]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSClusterFinderSDD.cxx
Moved fField initialization to InitDetector()
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
CommitLineData
b0f5e3fc 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
a1f090e0 16#include <iostream.h>
17
78a228db 18#include <TFile.h>
a1f090e0 19#include <TMath.h>
20#include <math.h>
b0f5e3fc 21
22#include "AliITSClusterFinderSDD.h"
e8189707 23#include "AliITSMapA1.h"
24#include "AliITS.h"
78a228db 25#include "AliITSdigit.h"
26#include "AliITSRawCluster.h"
27#include "AliITSRecPoint.h"
28#include "AliITSsegmentation.h"
29#include "AliITSresponse.h"
b0f5e3fc 30#include "AliRun.h"
31
32
33
34ClassImp(AliITSClusterFinderSDD)
35
36//----------------------------------------------------------
37AliITSClusterFinderSDD::AliITSClusterFinderSDD
38(AliITSsegmentation *seg, AliITSresponse *response, TClonesArray *digits, TClonesArray *recp)
39{
40 // constructor
78a228db 41
b0f5e3fc 42 fSegmentation=seg;
43 fResponse=response;
44 fDigits=digits;
45 fClusters=recp;
46 fNclusters= fClusters->GetEntriesFast();
b0f5e3fc 47 SetCutAmplitude();
48 SetDAnode();
49 SetDTime();
b0f5e3fc 50 SetMinPeak();
78a228db 51 SetMinNCells();
52 SetMaxNCells();
53 SetTimeCorr();
a1f090e0 54 SetMinCharge();
78a228db 55 fMap=new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
56
b0f5e3fc 57}
58
59//_____________________________________________________________________________
60AliITSClusterFinderSDD::AliITSClusterFinderSDD()
61{
62 // constructor
63 fSegmentation=0;
64 fResponse=0;
65 fDigits=0;
66 fClusters=0;
67 fNclusters=0;
e8189707 68 fMap=0;
b0f5e3fc 69 SetCutAmplitude();
70 SetDAnode();
71 SetDTime();
b0f5e3fc 72 SetMinPeak();
78a228db 73 SetMinNCells();
74 SetMaxNCells();
75 SetTimeCorr();
a1f090e0 76 SetMinCharge();
b0f5e3fc 77
78}
79
e8189707 80//_____________________________________________________________________________
81AliITSClusterFinderSDD::~AliITSClusterFinderSDD()
82{
83 // destructor
84
85 if(fMap) delete fMap;
e8189707 86
87}
b0f5e3fc 88//__________________________________________________________________________
89AliITSClusterFinderSDD::AliITSClusterFinderSDD(const AliITSClusterFinderSDD &source){
90 // Copy Constructor
91 if(&source == this) return;
92 this->fClusters = source.fClusters ;
93 this->fNclusters = source.fNclusters ;
94 this->fMap = source.fMap ;
95 this->fCutAmplitude = source.fCutAmplitude ;
96 this->fDAnode = source.fDAnode ;
97 this->fDTime = source.fDTime ;
78a228db 98 this->fTimeCorr = source.fTimeCorr ;
b0f5e3fc 99 this->fMinPeak = source.fMinPeak ;
100 this->fMinNCells = source.fMinNCells ;
78a228db 101 this->fMaxNCells = source.fMaxNCells ;
b0f5e3fc 102 return;
103}
104
105//_________________________________________________________________________
106AliITSClusterFinderSDD&
107 AliITSClusterFinderSDD::operator=(const AliITSClusterFinderSDD &source) {
108 // Assignment operator
109 if(&source == this) return *this;
110 this->fClusters = source.fClusters ;
111 this->fNclusters = source.fNclusters ;
112 this->fMap = source.fMap ;
113 this->fCutAmplitude = source.fCutAmplitude ;
114 this->fDAnode = source.fDAnode ;
115 this->fDTime = source.fDTime ;
78a228db 116 this->fTimeCorr = source.fTimeCorr ;
b0f5e3fc 117 this->fMinPeak = source.fMinPeak ;
118 this->fMinNCells = source.fMinNCells ;
78a228db 119 this->fMaxNCells = source.fMaxNCells ;
b0f5e3fc 120 return *this;
121}
122
b0f5e3fc 123
b0f5e3fc 124//_____________________________________________________________________________
125
126void AliITSClusterFinderSDD::Find1DClusters()
127{
128 // find 1D clusters
129
a1f090e0 130 AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
131
132 // retrieve the parameters
133 Int_t fNofMaps = fSegmentation->Npz();
134 Int_t fMaxNofSamples = fSegmentation->Npx();
135 Int_t fNofAnodes = fNofMaps/2;
136 Int_t dummy=0;
137 Float_t fTimeStep = fSegmentation->Dpx(dummy);
138 Float_t fSddLength = fSegmentation->Dx();
139 Float_t fDriftSpeed = fResponse->DriftSpeed();
140
141 Float_t anodePitch = fSegmentation->Dpz(dummy);
142 // map the signal
143 fMap->SetThreshold(fCutAmplitude);
b0f5e3fc 144
a1f090e0 145 fMap->FillMap();
146
147 Float_t noise;
148 Float_t baseline;
149 fResponse->GetNoiseParam(noise,baseline);
150
151 Int_t nofFoundClusters = 0;
152 Int_t i;
153 Float_t **dfadc = new Float_t*[fNofAnodes];
154 for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
155 Float_t fadc = 0.;
156 Float_t fadc1 = 0.;
157 Float_t fadc2 = 0.;
158 Int_t j,k,idx,l,m;
159 for(j=0;j<2;j++) {
160 for(k=0;k<fNofAnodes;k++) {
161 idx = j*fNofAnodes+k;
162 // signal (fadc) & derivative (dfadc)
163 dfadc[k][255]=0.;
164 for(l=0; l<fMaxNofSamples; l++) {
165 fadc2=(Float_t)fMap->GetSignal(idx,l);
166 if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
167 if(l>0) dfadc[k][l-1] = fadc2-fadc1;
168 } // samples
169 } // anodes
b0f5e3fc 170
a1f090e0 171 for(k=0;k<fNofAnodes;k++) {
172 //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
173 idx = j*fNofAnodes+k;
174
175 Int_t imax = 0;
176 Int_t imaxd = 0;
177 Int_t it=0;
178 while(it <= fMaxNofSamples-3) {
b0f5e3fc 179
a1f090e0 180 imax = it;
181 imaxd = it;
182 // maximum of signal
b0f5e3fc 183
a1f090e0 184 Float_t fadcmax = 0.;
185 Float_t dfadcmax = 0.;
186 Int_t lthrmina = 1;
187 Int_t lthrmint = 3;
b0f5e3fc 188
a1f090e0 189 Int_t lthra = 1;
190 Int_t lthrt = 0;
b0f5e3fc 191
a1f090e0 192 for(m=0;m<20;m++) {
193 Int_t id = it+m;
194 if(id>=fMaxNofSamples) break;
195 fadc=(float)fMap->GetSignal(idx,id);
196 if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
197 if(fadc > (float)fCutAmplitude) {
198 lthrt++;
199 }
200
201 if(dfadc[k][id] > dfadcmax) {
202 dfadcmax = dfadc[k][id];
203 imaxd = id;
204 }
205 }
206 it = imaxd;
b0f5e3fc 207
a1f090e0 208 if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
209
210 // cluster charge
211 Int_t tstart = it-2;
212 if(tstart < 0) tstart = 0;
213
214 Bool_t ilcl = 0;
215 if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
216
217 if(ilcl) {
218 nofFoundClusters++;
219
220 Int_t tstop = tstart;
221 Float_t dfadcmin = 10000.;
222 Int_t ij;
223 for(ij=0; ij<20; ij++) {
224 if(tstart+ij > 255) { tstop = 255; break; }
225 fadc=(float)fMap->GetSignal(idx,tstart+ij);
226 if((dfadc[k][tstart+ij] < dfadcmin) && (fadc > fCutAmplitude)) {
227 tstop = tstart+ij+5;
228 if(tstop > 255) tstop = 255;
229 dfadcmin = dfadc[k][it+ij];
230 }
231 }
232
233 Float_t clusterCharge = 0.;
234 Float_t clusterAnode = k+0.5;
235 Float_t clusterTime = 0.;
236 Float_t clusterMult = 0.;
237 Float_t clusterPeakAmplitude = 0.;
238 Int_t its,peakpos=-1;
239 Float_t n, baseline;
240 fResponse->GetNoiseParam(n,baseline);
241 for(its=tstart; its<=tstop; its++) {
242 fadc=(float)fMap->GetSignal(idx,its);
243 if(fadc>baseline)
244 fadc-=baseline;
245 else
246 fadc=0.;
247 clusterCharge += fadc;
248 // as a matter of fact we should take the peak pos before FFT
249 // to get the list of tracks !!!
250 if(fadc > clusterPeakAmplitude) {
251 clusterPeakAmplitude = fadc;
252 //peakpos=fMap->GetHitIndex(idx,its);
253 Int_t shift=(int)(fTimeCorr/fTimeStep);
254 if(its>shift && its<(fMaxNofSamples-shift)) peakpos=fMap->GetHitIndex(idx,its+shift);
255 else peakpos=fMap->GetHitIndex(idx,its);
256 if(peakpos<0) peakpos=fMap->GetHitIndex(idx,its);
257 }
258 clusterTime += fadc*its;
259 if(fadc > 0) clusterMult++;
260 if(its == tstop) {
261 clusterTime /= (clusterCharge/fTimeStep); // ns
262 if(clusterTime > fTimeCorr) clusterTime -= fTimeCorr; // ns
263 }
264 }
265
266 Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*anodePitch;
267 Float_t clusterDriftPath = clusterTime*fDriftSpeed;
268 clusterDriftPath = fSddLength-clusterDriftPath;
269
270 if(clusterCharge <= 0.) break;
271 AliITSRawClusterSDD clust(j+1,clusterAnode,clusterTime,clusterCharge,clusterPeakAmplitude,peakpos,0.,0.,clusterDriftPath,clusteranodePath,clusterMult,0,0,0,0,0,0,0);
272 iTS->AddCluster(1,&clust);
273 it = tstop;
b0f5e3fc 274 } // ilcl
275
276 it++;
277
278 } // while (samples)
279 } // anodes
280 } // detectors (2)
a1f090e0 281
282 //fMap->ClearMap();
44b3710f 283
78a228db 284 for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
44b3710f 285 delete [] dfadc;
a1f090e0 286
287 return;
288
289}
290
291//_____________________________________________________________________________
292
293void AliITSClusterFinderSDD::Find1DClustersE()
294{
295
296 AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
297
298 // retrieve the parameters
299 Int_t fNofMaps = fSegmentation->Npz();
300 Int_t fMaxNofSamples = fSegmentation->Npx();
301 Int_t fNofAnodes = fNofMaps/2;
302 Int_t dummy=0;
303 Float_t fTimeStep = fSegmentation->Dpx( dummy );
304 Float_t fSddLength = fSegmentation->Dx();
305 Float_t fDriftSpeed = fResponse->DriftSpeed();
306 Float_t anodePitch = fSegmentation->Dpz( dummy );
307 Float_t n, baseline;
308 fResponse->GetNoiseParam( n, baseline );
309
310 // map the signal
311 fMap->SetThreshold( fCutAmplitude );
312 fMap->FillMap();
313 Int_t nClu = 0;
314
315// cout << "Search cluster... "<< endl;
316 for( Int_t j=0; j<2; j++ )
317 {
318 for( Int_t k=0; k<fNofAnodes; k++ )
319 {
320 Int_t idx = j*fNofAnodes+k;
321
322 Bool_t On = kFALSE;
323 Int_t start = 0;
324 Int_t nTsteps = 0;
325 Float_t fmax = 0.;
326 Int_t lmax = 0;
327 Float_t charge = 0.;
328 Float_t time = 0.;
329 Float_t anode = k+0.5;
330 Int_t peakpos = -1;
331
332 for( Int_t l=0; l<fMaxNofSamples; l++ )
333 {
334 Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
335 if( fadc > 0.0 )
336 {
337 if( On == kFALSE && l<fMaxNofSamples-4) // star RawCluster (reset var.)
338 {
339 Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
340 if( fadc1 < fadc ) continue;
341 start = l;
342 fmax = 0.;
343 lmax = 0;
344 time = 0.;
345 charge = 0.;
346 On = kTRUE;
347 nTsteps = 0;
348 }
349
350 nTsteps++ ;
351 if( fadc > baseline )
352 fadc -= baseline;
353 else
354 fadc=0.;
355
356 charge += fadc;
357 time += fadc*l;
358
359 if( fadc > fmax )
360 {
361 fmax = fadc;
362 lmax = l;
363 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
364 if( l > shift && l < (fMaxNofSamples-shift) )
365 peakpos = fMap->GetHitIndex( idx, l+shift );
366 else
367 peakpos = fMap->GetHitIndex( idx, l );
368 if( peakpos < 0 ) peakpos = fMap->GetHitIndex( idx, l );
369 }
370 }
371 else
372 {
373 if( On == kTRUE )
374 {
375 if( nTsteps > 2 ) // min # of timesteps for a RawCluster
376 {
377 // Found a RawCluster...
378 Int_t stop = l-1;
379 time /= (charge/fTimeStep); // ns
380 // time = lmax*fTimeStep; // ns
381 if( time > fTimeCorr ) time -= fTimeCorr; // ns
382 Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
383 Float_t DriftPath = time*fDriftSpeed;
384 DriftPath = fSddLength-DriftPath;
385 AliITSRawClusterSDD clust( j+1, anode, time, charge,
386 fmax, peakpos, 0., 0., DriftPath, anodePath, nTsteps
387 , start, stop, start, stop, 1, k, k );
388 iTS->AddCluster( 1, &clust );
389 // clust.PrintInfo();
390 nClu++;
391 }
392 On = kFALSE;
393 }
394 }
395 } // samples
396 } // anodes
397 } // wings
398
399// cout << "# Rawclusters " << nClu << endl;
400 return;
401
402}
403
404//_____________________________________________________________________________
405
406Int_t AliITSClusterFinderSDD::SearchPeak( Float_t *spect, Int_t xdim, Int_t zdim,
407 Int_t *peakX, Int_t *peakZ, Float_t *peakAmp, Float_t minpeak )
408{
409 Int_t npeak = 0; // # peaks
56fff130 410 Int_t i,j;
a1f090e0 411
412 // search peaks
413 for( Int_t z=1; z<zdim-1; z++ )
414 {
415 for( Int_t x=2; x<xdim-3; x++ )
416 {
417 Float_t Sxz = spect[x*zdim+z];
418 Float_t Sxz1 = spect[(x+1)*zdim+z];
419 Float_t Sxz2 = spect[(x-1)*zdim+z];
420
421 // search a local max. in s[x,z]
422 if( Sxz < minpeak || Sxz1 <= 0 || Sxz2 <= 0 ) continue;
423 if( Sxz >= spect[(x+1)*zdim+z ] && Sxz >= spect[(x-1)*zdim+z ] &&
424 Sxz >= spect[x*zdim +z+1] && Sxz >= spect[x*zdim +z-1] &&
425 Sxz >= spect[(x+1)*zdim+z+1] && Sxz >= spect[(x+1)*zdim+z-1] &&
426 Sxz >= spect[(x-1)*zdim+z+1] && Sxz >= spect[(x-1)*zdim+z-1] )
427 {
428 // peak found
429 peakX[npeak] = x;
430 peakZ[npeak] = z;
431 peakAmp[npeak] = Sxz;
432 npeak++;
433 }
434 }
435 }
436
437 // search groups of peaks with same amplitude.
438 Int_t *Flag = new Int_t[npeak];
56fff130 439 for( i=0; i<npeak; i++ ) Flag[i] = 0;
440 for( i=0; i<npeak; i++ )
a1f090e0 441 {
56fff130 442 for( j=0; j<npeak; j++ )
a1f090e0 443 {
444 if( i==j) continue;
445 if( Flag[j] > 0 ) continue;
9e1a0ddb 446 if( peakAmp[i] == peakAmp[j] && TMath::Abs(peakX[i]-peakX[j])<=1 && TMath::Abs(peakZ[i]-peakZ[j])<=1 )
a1f090e0 447 {
448 if( Flag[i] == 0) Flag[i] = i+1;
449 Flag[j] = Flag[i];
450 }
451 }
452 }
453
454 // make average of peak groups
56fff130 455 for( i=0; i<npeak; i++ )
a1f090e0 456 {
457 Int_t nFlag = 1;
458 if( Flag[i] <= 0 ) continue;
56fff130 459 for( j=0; j<npeak; j++ )
a1f090e0 460 {
461 if( i==j ) continue;
462 if( Flag[j] != Flag[i] ) continue;
463 peakX[i] += peakX[j];
464 peakZ[i] += peakZ[j];
465 nFlag++;
466 npeak--;
467 for( Int_t k=j; k<npeak; k++ )
468 {
469 peakX[k] = peakX[k+1];
470 peakZ[k] = peakZ[k+1];
471 peakAmp[k] = peakAmp[k+1];
472 Flag[k] = Flag[k+1];
473 }
474 j--;
475 }
b0f5e3fc 476
a1f090e0 477 if( nFlag > 1 )
478 {
479 peakX[i] /= nFlag;
480 peakZ[i] /= nFlag;
481 }
482 }
483
484 delete [] Flag;
485 return( npeak );
486}
487
488
f5805f09 489void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par, Float_t *spe, Float_t *Integral)
a1f090e0 490{
491 Int_t Electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
492 Int_t param_peak = 5;
493 // par -> paramiters..
494 // par[0] number of peaks.
495 // for each peak i=1, ..., par[0]
496 // par[i] = Ampl.
497 // par[i+1] = xpos
498 // par[i+2] = zpos
499 // par[i+3] = tau
500 // par[i+4] = sigma.
501 Int_t npeak = (Int_t)par[0];
502
503 memset( spe, 0, sizeof( Float_t )*zdim*xdim );
504
505 Int_t k = 1;
506 for( Int_t i=0; i<npeak; i++ )
507 {
508 if( Integral != 0 ) Integral[i] = 0.;
509 Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
510 Float_t T2 = par[k+3]; //PASCAL
511 if(Electronics == 2) { T2 *= T2; T2 *= 2; } // OLA
512 for( Int_t z=0; z<zdim; z++ ) {
513 for( Int_t x=0; x<xdim; x++ ) {
514 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
515 Float_t x2 = 0.;
516 if(Electronics == 1) // PASCAL
517 x2 = (x-par[k+1]+T2)/T2;
518 else if(Electronics == 2) //OLA
519 x2 = (x-par[k+1])*(x-par[k+1])/T2;
520 else
521 cout << "Wrong Electronics" << endl;
522 // Float_t signal = (x2 > 0.) ? par[k] * x2*x2 * exp( -2*x2+2. - z2 ) : 0.0; // RCCR
523 Float_t signal = 0.;
524 if(Electronics == 1)
525 signal = (x2 > 0.) ? par[k] * x2 * exp( -x2+1. - z2 ) : 0.0;
526 else if(Electronics == 2) //OLA
527 signal = par[k] * exp( -x2 - z2 );
528 else
529 cout << "Wrong Electronics" << endl;
530
531 spe[x*zdim+z] += signal;
532 if( Integral != 0 ) Integral[i] += signal;
533 }
534 }
535 k += param_peak;
536 }
b0f5e3fc 537 return;
a1f090e0 538}
539
b0f5e3fc 540
a1f090e0 541/*
542void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par, Float_t *spe, Float_t *Integral=0 )
543{
544 Int_t param_peak = 5;
545// par -> paramiters..
546// par[0] number of peaks.
547// for each peak i=1, ..., par[0]
548// par[i] = Ampl.
549// par[i+1] = xpos
550// par[i+2] = zpos
551// par[i+3] = tau
552// par[i+4] = sigma.
553 Int_t npeak = (Int_t)par[0];
554
555 memset( spe, 0, sizeof( Float_t )*zdim*xdim );
556
557 Int_t k = 1;
558 for( Int_t i=0; i<npeak; i++ )
559 {
560 if( Integral != 0 ) Integral[i] = 0.;
561 Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
562 Float_t T2 = par[k+3]*par[k+3]*2.;
563 for( Int_t z=0; z<zdim; z++ )
564 {
565 for( Int_t x=0; x<xdim; x++ )
566 {
567 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
568 Float_t x2 = (x-par[k+1])*(x-par[k+1])/T2;
569 Float_t signal = par[k] * exp( -x2 - z2 );
570 spe[x*zdim+z] += signal;
571 if( Integral != 0 ) Integral[i] += signal;
572 }
573 }
574 k += param_peak;
575 }
576 return;
b0f5e3fc 577}
a1f090e0 578*/
579
580Float_t AliITSClusterFinderSDD::chisq( Int_t xdim, Int_t zdim, Float_t *spe, Float_t *speFit )
581{
582 // EVALUATES UNNORMALIZED CHI-SQUARED
583
584 Float_t chi2 = 0.;
585 for( Int_t z=0; z<zdim; z++ )
586 {
587 for( Int_t x=1; x<xdim-1; x++ )
588 {
589 Int_t index = x*zdim+z;
590 Float_t tmp = spe[index] - speFit[index];
591 chi2 += tmp*tmp;
592 }
593 }
594 return( chi2 );
595}
596
597
598void AliITSClusterFinderSDD::minim( Int_t xdim, Int_t zdim, Float_t *param, Float_t *prm0, Float_t *steprm, Float_t *chisqr,
599 Float_t *spe, Float_t *speFit )
600{
601 Int_t k, nnn, mmm, i;
602 Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
603
604 Int_t param_peak = 5;
605 Int_t npeak = (Int_t)param[0];
606 for( k=1; k<(npeak*param_peak+1); k++ ) prm0[k] = param[k];
607
608 for( k=1; k<(npeak*param_peak+1); k++ )
609 {
610 p1 = param[k];
611 delta = steprm[k];
612 d1 = delta;
613
614 // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
615 if( fabs( p1 ) > 1.0E-6 )
616 if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
617 else delta = (Float_t)1.0E-4;
618
619 // EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
620 PeakFunc( xdim, zdim, param, speFit );
621 chisq1 = chisq( xdim, zdim, spe, speFit );
622
623 p2 = p1+delta;
624 param[k] = p2;
625
626 PeakFunc( xdim, zdim, param, speFit );
627 chisq2 = chisq( xdim, zdim, spe, speFit );
628
629 if( chisq1 < chisq2 )
630 {
631 // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
632 delta = -delta;
633 t = p1;
634 p1 = p2;
635 p2 = t;
636 t = chisq1;
637 chisq1 = chisq2;
638 chisq2 = t;
639 }
640
641 i = 1; nnn = 0;
642 do { // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
643 nnn++;
644 p3 = p2 + delta;
645 mmm = nnn - (nnn/5)*5; // multiplo de 5
646 if( mmm == 0 )
647 {
648 d1 = delta;
649 // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW
650 delta *= 5;
651 }
652 param[k] = p3;
653
654 // Constrain paramiters
655 Int_t kpos = (k-1) % param_peak;
656 switch( kpos )
657 {
658 case 0 :
659 if( param[k] <= 20 ) param[k] = fMinPeak;
660 case 1 :
661 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
662 case 2 :
663 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
664 case 3 :
665 if( param[k] < .5 ) param[k] = .5;
666 case 4 :
667 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
668 };
669
670 PeakFunc( xdim, zdim, param, speFit );
671 chisq3 = chisq( xdim, zdim, spe, speFit );
672
673 if( chisq3 < chisq2 && nnn < 50 )
674 {
675 p1 = p2;
676 p2 = p3;
677 chisq1 = chisq2;
678 chisq2 = chisq3;
679 }
680 else i=0;
681
682 } while( i );
683
684 // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
685 a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
686 b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
687 if( a!=0 ) p0 = (Float_t)(0.5*b/a);
688 else p0 = 10000;
689
690 //---IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
691 // ERRONEOUS EVALUATION OF PARABOLA MINIMUM
692 //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
693
694 //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
695 //if( fabs( p2-p0 ) > dp ) p0 = p2;
696 param[k] = p0;
697
698 // Constrain paramiters
699 Int_t kpos = (k-1) % param_peak;
700 switch( kpos )
701 {
702 case 0 :
703 if( param[k] <= 20 ) param[k] = fMinPeak;
704 case 1 :
705 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
706 case 2 :
707 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
708 case 3 :
709 if( param[k] < .5 ) param[k] = .5;
710 case 4 :
711 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
712 };
713
714 PeakFunc( xdim, zdim, param, speFit );
715 chisqt = chisq( xdim, zdim, spe, speFit );
716
717 // DO NOT ALLOW ERRONEOUS INTERPOLATION
718 if( chisqt <= *chisqr )
719 *chisqr = chisqt;
720 else
721 param[k] = prm0[k];
722
723 // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
724 steprm[k] = (param[k]-prm0[k])/5;
725 if( steprm[k] >= d1 ) steprm[k] = d1/5;
726 }
727
728 // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
729 PeakFunc( xdim, zdim, param, speFit );
730 *chisqr = chisq( xdim, zdim, spe, speFit );
731 return;
732}
733
734Int_t AliITSClusterFinderSDD::noLinearFit( Int_t xdim, Int_t zdim, Float_t *param, Float_t *spe, Int_t *niter, Float_t *chir )
735{
736 const Float_t chilmt = 0.01; // relative accuracy
737 const Int_t nel = 3; // for parabolic minimization
738 const Int_t nstop = 50; // Max. iteration number
739 const Int_t param_peak = 5;
740
741 Int_t npeak = (Int_t)param[0];
742
743 // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE
744 if( (xdim*zdim - npeak*param_peak) <= 0 ) return( -1 );
745 Float_t deg_free = (xdim*zdim - npeak*param_peak)-1;
746
747 Int_t n, k, iter_num = 0;
748 Float_t *prm0 = new Float_t[npeak*param_peak+1];
749 Float_t *step = new Float_t[npeak*param_peak+1];
750 Float_t *schi = new Float_t[npeak*param_peak+1];
751 Float_t *sprm[3];
752 sprm[0] = new Float_t[npeak*param_peak+1];
753 sprm[1] = new Float_t[npeak*param_peak+1];
754 sprm[2] = new Float_t[npeak*param_peak+1];
755
756 Float_t chi0, chi1, reldif, a, b, prmin, dp;
757
758 Float_t *speFit = new Float_t[ xdim*zdim ];
759 PeakFunc( xdim, zdim, param, speFit );
760 chi0 = chisq( xdim, zdim, spe, speFit );
761 chi1 = chi0;
762
763
764 for( k=1; k<(npeak*param_peak+1); k++) prm0[k] = param[k];
765
766 for( k=1 ; k<(npeak*param_peak+1); k+=param_peak )
767 {
768 step[k] = param[k] / 20.0 ;
769 step[k+1] = param[k+1] / 50.0;
770 step[k+2] = param[k+2] / 50.0;
771 step[k+3] = param[k+3] / 20.0;
772 step[k+4] = param[k+4] / 20.0;
773 }
774
775 Int_t out = 0;
776 do
777 {
778 iter_num++;
779 chi0 = chi1;
780
781 minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
782 reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
783
784 // EXIT conditions
785 if( reldif < (float) chilmt )
786 {
787 *chir = (chi1>0) ? (float) TMath::Sqrt (chi1/deg_free) :0;
788 *niter = iter_num;
789 out = 0;
790 break;
791 }
792
793 if( (reldif < (float)(5*chilmt)) && (iter_num > nstop) )
794 {
795 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/deg_free):0;
796 *niter = iter_num;
797 out = 0;
798 break;
799 }
800
801 if( iter_num > 5*nstop )
802 {
803 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/deg_free):0;
804 *niter = iter_num;
805 out = 1;
806 break;
807 }
808
809 if( iter_num <= nel ) continue;
810
811 n = iter_num - (iter_num/nel)*nel; // EXTRAPOLATION LIMIT COUNTER N
812 if( n > 3 || n == 0 ) continue;
813 schi[n-1] = chi1;
814 for( k=1; k<(npeak*param_peak+1); k++ ) sprm[n-1][k] = param[k];
815 if( n != 3 ) continue;
816
817 // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
818 // PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
819
820 for( k=1; k<(npeak*param_peak+1); k++ )
821 {
822 Float_t tmp0 = sprm[0][k];
823 Float_t tmp1 = sprm[1][k];
824 Float_t tmp2 = sprm[2][k];
825 a = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
826 a += (schi[2]*(tmp0-tmp1));
827 b = schi[0]*(tmp1*tmp1-tmp2*tmp2);
828 b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*(tmp0*tmp0-tmp1*tmp1)));
829 if ((double)a < 1.0E-6) prmin = 0;
830 else prmin = (float) (0.5*b/a);
831 dp = 5*(tmp2-tmp0);
832
833 if (fabs(prmin-tmp2) > fabs(dp)) prmin = tmp2+dp;
834 param[k] = prmin;
835 step[k] = dp/10; // OPTIMIZE SEARCH STEP
836 }
837
838 } while( kTRUE );
839
840 delete [] prm0;
841 delete [] step;
842 delete [] schi;
843 delete [] sprm[0];
844 delete [] sprm[1];
845 delete [] sprm[2];
846 delete [] speFit;
847
848 return( out );
849}
850//_____________________________________________________________________________
851void AliITSClusterFinderSDD::ResolveClustersE()
852{
853 // The function to resolve clusters if the clusters overlapping exists
854
56fff130 855 Int_t i;
856
a1f090e0 857 AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
858 // get number of clusters for this module
859 Int_t nofClusters = fClusters->GetEntriesFast();
860 nofClusters -= fNclusters;
861
862 Int_t fNofMaps = fSegmentation->Npz();
863 Int_t fNofAnodes = fNofMaps/2;
864 Int_t fMaxNofSamples = fSegmentation->Npx();
865 Int_t dummy=0;
866 Double_t fTimeStep = fSegmentation->Dpx( dummy );
867 Double_t fSddLength = fSegmentation->Dx();
868 Double_t fDriftSpeed = fResponse->DriftSpeed();
869 Double_t anodePitch = fSegmentation->Dpz( dummy );
870 Float_t n, baseline;
871 fResponse->GetNoiseParam( n, baseline );
872 Int_t Electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
873
874 // fill Map of signals
875 fMap->FillMap();
876
877 for( Int_t j=0; j<nofClusters; j++ )
878 {
879 // get cluster information
880 AliITSRawClusterSDD *clusterJ = (AliITSRawClusterSDD*) fClusters->At( j );
881 Int_t astart = clusterJ->Astart();
882 Int_t astop = clusterJ->Astop();
883 Int_t tstart = clusterJ->Tstartf();
884 Int_t tstop = clusterJ->Tstopf();
885 Int_t wing = (Int_t)clusterJ->W();
886 if( wing == 2 )
887 {
888 astart += fNofAnodes;
889 astop += fNofAnodes;
890 }
891 Int_t xdim = tstop-tstart+3;
892 Int_t zdim = astop-astart+3;
893 Float_t *sp = new Float_t[ xdim*zdim+1 ];
894 memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
895
896 // make a local map from cluster region
897 for( Int_t ianode=astart; ianode<=astop; ianode++ )
898 {
899 for( Int_t itime=tstart; itime<=tstop; itime++ )
900 {
901 Float_t fadc = fMap->GetSignal( ianode, itime );
902 if( fadc > baseline ) fadc -= (Double_t)baseline;
903 else fadc = 0.;
904 Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
905 sp[index] = fadc;
906 } // time loop
907 } // anode loop
908
909 // search peaks on cluster
910 const Int_t np = 150;
911 Int_t peakX1[np];
912 Int_t peakZ1[np];
913 Float_t peakAmp1[np];
914 Int_t npeak = SearchPeak( sp, xdim, zdim, peakX1, peakZ1, peakAmp1, fMinPeak );
915
916 // if multiple peaks, split cluster
917 if( npeak >= 1 )
918 {
919 // cout << "npeak " << npeak << endl;
920 // clusterJ->PrintInfo();
921
922 Float_t *par = new Float_t[npeak*5+1];
923 par[0] = (Float_t)npeak;
924
925 // Initial paramiters in cell dimentions
926 Int_t k1 = 1;
56fff130 927 for( i=0; i<npeak; i++ ) {
a1f090e0 928 par[k1] = peakAmp1[i];
929 par[k1+1] = peakX1[i]; // local time pos. [timebin]
930 par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
931 if(Electronics == 1)
932 par[k1+3] = 2.; // PASCAL
933 else if(Electronics == 2)
934 par[k1+3] = 0.7; // tau [timebin] OLA
935 par[k1+4] = .4; // sigma [anodepich]
936 k1+=5;
937 }
938 Int_t niter;
939 Float_t chir;
940 noLinearFit( xdim, zdim, par, sp, &niter, &chir );
941
942 Float_t peakX[np];
943 Float_t peakZ[np];
944 Float_t sigma[np];
945 Float_t tau[np];
946 Float_t peakAmp[np];
947 Float_t Integral[np];
948
949 //get integrals => charge for each peak
950 PeakFunc( xdim, zdim, par, sp, Integral );
951
952 k1 = 1;
56fff130 953 for( i=0; i<npeak; i++ )
a1f090e0 954 {
955 peakAmp[i] = par[k1];
956 peakX[i] = par[k1+1];
957 peakZ[i] = par[k1+2];
958 tau[i] = par[k1+3];
959 sigma[i] = par[k1+4];
960 k1+=5;
961 }
962
963 // calculate paramiter for new clusters
56fff130 964 for( i=0; i<npeak; i++ )
a1f090e0 965 {
966 AliITSRawClusterSDD clusterI( *clusterJ );
967 Int_t newAnode = peakZ1[i]-1 + astart;
968 Int_t newiTime = peakX1[i]-1 + tstart;
969
970 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
971 if( newiTime > shift && newiTime < (fMaxNofSamples-shift) ) shift = 0;
972 Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
973 clusterI.SetPeakPos( peakpos );
974 clusterI.SetPeakAmpl( peakAmp1[i] );
975
976 Float_t newAnodef = peakZ[i] - 0.5 + astart;
977 Float_t newiTimef = peakX[i] - 1 + tstart;
978 if( wing == 2 ) newAnodef -= fNofAnodes;
979 Float_t AnodePath = (newAnodef - fNofAnodes/2)*anodePitch;
980 newiTimef *= fTimeStep;
981 if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
982 if(Electronics == 1) {
983 newiTimef *= 0.999438; // PASCAL
984 newiTimef += (6./fDriftSpeed - newiTimef/3000.);
985 }
986 else if(Electronics == 2)
987 newiTimef *= 0.99714; // OLA
988
989 Float_t DriftPath = fSddLength - newiTimef * fDriftSpeed;
990 Float_t sign = ( wing == 1 ) ? -1. : 1.;
991 clusterI.SetX( DriftPath*sign * 0.0001 );
992 clusterI.SetZ( AnodePath * 0.0001 );
993 clusterI.SetAnode( newAnodef );
994 clusterI.SetTime( newiTimef );
995 clusterI.SetAsigma( sigma[i]*anodePitch );
996 clusterI.SetTsigma( tau[i]*fTimeStep );
997 clusterI.SetQ( Integral[i] );
998
999 // clusterI.PrintInfo();
1000 iTS->AddCluster( 1, &clusterI );
1001 }
1002 fClusters->RemoveAt( j );
1003 delete [] par;
1004 }
1005 else cout <<" --- Peak not found!!!! minpeak=" << fMinPeak<<
1006 " cluster peak=" << clusterJ->PeakAmpl() << endl << endl;
1007
1008 delete [] sp;
1009 } // cluster loop
1010
1011 fClusters->Compress();
1012 fMap->ClearMap();
1013}
1014
b0f5e3fc 1015
1016//_____________________________________________________________________________
1017void AliITSClusterFinderSDD::GroupClusters()
1018{
1019 // group clusters
1020 Int_t dummy=0;
1021 Float_t fTimeStep = fSegmentation->Dpx(dummy);
1022
1023
1024 // get number of clusters for this module
1025 Int_t nofClusters = fClusters->GetEntriesFast();
1026 nofClusters -= fNclusters;
1027
b0f5e3fc 1028 AliITSRawClusterSDD *clusterI;
1029 AliITSRawClusterSDD *clusterJ;
1030
44b3710f 1031 Int_t *label = new Int_t [nofClusters];
b0f5e3fc 1032 Int_t i,j;
1033 for(i=0; i<nofClusters; i++) label[i] = 0;
1034 for(i=0; i<nofClusters; i++) {
1035 if(label[i] != 0) continue;
1036 for(j=i+1; j<nofClusters; j++) {
1037 if(label[j] != 0) continue;
1038 clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
1039 clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
1040 // 1.3 good
a1f090e0 1041 if(clusterI->T() < fTimeStep*60) fDAnode = 4.2; // TB 3.2
1042 if(clusterI->T() < fTimeStep*10) fDAnode = 1.5; // TB 1.
b0f5e3fc 1043 Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
1044 if(!pair) continue;
e8189707 1045 // clusterI->PrintInfo();
1046 // clusterJ->PrintInfo();
b0f5e3fc 1047 clusterI->Add(clusterJ);
1048 label[j] = 1;
1049 fClusters->RemoveAt(j);
a1f090e0 1050 j=i; // <- Ernesto
b0f5e3fc 1051 } // J clusters
1052 label[i] = 1;
1053 } // I clusters
1054 fClusters->Compress();
44b3710f 1055
1056 delete [] label;
b0f5e3fc 1057 return;
1058
1059}
1060
1061//_____________________________________________________________________________
1062
1063void AliITSClusterFinderSDD::SelectClusters()
1064{
1065 // get number of clusters for this module
1066 Int_t nofClusters = fClusters->GetEntriesFast();
1067 nofClusters -= fNclusters;
1068
b0f5e3fc 1069 Int_t i;
1070 for(i=0; i<nofClusters; i++) {
1071 AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
1072 Int_t rmflg = 0;
1073 Float_t wy = 0.;
1074 if(clusterI->Anodes() != 0.) {
1075 wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
1076 }
a1f090e0 1077 Int_t amp = (Int_t) clusterI->PeakAmpl();
1078 Int_t cha = (Int_t) clusterI->Q();
b0f5e3fc 1079 if(amp < fMinPeak) rmflg = 1;
a1f090e0 1080 if(cha < fMinCharge) rmflg = 1;
b0f5e3fc 1081 if(wy < fMinNCells) rmflg = 1;
78a228db 1082 //if(wy > fMaxNCells) rmflg = 1;
b0f5e3fc 1083 if(rmflg) fClusters->RemoveAt(i);
1084 } // I clusters
1085 fClusters->Compress();
1086 return;
1087
1088}
1089
a1f090e0 1090//_____________________________________________________________________________
1091
1092void AliITSClusterFinderSDD::ResolveClusters()
1093{
1094
1095// The function to resolve clusters if the clusters overlapping exists
1096
1097 AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1098
1099 // get number of clusters for this module
1100 Int_t nofClusters = fClusters->GetEntriesFast();
1101 nofClusters -= fNclusters;
1102 // cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","<<fNclusters<<endl;
1103
1104 Int_t fNofMaps = fSegmentation->Npz();
1105 Int_t fNofAnodes = fNofMaps/2;
1106 Int_t dummy=0;
1107 Double_t fTimeStep = fSegmentation->Dpx(dummy);
1108 Double_t fSddLength = fSegmentation->Dx();
1109 Double_t fDriftSpeed = fResponse->DriftSpeed();
1110 Double_t anodePitch = fSegmentation->Dpz(dummy);
1111 Float_t n, baseline;
1112 fResponse->GetNoiseParam(n,baseline);
1113 Float_t dzz_1A = anodePitch * anodePitch / 12;
1114
1115 // fill Map of signals
1116 fMap->FillMap();
1117
1118 Int_t j,i,ii,ianode,anode,itime;
1119 Int_t wing,astart,astop,tstart,tstop,nanode;
1120 Double_t fadc,ClusterTime;
1121 Double_t q[400],x[400],z[400]; // digit charges and coordinates
1122
1123 for(j=0; j<nofClusters; j++) {
1124
1125 AliITSRawClusterSDD *clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
1126
1127 Int_t ndigits = 0;
1128 astart=clusterJ->Astart();
1129 astop=clusterJ->Astop();
1130 tstart=clusterJ->Tstartf();
1131 tstop=clusterJ->Tstopf();
1132 nanode=clusterJ->Anodes(); // <- Ernesto
1133 wing=(Int_t)clusterJ->W();
1134 if(wing == 2) {
1135 astart += fNofAnodes;
1136 astop += fNofAnodes;
1137 }
1138
1139// cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","<<tstart<<","<<tstop<<endl;
1140
1141 // clear the digit arrays
1142 for(ii=0; ii<400; ii++) {
1143 q[ii] = 0.;
1144 x[ii] = 0.;
1145 z[ii] = 0.;
1146 }
1147
1148 for(ianode=astart; ianode<=astop; ianode++) {
1149 for(itime=tstart; itime<=tstop; itime++) {
1150 fadc=fMap->GetSignal(ianode,itime);
1151 if(fadc>baseline) {
1152 fadc-=(Double_t)baseline;
1153 q[ndigits] = fadc*(fTimeStep/160); // KeV
1154 anode = ianode;
1155 if(wing == 2) anode -= fNofAnodes;
1156 z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
1157 ClusterTime = itime*fTimeStep;
1158 if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr; // ns
1159 x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
1160 if(wing == 1) x[ndigits] *= (-1);
1161// cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","<<fadc<<endl;
1162// cout<<"wing,anode,ndigits,charge ="<<wing<<","<<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
1163 ndigits++;
1164 continue;
1165 }
1166 fadc=0;
1167 // cout<<"fadc=0, ndigits ="<<ndigits<<endl;
1168 } // time loop
1169 } // anode loop
1170 // cout<<"for new cluster ndigits ="<<ndigits<<endl;
1171
1172
1173 // Fit cluster to resolve for two separate ones --------------------
1174
1175 Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
1176 Double_t dxx=0., dzz=0., dxz=0.;
1177 Double_t scl = 0., tmp, tga, elps = -1.;
1178 Double_t xfit[2], zfit[2], qfit[2];
1179 Double_t pitchz = anodePitch*1.e-4; // cm
1180 Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4; // cm
1181 Double_t sigma2;
1182 Int_t nfhits;
1183 Int_t nbins = ndigits;
1184 Int_t separate = 0;
1185
1186 // now, all lengths are in microns
1187
1188 for (ii=0; ii<nbins; ii++) {
1189 qq += q[ii];
1190 xm += x[ii]*q[ii];
1191 zm += z[ii]*q[ii];
1192 xx += x[ii]*x[ii]*q[ii];
1193 zz += z[ii]*z[ii]*q[ii];
1194 xz += x[ii]*z[ii]*q[ii];
1195 }
1196
1197 xm /= qq;
1198 zm /= qq;
1199 xx /= qq;
1200 zz /= qq;
1201 xz /= qq;
1202
1203 dxx = xx - xm*xm;
1204 dzz = zz - zm*zm;
1205 dxz = xz - xm*zm;
1206
1207 // shrink the cluster in the time direction proportionaly to the
1208 // dxx/dzz, which lineary depends from the drift path
1209
1210 // new Ernesto........
1211 if( nanode == 1 )
1212 {
1213 dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
1214 scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
1215 }
1216 if( nanode == 2 )
1217 {
1218 scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
1219 }
1220
1221 if( nanode == 3 )
1222 {
1223 scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
1224 }
1225
1226 if( nanode > 3 )
1227 {
1228 scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
1229 }
1230
1231 // cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","<<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
1232
1233 // old Boris.........
1234 // tmp=29730. - 585.*fabs(xm/1000.);
1235 // scl=TMath::Sqrt(tmp/130000.);
1236
1237 xm *= scl;
1238 xx *= scl*scl;
1239 xz *= scl;
1240
1241
1242 dxx = xx - xm*xm;
1243// dzz = zz - zm*zm;
1244 dxz = xz - xm*zm;
1245
1246 // cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","<<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1247
1248// if(dzz < 7200.) dzz = 7200.; // for one anode cluster dzz = anode**2/12
1249
1250 if (dxx < 0.) dxx=0.;
1251
1252 // the data if no cluster overlapping (the coordunates are in cm)
1253 nfhits = 1;
1254 xfit[0] = xm*1.e-4;
1255 zfit[0] = zm*1.e-4;
1256 qfit[0] = qq;
1257
1258// if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
1259
1260 if (nbins >= 7) {
1261 if (dxz==0.) tga=0.;
1262 else {
1263 tmp=0.5*(dzz-dxx)/dxz;
1264 tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) : tmp+TMath::Sqrt(tmp*tmp+1);
1265 }
1266 elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
1267
1268 // change from microns to cm
1269 xm *= 1.e-4;
1270 zm *= 1.e-4;
1271 zz *= 1.e-8;
1272 xx *= 1.e-8;
1273 xz *= 1.e-8;
1274 dxz *= 1.e-8;
1275 dxx *= 1.e-8;
1276 dzz *= 1.e-8;
1277
1278 // cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","<<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1279
1280 for (i=0; i<nbins; i++) {
1281 x[i] = x[i] *= scl;
1282 x[i] = x[i] *= 1.e-4;
1283 z[i] = z[i] *= 1.e-4;
1284 }
1285
1286 // cout<<"!!! elps ="<<elps<<endl;
1287
1288 if (elps < 0.3) { // try to separate hits
1289 separate = 1;
1290 tmp=atan(tga);
1291 Double_t cosa=cos(tmp),sina=sin(tmp);
1292 Double_t a1=0., x1=0., xxx=0.;
1293 for (i=0; i<nbins; i++) {
1294 tmp=x[i]*cosa + z[i]*sina;
1295 if (q[i] > a1) {
1296 a1=q[i];
1297 x1=tmp;
1298 }
1299 xxx += tmp*tmp*tmp*q[i];
1300 }
1301 xxx /= qq;
1302 Double_t z12=-sina*xm + cosa*zm;
1303 sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
1304 xm=cosa*xm + sina*zm;
1305 xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
1306 Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
1307 Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
1308 for (i=0; i<33; i++) { // solve a system of equations
1309 Double_t x1_old=x1, x2_old=x2, r_old=r;
1310 Double_t c11=x1-x2;
1311 Double_t c12=r;
1312 Double_t c13=1-r;
1313 Double_t c21=x1*x1 - x2*x2;
1314 Double_t c22=2*r*x1;
1315 Double_t c23=2*(1-r)*x2;
1316 Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
1317 Double_t c32=3*r*(sigma2 + x1*x1);
1318 Double_t c33=3*(1-r)*(sigma2 + x2*x2);
1319 Double_t f1=-(r*x1 + (1-r)*x2 - xm);
1320 Double_t f2=-(r*(sigma2 + x1*x1) + (1-r)*(sigma2 + x2*x2) - xx);
1321 Double_t f3=-(r*x1*(3*sigma2+x1*x1) + (1-r)*x2*(3*sigma2+x2*x2)-xxx);
1322 Double_t d=c11*c22*c33 + c21*c32*c13 + c12*c23*c31 - c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
1323 if (d==0.) {
1324 cout<<"*********** d=0 ***********\n";
1325 break;
1326 }
1327 Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
1328 f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
1329 Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
1330 c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
1331 Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
1332 c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
1333 r += dr/d;
1334 x1 += d1/d;
1335 x2 += d2/d;
1336
1337 if (fabs(x1-x1_old) > 0.0001) continue;
1338 if (fabs(x2-x2_old) > 0.0001) continue;
1339 if (fabs(r-r_old)/5 > 0.001) continue;
1340
1341 a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
1342 Double_t a2=a1*(1-r)/r;
1343 qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina + z12*cosa;
1344 qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina + z12*cosa;
1345 nfhits=2;
1346 break; // Ok !
1347 }
1348 if (i==33) cerr<<"No more iterations ! "<<endl;
1349 } // end of attempt to separate overlapped clusters
1350 } // end of nbins cut
1351
1352 if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
1353 if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="<<elps<<","<<nfhits<<endl;
1354 if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
1355
1356 for (i=0; i<nfhits; i++) {
1357 xfit[i] *= (1.e+4/scl);
1358 if(wing == 1) xfit[i] *= (-1);
1359 zfit[i] *= 1.e+4;
1360 // cout<<" --------- i,xfiti,zfiti,qfiti ="<<i<<","<<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
1361 }
1362
1363 Int_t ncl = nfhits;
1364 if(nfhits == 1 && separate == 1) {
1365 cout<<"!!!!! no separate"<<endl;
1366 ncl = -2;
1367 }
1368
1369 if(nfhits == 2) {
1370 cout << "Split cluster: " << endl;
1371 clusterJ->PrintInfo();
1372 cout << " in: " << endl;
1373 for (i=0; i<nfhits; i++) {
1374
1375 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,-1,(Float_t)qfit[i],ncl,0,0,(Float_t)xfit[i],(Float_t)zfit[i],0,0,0,0,tstart,tstop,astart,astop);
1376 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,-1,(Float_t)qfit[i],0,0,0,(Float_t)xfit[i],(Float_t)zfit[i],0,0,0,0,tstart,tstop,astart,astop,ncl);
1377
1378 // ???????????
1379 // if(wing == 1) xfit[i] *= (-1);
1380 Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
1381 Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
1382 Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
1383 Float_t peakpos = clusterJ->PeakPos();
1384
1385 Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
1386 Float_t clusterDriftPath = Time*fDriftSpeed;
1387 clusterDriftPath = fSddLength-clusterDriftPath;
1388
1389 AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,Time,qfit[i],
1390 clusterPeakAmplitude,peakpos,0.,0.,clusterDriftPath,clusteranodePath,clusterJ->Samples()/2
1391 ,tstart,tstop,0,0,0,astart,astop);
1392 clust->PrintInfo();
1393 iTS->AddCluster(1,clust);
1394 // cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="<<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]<<","<<ncl<<endl;
1395 delete clust;
1396 }// nfhits loop
1397 fClusters->RemoveAt(j);
1398
1399 } // if nfhits = 2
1400 } // cluster loop
1401
1402 fClusters->Compress();
1403 fMap->ClearMap();
1404
1405 return;
1406}
1407
1408
b0f5e3fc 1409//_____________________________________________________________________________
1410
1411void AliITSClusterFinderSDD::GetRecPoints()
1412{
1413 // get rec points
b0f5e3fc 1414
1415 AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1416
1417 // get number of clusters for this module
1418 Int_t nofClusters = fClusters->GetEntriesFast();
1419 nofClusters -= fNclusters;
1420
b0f5e3fc 1421 const Float_t kconvGeV = 1.e-6; // GeV -> KeV
1422 const Float_t kconv = 1.0e-4;
1423 const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
1424 const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
1425
e8189707 1426
78a228db 1427 Int_t i;
1428 Int_t ix, iz, idx=-1;
1429 AliITSdigitSDD *dig=0;
78a228db 1430 Int_t ndigits=fDigits->GetEntriesFast();
b0f5e3fc 1431 for(i=0; i<nofClusters; i++) {
78a228db 1432 AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
1433 if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
1434 if(clusterI) idx=clusterI->PeakPos();
1435 if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
1436 // try peak neighbours - to be done
1437 if(idx && idx <= ndigits) dig = (AliITSdigitSDD*)fDigits->UncheckedAt(idx);
1438 if(!dig) {
1439 // try cog
1440 fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
1441 dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
1442 // if null try neighbours
1443 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix);
1444 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1);
1445 if (!dig) printf("SDD: cannot assign the track number!\n");
1446 }
1447
b0f5e3fc 1448 AliITSRecPoint rnew;
1449 rnew.SetX(clusterI->X());
1450 rnew.SetZ(clusterI->Z());
1451 rnew.SetQ(clusterI->Q()); // in KeV - should be ADC
b0f5e3fc 1452 rnew.SetdEdX(kconvGeV*clusterI->Q());
1453 rnew.SetSigmaX2(kRMSx*kRMSx);
1454 rnew.SetSigmaZ2(kRMSz*kRMSz);
78a228db 1455 if(dig) rnew.fTracks[0]=dig->fTracks[0];
1456 if(dig) rnew.fTracks[1]=dig->fTracks[1];
1457 if(dig) rnew.fTracks[2]=dig->fTracks[2];
1458 //printf("SDD: i %d track1 track2 track3 %d %d %d x y %f %f\n",i,rnew.fTracks[0],rnew.fTracks[1],rnew.fTracks[2],clusterI->X(),clusterI->Z());
b0f5e3fc 1459 iTS->AddRecPoint(rnew);
b0f5e3fc 1460 } // I clusters
b0f5e3fc 1461
e8189707 1462 fMap->ClearMap();
b0f5e3fc 1463}
1464
1465//_____________________________________________________________________________
1466
ebf6f0ee 1467void AliITSClusterFinderSDD::FindRawClusters(Int_t mod)
b0f5e3fc 1468{
1469 // find raw clusters
a1f090e0 1470 Find1DClustersE();
b0f5e3fc 1471 GroupClusters();
1472 SelectClusters();
a1f090e0 1473 ResolveClustersE();
b0f5e3fc 1474 GetRecPoints();
1475}
a1f090e0 1476//_____________________________________________________________________________
1477
1478void AliITSClusterFinderSDD::Print()
1479{
1480 // Print SDD cluster finder Parameters
1481
1482 cout << "**************************************************" << endl;
1483 cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
1484 cout << "**************************************************" << endl;
1485 cout << "Number of Clusters: " << fNclusters << endl;
1486 cout << "Anode Tolerance: " << fDAnode << endl;
1487 cout << "Time Tolerance: " << fDTime << endl;
1488 cout << "Time correction (electronics): " << fTimeCorr << endl;
1489 cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
1490 cout << "Minimum Amplitude: " << fMinPeak << endl;
1491 cout << "Minimum Charge: " << fMinCharge << endl;
1492 cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
1493 cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
1494 cout << "**************************************************" << endl;
1495}