrationFactors = map ; }
190 void SetEMCALChannelTimeRecalibrationFactors(const Int_t bc , TH1F* h) { fEMCALTimeRecalibrationFactors->AddAt(h,bc) ; }
094786cc 191
b540d03f 192 //-----------------------------------------------------
3bfc4732 193 // Modules fiducial region, remove clusters in borders
b540d03f 194 //-----------------------------------------------------
195
01d44f1f 196 Bool_t CheckCellFiducialRegion(AliEMCALGeometry* geom, AliVCluster* cluster, AliVCaloCells* cells) ;
a7e5a381 197 void SetNumberOfCellsFromEMCALBorder(const Int_t n){ fNCellsFromEMCALBorder = n ; }
01d44f1f 198 Int_t GetNumberOfCellsFromEMCALBorder() const { return fNCellsFromEMCALBorder ; }
fd6df01c 199
01d44f1f 200 void SwitchOnNoFiducialBorderInEMCALEta0() { fNoEMCALBorderAtEta0 = kTRUE ; }
201 void SwitchOffNoFiducialBorderInEMCALEta0() { fNoEMCALBorderAtEta0 = kFALSE ; }
202 Bool_t IsEMCALNoBorderAtEta0() const { return fNoEMCALBorderAtEta0 ; }
fd6df01c 203
b540d03f 204 //-----------------------------------------------------
fd6df01c 205 // Bad channels
b540d03f 206 //-----------------------------------------------------
207
01d44f1f 208 Bool_t IsBadChannelsRemovalSwitchedOn() const { return fRemoveBadChannels ; }
209 void SwitchOffBadChannelsRemoval() { fRemoveBadChannels = kFALSE ; }
210 void SwitchOnBadChannelsRemoval () { fRemoveBadChannels = kTRUE ;
211 if(!fEMCALBadChannelMap)InitEMCALBadChannelStatusMap() ; }
fd6df01c 212
01d44f1f 213 Bool_t IsDistanceToBadChannelRecalculated() const { return fRecalDistToBadChannels ; }
214 void SwitchOffDistToBadChannelRecalculation() { fRecalDistToBadChannels = kFALSE ; }
215 void SwitchOnDistToBadChannelRecalculation() { fRecalDistToBadChannels = kTRUE ;
216 if(!fEMCALBadChannelMap)InitEMCALBadChannelStatusMap() ; }
78467229 217
01d44f1f 218 void InitEMCALBadChannelStatusMap() ;
fd6df01c 219
01d44f1f 220 Int_t GetEMCALChannelStatus(Int_t iSM , Int_t iCol, Int_t iRow) const {
fd6df01c 221 if(fEMCALBadChannelMap) return (Int_t) ((TH2I*)fEMCALBadChannelMap->At(iSM))->GetBinContent(iCol,iRow);
222 else return 0;}//Channel is ok by default
223
01d44f1f 224 void SetEMCALChannelStatus(Int_t iSM , Int_t iCol, Int_t iRow, Double_t c = 1) {
225 if(!fEMCALBadChannelMap)InitEMCALBadChannelStatusMap() ;
226 ((TH2I*)fEMCALBadChannelMap->At(iSM))->SetBinContent(iCol,iRow,c) ; }
fd6df01c 227
01d44f1f 228 TH2I * GetEMCALChannelStatusMap(Int_t iSM) const { return (TH2I*)fEMCALBadChannelMap->At(iSM) ; }
229 void SetEMCALChannelStatusMap(TObjArray *map) { fEMCALBadChannelMap = map ; }
230 void SetEMCALChannelStatusMap(Int_t iSM , TH2I* h) { fEMCALBadChannelMap->AddAt(h,iSM) ; }
6fe0e6d0 231
88b96ad8 232 Bool_t ClusterContainsBadChannel(const AliEMCALGeometry* geom, const UShort_t* cellList, const Int_t nCells);
fd6df01c 233
b540d03f 234 //-----------------------------------------------------
235 // Recalculate other cluster parameters
236 //-----------------------------------------------------
237
01d44f1f 238 void RecalculateClusterDistanceToBadChannel (AliEMCALGeometry * geom, AliVCaloCells* cells, AliVCluster * cluster);
239 void RecalculateClusterShowerShapeParameters(AliEMCALGeometry * geom, AliVCaloCells* cells, AliVCluster * cluster);
240 void RecalculateClusterPID(AliVCluster * cluster);
cb231979 241
83bfd77a 242 AliEMCALPIDUtils * GetPIDUtils() { return fPIDUtils;}
243
83bfd77a 244
b540d03f 245 //----------------------------------------------------
246 // Track matching
247 //----------------------------------------------------
bd8c7aef 248
01d44f1f 249 void FindMatches(AliVEvent *event, TObjArray * clusterArr=0x0, AliEMCALGeometry *geom=0x0);
8fc351e3 250 Int_t FindMatchedClusterInEvent(AliESDtrack *track, AliVEvent *event, AliEMCALGeometry *geom, Float_t &dEta, Float_t &dPhi);
251 Int_t FindMatchedClusterInClusterArr(AliExternalTrackParam *emcalParam, AliExternalTrackParam *trkParam, TObjArray * clusterArr, Float_t &dEta, Float_t &dPhi);
ee602376 252
88b96ad8 253 static Bool_t ExtrapolateTrackToEMCalSurface(AliExternalTrackParam *trkParam, Double_t emcalR,
254 Double_t mass, Double_t step, Float_t &eta, Float_t &phi);
255 static Bool_t ExtrapolateTrackToPosition(AliExternalTrackParam *trkParam, const Float_t *clsPos,
256 Double_t mass, Double_t step, Float_t &tmpEta, Float_t &tmpPhi);
257 static Bool_t ExtrapolateTrackToCluster (AliExternalTrackParam *trkParam, AliVCluster *cluster,
258 Double_t mass, Double_t step, Float_t &tmpEta, Float_t &tmpPhi);
259 Bool_t ExtrapolateTrackToCluster (AliExternalTrackParam *trkParam, AliVCluster *cluster,
260 Float_t &tmpEta, Float_t &tmpPhi);
8fc351e3 261
01d44f1f 262 UInt_t FindMatchedPosForCluster(Int_t clsIndex) const;
263 UInt_t FindMatchedPosForTrack(Int_t trkIndex) const;
264
265 void GetMatchedResiduals(Int_t clsIndex, Float_t &dEta, Float_t &dPhi);
266 void GetMatchedClusterResiduals(Int_t trkIndex, Float_t &dEta, Float_t &dPhi);
267 Int_t GetMatchedTrackIndex(Int_t clsIndex);
268 Int_t GetMatchedClusterIndex(Int_t trkIndex);
269
270 Bool_t IsClusterMatched(Int_t clsIndex) const;
271 Bool_t IsTrackMatched(Int_t trkIndex) const;
272
88b96ad8 273 void SetClusterMatchedToTrack (const AliESDEvent *event);
57131575 274
88b96ad8 275 void SetTracksMatchedToCluster(const AliESDEvent *event);
01d44f1f 276
277 void SwitchOnCutEtaPhiSum() { fCutEtaPhiSum = kTRUE ;
278 fCutEtaPhiSeparate = kFALSE ; }
279 void SwitchOnCutEtaPhiSeparate() { fCutEtaPhiSeparate = kTRUE ;
280 fCutEtaPhiSum = kFALSE ; }
281
282 Float_t GetCutR() const { return fCutR ; }
283 Float_t GetCutEta() const { return fCutEta ; }
284 Float_t GetCutPhi() const { return fCutPhi ; }
8fc351e3 285 Double_t GetClusterWindow() const { return fClusterWindow ; }
01d44f1f 286 void SetCutR(Float_t cutR) { fCutR = cutR ; }
287 void SetCutEta(Float_t cutEta) { fCutEta = cutEta ; }
288 void SetCutPhi(Float_t cutPhi) { fCutPhi = cutPhi ; }
8fc351e3 289 void SetClusterWindow(Double_t window) { fClusterWindow = window ; }
01d44f1f 290 void SetCutZ(Float_t cutZ) { printf("Obsolete fucntion of cutZ=%1.1f\n",cutZ) ; } //Obsolete
291
292 Double_t GetMass() const { return fMass ; }
8fc351e3 293 Double_t GetStep() const { return fStepCluster ; }
294 Double_t GetStepSurface() const { return fStepSurface ; }
01d44f1f 295 void SetMass(Double_t mass) { fMass = mass ; }
da34fafe 296 void SetStep(Double_t step) { fStepSurface = step ; }
297 void SetStepCluster(Double_t step) { fStepCluster = step ; }
bb6f5f0b 298
a7e5a381 299 // Exotic cells / clusters
300
301 Bool_t IsExoticCell(const Int_t absId, AliVCaloCells* cells, const Int_t bc =-1) ;
302 void SwitchOnRejectExoticCell() { fRejectExoticCells = kTRUE ; }
303 void SwitchOffRejectExoticCell() { fRejectExoticCells = kFALSE ; }
304
305 void SetExoticCellFractionCut(Float_t f) { fExoticCellFraction = f ; }
306 void SetExoticCellDiffTimeCut(Float_t dt) { fExoticCellDiffTime = dt ; }
307 void SetExoticCellMinAmplitudeCut(Float_t ma) { fExoticCellMinAmplitude = ma ; }
308
309 Bool_t IsExoticCluster(AliVCluster *cluster, AliVCaloCells* cells, const Int_t bc=0) ;
310 void SwitchOnRejectExoticCluster() { fRejectExoticCluster = kTRUE ;
311 fRejectExoticCells = kTRUE ; }
312 void SwitchOffRejectExoticCluster() { fRejectExoticCluster = kFALSE ; }
01d44f1f 313 Bool_t IsRejectExoticCluster() const { return fRejectExoticCluster ; }
a7e5a381 314
315 //Cluster cut
316 Bool_t IsGoodCluster(AliVCluster *cluster, AliEMCALGeometry *geom, AliVCaloCells* cells, const Int_t bc =-1);
bd8c7aef 317
318 //Track Cuts
01d44f1f 319 Bool_t IsAccepted(AliESDtrack *track);
320 void InitTrackCuts();
321 void SetTrackCutsType(Int_t type) { fTrackCutsType = type ;
322 InitTrackCuts() ; }
323 Int_t GetTrackCutsType() const { return fTrackCutsType; }
bd8c7aef 324
325 // track quality cut setters
01d44f1f 326 void SetMinTrackPt(Double_t pt=0) { fCutMinTrackPt = pt ; }
327 void SetMinNClustersTPC(Int_t min=-1) { fCutMinNClusterTPC = min ; }
328 void SetMinNClustersITS(Int_t min=-1) { fCutMinNClusterITS = min ; }
329 void SetMaxChi2PerClusterTPC(Float_t max=1e10) { fCutMaxChi2PerClusterTPC = max ; }
330 void SetMaxChi2PerClusterITS(Float_t max=1e10) { fCutMaxChi2PerClusterITS = max ; }
331 void SetRequireTPCRefit(Bool_t b=kFALSE) { fCutRequireTPCRefit = b ; }
332 void SetRequireITSRefit(Bool_t b=kFALSE) { fCutRequireITSRefit = b ; }
333 void SetAcceptKinkDaughters(Bool_t b=kTRUE) { fCutAcceptKinkDaughters = b ; }
334 void SetMaxDCAToVertexXY(Float_t dist=1e10) { fCutMaxDCAToVertexXY = dist ; }
335 void SetMaxDCAToVertexZ(Float_t dist=1e10) { fCutMaxDCAToVertexZ = dist ; }
336 void SetDCAToVertex2D(Bool_t b=kFALSE) { fCutDCAToVertex2D = b ; }
bd8c7aef 337
fa4287a2 338 // getters
01d44f1f 339 Double_t GetMinTrackPt() const { return fCutMinTrackPt ; }
340 Int_t GetMinNClusterTPC() const { return fCutMinNClusterTPC ; }
341 Int_t GetMinNClustersITS() const { return fCutMinNClusterITS ; }
342 Float_t GetMaxChi2PerClusterTPC() const { return fCutMaxChi2PerClusterTPC ; }
343 Float_t GetMaxChi2PerClusterITS() const { return fCutMaxChi2PerClusterITS ; }
344 Bool_t GetRequireTPCRefit() const { return fCutRequireTPCRefit ; }
345 Bool_t GetRequireITSRefit() const { return fCutRequireITSRefit ; }
346 Bool_t GetAcceptKinkDaughters() const { return fCutAcceptKinkDaughters ; }
347 Float_t GetMaxDCAToVertexXY() const { return fCutMaxDCAToVertexXY ; }
348 Float_t GetMaxDCAToVertexZ() const { return fCutMaxDCAToVertexZ ; }
349 Bool_t GetDCAToVertex2D() const { return fCutDCAToVertex2D ; }
bd8c7aef 350
fd6df01c 351
8fc351e3 352private:
b540d03f 353 //Position recalculation
96957075 354 Float_t fMisalTransShift[15]; // Shift parameters
355 Float_t fMisalRotShift[15]; // Shift parameters
96957075 356 Int_t fParticleType; // Particle type for depth calculation
357 Int_t fPosAlgo; // Position recalculation algorithm
358 Float_t fW0; // Weight0
01d44f1f 359
360 // Non linearity
361 Int_t fNonLinearityFunction; // Non linearity function choice
362 Float_t fNonLinearityParams[7]; // Parameters for the non linearity function
7e0ecb89 363 Int_t fNonLinearThreshold; // Non linearity threshold value for kBeamTesh non linearity function
fd6df01c 364
01d44f1f 365 // Energy smearing for MC
366 Bool_t fSmearClusterEnergy; // Smear cluster energy, to be done only for simulated data to match real data
367 Float_t fSmearClusterParam[3]; // Smearing parameters
368 TRandom3 fRandom; // Random generator
369
3bfc4732 370 // Energy Recalibration
371 Bool_t fCellsRecalibrated; // Internal bool to check if cells (time/energy) where recalibrated and not recalibrate them when recalculating different things
fd6df01c 372 Bool_t fRecalibration; // Switch on or off the recalibration
373 TObjArray* fEMCALRecalibrationFactors; // Array of histograms with map of recalibration factors, EMCAL
01d44f1f 374
3bfc4732 375 // Time Recalibration
376 Bool_t fTimeRecalibration; // Switch on or off the time recalibration
377 TObjArray* fEMCALTimeRecalibrationFactors; // Array of histograms with map of time recalibration factors, EMCAL
378
379 // Recalibrate with run dependent corrections, energy
380 Bool_t fUseRunCorrectionFactors; // Use Run Dependent Correction
381 Bool_t fRunCorrectionFactorsSet; // Run Correction set at leat once
01d44f1f 382
b540d03f 383 // Bad Channels
fd6df01c 384 Bool_t fRemoveBadChannels; // Check the channel status provided and remove clusters with bad channels
78467229 385 Bool_t fRecalDistToBadChannels; // Calculate distance from highest energy tower of cluster to closes bad channel
fd6df01c 386 TObjArray* fEMCALBadChannelMap; // Array of histograms with map of bad channels, EMCAL
b540d03f 387
388 // Border cells
fd6df01c 389 Int_t fNCellsFromEMCALBorder; // Number of cells from EMCAL border the cell with maximum amplitude has to be.
390 Bool_t fNoEMCALBorderAtEta0; // Do fiducial cut in EMCAL region eta = 0?
b540d03f 391
a7e5a381 392 // Exotic cell / cluster
01d44f1f 393 Bool_t fRejectExoticCluster; // Switch on or off exotic cluster rejection
a7e5a381 394 Bool_t fRejectExoticCells; // Remove exotic cells
395 Float_t fExoticCellFraction; // Good cell if fraction < 1-ecross/ecell
396 Float_t fExoticCellDiffTime; // If time of candidate to exotic and close cell is too different (in ns), it must be noisy, set amp to 0
397 Float_t fExoticCellMinAmplitude; // Check for exotic only if amplitud is larger than this value
01d44f1f 398
399 // PID
400 AliEMCALPIDUtils * fPIDUtils; // Recalculate PID parameters
401
bb6f5f0b 402 //Track matching
403 UInt_t fAODFilterMask; // Filter mask to select AOD tracks. Refer to $ALICE_ROOT/ANALYSIS/macros/AddTaskESDFilter.C
b540d03f 404 TArrayI * fMatchedTrackIndex; // Array that stores indexes of matched tracks
96957075 405 TArrayI * fMatchedClusterIndex; // Array that stores indexes of matched clusters
fa4287a2 406 TArrayF * fResidualEta; // Array that stores the residual eta
407 TArrayF * fResidualPhi; // Array that stores the residual phi
408 Bool_t fCutEtaPhiSum; // Place cut on sqrt(dEta^2+dPhi^2)
409 Bool_t fCutEtaPhiSeparate; // Cut on dEta and dPhi separately
410 Float_t fCutR; // sqrt(dEta^2+dPhi^2) cut on matching
411 Float_t fCutEta; // dEta cut on matching
412 Float_t fCutPhi; // dPhi cut on matching
8fc351e3 413 Double_t fClusterWindow; // Select clusters in the window to be matched
bb6f5f0b 414 Double_t fMass; // Mass hypothesis of the track
8fc351e3 415 Double_t fStepSurface; // Length of step to extrapolate tracks to EMCal surface
416 Double_t fStepCluster; // Length of step to extrapolate tracks to clusters
9741c6a0 417
9741c6a0 418 // Track cuts
5f7714ad 419 Int_t fTrackCutsType; // Esd track cuts type for matching
fa4287a2 420 Double_t fCutMinTrackPt; // Cut on track pT
96957075 421 Int_t fCutMinNClusterTPC; // Min number of tpc clusters
422 Int_t fCutMinNClusterITS; // Min number of its clusters
423 Float_t fCutMaxChi2PerClusterTPC; // Max tpc fit chi2 per tpc cluster
424 Float_t fCutMaxChi2PerClusterITS; // Max its fit chi2 per its cluster
425 Bool_t fCutRequireTPCRefit; // Require TPC refit
426 Bool_t fCutRequireITSRefit; // Require ITS refit
427 Bool_t fCutAcceptKinkDaughters; // Accepting kink daughters?
428 Float_t fCutMaxDCAToVertexXY; // Track-to-vertex cut in max absolute distance in xy-plane
429 Float_t fCutMaxDCAToVertexZ; // Track-to-vertex cut in max absolute distance in z-plane
8fc351e3 430 Bool_t fCutDCAToVertex2D; // If true a 2D DCA cut is made.
83bfd77a 431
a7e5a381 432 ClassDef(AliEMCALRecoUtils, 17)
d9b3567c 433
434};
435
436#endif // ALIEMCALRECOUTILS_H
437
438