]> git.uio.no Git - u/mrichter/AliRoot.git/blame - HMPID/AliHMPIDParam.h
Class updated to read the threshold file generated online and propagated to offline...
[u/mrichter/AliRoot.git] / HMPID / AliHMPIDParam.h
CommitLineData
d3da6dc4 1#ifndef AliHMPIDParam_h
2#define AliHMPIDParam_h
3010c308 3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
d3da6dc4 5
3010c308 6/* $Id$ */
7
0b045c31 8#include "stdio.h"
3010c308 9#include <TMath.h>
d3da6dc4 10#include <TNamed.h> //base class
11#include <TGeoManager.h> //Instance()
268f57b1 12#include <TGeoMatrix.h> //Instance()
d3da6dc4 13#include <TVector3.h> //Lors2Mars() Mars2Lors()
14
d3da6dc4 15// Class providing all the needed parametrised information
16// to construct the geometry, to define segmentation and to provide response model
17// In future will also provide all the staff needed for alignment and calibration
18
19class AliHMPIDParam :public TNamed
20{
21public:
22//ctor&dtor
606697a8 23 virtual ~AliHMPIDParam() {if (fgInstance){for(Int_t i=0;i<7;i++){delete fM[i];fM[i] = 0x0;};fgInstance=0;}}
1d6047fb 24
25 void Print(Option_t *opt="") const; //print current parametrization
26
d3da6dc4 27 static inline AliHMPIDParam* Instance(); //pointer to AliHMPIDParam singleton
58fc9564 28 static inline AliHMPIDParam* InstanceNoGeo(); //pointer to AliHMPIDParam singleton without geometry.root for MOOD, displays, ...
ae5a42aa 29//geo info
30 enum EChamberData{kMinCh=0,kMaxCh=6,kMinPc=0,kMaxPc=5}; //Segmenation
31 enum EPadxData{kPadPcX=80,kMinPx=0,kMaxPx=79,kMaxPcx=159}; //Segmentation structure along x
32 enum EPadyData{kPadPcY=48,kMinPy=0,kMaxPy=47,kMaxPcy=143}; //Segmentation structure along y
12e50a57 33 //The electronics takes the 32bit int as: first 9 bits for the pedestal and the second 9 bits for threshold - values below should be within range
34 enum EPedestalData{kPadMeanZeroCharge=400,kPadSigmaZeroCharge=20,kPadMeanMasked=401,kPadSigmaMasked=20}; //One can go up to 5 sigma cut, overflow is protected in AliHMPIDCalib
35
2ac899f2 36
457997a7 37 static Float_t r2d ( ) {return 57.2957795; }
a8ff381e 38 static Float_t SizePadX ( ) {return fgCellX; } //pad size x, [cm]
39 static Float_t SizePadY ( ) {return fgCellY; } //pad size y, [cm]
ae5a42aa 40
a8ff381e 41 static Float_t SizePcX ( ) {return fgPcX; } // PC size x
42 static Float_t SizePcY ( ) {return fgPcY; } // PC size y
43 static Float_t MaxPcX (Int_t iPc ) {return fgkMaxPcX[iPc]; } // PC limits
44 static Float_t MaxPcY (Int_t iPc ) {return fgkMaxPcY[iPc]; } // PC limits
45 static Float_t MinPcX (Int_t iPc ) {return fgkMinPcX[iPc]; } // PC limits
46 static Float_t MinPcY (Int_t iPc ) {return fgkMinPcY[iPc]; } // PC limits
23ba1e93 47 static Int_t Nsig ( ) {return fgNSigmas; } //Getter n. sigmas for noise
a8ff381e 48 static Float_t SizeAllX ( ) {return fgAllX; } //all PCs size x, [cm]
49 static Float_t SizeAllY ( ) {return fgAllY; } //all PCs size y, [cm]
ae5a42aa 50
457997a7 51 static Float_t LorsX (Int_t pc,Int_t padx ) {return (padx +0.5)*SizePadX()+fgkMinPcX[pc]; } //center of the pad x, [cm]
a8ff381e 52 static Float_t LorsY (Int_t pc,Int_t pady ) {return (pady +0.5)*SizePadY()+fgkMinPcY[pc]; } //center of the pad y, [cm]
ae5a42aa 53
457997a7 54 Float_t ChPhiMin (Int_t ch ) {return Lors2Mars(ch,LorsX(ch,kMinPx)-fX,LorsY(ch,kMinPy)-fY).Phi()*r2d();} //PhiMin (degree) of the camber ch
55 Float_t ChThMin (Int_t ch ) {return Lors2Mars(ch,LorsX(ch,kMinPx)-fX,LorsY(ch,kMinPy)-fY).Theta()*r2d();} //ThMin (degree) of the camber ch
56 Float_t ChPhiMax (Int_t ch ) {return Lors2Mars(ch,LorsX(ch,kMaxPcx)-fX,LorsY(ch,kMaxPcy)-fY).Phi()*r2d();} //PhiMax (degree) of the camber ch
57 Float_t ChThMax (Int_t ch ) {return Lors2Mars(ch,LorsX(ch,kMaxPcx)-fX,LorsY(ch,kMaxPcy)-fY).Theta()*r2d();} //ThMax (degree) of the camber ch
58
a8ff381e 59 inline static void Lors2Pad(Float_t x,Float_t y,Int_t &pc,Int_t &px,Int_t &py); //(x,y)->(pc,px,py)
ae5a42aa 60
a8ff381e 61 static Int_t Abs (Int_t ch,Int_t pc,Int_t x,Int_t y) {return ch*100000000+pc*1000000+x*1000+y; } //(ch,pc,padx,pady)-> abs pad
56c73976 62 static Int_t DDL2C (Int_t ddl ) {return ddl/2; } //ddl -> chamber
a8ff381e 63 static Int_t A2C (Int_t pad ) {return pad/100000000; } //abs pad -> chamber
64 static Int_t A2P (Int_t pad ) {return pad%100000000/1000000; } //abs pad -> pc
65 static Int_t A2X (Int_t pad ) {return pad%1000000/1000; } //abs pad -> pad X
66 static Int_t A2Y (Int_t pad ) {return pad%1000; } //abs pad -> pad Y
ae5a42aa 67
23ba1e93 68 static Bool_t IsOverTh (Float_t q ) {return q >= fgThreshold; } //is digit over threshold?
a8ff381e 69
b38ac33a 70 Bool_t GetInstType ( )const{return fgInstanceType; } //return if the instance is from geom or ideal
a8ff381e 71
72 inline static Bool_t IsInDead(Float_t x,Float_t y ); //is the point in dead area?
0b045c31 73 inline static Bool_t IsDeadPad(Int_t padx,Int_t pady,Int_t ch); //is a dead pad?
74
75 inline void SetChStatus(Int_t ch,Bool_t status=kTRUE);
76 inline void SetSectStatus(Int_t ch,Int_t sect,Bool_t status);
77 inline void SetPcStatus(Int_t ch,Int_t pc,Bool_t status);
78 inline void PrintChStatus(Int_t ch);
26d52a71 79 inline void SetGeomAccept();
0b045c31 80
7656d8ac 81 inline static Int_t InHVSector( Float_t y ); //find HV sector
ddb21a01 82 static Int_t Radiator( Float_t y ) {if (InHVSector(y)<0) return -1; return InHVSector(y)/2;}
83 static Double_t HinRad(Float_t y) {if (Radiator(y)<0) return -1;return y-Radiator(y)*fgkMinPcY[Radiator(y)];} // height in the radiator to estimate temperature from gradient
84 static Bool_t IsInside (Float_t x,Float_t y,Float_t d=0) {return x>-d&&y>-d&&x<fgkMaxPcX[kMaxPc]+d&&y<fgkMaxPcY[kMaxPc]+d; } //is point inside chamber boundaries?
ae5a42aa 85
f455af6e 86 //For optical properties
87 static Double_t EPhotMin() {return 5.5;} //
88 static Double_t EPhotMax() {return 8.5;} //Photon energy range,[eV]
8cfd5fd8 89 static Double_t NIdxRad(Double_t eV,Double_t temp) {return TMath::Sqrt(1+0.554*(1239.84/eV)*(1239.84/eV)/((1239.84/eV)*(1239.84/eV)-5769))-0.0005*(temp-20);}
f455af6e 90 static Double_t NIdxWin(Double_t eV) {return TMath::Sqrt(1+46.411/(10.666*10.666-eV*eV)+228.71/(18.125*18.125-eV*eV));}
91 static Double_t NMgF2Idx(Double_t eV) {return 1.7744 - 2.866e-3*(1239.842609/eV) + 5.5564e-6*(1239.842609/eV)*(1239.842609/eV);} // MgF2 idx of trasparency system
92 static Double_t NIdxGap(Double_t eV) {return 1+0.12489e-6/(2.62e-4 - eV*eV/1239.84/1239.84);}
93 static Double_t LAbsRad(Double_t eV) {return (eV<7.8)*(GausPar(eV,3.20491e16,-0.00917890,0.742402)+GausPar(eV,3035.37,4.81171,0.626309))+(eV>=7.8)*0.0001;}
94 static Double_t LAbsWin(Double_t eV) {return (eV<8.2)*(818.8638-301.0436*eV+36.89642*eV*eV-1.507555*eV*eV*eV)+(eV>=8.2)*0.0001;}//fit from DiMauro data 28.10.03
95 static Double_t LAbsGap(Double_t eV) {return (eV<7.75)*6512.399+(eV>=7.75)*3.90743e-2/(-1.655279e-1+6.307392e-2*eV-8.011441e-3*eV*eV+3.392126e-4*eV*eV*eV);}
96 static Double_t QEffCSI(Double_t eV) {return (eV>6.07267)*0.344811*(1-exp(-1.29730*(eV-6.07267)));}//fit from DiMauro data 28.10.03
97 static Double_t GausPar(Double_t x,Double_t a1,Double_t a2,Double_t a3) {return a1*TMath::Exp(-0.5*((x-a2)/a3)*((x-a2)/a3));}
98 inline static Double_t FindTemp(Double_t tLow,Double_t tUp,Double_t y); //find the temperature of the C6F14 in a given point with coord. y (in x is uniform)
99
100
101 Double_t GetEPhotMean ()const {return fPhotEMean;}
102 Double_t GetRefIdx ()const {return fRefIdx;} //running refractive index
103
104 Double_t MeanIdxRad ()const {return NIdxRad(fPhotEMean,fTemp);}
105 Double_t MeanIdxWin ()const {return NIdxWin(fPhotEMean);}
106 //
107 Float_t DistCut ()const {return 1.0;} //<--TEMPORAR--> to be removed in future. Cut for MIP-TRACK residual
108 Float_t QCut ()const {return 100;} //<--TEMPORAR--> to be removed in future. Separation PHOTON-MIP charge
da4cc30b 109 Float_t MultCut ()const {return 30;} //<--TEMPORAR--> to be removed in future. Multiplicity cut to activate WEIGHT procedure
ae5a42aa 110
f455af6e 111 Double_t RadThick ()const {return 1.5;} //<--TEMPORAR--> to be removed in future. Radiator thickness
112 Double_t WinThick ()const {return 0.5;} //<--TEMPORAR--> to be removed in future. Window thickness
113 Double_t GapThick ()const {return 8.0;} //<--TEMPORAR--> to be removed in future. Proximity gap thickness
114 Double_t WinIdx ()const {return 1.5787;} //<--TEMPORAR--> to be removed in future. Mean refractive index of WIN material (SiO2)
115 Double_t GapIdx ()const {return 1.0005;} //<--TEMPORAR--> to be removed in future. Mean refractive index of GAP material (CH4)
ae5a42aa 116
d3da6dc4 117 static Int_t Stack(Int_t evt=-1,Int_t tid=-1); //Print stack info for event and tid
118 static Int_t StackCount(Int_t pid,Int_t evt); //Counts stack particles of given sort in given event
1d4857c5 119 static void IdealPosition(Int_t iCh,TGeoHMatrix *m); //ideal position of given chamber
120 //trasformation methodes
d3da6dc4 121 void Lors2Mars (Int_t c,Float_t x,Float_t y,Double_t *m,Int_t pl=kPc)const{Double_t z=0; switch(pl){case kPc:z=8.0;break; case kAnod:z=7.806;break; case kRad:z=-1.25; break;} Double_t l[3]={x-fX,y-fY,z}; fM[c]->LocalToMaster(l,m); }
122 TVector3 Lors2Mars (Int_t c,Float_t x,Float_t y, Int_t pl=kPc)const{Double_t m[3];Lors2Mars(c,x,y,m,pl); return TVector3(m); }//MRS->LRS
59d9d4b3 123 void Mars2Lors (Int_t c,Double_t *m,Float_t &x ,Float_t &y )const{Double_t l[3];fM[c]->MasterToLocal(m,l);x=l[0]+fX;y=l[1]+fY;}//MRS->LRS
86568433 124 void Mars2LorsVec(Int_t c,Double_t *m,Float_t &th,Float_t &ph )const{Double_t l[3]; fM[c]->MasterToLocalVect(m,l);
125 Float_t pt=TMath::Sqrt(l[0]*l[0]+l[1]*l[1]);
126 th=TMath::ATan(pt/l[2]);
127 ph=TMath::ATan2(l[1],l[0]);}
63402065 128 void Lors2MarsVec(Int_t c,Double_t *m,Double_t *l )const{fM[c]->LocalToMasterVect(m,l); }//LRS->MRS
d3da6dc4 129 TVector3 Norm (Int_t c )const{Double_t n[3]; Norm(c,n); return TVector3(n); }//norm
130 void Norm (Int_t c,Double_t *n )const{Double_t l[3]={0,0,1};fM[c]->LocalToMasterVect(l,n); }//norm
f455af6e 131 void Point (Int_t c,Double_t *p,Int_t plane )const{Lors2Mars(c,0,0,p,plane);} //point of given chamber plane
58fc9564 132
f455af6e 133 void SetTemp (Double_t temp ) {fTemp = temp;} //set actual temperature of the C6F14
134 void SetEPhotMean (Double_t ePhotMean ) {fPhotEMean = ePhotMean;} //set mean photon energy
135
136 void SetRefIdx (Double_t refRadIdx ) {fRefIdx = refRadIdx;} //set running refractive index
137
23ba1e93 138 void SetNSigmas (Int_t sigmas ) {fgNSigmas = sigmas;} //set sigma cut
139 void SetThreshold (Int_t thres ) {fgThreshold = thres;} //set sigma cut
b38ac33a 140 void SetInstanceType(Bool_t inst ) {fgInstanceType = inst;} //kTRUE if from geomatry kFALSE if from ideal geometry
3278403b 141 //For PID
b018f09d 142 Double_t SigLoc (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh,Double_t beta);//error due to cathode segmetation
143 Double_t SigGeom (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh,Double_t beta);//error due to unknown photon origin
144 Double_t SigCrom (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh,Double_t beta);//error due to unknonw photon energy
145 Double_t Sigma2 (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh );//photon candidate sigma^2
146 static Double_t SigmaCorrFact (Double_t occupancy ) {return 0.109*occupancy + 1.15;}//correction facotor for theoretical resolution
c770ceb9 147
148 //Mathieson Getters
a8ff381e 149
c770ceb9 150 static Double_t PitchAnodeCathode() {return fgkD;}
151 static Double_t SqrtK3x() {return fgkSqrtK3x;}
152 static Double_t K2x () {return fgkK2x;}
153 static Double_t K1x () {return fgkK1x;}
154 static Double_t K4x () {return fgkK4x;}
155 static Double_t SqrtK3y() {return fgkSqrtK3y;}
156 static Double_t K2y () {return fgkK2y;}
157 static Double_t K1y () {return fgkK1y;}
158 static Double_t K4y () {return fgkK4y;}
159 //
d3da6dc4 160 enum EPlaneId {kPc,kRad,kAnod}; //3 planes in chamber
a8ff381e 161 enum ETrackingFlags {kMipDistCut=-9,kMipQdcCut=-5,kNoPhotAccept=-11}; //flags for Reconstruction
ae5a42aa 162
d3da6dc4 163protected:
ae5a42aa 164 static /*const*/ Float_t fgkMinPcX[6]; //limits PC
165 static /*const*/ Float_t fgkMinPcY[6]; //limits PC
166 static /*const*/ Float_t fgkMaxPcX[6]; //limits PC
167 static /*const*/ Float_t fgkMaxPcY[6];
c770ceb9 168
0b045c31 169 static Bool_t fgMapPad[160][144][7]; //map of pads to evaluate if they are active or dead (160,144) pads for 7 chambers
170
c770ceb9 171// Mathieson constants
172// For HMPID --> x direction means parallel to the wires: K3 = 0.66 (NIM A270 (1988) 602-603) fig.1
173// For HMPID --> y direction means perpendicular to the wires: K3 = 0.90 (NIM A270 (1988) 602-603) fig.2
174//
ae5a42aa 175
c770ceb9 176 static const Double_t fgkD; // ANODE-CATHODE distance 0.445/2
177
178 static const Double_t fgkSqrtK3x,fgkK2x,fgkK1x,fgkK4x;
179 static const Double_t fgkSqrtK3y,fgkK2y,fgkK1y,fgkK4y;
180//
181
23ba1e93 182 static Int_t fgNSigmas; //sigma Cut
183 static Int_t fgThreshold; //sigma Cut
b38ac33a 184 static Bool_t fgInstanceType; //kTRUE if from geomatry kFALSE if from ideal geometry
185
186 static Float_t fgCellX, fgCellY, fgPcX, fgPcY, fgAllX, fgAllY; //definition of HMPID geometric parameters
58fc9564 187 AliHMPIDParam(Bool_t noGeo); //default ctor is protected to enforce it to be singleton
ae5a42aa 188
d3da6dc4 189 static AliHMPIDParam *fgInstance; //static pointer to instance of AliHMPIDParam singleton
ae5a42aa 190
423554a3 191 TGeoHMatrix *fM[7]; //pointers to matrices defining HMPID chambers rotations-translations
192 Float_t fX; //x shift of LORS with respect to rotated MARS
f455af6e 193 Float_t fY; //y shift of LORS with respect to rotated MARS
194 Double_t fRefIdx; //running refractive index of C6F14
195 Double_t fPhotEMean; //mean energy of photon
196 Double_t fTemp; //actual temparature of C6F14
8f05fd11 197private:
198 AliHMPIDParam(const AliHMPIDParam& r); //dummy copy constructor
199 AliHMPIDParam &operator=(const AliHMPIDParam& r); //dummy assignment operator
200
f455af6e 201 ClassDef(AliHMPIDParam,1) //HMPID main parameters class
d3da6dc4 202};
cf7e313e 203
d3da6dc4 204//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
205AliHMPIDParam* AliHMPIDParam::Instance()
206{
207// Return pointer to the AliHMPIDParam singleton.
208// Arguments: none
209// Returns: pointer to the instance of AliHMPIDParam or 0 if no geometry
58fc9564 210 if(!fgInstance) new AliHMPIDParam(kFALSE); //default setting for reconstruction, if no geometry.root -> AliFatal
211 return fgInstance;
212}//Instance()
213//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
214AliHMPIDParam* AliHMPIDParam::InstanceNoGeo()
215{
216// Return pointer to the AliHMPIDParam singleton without the geometry.root.
217// Arguments: none
218// Returns: pointer to the instance of AliHMPIDParam or 0 if no geometry
219 if(!fgInstance) new AliHMPIDParam(kTRUE); //to avoid AliFatal, for MOOD and displays, use ideal geometry parameters
d3da6dc4 220 return fgInstance;
221}//Instance()
222//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
ae5a42aa 223Bool_t AliHMPIDParam::IsInDead(Float_t x,Float_t y)
224{
225// Check is the current point is outside of sensitive area or in dead zones
226// Arguments: x,y -position
227// Returns: 1 if not in sensitive zone
228 for(Int_t iPc=0;iPc<6;iPc++)
229 if(x>=fgkMinPcX[iPc] && x<=fgkMaxPcX[iPc] && y>=fgkMinPcY[iPc] && y<=fgkMaxPcY [iPc]) return kFALSE; //in current pc
230
231 return kTRUE;
232}
233//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
0b045c31 234Bool_t AliHMPIDParam::IsDeadPad(Int_t padx,Int_t pady,Int_t ch)
235{
236// Check is the current pad is active or not
237// Arguments: padx,pady pad integer coord
238// Returns: kTRUE if dead, kFALSE if active
239
240 if(fgMapPad[padx-1][pady-1][ch]) return kFALSE; //current pad active
241
242 return kTRUE;
243}
244//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
ae5a42aa 245void AliHMPIDParam::Lors2Pad(Float_t x,Float_t y,Int_t &pc,Int_t &px,Int_t &py)
246{
247// Check the pad of given position
248// Arguments: x,y- position [cm] in LORS; pc,px,py- pad where to store the result
249// Returns: none
250 pc=px=py=-1;
251 if (x>fgkMinPcX[0] && x<fgkMaxPcX[0]) {pc=0; px=Int_t( x / SizePadX());}//PC 0 or 2 or 4
252 else if(x>fgkMinPcX[1] && x<fgkMaxPcX[1]) {pc=1; px=Int_t((x-fgkMinPcX[1]) / SizePadX());}//PC 1 or 3 or 5
253 else return;
254 if (y>fgkMinPcY[0] && y<fgkMaxPcY[0]) { py=Int_t( y / SizePadY());}//PC 0 or 1
255 else if(y>fgkMinPcY[2] && y<fgkMaxPcY[2]) {pc+=2;py=Int_t((y-fgkMinPcY[2]) / SizePadY());}//PC 2 or 3
256 else if(y>fgkMinPcY[4] && y<fgkMaxPcY[4]) {pc+=4;py=Int_t((y-fgkMinPcY[4]) / SizePadY());}//PC 4 or 5
257 else return;
258}
49881df7 259//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
7656d8ac 260Int_t AliHMPIDParam::InHVSector(Float_t y)
49881df7 261{
7656d8ac 262//Calculate the HV sector corresponding to the cluster position
263//Arguments: y
264//Returns the HV sector in the single module
265
266 Int_t hvsec = -1;
267 Int_t pc,px,py;
268 Lors2Pad(1.,y,pc,px,py);
269 if(py==-1) return hvsec;
270
271 hvsec = (py+(pc/2)*(kMaxPy+1))/((kMaxPy+1)/2);
272
273 return hvsec;
49881df7 274}
275//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
f455af6e 276Double_t AliHMPIDParam::FindTemp(Double_t tLow,Double_t tHigh,Double_t y)
277{
278// Model for gradient in temperature
ddb21a01 279 Double_t yRad = HinRad(y); //height in a given radiator
280 if(tHigh<tLow) tHigh = tLow; //if Tout < Tin consider just Tin as reference...
281 if(yRad<0 ) yRad = 0; //protection against fake y values
282 if(yRad>SizePcY()) yRad = SizePcY(); //protection against fake y values
f455af6e 283
ddb21a01 284 Double_t gradT = (tHigh-tLow)/SizePcY(); // linear gradient
285 return gradT*yRad+tLow;
f455af6e 286}
287//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
0b045c31 288void AliHMPIDParam::SetChStatus(Int_t ch,Bool_t status)
289{
290//Set a chamber on or off depending on the status
291//Arguments: ch=chamber,status=kTRUE = active, kFALSE=off
292//Returns: none
293 for(Int_t padx=0;padx<kMaxPcx+1;padx++) {
294 for(Int_t pady=0;pady<kMaxPcy+1;pady++) {
295 fgMapPad[padx][pady][ch] = status;
296 }
297 }
298}
299//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
300void AliHMPIDParam::SetSectStatus(Int_t ch,Int_t sect,Bool_t status)
301{
302//Set a given sector sect for a chamber ch on or off depending on the status
303//Sector=0,5 (6 sectors)
304//Arguments: ch=chamber,sect=sector,status: kTRUE = active, kFALSE=off
305//Returns: none
306
307 Int_t npadsect = (kMaxPcy+1)/6;
308 Int_t padSectMin = npadsect*sect;
309 Int_t padSectMax = padSectMin+npadsect;
310
311 for(Int_t padx=0;padx<kMaxPcx+1;padx++) {
312 for(Int_t pady=padSectMin;pady<padSectMax;pady++) {
313 fgMapPad[padx][pady][ch] = status;
314 }
315 }
316}
317//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
318void AliHMPIDParam::SetPcStatus(Int_t ch,Int_t pc,Bool_t status)
319{
320//Set a given PC pc for a chamber ch on or off depending on the status
321//Arguments: ch=chamber,pc=PC,status: kTRUE = active, kFALSE=off
322//Returns: none
323
324 Int_t deltaX = pc%2;
325 Int_t deltaY = pc/2;
326 Int_t padPcXMin = deltaX*kPadPcX;
327 Int_t padPcXMax = padPcXMin+kPadPcX;
328 Int_t padPcYMin = deltaY*kPadPcY;
329 Int_t padPcYMax = padPcYMin+kPadPcY;
330
331 for(Int_t padx=padPcXMin;padx<padPcXMax;padx++) {
332 for(Int_t pady=padPcYMin;pady<padPcYMax;pady++) {
333 fgMapPad[padx][pady][ch] = status;
334 }
335 }
336}
337//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
338void AliHMPIDParam::PrintChStatus(Int_t ch)
339{
340//Print the map status of a chamber on or off depending on the status
341//Arguments: ch=chamber
342//Returns: none
343 Printf(" ");
344 Printf(" --------- C H A M B E R %d ---------------",ch);
345 for(Int_t pady=kMaxPcy;pady>=0;pady--) {
346 for(Int_t padx=0;padx<kMaxPcx+1;padx++) {
347 if(padx==80) printf(" ");
348 printf("%d",fgMapPad[padx][pady][ch]);
349 }
350 printf(" %d \n",pady+1);
ab534702 351 if(pady%48==0) printf("\n");
0b045c31 352 }
ab534702 353 printf("\n");
0b045c31 354}
26d52a71 355//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
356void AliHMPIDParam::SetGeomAccept()
357{
358//Set the real acceptance of the modules, due to ineficciency or hardware problems (up tp 1/6/2010)
359//Arguments: none
360//Returns: none
361 SetSectStatus(0,3,kFALSE);
362 SetSectStatus(4,0,kFALSE);
363 SetSectStatus(5,1,kFALSE);
364 SetSectStatus(6,2,kFALSE);
365 SetSectStatus(6,3,kFALSE);
366}
d3da6dc4 367#endif