a9e2aefa |
1 | /************************************************************************** |
2 | * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
3 | * * |
4 | * Author: The ALICE Off-line Project. * |
5 | * Contributors are mentioned in the code where appropriate. * |
6 | * * |
7 | * Permission to use, copy, modify and distribute this software and its * |
8 | * documentation strictly for non-commercial purposes is hereby granted * |
9 | * without fee, provided that the above copyright notice appears in all * |
10 | * copies and that both the copyright notice and this permission notice * |
11 | * appear in the supporting documentation. The authors make no claims * |
1e8fff9c |
12 | * about the suitability of this software for any purpeateose. It is * |
a9e2aefa |
13 | * provided "as is" without express or implied warranty. * |
14 | **************************************************************************/ |
15 | |
16 | /* |
17 | $Log$ |
6c5ddcfa |
18 | Revision 1.8 2000/10/06 09:06:31 morsch |
19 | Include Slat chambers (stations 3-5) into geometry (A. de Falco) |
20 | |
1e8fff9c |
21 | Revision 1.7 2000/10/02 21:28:09 fca |
22 | Removal of useless dependecies via forward declarations |
23 | |
94de3818 |
24 | Revision 1.6 2000/10/02 17:20:45 egangler |
25 | Cleaning of the code (continued ) : |
26 | -> coding conventions |
27 | -> void Streamers |
28 | -> some useless includes removed or replaced by "class" statement |
29 | |
8c449e83 |
30 | Revision 1.5 2000/06/28 15:16:35 morsch |
31 | (1) Client code adapted to new method signatures in AliMUONSegmentation (see comments there) |
32 | to allow development of slat-muon chamber simulation and reconstruction code in the MUON |
33 | framework. The changes should have no side effects (mostly dummy arguments). |
34 | (2) Hit disintegration uses 3-dim hit coordinates to allow simulation |
35 | of chambers with overlapping modules (MakePadHits, Disintegration). |
36 | |
802a864d |
37 | Revision 1.4 2000/06/26 14:02:38 morsch |
38 | Add class AliMUONConstants with MUON specific constants using static memeber data and access methods. |
39 | |
f665c1ea |
40 | Revision 1.3 2000/06/22 14:10:05 morsch |
41 | HP scope problems corrected (PH) |
42 | |
e17592e9 |
43 | Revision 1.2 2000/06/15 07:58:49 morsch |
44 | Code from MUON-dev joined |
45 | |
a9e2aefa |
46 | Revision 1.1.2.14 2000/06/14 14:37:25 morsch |
47 | Initialization of TriggerCircuit added (PC) |
48 | |
49 | Revision 1.1.2.13 2000/06/09 21:55:47 morsch |
50 | Most coding rule violations corrected. |
51 | |
52 | Revision 1.1.2.12 2000/05/05 11:34:29 morsch |
53 | Log inside comments. |
54 | |
55 | Revision 1.1.2.11 2000/05/05 10:06:48 morsch |
56 | Coding Rule violations regarding trigger section corrected (CP) |
57 | Log messages included. |
58 | */ |
59 | |
60 | ///////////////////////////////////////////////////////// |
61 | // Manager and hits classes for set:MUON version 0 // |
62 | ///////////////////////////////////////////////////////// |
63 | |
64 | #include <TTUBE.h> |
65 | #include <TNode.h> |
66 | #include <TRandom.h> |
67 | #include <TLorentzVector.h> |
68 | #include <iostream.h> |
69 | |
70 | #include "AliMUONv1.h" |
71 | #include "AliRun.h" |
72 | #include "AliMC.h" |
94de3818 |
73 | #include "AliMagF.h" |
a9e2aefa |
74 | #include "AliCallf77.h" |
75 | #include "AliConst.h" |
76 | #include "AliMUONChamber.h" |
77 | #include "AliMUONHit.h" |
78 | #include "AliMUONPadHit.h" |
f665c1ea |
79 | #include "AliMUONConstants.h" |
8c449e83 |
80 | #include "AliMUONTriggerCircuit.h" |
a9e2aefa |
81 | |
82 | ClassImp(AliMUONv1) |
83 | |
84 | //___________________________________________ |
85 | AliMUONv1::AliMUONv1() : AliMUON() |
86 | { |
87 | // Constructor |
88 | fChambers = 0; |
89 | } |
90 | |
91 | //___________________________________________ |
92 | AliMUONv1::AliMUONv1(const char *name, const char *title) |
93 | : AliMUON(name,title) |
94 | { |
95 | // Constructor |
96 | } |
97 | |
98 | //___________________________________________ |
99 | void AliMUONv1::CreateGeometry() |
100 | { |
101 | // |
102 | // Note: all chambers have the same structure, which could be |
103 | // easily parameterised. This was intentionally not done in order |
104 | // to give a starting point for the implementation of the actual |
105 | // design of each station. |
106 | Int_t *idtmed = fIdtmed->GetArray()-1099; |
107 | |
108 | // Distance between Stations |
109 | // |
110 | Float_t bpar[3]; |
111 | Float_t tpar[3]; |
112 | Float_t pgpar[10]; |
113 | Float_t zpos1, zpos2, zfpos; |
114 | Float_t dframep=.001; // Value for station 3 should be 6 ... |
115 | Float_t dframep1=.001; |
116 | // Bool_t frames=kTRUE; |
117 | Bool_t frames=kFALSE; |
118 | |
119 | Float_t dframez=0.9; |
120 | Float_t dr; |
121 | Float_t dstation; |
122 | |
123 | // |
124 | // Rotation matrices in the x-y plane |
125 | Int_t idrotm[1199]; |
126 | // phi= 0 deg |
127 | AliMatrix(idrotm[1100], 90., 0., 90., 90., 0., 0.); |
128 | // phi= 90 deg |
129 | AliMatrix(idrotm[1101], 90., 90., 90., 180., 0., 0.); |
130 | // phi= 180 deg |
131 | AliMatrix(idrotm[1102], 90., 180., 90., 270., 0., 0.); |
132 | // phi= 270 deg |
133 | AliMatrix(idrotm[1103], 90., 270., 90., 0., 0., 0.); |
134 | // |
135 | Float_t phi=2*TMath::Pi()/12/2; |
136 | |
137 | // |
138 | // pointer to the current chamber |
139 | // pointer to the current chamber |
140 | Int_t idAlu1=idtmed[1103]; |
141 | Int_t idAlu2=idtmed[1104]; |
142 | // Int_t idAlu1=idtmed[1100]; |
143 | // Int_t idAlu2=idtmed[1100]; |
144 | Int_t idAir=idtmed[1100]; |
145 | Int_t idGas=idtmed[1105]; |
146 | |
147 | |
148 | AliMUONChamber *iChamber, *iChamber1, *iChamber2; |
149 | //******************************************************************** |
150 | // Station 1 ** |
151 | //******************************************************************** |
152 | // CONCENTRIC |
153 | // indices 1 and 2 for first and second chambers in the station |
154 | // iChamber (first chamber) kept for other quanties than Z, |
155 | // assumed to be the same in both chambers |
156 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0]; |
157 | iChamber2 =(AliMUONChamber*) (*fChambers)[1]; |
158 | zpos1=iChamber1->Z(); |
159 | zpos2=iChamber2->Z(); |
160 | dstation = zpos2 - zpos1; |
161 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
162 | |
163 | // |
164 | // Mother volume |
165 | tpar[0] = iChamber->RInner()-dframep1; |
166 | tpar[1] = (iChamber->ROuter()+dframep1)/TMath::Cos(phi); |
167 | tpar[2] = dstation/4; |
168 | |
169 | gMC->Gsvolu("C01M", "TUBE", idAir, tpar, 3); |
170 | gMC->Gsvolu("C02M", "TUBE", idAir, tpar, 3); |
171 | gMC->Gspos("C01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
1e8fff9c |
172 | gMC->Gspos("C02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
a9e2aefa |
173 | // Aluminium frames |
174 | // Outer frames |
175 | pgpar[0] = 360/12/2; |
176 | pgpar[1] = 360.; |
177 | pgpar[2] = 12.; |
178 | pgpar[3] = 2; |
179 | pgpar[4] = -dframez/2; |
180 | pgpar[5] = iChamber->ROuter(); |
181 | pgpar[6] = pgpar[5]+dframep1; |
182 | pgpar[7] = +dframez/2; |
183 | pgpar[8] = pgpar[5]; |
184 | pgpar[9] = pgpar[6]; |
185 | gMC->Gsvolu("C01O", "PGON", idAlu1, pgpar, 10); |
186 | gMC->Gsvolu("C02O", "PGON", idAlu1, pgpar, 10); |
187 | gMC->Gspos("C01O",1,"C01M", 0.,0.,-zfpos, 0,"ONLY"); |
188 | gMC->Gspos("C01O",2,"C01M", 0.,0.,+zfpos, 0,"ONLY"); |
189 | gMC->Gspos("C02O",1,"C02M", 0.,0.,-zfpos, 0,"ONLY"); |
190 | gMC->Gspos("C02O",2,"C02M", 0.,0.,+zfpos, 0,"ONLY"); |
191 | // |
192 | // Inner frame |
193 | tpar[0]= iChamber->RInner()-dframep1; |
194 | tpar[1]= iChamber->RInner(); |
195 | tpar[2]= dframez/2; |
196 | gMC->Gsvolu("C01I", "TUBE", idAlu1, tpar, 3); |
197 | gMC->Gsvolu("C02I", "TUBE", idAlu1, tpar, 3); |
198 | |
199 | gMC->Gspos("C01I",1,"C01M", 0.,0.,-zfpos, 0,"ONLY"); |
200 | gMC->Gspos("C01I",2,"C01M", 0.,0.,+zfpos, 0,"ONLY"); |
201 | gMC->Gspos("C02I",1,"C02M", 0.,0.,-zfpos, 0,"ONLY"); |
202 | gMC->Gspos("C02I",2,"C02M", 0.,0.,+zfpos, 0,"ONLY"); |
203 | // |
204 | // Frame Crosses |
205 | if (frames) { |
206 | |
207 | bpar[0] = (iChamber->ROuter() - iChamber->RInner())/2; |
208 | bpar[1] = dframep1/2; |
209 | bpar[2] = dframez/2; |
210 | gMC->Gsvolu("C01B", "BOX", idAlu1, bpar, 3); |
211 | gMC->Gsvolu("C02B", "BOX", idAlu1, bpar, 3); |
212 | |
213 | gMC->Gspos("C01B",1,"C01M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
214 | idrotm[1100],"ONLY"); |
215 | gMC->Gspos("C01B",2,"C01M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
216 | idrotm[1100],"ONLY"); |
217 | gMC->Gspos("C01B",3,"C01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
218 | idrotm[1101],"ONLY"); |
219 | gMC->Gspos("C01B",4,"C01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
220 | idrotm[1101],"ONLY"); |
221 | gMC->Gspos("C01B",5,"C01M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
222 | idrotm[1100],"ONLY"); |
223 | gMC->Gspos("C01B",6,"C01M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
224 | idrotm[1100],"ONLY"); |
225 | gMC->Gspos("C01B",7,"C01M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
226 | idrotm[1101],"ONLY"); |
227 | gMC->Gspos("C01B",8,"C01M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
228 | idrotm[1101],"ONLY"); |
229 | |
230 | gMC->Gspos("C02B",1,"C02M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
231 | idrotm[1100],"ONLY"); |
232 | gMC->Gspos("C02B",2,"C02M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
233 | idrotm[1100],"ONLY"); |
234 | gMC->Gspos("C02B",3,"C02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
235 | idrotm[1101],"ONLY"); |
236 | gMC->Gspos("C02B",4,"C02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
237 | idrotm[1101],"ONLY"); |
238 | gMC->Gspos("C02B",5,"C02M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
239 | idrotm[1100],"ONLY"); |
240 | gMC->Gspos("C02B",6,"C02M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
241 | idrotm[1100],"ONLY"); |
242 | gMC->Gspos("C02B",7,"C02M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
243 | idrotm[1101],"ONLY"); |
244 | gMC->Gspos("C02B",8,"C02M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
245 | idrotm[1101],"ONLY"); |
246 | } |
247 | // |
248 | // Chamber Material represented by Alu sheet |
249 | tpar[0]= iChamber->RInner(); |
250 | tpar[1]= iChamber->ROuter(); |
251 | tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; |
252 | gMC->Gsvolu("C01A", "TUBE", idAlu2, tpar, 3); |
253 | gMC->Gsvolu("C02A", "TUBE",idAlu2, tpar, 3); |
254 | gMC->Gspos("C01A", 1, "C01M", 0., 0., 0., 0, "ONLY"); |
255 | gMC->Gspos("C02A", 1, "C02M", 0., 0., 0., 0, "ONLY"); |
256 | // |
257 | // Sensitive volumes |
258 | // tpar[2] = iChamber->DGas(); |
259 | tpar[2] = iChamber->DGas()/2; |
260 | gMC->Gsvolu("C01G", "TUBE", idtmed[1108], tpar, 3); |
261 | gMC->Gsvolu("C02G", "TUBE", idtmed[1108], tpar, 3); |
262 | gMC->Gspos("C01G", 1, "C01A", 0., 0., 0., 0, "ONLY"); |
263 | gMC->Gspos("C02G", 1, "C02A", 0., 0., 0., 0, "ONLY"); |
264 | // |
265 | // Frame Crosses to be placed inside gas |
266 | if (frames) { |
267 | |
268 | dr = (iChamber->ROuter() - iChamber->RInner()); |
269 | bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2; |
270 | bpar[1] = dframep1/2; |
271 | bpar[2] = iChamber->DGas()/2; |
272 | gMC->Gsvolu("C01F", "BOX", idAlu1, bpar, 3); |
273 | gMC->Gsvolu("C02F", "BOX", idAlu1, bpar, 3); |
274 | |
275 | gMC->Gspos("C01F",1,"C01G", +iChamber->RInner()+bpar[0] , 0, 0, |
276 | idrotm[1100],"ONLY"); |
277 | gMC->Gspos("C01F",2,"C01G", -iChamber->RInner()-bpar[0] , 0, 0, |
278 | idrotm[1100],"ONLY"); |
279 | gMC->Gspos("C01F",3,"C01G", 0, +iChamber->RInner()+bpar[0] , 0, |
280 | idrotm[1101],"ONLY"); |
281 | gMC->Gspos("C01F",4,"C01G", 0, -iChamber->RInner()-bpar[0] , 0, |
282 | idrotm[1101],"ONLY"); |
283 | |
284 | gMC->Gspos("C02F",1,"C02G", +iChamber->RInner()+bpar[0] , 0, 0, |
285 | idrotm[1100],"ONLY"); |
286 | gMC->Gspos("C02F",2,"C02G", -iChamber->RInner()-bpar[0] , 0, 0, |
287 | idrotm[1100],"ONLY"); |
288 | gMC->Gspos("C02F",3,"C02G", 0, +iChamber->RInner()+bpar[0] , 0, |
289 | idrotm[1101],"ONLY"); |
290 | gMC->Gspos("C02F",4,"C02G", 0, -iChamber->RInner()-bpar[0] , 0, |
291 | idrotm[1101],"ONLY"); |
292 | } |
1e8fff9c |
293 | |
a9e2aefa |
294 | //******************************************************************** |
295 | // Station 2 ** |
296 | //******************************************************************** |
297 | // indices 1 and 2 for first and second chambers in the station |
298 | // iChamber (first chamber) kept for other quanties than Z, |
299 | // assumed to be the same in both chambers |
300 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2]; |
301 | iChamber2 =(AliMUONChamber*) (*fChambers)[3]; |
302 | zpos1=iChamber1->Z(); |
303 | zpos2=iChamber2->Z(); |
304 | dstation = zpos2 - zpos1; |
305 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
306 | |
307 | // |
308 | // Mother volume |
309 | tpar[0] = iChamber->RInner()-dframep; |
310 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
311 | tpar[2] = dstation/4; |
312 | |
313 | gMC->Gsvolu("C03M", "TUBE", idAir, tpar, 3); |
314 | gMC->Gsvolu("C04M", "TUBE", idAir, tpar, 3); |
315 | gMC->Gspos("C03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
316 | gMC->Gspos("C04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
1e8fff9c |
317 | |
a9e2aefa |
318 | // Aluminium frames |
319 | // Outer frames |
320 | pgpar[0] = 360/12/2; |
321 | pgpar[1] = 360.; |
322 | pgpar[2] = 12.; |
323 | pgpar[3] = 2; |
324 | pgpar[4] = -dframez/2; |
325 | pgpar[5] = iChamber->ROuter(); |
326 | pgpar[6] = pgpar[5]+dframep; |
327 | pgpar[7] = +dframez/2; |
328 | pgpar[8] = pgpar[5]; |
329 | pgpar[9] = pgpar[6]; |
330 | gMC->Gsvolu("C03O", "PGON", idAlu1, pgpar, 10); |
331 | gMC->Gsvolu("C04O", "PGON", idAlu1, pgpar, 10); |
332 | gMC->Gspos("C03O",1,"C03M", 0.,0.,-zfpos, 0,"ONLY"); |
333 | gMC->Gspos("C03O",2,"C03M", 0.,0.,+zfpos, 0,"ONLY"); |
334 | gMC->Gspos("C04O",1,"C04M", 0.,0.,-zfpos, 0,"ONLY"); |
335 | gMC->Gspos("C04O",2,"C04M", 0.,0.,+zfpos, 0,"ONLY"); |
336 | // |
337 | // Inner frame |
338 | tpar[0]= iChamber->RInner()-dframep; |
339 | tpar[1]= iChamber->RInner(); |
340 | tpar[2]= dframez/2; |
341 | gMC->Gsvolu("C03I", "TUBE", idAlu1, tpar, 3); |
342 | gMC->Gsvolu("C04I", "TUBE", idAlu1, tpar, 3); |
343 | |
344 | gMC->Gspos("C03I",1,"C03M", 0.,0.,-zfpos, 0,"ONLY"); |
345 | gMC->Gspos("C03I",2,"C03M", 0.,0.,+zfpos, 0,"ONLY"); |
346 | gMC->Gspos("C04I",1,"C04M", 0.,0.,-zfpos, 0,"ONLY"); |
347 | gMC->Gspos("C04I",2,"C04M", 0.,0.,+zfpos, 0,"ONLY"); |
348 | // |
349 | // Frame Crosses |
350 | if (frames) { |
351 | |
352 | bpar[0] = (iChamber->ROuter() - iChamber->RInner())/2; |
353 | bpar[1] = dframep/2; |
354 | bpar[2] = dframez/2; |
355 | gMC->Gsvolu("C03B", "BOX", idAlu1, bpar, 3); |
356 | gMC->Gsvolu("C04B", "BOX", idAlu1, bpar, 3); |
357 | |
358 | gMC->Gspos("C03B",1,"C03M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
359 | idrotm[1100],"ONLY"); |
360 | gMC->Gspos("C03B",2,"C03M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
361 | idrotm[1100],"ONLY"); |
362 | gMC->Gspos("C03B",3,"C03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
363 | idrotm[1101],"ONLY"); |
364 | gMC->Gspos("C03B",4,"C03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
365 | idrotm[1101],"ONLY"); |
366 | gMC->Gspos("C03B",5,"C03M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
367 | idrotm[1100],"ONLY"); |
368 | gMC->Gspos("C03B",6,"C03M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
369 | idrotm[1100],"ONLY"); |
370 | gMC->Gspos("C03B",7,"C03M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
371 | idrotm[1101],"ONLY"); |
372 | gMC->Gspos("C03B",8,"C03M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
373 | idrotm[1101],"ONLY"); |
374 | |
375 | gMC->Gspos("C04B",1,"C04M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
376 | idrotm[1100],"ONLY"); |
377 | gMC->Gspos("C04B",2,"C04M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
378 | idrotm[1100],"ONLY"); |
379 | gMC->Gspos("C04B",3,"C04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
380 | idrotm[1101],"ONLY"); |
381 | gMC->Gspos("C04B",4,"C04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
382 | idrotm[1101],"ONLY"); |
383 | gMC->Gspos("C04B",5,"C04M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
384 | idrotm[1100],"ONLY"); |
385 | gMC->Gspos("C04B",6,"C04M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
386 | idrotm[1100],"ONLY"); |
387 | gMC->Gspos("C04B",7,"C04M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
388 | idrotm[1101],"ONLY"); |
389 | gMC->Gspos("C04B",8,"C04M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
390 | idrotm[1101],"ONLY"); |
391 | } |
392 | // |
393 | // Chamber Material represented by Alu sheet |
394 | tpar[0]= iChamber->RInner(); |
395 | tpar[1]= iChamber->ROuter(); |
396 | tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; |
397 | gMC->Gsvolu("C03A", "TUBE", idAlu2, tpar, 3); |
398 | gMC->Gsvolu("C04A", "TUBE", idAlu2, tpar, 3); |
399 | gMC->Gspos("C03A", 1, "C03M", 0., 0., 0., 0, "ONLY"); |
400 | gMC->Gspos("C04A", 1, "C04M", 0., 0., 0., 0, "ONLY"); |
401 | // |
402 | // Sensitive volumes |
403 | // tpar[2] = iChamber->DGas(); |
404 | tpar[2] = iChamber->DGas()/2; |
405 | gMC->Gsvolu("C03G", "TUBE", idGas, tpar, 3); |
406 | gMC->Gsvolu("C04G", "TUBE", idGas, tpar, 3); |
407 | gMC->Gspos("C03G", 1, "C03A", 0., 0., 0., 0, "ONLY"); |
408 | gMC->Gspos("C04G", 1, "C04A", 0., 0., 0., 0, "ONLY"); |
409 | |
410 | if (frames) { |
411 | // |
412 | // Frame Crosses to be placed inside gas |
413 | dr = (iChamber->ROuter() - iChamber->RInner()); |
414 | bpar[0] = TMath::Sqrt(dr*dr-dframep*dframep/4)/2; |
415 | bpar[1] = dframep/2; |
416 | bpar[2] = iChamber->DGas()/2; |
417 | gMC->Gsvolu("C03F", "BOX", idAlu1, bpar, 3); |
418 | gMC->Gsvolu("C04F", "BOX", idAlu1, bpar, 3); |
419 | |
420 | gMC->Gspos("C03F",1,"C03G", +iChamber->RInner()+bpar[0] , 0, 0, |
421 | idrotm[1100],"ONLY"); |
422 | gMC->Gspos("C03F",2,"C03G", -iChamber->RInner()-bpar[0] , 0, 0, |
423 | idrotm[1100],"ONLY"); |
424 | gMC->Gspos("C03F",3,"C03G", 0, +iChamber->RInner()+bpar[0] , 0, |
425 | idrotm[1101],"ONLY"); |
426 | gMC->Gspos("C03F",4,"C03G", 0, -iChamber->RInner()-bpar[0] , 0, |
427 | idrotm[1101],"ONLY"); |
428 | |
429 | gMC->Gspos("C04F",1,"C04G", +iChamber->RInner()+bpar[0] , 0, 0, |
430 | idrotm[1100],"ONLY"); |
431 | gMC->Gspos("C04F",2,"C04G", -iChamber->RInner()-bpar[0] , 0, 0, |
432 | idrotm[1100],"ONLY"); |
433 | gMC->Gspos("C04F",3,"C04G", 0, +iChamber->RInner()+bpar[0] , 0, |
434 | idrotm[1101],"ONLY"); |
435 | gMC->Gspos("C04F",4,"C04G", 0, -iChamber->RInner()-bpar[0] , 0, |
436 | idrotm[1101],"ONLY"); |
437 | } |
1e8fff9c |
438 | |
a9e2aefa |
439 | //******************************************************************** |
440 | // Station 3 ** |
441 | //******************************************************************** |
442 | // indices 1 and 2 for first and second chambers in the station |
443 | // iChamber (first chamber) kept for other quanties than Z, |
444 | // assumed to be the same in both chambers |
445 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4]; |
446 | iChamber2 =(AliMUONChamber*) (*fChambers)[5]; |
447 | zpos1=iChamber1->Z(); |
448 | zpos2=iChamber2->Z(); |
449 | dstation = zpos2 - zpos1; |
450 | |
451 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
452 | // |
453 | // Mother volume |
454 | tpar[0] = iChamber->RInner()-dframep; |
455 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
456 | tpar[2] = dstation/4; |
457 | gMC->Gsvolu("C05M", "TUBE", idAir, tpar, 3); |
458 | gMC->Gsvolu("C06M", "TUBE", idAir, tpar, 3); |
459 | gMC->Gspos("C05M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
460 | gMC->Gspos("C06M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
1e8fff9c |
461 | |
462 | // volumes for slat geometry (xx=5,..,10 chamber id): |
463 | // Sxx0 Sxx1 Sxx2 Sxx3 --> Slat Mother volumes |
464 | // SxxG --> Sensitive volume (gas) |
465 | // SxxP --> PCB (copper) |
466 | // SxxI --> Insulator (vetronite) |
467 | // SxxC --> Carbon panel |
468 | // SxxR --> Rohacell |
469 | // SxxH, SxxV --> Horizontal and Vertical frames (vetronite) |
470 | |
471 | // define the id of tracking media: |
472 | Int_t idCopper = idtmed[1110]; |
473 | Int_t idGlass = idtmed[1111]; |
474 | Int_t idCarbon = idtmed[1112]; |
475 | Int_t idRoha = idtmed[1113]; |
476 | |
477 | const Int_t nSlats3 = 4; // number of slats per quadrant |
478 | const Int_t nPCB3[nSlats3] = {4,4,3,2}; // n PCB per slat |
479 | |
480 | // sensitive area: 40*40 cm**2 |
6c5ddcfa |
481 | const Float_t sensLength = 40.; |
482 | const Float_t sensHeight = 40.; |
483 | const Float_t sensWidth = 0.5; // according to TDR fig 2.120 |
484 | const Int_t sensMaterial = idGas; |
1e8fff9c |
485 | const Float_t yOverlap = 1.5; |
486 | |
487 | // PCB dimensions in cm; width: 30 mum copper |
6c5ddcfa |
488 | const Float_t pcbLength = sensLength; |
489 | const Float_t pcbHeight = 60.; |
490 | const Float_t pcbWidth = 0.003; |
491 | const Int_t pcbMaterial = idCopper; |
1e8fff9c |
492 | |
493 | // Insulating material: 200 mum glass fiber glued to pcb |
6c5ddcfa |
494 | const Float_t insuLength = pcbLength; |
495 | const Float_t insuHeight = pcbHeight; |
496 | const Float_t insuWidth = 0.020; |
497 | const Int_t insuMaterial = idGlass; |
1e8fff9c |
498 | |
499 | // Carbon fiber panels: 200mum carbon/epoxy skin |
6c5ddcfa |
500 | const Float_t panelLength = sensLength; |
501 | const Float_t panelHeight = sensHeight; |
502 | const Float_t panelWidth = 0.020; |
503 | const Int_t panelMaterial = idCarbon; |
1e8fff9c |
504 | |
505 | // rohacell between the two carbon panels |
6c5ddcfa |
506 | const Float_t rohaLength = sensLength; |
507 | const Float_t rohaHeight = sensHeight; |
508 | const Float_t rohaWidth = 0.5; |
509 | const Int_t rohaMaterial = idRoha; |
1e8fff9c |
510 | |
511 | // Frame around the slat: 2 sticks along length,2 along height |
512 | // H: the horizontal ones |
6c5ddcfa |
513 | const Float_t hFrameLength = pcbLength; |
514 | const Float_t hFrameHeight = 1.5; |
515 | const Float_t hFrameWidth = sensWidth; |
516 | const Int_t hFrameMaterial = idGlass; |
1e8fff9c |
517 | |
518 | // V: the vertical ones |
6c5ddcfa |
519 | const Float_t vFrameLength = 4.0; |
520 | const Float_t vFrameHeight = sensHeight + hFrameHeight; |
521 | const Float_t vFrameWidth = sensWidth; |
522 | const Int_t vFrameMaterial = idGlass; |
1e8fff9c |
523 | |
524 | // B: the horizontal border filled with rohacell |
6c5ddcfa |
525 | const Float_t bFrameLength = hFrameLength; |
526 | const Float_t bFrameHeight = (pcbHeight - sensHeight)/2. - hFrameHeight; |
527 | const Float_t bFrameWidth = hFrameWidth; |
528 | const Int_t bFrameMaterial = idRoha; |
1e8fff9c |
529 | |
530 | // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper) |
6c5ddcfa |
531 | const Float_t nulocLength = 2.5; |
532 | const Float_t nulocHeight = 7.5; |
533 | const Float_t nulocWidth = 0.0030 + 0.0014; // equivalent copper width of vetronite; |
534 | const Int_t nulocMaterial = idCopper; |
1e8fff9c |
535 | |
536 | // Gassiplex package |
6c5ddcfa |
537 | const Float_t gassiLength = 1.0; |
538 | const Float_t gassiHeight = 1.0; |
539 | const Float_t gassiWidth = 0.15; // check it !!! |
540 | const Int_t gassiMaterial = idGlass; |
1e8fff9c |
541 | |
542 | // slat dimensions: slat is a MOTHER volume!!! made of air |
6c5ddcfa |
543 | Float_t slatLength[nSlats3]; |
544 | const Float_t slatHeight = pcbHeight; |
545 | const Float_t slatWidth = sensWidth + 2.*(pcbWidth + insuWidth + |
546 | 2.* panelWidth + rohaWidth); |
547 | const Int_t slatMaterial = idAir; |
548 | const Float_t dSlatLength = vFrameLength; // border on left and right |
1e8fff9c |
549 | |
550 | // create and position the slat (mother) volumes |
551 | Float_t spar[3]; |
6c5ddcfa |
552 | char volNam5[5]; |
553 | char volNam6[5]; |
1e8fff9c |
554 | Float_t xSlat[nSlats3]; |
555 | Float_t ySlat[nSlats3]; |
6c5ddcfa |
556 | Int_t i, j; |
557 | for (i = 0; i<nSlats3; i++){ |
558 | slatLength[i] = pcbLength * nPCB3[i] + 2. * dSlatLength; |
559 | xSlat[i] = slatLength[i]/2.; |
560 | ySlat[i] = sensHeight * (i+0.5) - yOverlap * i; |
561 | spar[0] = slatLength[i]/2.; |
562 | spar[1] = slatHeight/2.; |
563 | spar[2] = slatWidth/2.; |
1e8fff9c |
564 | // zSlat to be checked (odd downstream or upstream?) |
6c5ddcfa |
565 | Float_t zSlat = (i%2 ==0)? -slatWidth/2. : slatWidth/2.; |
566 | sprintf(volNam5,"S05%d",i); |
567 | gMC->Gsvolu(volNam5,"BOX",slatMaterial,spar,3); |
568 | gMC->Gspos(volNam5, i*4+1,"C05M", xSlat[i], ySlat[i], zSlat, 0, "ONLY"); |
569 | gMC->Gspos(volNam5, i*4+2,"C05M",-xSlat[i], ySlat[i], zSlat, 0, "ONLY"); |
570 | gMC->Gspos(volNam5, i*4+3,"C05M", xSlat[i],-ySlat[i],-zSlat, 0, "ONLY"); |
571 | gMC->Gspos(volNam5, i*4+4,"C05M",-xSlat[i],-ySlat[i],-zSlat, 0, "ONLY"); |
572 | sprintf(volNam6,"S06%d",i); |
573 | gMC->Gsvolu(volNam6,"BOX",slatMaterial,spar,3); |
574 | gMC->Gspos(volNam6, i*4+1,"C06M", xSlat[i], ySlat[i], zSlat, 0, "ONLY"); |
575 | gMC->Gspos(volNam6, i*4+2,"C06M",-xSlat[i], ySlat[i], zSlat, 0, "ONLY"); |
576 | gMC->Gspos(volNam6, i*4+3,"C06M", xSlat[i],-ySlat[i],-zSlat, 0, "ONLY"); |
577 | gMC->Gspos(volNam6, i*4+4,"C06M",-xSlat[i],-ySlat[i],-zSlat, 0, "ONLY"); |
1e8fff9c |
578 | } |
a9e2aefa |
579 | |
1e8fff9c |
580 | // create the sensitive volumes (subdivided as the PCBs), |
6c5ddcfa |
581 | Float_t sensPar[3] = { sensLength/2., sensHeight/2., sensWidth/2. }; |
582 | gMC->Gsvolu("S05G","BOX",sensMaterial,sensPar,3); |
583 | gMC->Gsvolu("S06G","BOX",sensMaterial,sensPar,3); |
1e8fff9c |
584 | |
585 | // create the PCB volume |
6c5ddcfa |
586 | Float_t pcbpar[3] = { pcbLength/2., pcbHeight/2., pcbWidth/2. }; |
587 | gMC->Gsvolu("S05P","BOX",pcbMaterial,pcbpar,3); |
588 | gMC->Gsvolu("S06P","BOX",pcbMaterial,pcbpar,3); |
1e8fff9c |
589 | |
590 | // create the insulating material volume |
6c5ddcfa |
591 | Float_t insupar[3] = { insuLength/2., insuHeight/2., insuWidth/2. }; |
592 | gMC->Gsvolu("S05I","BOX",insuMaterial,insupar,3); |
593 | gMC->Gsvolu("S06I","BOX",insuMaterial,insupar,3); |
1e8fff9c |
594 | |
595 | // create the panel volume |
6c5ddcfa |
596 | Float_t panelpar[3] = { panelLength/2., panelHeight/2., panelWidth/2. }; |
597 | gMC->Gsvolu("S05C","BOX",panelMaterial,panelpar,3); |
598 | gMC->Gsvolu("S06C","BOX",panelMaterial,panelpar,3); |
1e8fff9c |
599 | |
600 | // create the rohacell volume |
6c5ddcfa |
601 | Float_t rohapar[3] = { rohaLength/2., rohaHeight/2., rohaWidth/2. }; |
602 | gMC->Gsvolu("S05R","BOX",rohaMaterial,rohapar,3); |
603 | gMC->Gsvolu("S06R","BOX",rohaMaterial,rohapar,3); |
1e8fff9c |
604 | |
605 | // create the vertical frame volume |
6c5ddcfa |
606 | Float_t vFramepar[3]={vFrameLength/2., vFrameHeight/2., vFrameWidth/2.}; |
607 | gMC->Gsvolu("S05V","BOX",vFrameMaterial,vFramepar,3); |
608 | gMC->Gsvolu("S06V","BOX",vFrameMaterial,vFramepar,3); |
1e8fff9c |
609 | |
610 | // create the horizontal frame volume |
6c5ddcfa |
611 | Float_t hFramepar[3]={hFrameLength/2., hFrameHeight/2., hFrameWidth/2.}; |
612 | gMC->Gsvolu("S05H","BOX",hFrameMaterial,hFramepar,3); |
613 | gMC->Gsvolu("S06H","BOX",hFrameMaterial,hFramepar,3); |
1e8fff9c |
614 | |
615 | // create the horizontal border volume |
6c5ddcfa |
616 | Float_t bFramepar[3]={bFrameLength/2., bFrameHeight/2., bFrameWidth/2.}; |
617 | gMC->Gsvolu("S05B","BOX",bFrameMaterial,bFramepar,3); |
618 | gMC->Gsvolu("S06B","BOX",bFrameMaterial,bFramepar,3); |
1e8fff9c |
619 | |
620 | Int_t index=0; |
6c5ddcfa |
621 | for (i = 0; i<nSlats3; i++){ |
622 | sprintf(volNam5,"S05%d",i); |
623 | sprintf(volNam6,"S06%d",i); |
624 | Float_t xvFrame = (slatLength[i] - vFrameLength)/2.; |
625 | gMC->Gspos("S05V",2*i-1,volNam5, xvFrame, 0., 0. , 0, "ONLY"); |
626 | gMC->Gspos("S05V",2*i ,volNam5,-xvFrame, 0., 0. , 0, "ONLY"); |
627 | gMC->Gspos("S06V",2*i-1,volNam6, xvFrame, 0., 0. , 0, "ONLY"); |
628 | gMC->Gspos("S06V",2*i ,volNam6,-xvFrame, 0., 0. , 0, "ONLY"); |
629 | for (j=0; j<nPCB3[i]; j++){ |
1e8fff9c |
630 | index++; |
6c5ddcfa |
631 | Float_t xx = sensLength * (-nPCB3[i]/2.+j+.5); |
1e8fff9c |
632 | Float_t yy = 0.; |
633 | Float_t zSens = 0.; |
6c5ddcfa |
634 | gMC->Gspos("S05G",index,volNam5, xx, yy, zSens , 0, "ONLY"); |
635 | gMC->Gspos("S06G",index,volNam6, xx, yy, zSens , 0, "ONLY"); |
636 | Float_t zPCB = (sensWidth+pcbWidth)/2.; |
637 | gMC->Gspos("S05P",2*index-1,volNam5, xx, yy, zPCB , 0, "ONLY"); |
638 | gMC->Gspos("S05P",2*index ,volNam5, xx, yy,-zPCB , 0, "ONLY"); |
639 | gMC->Gspos("S06P",2*index-1,volNam6, xx, yy, zPCB , 0, "ONLY"); |
640 | gMC->Gspos("S06P",2*index ,volNam6, xx, yy,-zPCB , 0, "ONLY"); |
641 | Float_t zInsu = (insuWidth+pcbWidth)/2. + zPCB; |
642 | gMC->Gspos("S05I",2*index-1,volNam5, xx, yy, zInsu , 0, "ONLY"); |
643 | gMC->Gspos("S05I",2*index ,volNam5, xx, yy,-zInsu , 0, "ONLY"); |
644 | gMC->Gspos("S06I",2*index-1,volNam6, xx, yy, zInsu , 0, "ONLY"); |
645 | gMC->Gspos("S06I",2*index ,volNam6, xx, yy,-zInsu , 0, "ONLY"); |
646 | Float_t zPanel1 = (insuWidth+panelWidth)/2. + zInsu; |
647 | gMC->Gspos("S05C",4*index-3,volNam5, xx, yy, zPanel1 , 0, "ONLY"); |
648 | gMC->Gspos("S05C",4*index-2,volNam5, xx, yy,-zPanel1 , 0, "ONLY"); |
649 | gMC->Gspos("S06C",4*index-3,volNam6, xx, yy, zPanel1 , 0, "ONLY"); |
650 | gMC->Gspos("S06C",4*index-2,volNam6, xx, yy,-zPanel1 , 0, "ONLY"); |
651 | Float_t zRoha = (rohaWidth+panelWidth)/2. + zPanel1; |
652 | gMC->Gspos("S05R",2*index-1,volNam5, xx, yy, zRoha , 0, "ONLY"); |
653 | gMC->Gspos("S05R",2*index ,volNam5, xx, yy,-zRoha , 0, "ONLY"); |
654 | gMC->Gspos("S06R",2*index-1,volNam6, xx, yy, zRoha , 0, "ONLY"); |
655 | gMC->Gspos("S06R",2*index ,volNam6, xx, yy,-zRoha , 0, "ONLY"); |
656 | Float_t zPanel2 = (rohaWidth+panelWidth)/2. + zRoha; |
657 | gMC->Gspos("S05C",4*index-1,volNam5, xx, yy, zPanel2 , 0, "ONLY"); |
658 | gMC->Gspos("S05C",4*index ,volNam5, xx, yy,-zPanel2 , 0, "ONLY"); |
659 | gMC->Gspos("S06C",4*index-1,volNam6, xx, yy, zPanel2 , 0, "ONLY"); |
660 | gMC->Gspos("S06C",4*index ,volNam6, xx, yy,-zPanel2 , 0, "ONLY"); |
661 | Float_t yframe = (sensHeight + hFrameHeight)/2.; |
662 | gMC->Gspos("S05H",2*index-1,volNam5, xx, yframe, 0. , 0, "ONLY"); |
663 | gMC->Gspos("S05H",2*index ,volNam5, xx,-yframe, 0. , 0, "ONLY"); |
664 | gMC->Gspos("S06H",2*index-1,volNam6, xx, yframe, 0. , 0, "ONLY"); |
665 | gMC->Gspos("S06H",2*index ,volNam6, xx,-yframe, 0. , 0, "ONLY"); |
666 | Float_t yborder = (bFrameHeight + hFrameHeight)/2. + yframe; |
667 | gMC->Gspos("S05B",2*index-1,volNam5, xx, yborder, 0. , 0, "ONLY"); |
668 | gMC->Gspos("S05B",2*index ,volNam5, xx,-yborder, 0. , 0, "ONLY"); |
669 | gMC->Gspos("S06B",2*index-1,volNam6, xx, yborder, 0. , 0, "ONLY"); |
670 | gMC->Gspos("S06B",2*index ,volNam6, xx,-yborder, 0. , 0, "ONLY"); |
1e8fff9c |
671 | } |
a9e2aefa |
672 | } |
a9e2aefa |
673 | |
1e8fff9c |
674 | // create the NULOC volume and position it in the horizontal frame |
6c5ddcfa |
675 | Float_t nulocpar[3]={nulocLength/2., nulocHeight/2., nulocWidth/2.}; |
676 | gMC->Gsvolu("S05N","BOX",nulocMaterial,nulocpar,3); |
677 | gMC->Gsvolu("S06N","BOX",nulocMaterial,nulocpar,3); |
1e8fff9c |
678 | |
6c5ddcfa |
679 | Float_t xxmax = (bFrameLength - nulocLength)/2.; |
680 | index = 0; |
681 | Float_t xx; |
682 | |
683 | for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) { |
1e8fff9c |
684 | index++; |
6c5ddcfa |
685 | gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
686 | gMC->Gspos("S05N",2*index ,"S05B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
687 | gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
688 | gMC->Gspos("S06N",2*index ,"S06B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1e8fff9c |
689 | } |
690 | |
691 | // create the gassiplex volume |
6c5ddcfa |
692 | Float_t gassipar[3]={gassiLength/2., gassiHeight/2., gassiWidth/2.}; |
693 | gMC->Gsvolu("S05E","BOX",gassiMaterial,gassipar,3); |
694 | gMC->Gsvolu("S06E","BOX",gassiMaterial,gassipar,3); |
1e8fff9c |
695 | |
696 | |
697 | // position 4 gassiplex in the nuloc |
698 | |
6c5ddcfa |
699 | gMC->Gspos("S05E",1,"S05N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY"); |
700 | gMC->Gspos("S05E",2,"S05N", 0., - nulocHeight/8., 0. , 0, "ONLY"); |
701 | gMC->Gspos("S05E",3,"S05N", 0., nulocHeight/8., 0. , 0, "ONLY"); |
702 | gMC->Gspos("S05E",4,"S05N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY"); |
703 | gMC->Gspos("S06E",1,"S06N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY"); |
704 | gMC->Gspos("S06E",2,"S06N", 0., - nulocHeight/8., 0. , 0, "ONLY"); |
705 | gMC->Gspos("S06E",3,"S06N", 0., nulocHeight/8., 0. , 0, "ONLY"); |
706 | gMC->Gspos("S06E",4,"S06N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY"); |
1e8fff9c |
707 | |
a9e2aefa |
708 | |
709 | //******************************************************************** |
710 | // Station 4 ** |
711 | //******************************************************************** |
712 | // indices 1 and 2 for first and second chambers in the station |
713 | // iChamber (first chamber) kept for other quanties than Z, |
714 | // assumed to be the same in both chambers |
715 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6]; |
716 | iChamber2 =(AliMUONChamber*) (*fChambers)[7]; |
717 | zpos1=iChamber1->Z(); |
718 | zpos2=iChamber2->Z(); |
719 | dstation = zpos2 - zpos1; |
720 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
721 | |
722 | // |
723 | // Mother volume |
724 | tpar[0] = iChamber->RInner()-dframep; |
725 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
1e8fff9c |
726 | tpar[2] = 3.252; |
a9e2aefa |
727 | |
728 | gMC->Gsvolu("C07M", "TUBE", idAir, tpar, 3); |
729 | gMC->Gsvolu("C08M", "TUBE", idAir, tpar, 3); |
730 | gMC->Gspos("C07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
731 | gMC->Gspos("C08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
1e8fff9c |
732 | |
a9e2aefa |
733 | |
1e8fff9c |
734 | const Int_t nSlats4 = 7; // number of slats per quadrant |
735 | const Int_t nPCB4[nSlats4] = {7,7,6,6,5,4,2}; // n PCB per slat |
736 | |
737 | // slat dimensions: slat is a MOTHER volume!!! made of air |
6c5ddcfa |
738 | Float_t slatLength4[nSlats4]; |
1e8fff9c |
739 | |
740 | // create and position the slat (mother) volumes |
741 | |
6c5ddcfa |
742 | char volNam7[5]; |
743 | char volNam8[5]; |
1e8fff9c |
744 | Float_t xSlat4; |
745 | Float_t ySlat41, ySlat42; |
746 | |
747 | |
6c5ddcfa |
748 | for (i = 0; i<nSlats4; i++){ |
749 | slatLength4[i] = pcbLength * nPCB4[i] + 2. * dSlatLength; |
750 | xSlat4 = slatLength4[i]/2.; |
1e8fff9c |
751 | if (i==0) xSlat4 += 30.; |
a9e2aefa |
752 | |
6c5ddcfa |
753 | ySlat41 = sensHeight * (i+0.5) - yOverlap *i - yOverlap/2.; |
754 | ySlat42 = -sensHeight * (i+0.5) + yOverlap *i + yOverlap/2.; |
a9e2aefa |
755 | |
6c5ddcfa |
756 | spar[0] = slatLength4[i]/2.; |
757 | spar[1] = slatHeight/2.; |
758 | spar[2] = slatWidth/2.; |
1e8fff9c |
759 | // zSlat to be checked (odd downstream or upstream?) |
6c5ddcfa |
760 | Float_t zSlat = (i%2 ==0)? slatWidth/2. : -slatWidth/2.; |
761 | sprintf(volNam7,"S07%d",i); |
762 | gMC->Gsvolu(volNam7,"BOX",slatMaterial,spar,3); |
763 | gMC->Gspos(volNam7, i*4+1,"C07M", xSlat4, ySlat41, -zSlat, 0, "ONLY"); |
764 | gMC->Gspos(volNam7, i*4+2,"C07M",-xSlat4, ySlat41, -zSlat, 0, "ONLY"); |
765 | gMC->Gspos(volNam7, i*4+3,"C07M", xSlat4, ySlat42, zSlat, 0, "ONLY"); |
766 | gMC->Gspos(volNam7, i*4+4,"C07M",-xSlat4, ySlat42, zSlat, 0, "ONLY"); |
767 | sprintf(volNam8,"S08%d",i); |
768 | gMC->Gsvolu(volNam8,"BOX",slatMaterial,spar,3); |
769 | gMC->Gspos(volNam8, i*4+1,"C08M", xSlat4, ySlat41, -zSlat, 0, "ONLY"); |
770 | gMC->Gspos(volNam8, i*4+2,"C08M",-xSlat4, ySlat41, -zSlat, 0, "ONLY"); |
771 | gMC->Gspos(volNam8, i*4+3,"C08M", xSlat4, ySlat42, zSlat, 0, "ONLY"); |
772 | gMC->Gspos(volNam8, i*4+4,"C08M",-xSlat4, ySlat42, zSlat, 0, "ONLY"); |
a9e2aefa |
773 | } |
774 | |
1e8fff9c |
775 | // create the sensitive volumes (subdivided as the PCBs), |
776 | |
6c5ddcfa |
777 | gMC->Gsvolu("S07G","BOX",sensMaterial,sensPar,3); |
778 | gMC->Gsvolu("S08G","BOX",sensMaterial,sensPar,3); |
a9e2aefa |
779 | |
1e8fff9c |
780 | // create the PCB volume |
781 | |
6c5ddcfa |
782 | gMC->Gsvolu("S07P","BOX",pcbMaterial,pcbpar,3); |
783 | gMC->Gsvolu("S08P","BOX",pcbMaterial,pcbpar,3); |
1e8fff9c |
784 | |
785 | // create the insulating material volume |
786 | |
6c5ddcfa |
787 | gMC->Gsvolu("S07I","BOX",insuMaterial,insupar,3); |
788 | gMC->Gsvolu("S08I","BOX",insuMaterial,insupar,3); |
1e8fff9c |
789 | |
790 | // create the panel volume |
791 | |
6c5ddcfa |
792 | gMC->Gsvolu("S07C","BOX",panelMaterial,panelpar,3); |
793 | gMC->Gsvolu("S08C","BOX",panelMaterial,panelpar,3); |
1e8fff9c |
794 | |
795 | // create the rohacell volume |
796 | |
6c5ddcfa |
797 | gMC->Gsvolu("S07R","BOX",rohaMaterial,rohapar,3); |
798 | gMC->Gsvolu("S08R","BOX",rohaMaterial,rohapar,3); |
1e8fff9c |
799 | |
800 | // create the vertical frame volume |
801 | |
6c5ddcfa |
802 | gMC->Gsvolu("S07V","BOX",vFrameMaterial,vFramepar,3); |
803 | gMC->Gsvolu("S08V","BOX",vFrameMaterial,vFramepar,3); |
1e8fff9c |
804 | |
805 | // create the horizontal frame volume |
806 | |
6c5ddcfa |
807 | gMC->Gsvolu("S07H","BOX",hFrameMaterial,hFramepar,3); |
808 | gMC->Gsvolu("S08H","BOX",hFrameMaterial,hFramepar,3); |
1e8fff9c |
809 | |
810 | // create the horizontal border volume |
811 | |
6c5ddcfa |
812 | gMC->Gsvolu("S07B","BOX",bFrameMaterial,bFramepar,3); |
813 | gMC->Gsvolu("S08B","BOX",bFrameMaterial,bFramepar,3); |
1e8fff9c |
814 | |
6c5ddcfa |
815 | for (i = 0; i<nSlats4; i++){ |
816 | sprintf(volNam7,"S07%d",i); |
817 | sprintf(volNam8,"S08%d",i); |
818 | Float_t xvFrame = (slatLength4[i] - vFrameLength)/2.; |
819 | gMC->Gspos("S07V",2*i-1,volNam7, xvFrame, 0., 0. , 0, "ONLY"); |
820 | gMC->Gspos("S07V",2*i ,volNam7,-xvFrame, 0., 0. , 0, "ONLY"); |
821 | gMC->Gspos("S08V",2*i-1,volNam8, xvFrame, 0., 0. , 0, "ONLY"); |
822 | gMC->Gspos("S08V",2*i ,volNam8,-xvFrame, 0., 0. , 0, "ONLY"); |
823 | for (j=0; j<nPCB4[i]; j++){ |
1e8fff9c |
824 | index++; |
6c5ddcfa |
825 | Float_t xx = sensLength * (-nPCB4[i]/2.+j+.5); |
1e8fff9c |
826 | Float_t yy = 0.; |
827 | Float_t zSens = 0.; |
6c5ddcfa |
828 | gMC->Gspos("S07G",index,volNam7, xx, yy, zSens , 0, "ONLY"); |
829 | gMC->Gspos("S08G",index,volNam8, xx, yy, zSens , 0, "ONLY"); |
830 | Float_t zPCB = (sensWidth+pcbWidth)/2.; |
831 | gMC->Gspos("S07P",2*index-1,volNam7, xx, yy, zPCB , 0, "ONLY"); |
832 | gMC->Gspos("S07P",2*index ,volNam7, xx, yy,-zPCB , 0, "ONLY"); |
833 | gMC->Gspos("S08P",2*index-1,volNam8, xx, yy, zPCB , 0, "ONLY"); |
834 | gMC->Gspos("S08P",2*index ,volNam8, xx, yy,-zPCB , 0, "ONLY"); |
835 | Float_t zInsu = (insuWidth+pcbWidth)/2. + zPCB; |
836 | gMC->Gspos("S07I",2*index-1,volNam7, xx, yy, zInsu , 0, "ONLY"); |
837 | gMC->Gspos("S07I",2*index ,volNam7, xx, yy,-zInsu , 0, "ONLY"); |
838 | gMC->Gspos("S08I",2*index-1,volNam8, xx, yy, zInsu , 0, "ONLY"); |
839 | gMC->Gspos("S08I",2*index ,volNam8, xx, yy,-zInsu , 0, "ONLY"); |
840 | Float_t zPanel1 = (insuWidth+panelWidth)/2. + zInsu; |
841 | gMC->Gspos("S07C",4*index-3,volNam7, xx, yy, zPanel1 , 0, "ONLY"); |
842 | gMC->Gspos("S07C",4*index-2,volNam7, xx, yy,-zPanel1 , 0, "ONLY"); |
843 | gMC->Gspos("S08C",4*index-3,volNam8, xx, yy, zPanel1 , 0, "ONLY"); |
844 | gMC->Gspos("S08C",4*index-2,volNam8, xx, yy,-zPanel1 , 0, "ONLY"); |
845 | Float_t zRoha = (rohaWidth+panelWidth)/2. + zPanel1; |
846 | gMC->Gspos("S07R",2*index-1,volNam7, xx, yy, zRoha , 0, "ONLY"); |
847 | gMC->Gspos("S07R",2*index ,volNam7, xx, yy,-zRoha , 0, "ONLY"); |
848 | gMC->Gspos("S08R",2*index-1,volNam8, xx, yy, zRoha , 0, "ONLY"); |
849 | gMC->Gspos("S08R",2*index ,volNam8, xx, yy,-zRoha , 0, "ONLY"); |
850 | Float_t zPanel2 = (rohaWidth+panelWidth)/2. + zRoha; |
851 | gMC->Gspos("S07C",4*index-1,volNam7, xx, yy, zPanel2 , 0, "ONLY"); |
852 | gMC->Gspos("S07C",4*index ,volNam7, xx, yy,-zPanel2 , 0, "ONLY"); |
853 | gMC->Gspos("S08C",4*index-1,volNam8, xx, yy, zPanel2 , 0, "ONLY"); |
854 | gMC->Gspos("S08C",4*index ,volNam8, xx, yy,-zPanel2 , 0, "ONLY"); |
855 | Float_t yframe = (sensHeight + hFrameHeight)/2.; |
856 | gMC->Gspos("S07H",2*index-1,volNam7, xx, yframe, 0. , 0, "ONLY"); |
857 | gMC->Gspos("S07H",2*index ,volNam7, xx,-yframe, 0. , 0, "ONLY"); |
858 | gMC->Gspos("S08H",2*index-1,volNam8, xx, yframe, 0. , 0, "ONLY"); |
859 | gMC->Gspos("S08H",2*index ,volNam8, xx,-yframe, 0. , 0, "ONLY"); |
860 | Float_t yborder = (bFrameHeight + hFrameHeight)/2. + yframe; |
861 | gMC->Gspos("S07B",2*index-1,volNam7, xx, yborder, 0. , 0, "ONLY"); |
862 | gMC->Gspos("S07B",2*index ,volNam7, xx,-yborder, 0. , 0, "ONLY"); |
863 | gMC->Gspos("S08B",2*index-1,volNam8, xx, yborder, 0. , 0, "ONLY"); |
864 | gMC->Gspos("S08B",2*index ,volNam8, xx,-yborder, 0. , 0, "ONLY"); |
1e8fff9c |
865 | } |
a9e2aefa |
866 | } |
1e8fff9c |
867 | |
868 | // create the NULOC volume and position it in the horizontal frame |
869 | |
6c5ddcfa |
870 | gMC->Gsvolu("S07N","BOX",nulocMaterial,nulocpar,3); |
871 | gMC->Gsvolu("S08N","BOX",nulocMaterial,nulocpar,3); |
1e8fff9c |
872 | |
873 | |
874 | index = 0; |
6c5ddcfa |
875 | for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) { |
1e8fff9c |
876 | index++; |
6c5ddcfa |
877 | gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
878 | gMC->Gspos("S07N",2*index ,"S07B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
879 | gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
880 | gMC->Gspos("S08N",2*index ,"S08B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1e8fff9c |
881 | } |
882 | |
883 | // create the gassiplex volume |
884 | |
6c5ddcfa |
885 | gMC->Gsvolu("S07E","BOX",gassiMaterial,gassipar,3); |
886 | gMC->Gsvolu("S08E","BOX",gassiMaterial,gassipar,3); |
1e8fff9c |
887 | |
888 | |
889 | // position 4 gassiplex in the nuloc |
890 | |
6c5ddcfa |
891 | gMC->Gspos("S07E",1,"S07N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY"); |
892 | gMC->Gspos("S07E",2,"S07N", 0., - nulocHeight/8., 0. , 0, "ONLY"); |
893 | gMC->Gspos("S07E",3,"S07N", 0., nulocHeight/8., 0. , 0, "ONLY"); |
894 | gMC->Gspos("S07E",4,"S07N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY"); |
895 | gMC->Gspos("S08E",1,"S08N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY"); |
896 | gMC->Gspos("S08E",2,"S08N", 0., - nulocHeight/8., 0. , 0, "ONLY"); |
897 | gMC->Gspos("S08E",3,"S08N", 0., nulocHeight/8., 0. , 0, "ONLY"); |
898 | gMC->Gspos("S08E",4,"S08N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY"); |
1e8fff9c |
899 | |
900 | |
901 | |
a9e2aefa |
902 | //******************************************************************** |
903 | // Station 5 ** |
904 | //******************************************************************** |
905 | // indices 1 and 2 for first and second chambers in the station |
906 | // iChamber (first chamber) kept for other quanties than Z, |
907 | // assumed to be the same in both chambers |
908 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8]; |
909 | iChamber2 =(AliMUONChamber*) (*fChambers)[9]; |
910 | zpos1=iChamber1->Z(); |
911 | zpos2=iChamber2->Z(); |
912 | dstation = zpos2 - zpos1; |
913 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
914 | |
915 | // |
916 | // Mother volume |
917 | tpar[0] = iChamber->RInner()-dframep; |
918 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
919 | tpar[2] = dstation/4; |
920 | |
921 | gMC->Gsvolu("C09M", "TUBE", idAir, tpar, 3); |
922 | gMC->Gsvolu("C10M", "TUBE", idAir, tpar, 3); |
923 | gMC->Gspos("C09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
924 | gMC->Gspos("C10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
a9e2aefa |
925 | |
a9e2aefa |
926 | |
1e8fff9c |
927 | const Int_t nSlats5 = 7; // number of slats per quadrant |
928 | const Int_t nPCB5[nSlats5] = {6,6,6,5,5,4,3}; // n PCB per slat |
929 | |
930 | // slat dimensions: slat is a MOTHER volume!!! made of air |
6c5ddcfa |
931 | Float_t slatLength5[nSlats5]; |
932 | //const Float_t slatHeight = pcbHeight; |
933 | // const Float_t slatWidth = sensWidth + 2.*(pcbWidth + insuWidth + |
934 | // 2.* panelWidth + rohaWidth); |
935 | // const Int_t slatMaterial = idAir; |
936 | // const Float_t dSlatLength = vFrameLength; // border on left and right |
1e8fff9c |
937 | |
938 | // create and position the slat (mother) volumes |
939 | // Float_t spar[3]; |
6c5ddcfa |
940 | char volNam9[5]; |
941 | char volNam10[5]; |
1e8fff9c |
942 | Float_t xSlat5[nSlats5]; |
943 | Float_t ySlat5[nSlats5]; |
944 | |
6c5ddcfa |
945 | for (i = 0; i<nSlats5; i++){ |
946 | slatLength5[i] = pcbLength * nPCB5[i] + 2. * dSlatLength; |
947 | xSlat5[i] = slatLength5[i]/2.; |
948 | ySlat5[i] = sensHeight * (i+0.5) - yOverlap * i; |
949 | spar[0] = slatLength5[i]/2.; |
950 | spar[1] = slatHeight/2.; |
951 | spar[2] = slatWidth/2.; |
1e8fff9c |
952 | // zSlat to be checked (odd downstream or upstream?) |
6c5ddcfa |
953 | Float_t zSlat = (i%2 ==0)? -slatWidth/2. : slatWidth/2.; |
954 | sprintf(volNam9,"S09%d",i); |
955 | gMC->Gsvolu(volNam9,"BOX",slatMaterial,spar,3); |
956 | gMC->Gspos(volNam9, i*4+1,"C09M", xSlat5[i], ySlat5[i], zSlat, 0, "ONLY"); |
957 | gMC->Gspos(volNam9, i*4+2,"C09M",-xSlat5[i], ySlat5[i], zSlat, 0, "ONLY"); |
958 | gMC->Gspos(volNam9, i*4+3,"C09M", xSlat5[i],-ySlat5[i],-zSlat, 0, "ONLY"); |
959 | gMC->Gspos(volNam9, i*4+4,"C09M",-xSlat5[i],-ySlat5[i],-zSlat, 0, "ONLY"); |
960 | sprintf(volNam10,"S10%d",i); |
961 | gMC->Gsvolu(volNam10,"BOX",slatMaterial,spar,3); |
962 | gMC->Gspos(volNam10, i*4+1,"C10M", xSlat5[i], ySlat5[i], zSlat, 0, "ONLY"); |
963 | gMC->Gspos(volNam10, i*4+2,"C10M",-xSlat5[i], ySlat5[i], zSlat, 0, "ONLY"); |
964 | gMC->Gspos(volNam10, i*4+3,"C10M", xSlat5[i],-ySlat5[i],-zSlat, 0, "ONLY"); |
965 | gMC->Gspos(volNam10, i*4+4,"C10M",-xSlat5[i],-ySlat5[i],-zSlat, 0, "ONLY"); |
a9e2aefa |
966 | } |
967 | |
1e8fff9c |
968 | // create the sensitive volumes (subdivided as the PCBs), |
969 | |
6c5ddcfa |
970 | gMC->Gsvolu("S09G","BOX",sensMaterial,sensPar,3); |
971 | gMC->Gsvolu("S10G","BOX",sensMaterial,sensPar,3); |
a9e2aefa |
972 | |
1e8fff9c |
973 | // create the PCB volume |
974 | |
6c5ddcfa |
975 | gMC->Gsvolu("S09P","BOX",pcbMaterial,pcbpar,3); |
976 | gMC->Gsvolu("S10P","BOX",pcbMaterial,pcbpar,3); |
1e8fff9c |
977 | |
978 | // create the insulating material volume |
979 | |
6c5ddcfa |
980 | gMC->Gsvolu("S09I","BOX",insuMaterial,insupar,3); |
981 | gMC->Gsvolu("S10I","BOX",insuMaterial,insupar,3); |
1e8fff9c |
982 | |
983 | // create the panel volume |
984 | |
6c5ddcfa |
985 | gMC->Gsvolu("S09C","BOX",panelMaterial,panelpar,3); |
986 | gMC->Gsvolu("S10C","BOX",panelMaterial,panelpar,3); |
1e8fff9c |
987 | |
988 | // create the rohacell volume |
989 | |
6c5ddcfa |
990 | gMC->Gsvolu("S09R","BOX",rohaMaterial,rohapar,3); |
991 | gMC->Gsvolu("S10R","BOX",rohaMaterial,rohapar,3); |
1e8fff9c |
992 | |
993 | // create the vertical frame volume |
994 | |
6c5ddcfa |
995 | gMC->Gsvolu("S09V","BOX",vFrameMaterial,vFramepar,3); |
996 | gMC->Gsvolu("S10V","BOX",vFrameMaterial,vFramepar,3); |
1e8fff9c |
997 | |
998 | // create the horizontal frame volume |
999 | |
6c5ddcfa |
1000 | gMC->Gsvolu("S09H","BOX",hFrameMaterial,hFramepar,3); |
1001 | gMC->Gsvolu("S10H","BOX",hFrameMaterial,hFramepar,3); |
1e8fff9c |
1002 | |
1003 | // create the horizontal border volume |
1004 | |
6c5ddcfa |
1005 | gMC->Gsvolu("S09B","BOX",bFrameMaterial,bFramepar,3); |
1006 | gMC->Gsvolu("S10B","BOX",bFrameMaterial,bFramepar,3); |
1e8fff9c |
1007 | |
1008 | |
6c5ddcfa |
1009 | for (i = 0; i<nSlats5; i++){ |
1010 | sprintf(volNam9,"S09%d",i); |
1011 | sprintf(volNam10,"S10%d",i); |
1012 | Float_t xvFrame = (slatLength5[i] - vFrameLength)/2.; |
1013 | gMC->Gspos("S09V",2*i-1,volNam9, xvFrame, 0., 0. , 0, "ONLY"); |
1014 | gMC->Gspos("S09V",2*i ,volNam9,-xvFrame, 0., 0. , 0, "ONLY"); |
1015 | gMC->Gspos("S10V",2*i-1,volNam10, xvFrame, 0., 0. , 0, "ONLY"); |
1016 | gMC->Gspos("S10V",2*i ,volNam10,-xvFrame, 0., 0. , 0, "ONLY"); |
1017 | for (j=0; j<nPCB5[i]; j++){ |
1e8fff9c |
1018 | index++; |
6c5ddcfa |
1019 | Float_t xx = sensLength * (-nPCB5[i]/2.+j+.5); |
1e8fff9c |
1020 | Float_t yy = 0.; |
1021 | Float_t zSens = 0.; |
6c5ddcfa |
1022 | gMC->Gspos("S09G",index,volNam9, xx, yy, zSens , 0, "ONLY"); |
1023 | gMC->Gspos("S10G",index,volNam10, xx, yy, zSens , 0, "ONLY"); |
1024 | Float_t zPCB = (sensWidth+pcbWidth)/2.; |
1025 | gMC->Gspos("S09P",2*index-1,volNam9, xx, yy, zPCB , 0, "ONLY"); |
1026 | gMC->Gspos("S09P",2*index ,volNam9, xx, yy,-zPCB , 0, "ONLY"); |
1027 | gMC->Gspos("S10P",2*index-1,volNam10, xx, yy, zPCB , 0, "ONLY"); |
1028 | gMC->Gspos("S10P",2*index ,volNam10, xx, yy,-zPCB , 0, "ONLY"); |
1029 | Float_t zInsu = (insuWidth+pcbWidth)/2. + zPCB; |
1030 | gMC->Gspos("S09I",2*index-1,volNam9, xx, yy, zInsu , 0, "ONLY"); |
1031 | gMC->Gspos("S09I",2*index ,volNam9, xx, yy,-zInsu , 0, "ONLY"); |
1032 | gMC->Gspos("S10I",2*index-1,volNam10, xx, yy, zInsu , 0, "ONLY"); |
1033 | gMC->Gspos("S10I",2*index ,volNam10, xx, yy,-zInsu , 0, "ONLY"); |
1034 | Float_t zPanel1 = (insuWidth+panelWidth)/2. + zInsu; |
1035 | gMC->Gspos("S09C",4*index-3,volNam9, xx, yy, zPanel1 , 0, "ONLY"); |
1036 | gMC->Gspos("S09C",4*index-2,volNam9, xx, yy,-zPanel1 , 0, "ONLY"); |
1037 | gMC->Gspos("S10C",4*index-3,volNam10, xx, yy, zPanel1 , 0, "ONLY"); |
1038 | gMC->Gspos("S10C",4*index-2,volNam10, xx, yy,-zPanel1 , 0, "ONLY"); |
1039 | Float_t zRoha = (rohaWidth+panelWidth)/2. + zPanel1; |
1040 | gMC->Gspos("S09R",2*index-1,volNam9, xx, yy, zRoha , 0, "ONLY"); |
1041 | gMC->Gspos("S09R",2*index ,volNam9, xx, yy,-zRoha , 0, "ONLY"); |
1042 | gMC->Gspos("S10R",2*index-1,volNam10, xx, yy, zRoha , 0, "ONLY"); |
1043 | gMC->Gspos("S10R",2*index ,volNam10, xx, yy,-zRoha , 0, "ONLY"); |
1044 | Float_t zPanel2 = (rohaWidth+panelWidth)/2. + zRoha; |
1045 | gMC->Gspos("S09C",4*index-1,volNam9, xx, yy, zPanel2 , 0, "ONLY"); |
1046 | gMC->Gspos("S09C",4*index ,volNam9, xx, yy,-zPanel2 , 0, "ONLY"); |
1047 | gMC->Gspos("S10C",4*index-1,volNam10, xx, yy, zPanel2 , 0, "ONLY"); |
1048 | gMC->Gspos("S10C",4*index ,volNam10, xx, yy,-zPanel2 , 0, "ONLY"); |
1049 | Float_t yframe = (sensHeight + hFrameHeight)/2.; |
1050 | gMC->Gspos("S09H",2*index-1,volNam9, xx, yframe, 0. , 0, "ONLY"); |
1051 | gMC->Gspos("S09H",2*index ,volNam9, xx,-yframe, 0. , 0, "ONLY"); |
1052 | gMC->Gspos("S10H",2*index-1,volNam10, xx, yframe, 0. , 0, "ONLY"); |
1053 | gMC->Gspos("S10H",2*index ,volNam10, xx,-yframe, 0. , 0, "ONLY"); |
1054 | Float_t yborder = (bFrameHeight + hFrameHeight)/2. + yframe; |
1055 | gMC->Gspos("S09B",2*index-1,volNam9, xx, yborder, 0. , 0, "ONLY"); |
1056 | gMC->Gspos("S09B",2*index ,volNam9, xx,-yborder, 0. , 0, "ONLY"); |
1057 | gMC->Gspos("S10B",2*index-1,volNam10, xx, yborder, 0. , 0, "ONLY"); |
1058 | gMC->Gspos("S10B",2*index ,volNam10, xx,-yborder, 0. , 0, "ONLY"); |
1e8fff9c |
1059 | } |
1060 | } |
1061 | |
1062 | // create the NULOC volume and position it in the horizontal frame |
1063 | |
6c5ddcfa |
1064 | gMC->Gsvolu("S09N","BOX",nulocMaterial,nulocpar,3); |
1065 | gMC->Gsvolu("S10N","BOX",nulocMaterial,nulocpar,3); |
1e8fff9c |
1066 | |
1067 | index = 0; |
6c5ddcfa |
1068 | for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) { |
1e8fff9c |
1069 | index++; |
6c5ddcfa |
1070 | gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
1071 | gMC->Gspos("S09N",2*index ,"S09B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1072 | gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
1073 | gMC->Gspos("S10N",2*index ,"S10B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
a9e2aefa |
1074 | } |
1075 | |
1e8fff9c |
1076 | // create the gassiplex volume |
1077 | |
6c5ddcfa |
1078 | gMC->Gsvolu("S09E","BOX",gassiMaterial,gassipar,3); |
1079 | gMC->Gsvolu("S10E","BOX",gassiMaterial,gassipar,3); |
1e8fff9c |
1080 | |
1081 | |
1082 | // position 4 gassiplex in the nuloc |
1083 | |
6c5ddcfa |
1084 | gMC->Gspos("S09E",1,"S09N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY"); |
1085 | gMC->Gspos("S09E",2,"S09N", 0., - nulocHeight/8., 0. , 0, "ONLY"); |
1086 | gMC->Gspos("S09E",3,"S09N", 0., nulocHeight/8., 0. , 0, "ONLY"); |
1087 | gMC->Gspos("S09E",4,"S09N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY"); |
1088 | gMC->Gspos("S10E",1,"S10N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY"); |
1089 | gMC->Gspos("S10E",2,"S10N", 0., - nulocHeight/8., 0. , 0, "ONLY"); |
1090 | gMC->Gspos("S10E",3,"S10N", 0., nulocHeight/8., 0. , 0, "ONLY"); |
1091 | gMC->Gspos("S10E",4,"S10N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY"); |
1e8fff9c |
1092 | |
1093 | |
a9e2aefa |
1094 | /////////////////////////////////////// |
1095 | // GEOMETRY FOR THE TRIGGER CHAMBERS // |
1096 | /////////////////////////////////////// |
1097 | |
1098 | // 03/00 P. Dupieux : introduce a slighly more realistic |
1099 | // geom. of the trigger readout planes with |
1100 | // 2 Zpos per trigger plane (alternate |
1101 | // between left and right of the trigger) |
1102 | |
1103 | // Parameters of the Trigger Chambers |
1104 | |
1105 | |
1106 | const Float_t kXMC1MIN=34.; |
1107 | const Float_t kXMC1MED=51.; |
1108 | const Float_t kXMC1MAX=272.; |
1109 | const Float_t kYMC1MIN=34.; |
1110 | const Float_t kYMC1MAX=51.; |
1111 | const Float_t kRMIN1=50.; |
1112 | const Float_t kRMAX1=62.; |
1113 | const Float_t kRMIN2=50.; |
1114 | const Float_t kRMAX2=66.; |
1115 | |
1116 | // zposition of the middle of the gas gap in mother vol |
1117 | const Float_t kZMCm=-3.6; |
1118 | const Float_t kZMCp=+3.6; |
1119 | |
1120 | |
1121 | // TRIGGER STATION 1 - TRIGGER STATION 1 - TRIGGER STATION 1 |
1122 | |
1123 | // iChamber 1 and 2 for first and second chambers in the station |
1124 | // iChamber (first chamber) kept for other quanties than Z, |
1125 | // assumed to be the same in both chambers |
1126 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[10]; |
1127 | iChamber2 =(AliMUONChamber*) (*fChambers)[11]; |
1128 | |
1129 | // 03/00 |
1130 | // zpos1 and zpos2 are now the middle of the first and second |
1131 | // plane of station 1 : |
1132 | // zpos1=(16075+15995)/2=16035 mm, thick/2=40 mm |
1133 | // zpos2=(16225+16145)/2=16185 mm, thick/2=40 mm |
1134 | // |
1135 | // zpos1m=15999 mm , zpos1p=16071 mm (middles of gas gaps) |
1136 | // zpos2m=16149 mm , zpos2p=16221 mm (middles of gas gaps) |
1137 | // rem : the total thickness accounts for 1 mm of al on both |
1138 | // side of the RPCs (see zpos1 and zpos2), as previously |
1139 | |
1140 | zpos1=iChamber1->Z(); |
1141 | zpos2=iChamber2->Z(); |
1142 | |
1143 | |
1144 | // Mother volume definition |
1145 | tpar[0] = iChamber->RInner(); |
1146 | tpar[1] = iChamber->ROuter(); |
1147 | tpar[2] = 4.0; |
1148 | gMC->Gsvolu("CM11", "TUBE", idAir, tpar, 3); |
1149 | gMC->Gsvolu("CM12", "TUBE", idAir, tpar, 3); |
1150 | |
1151 | // Definition of the flange between the beam shielding and the RPC |
1152 | tpar[0]= kRMIN1; |
1153 | tpar[1]= kRMAX1; |
1154 | tpar[2]= 4.0; |
1155 | |
1156 | gMC->Gsvolu("CF1A", "TUBE", idAlu1, tpar, 3); //Al |
1157 | gMC->Gspos("CF1A", 1, "CM11", 0., 0., 0., 0, "MANY"); |
1158 | gMC->Gspos("CF1A", 2, "CM12", 0., 0., 0., 0, "MANY"); |
1159 | |
1160 | |
1161 | // FIRST PLANE OF STATION 1 |
1162 | |
1163 | // ratios of zpos1m/zpos1p and inverse for first plane |
1164 | Float_t zmp=(zpos1-3.6)/(zpos1+3.6); |
1165 | Float_t zpm=1./zmp; |
1166 | |
1167 | |
1168 | // Definition of prototype for chambers in the first plane |
1169 | |
1170 | tpar[0]= 0.; |
1171 | tpar[1]= 0.; |
1172 | tpar[2]= 0.; |
1173 | |
1174 | gMC->Gsvolu("CC1A", "BOX ", idAlu1, tpar, 0); //Al |
1175 | gMC->Gsvolu("CB1A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1176 | gMC->Gsvolu("CG1A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1177 | |
1178 | // chamber type A |
1179 | tpar[0] = -1.; |
1180 | tpar[1] = -1.; |
1181 | |
1182 | const Float_t kXMC1A=kXMC1MED+(kXMC1MAX-kXMC1MED)/2.; |
1183 | const Float_t kYMC1Am=0.; |
1184 | const Float_t kYMC1Ap=0.; |
1185 | |
1186 | tpar[2] = 0.1; |
1187 | gMC->Gsposp("CG1A", 1, "CB1A", 0., 0., 0., 0, "ONLY",tpar,3); |
1188 | tpar[2] = 0.3; |
1189 | gMC->Gsposp("CB1A", 1, "CC1A", 0., 0., 0., 0, "ONLY",tpar,3); |
1190 | |
1191 | tpar[2] = 0.4; |
1192 | tpar[0] = (kXMC1MAX-kXMC1MED)/2.; |
1193 | tpar[1] = kYMC1MIN; |
1194 | |
1195 | gMC->Gsposp("CC1A", 1, "CM11",kXMC1A,kYMC1Am,kZMCm, 0, "ONLY", tpar, 3); |
1196 | gMC->Gsposp("CC1A", 2, "CM11",-kXMC1A,kYMC1Ap,kZMCp, 0, "ONLY", tpar, 3); |
1197 | |
1198 | // chamber type B |
1199 | Float_t tpar1save=tpar[1]; |
1200 | Float_t y1msave=kYMC1Am; |
1201 | Float_t y1psave=kYMC1Ap; |
1202 | |
1203 | tpar[0] = (kXMC1MAX-kXMC1MIN)/2.; |
1204 | tpar[1] = (kYMC1MAX-kYMC1MIN)/2.; |
1205 | |
1206 | const Float_t kXMC1B=kXMC1MIN+tpar[0]; |
1207 | const Float_t kYMC1Bp=(y1msave+tpar1save)*zpm+tpar[1]; |
1208 | const Float_t kYMC1Bm=(y1psave+tpar1save)*zmp+tpar[1]; |
1209 | |
1210 | gMC->Gsposp("CC1A", 3, "CM11",kXMC1B,kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3); |
1211 | gMC->Gsposp("CC1A", 4, "CM11",-kXMC1B,kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3); |
1212 | gMC->Gsposp("CC1A", 5, "CM11",kXMC1B,-kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3); |
1213 | gMC->Gsposp("CC1A", 6, "CM11",-kXMC1B,-kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3); |
1214 | |
1215 | // chamber type C (end of type B !!) |
1216 | tpar1save=tpar[1]; |
1217 | y1msave=kYMC1Bm; |
1218 | y1psave=kYMC1Bp; |
1219 | |
1220 | tpar[0] = kXMC1MAX/2; |
1221 | tpar[1] = kYMC1MAX/2; |
1222 | |
1223 | const Float_t kXMC1C=tpar[0]; |
1224 | // warning : same Z than type B |
1225 | const Float_t kYMC1Cp=(y1psave+tpar1save)*1.+tpar[1]; |
1226 | const Float_t kYMC1Cm=(y1msave+tpar1save)*1.+tpar[1]; |
1227 | |
1228 | gMC->Gsposp("CC1A", 7, "CM11",kXMC1C,kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3); |
1229 | gMC->Gsposp("CC1A", 8, "CM11",-kXMC1C,kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3); |
1230 | gMC->Gsposp("CC1A", 9, "CM11",kXMC1C,-kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3); |
1231 | gMC->Gsposp("CC1A", 10, "CM11",-kXMC1C,-kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3); |
1232 | |
1233 | // chamber type D, E and F (same size) |
1234 | tpar1save=tpar[1]; |
1235 | y1msave=kYMC1Cm; |
1236 | y1psave=kYMC1Cp; |
1237 | |
1238 | tpar[0] = kXMC1MAX/2.; |
1239 | tpar[1] = kYMC1MIN; |
1240 | |
1241 | const Float_t kXMC1D=tpar[0]; |
1242 | const Float_t kYMC1Dp=(y1msave+tpar1save)*zpm+tpar[1]; |
1243 | const Float_t kYMC1Dm=(y1psave+tpar1save)*zmp+tpar[1]; |
1244 | |
1245 | gMC->Gsposp("CC1A", 11, "CM11",kXMC1D,kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3); |
1246 | gMC->Gsposp("CC1A", 12, "CM11",-kXMC1D,kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3); |
1247 | gMC->Gsposp("CC1A", 13, "CM11",kXMC1D,-kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3); |
1248 | gMC->Gsposp("CC1A", 14, "CM11",-kXMC1D,-kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3); |
1249 | |
1250 | |
1251 | tpar1save=tpar[1]; |
1252 | y1msave=kYMC1Dm; |
1253 | y1psave=kYMC1Dp; |
1254 | const Float_t kYMC1Ep=(y1msave+tpar1save)*zpm+tpar[1]; |
1255 | const Float_t kYMC1Em=(y1psave+tpar1save)*zmp+tpar[1]; |
1256 | |
1257 | gMC->Gsposp("CC1A", 15, "CM11",kXMC1D,kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3); |
1258 | gMC->Gsposp("CC1A", 16, "CM11",-kXMC1D,kYMC1Em,kZMCm, 0, "ONLY", tpar, 3); |
1259 | gMC->Gsposp("CC1A", 17, "CM11",kXMC1D,-kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3); |
1260 | gMC->Gsposp("CC1A", 18, "CM11",-kXMC1D,-kYMC1Em,kZMCm, 0, "ONLY", tpar, 3); |
1261 | |
1262 | tpar1save=tpar[1]; |
1263 | y1msave=kYMC1Em; |
1264 | y1psave=kYMC1Ep; |
1265 | const Float_t kYMC1Fp=(y1msave+tpar1save)*zpm+tpar[1]; |
1266 | const Float_t kYMC1Fm=(y1psave+tpar1save)*zmp+tpar[1]; |
1267 | |
1268 | gMC->Gsposp("CC1A", 19, "CM11",kXMC1D,kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3); |
1269 | gMC->Gsposp("CC1A", 20, "CM11",-kXMC1D,kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3); |
1270 | gMC->Gsposp("CC1A", 21, "CM11",kXMC1D,-kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3); |
1271 | gMC->Gsposp("CC1A", 22, "CM11",-kXMC1D,-kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3); |
1272 | |
1273 | // Positioning first plane in ALICE |
1274 | gMC->Gspos("CM11", 1, "ALIC", 0., 0., zpos1, 0, "ONLY"); |
1275 | |
1276 | // End of geometry definition for the first plane of station 1 |
1277 | |
1278 | |
1279 | |
1280 | // SECOND PLANE OF STATION 1 : proj ratio = zpos2/zpos1 |
1281 | |
1282 | const Float_t kZ12=zpos2/zpos1; |
1283 | |
1284 | // Definition of prototype for chambers in the second plane of station 1 |
1285 | |
1286 | tpar[0]= 0.; |
1287 | tpar[1]= 0.; |
1288 | tpar[2]= 0.; |
1289 | |
1290 | gMC->Gsvolu("CC2A", "BOX ", idAlu1, tpar, 0); //Al |
1291 | gMC->Gsvolu("CB2A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1292 | gMC->Gsvolu("CG2A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1293 | |
1294 | // chamber type A |
1295 | tpar[0] = -1.; |
1296 | tpar[1] = -1.; |
1297 | |
1298 | const Float_t kXMC2A=kXMC1A*kZ12; |
1299 | const Float_t kYMC2Am=0.; |
1300 | const Float_t kYMC2Ap=0.; |
1301 | |
1302 | tpar[2] = 0.1; |
1303 | gMC->Gsposp("CG2A", 1, "CB2A", 0., 0., 0., 0, "ONLY",tpar,3); |
1304 | tpar[2] = 0.3; |
1305 | gMC->Gsposp("CB2A", 1, "CC2A", 0., 0., 0., 0, "ONLY",tpar,3); |
1306 | |
1307 | tpar[2] = 0.4; |
1308 | tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ12; |
1309 | tpar[1] = kYMC1MIN*kZ12; |
1310 | |
1311 | gMC->Gsposp("CC2A", 1, "CM12",kXMC2A,kYMC2Am,kZMCm, 0, "ONLY", tpar, 3); |
1312 | gMC->Gsposp("CC2A", 2, "CM12",-kXMC2A,kYMC2Ap,kZMCp, 0, "ONLY", tpar, 3); |
1313 | |
1314 | |
1315 | // chamber type B |
1316 | |
1317 | tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ12; |
1318 | tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ12; |
1319 | |
1320 | const Float_t kXMC2B=kXMC1B*kZ12; |
1321 | const Float_t kYMC2Bp=kYMC1Bp*kZ12; |
1322 | const Float_t kYMC2Bm=kYMC1Bm*kZ12; |
1323 | gMC->Gsposp("CC2A", 3, "CM12",kXMC2B,kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3); |
1324 | gMC->Gsposp("CC2A", 4, "CM12",-kXMC2B,kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3); |
1325 | gMC->Gsposp("CC2A", 5, "CM12",kXMC2B,-kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3); |
1326 | gMC->Gsposp("CC2A", 6, "CM12",-kXMC2B,-kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3); |
1327 | |
1328 | |
1329 | // chamber type C (end of type B !!) |
1330 | |
1331 | tpar[0] = (kXMC1MAX/2)*kZ12; |
1332 | tpar[1] = (kYMC1MAX/2)*kZ12; |
1333 | |
1334 | const Float_t kXMC2C=kXMC1C*kZ12; |
1335 | const Float_t kYMC2Cp=kYMC1Cp*kZ12; |
1336 | const Float_t kYMC2Cm=kYMC1Cm*kZ12; |
1337 | gMC->Gsposp("CC2A", 7, "CM12",kXMC2C,kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3); |
1338 | gMC->Gsposp("CC2A", 8, "CM12",-kXMC2C,kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3); |
1339 | gMC->Gsposp("CC2A", 9, "CM12",kXMC2C,-kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3); |
1340 | gMC->Gsposp("CC2A", 10, "CM12",-kXMC2C,-kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3); |
1341 | |
1342 | // chamber type D, E and F (same size) |
1343 | |
1344 | tpar[0] = (kXMC1MAX/2.)*kZ12; |
1345 | tpar[1] = kYMC1MIN*kZ12; |
1346 | |
1347 | const Float_t kXMC2D=kXMC1D*kZ12; |
1348 | const Float_t kYMC2Dp=kYMC1Dp*kZ12; |
1349 | const Float_t kYMC2Dm=kYMC1Dm*kZ12; |
1350 | gMC->Gsposp("CC2A", 11, "CM12",kXMC2D,kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3); |
1351 | gMC->Gsposp("CC2A", 12, "CM12",-kXMC2D,kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3); |
1352 | gMC->Gsposp("CC2A", 13, "CM12",kXMC2D,-kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3); |
1353 | gMC->Gsposp("CC2A", 14, "CM12",-kXMC2D,-kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3); |
1354 | |
1355 | const Float_t kYMC2Ep=kYMC1Ep*kZ12; |
1356 | const Float_t kYMC2Em=kYMC1Em*kZ12; |
1357 | gMC->Gsposp("CC2A", 15, "CM12",kXMC2D,kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3); |
1358 | gMC->Gsposp("CC2A", 16, "CM12",-kXMC2D,kYMC2Em,kZMCm, 0, "ONLY", tpar, 3); |
1359 | gMC->Gsposp("CC2A", 17, "CM12",kXMC2D,-kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3); |
1360 | gMC->Gsposp("CC2A", 18, "CM12",-kXMC2D,-kYMC2Em,kZMCm, 0, "ONLY", tpar, 3); |
1361 | |
1362 | |
1363 | const Float_t kYMC2Fp=kYMC1Fp*kZ12; |
1364 | const Float_t kYMC2Fm=kYMC1Fm*kZ12; |
1365 | gMC->Gsposp("CC2A", 19, "CM12",kXMC2D,kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3); |
1366 | gMC->Gsposp("CC2A", 20, "CM12",-kXMC2D,kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3); |
1367 | gMC->Gsposp("CC2A", 21, "CM12",kXMC2D,-kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3); |
1368 | gMC->Gsposp("CC2A", 22, "CM12",-kXMC2D,-kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3); |
1369 | |
1370 | // Positioning second plane of station 1 in ALICE |
1371 | |
1372 | gMC->Gspos("CM12", 1, "ALIC", 0., 0., zpos2, 0, "ONLY"); |
1373 | |
1374 | // End of geometry definition for the second plane of station 1 |
1375 | |
1376 | |
1377 | |
1378 | // TRIGGER STATION 2 - TRIGGER STATION 2 - TRIGGER STATION 2 |
1379 | |
1380 | // 03/00 |
1381 | // zpos3 and zpos4 are now the middle of the first and second |
1382 | // plane of station 2 : |
1383 | // zpos3=(17075+16995)/2=17035 mm, thick/2=40 mm |
1384 | // zpos4=(17225+17145)/2=17185 mm, thick/2=40 mm |
1385 | // |
1386 | // zpos3m=16999 mm , zpos3p=17071 mm (middles of gas gaps) |
1387 | // zpos4m=17149 mm , zpos4p=17221 mm (middles of gas gaps) |
1388 | // rem : the total thickness accounts for 1 mm of al on both |
1389 | // side of the RPCs (see zpos3 and zpos4), as previously |
1390 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[12]; |
1391 | iChamber2 =(AliMUONChamber*) (*fChambers)[13]; |
1392 | Float_t zpos3=iChamber1->Z(); |
1393 | Float_t zpos4=iChamber2->Z(); |
1394 | |
1395 | |
1396 | // Mother volume definition |
1397 | tpar[0] = iChamber->RInner(); |
1398 | tpar[1] = iChamber->ROuter(); |
1399 | tpar[2] = 4.0; |
1400 | |
1401 | gMC->Gsvolu("CM21", "TUBE", idAir, tpar, 3); |
1402 | gMC->Gsvolu("CM22", "TUBE", idAir, tpar, 3); |
1403 | |
1404 | // Definition of the flange between the beam shielding and the RPC |
1405 | // ???? interface shielding |
1406 | |
1407 | tpar[0]= kRMIN2; |
1408 | tpar[1]= kRMAX2; |
1409 | tpar[2]= 4.0; |
1410 | |
1411 | gMC->Gsvolu("CF2A", "TUBE", idAlu1, tpar, 3); //Al |
1412 | gMC->Gspos("CF2A", 1, "CM21", 0., 0., 0., 0, "MANY"); |
1413 | gMC->Gspos("CF2A", 2, "CM22", 0., 0., 0., 0, "MANY"); |
1414 | |
1415 | |
1416 | |
1417 | // FIRST PLANE OF STATION 2 : proj ratio = zpos3/zpos1 |
1418 | |
1419 | const Float_t kZ13=zpos3/zpos1; |
1420 | |
1421 | // Definition of prototype for chambers in the first plane of station 2 |
1422 | tpar[0]= 0.; |
1423 | tpar[1]= 0.; |
1424 | tpar[2]= 0.; |
1425 | |
1426 | gMC->Gsvolu("CC3A", "BOX ", idAlu1, tpar, 0); //Al |
1427 | gMC->Gsvolu("CB3A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1428 | gMC->Gsvolu("CG3A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1429 | |
1430 | |
1431 | // chamber type A |
1432 | tpar[0] = -1.; |
1433 | tpar[1] = -1.; |
1434 | |
1435 | const Float_t kXMC3A=kXMC1A*kZ13; |
1436 | const Float_t kYMC3Am=0.; |
1437 | const Float_t kYMC3Ap=0.; |
1438 | |
1439 | tpar[2] = 0.1; |
1440 | gMC->Gsposp("CG3A", 1, "CB3A", 0., 0., 0., 0, "ONLY",tpar,3); |
1441 | tpar[2] = 0.3; |
1442 | gMC->Gsposp("CB3A", 1, "CC3A", 0., 0., 0., 0, "ONLY",tpar,3); |
1443 | |
1444 | tpar[2] = 0.4; |
1445 | tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ13; |
1446 | tpar[1] = kYMC1MIN*kZ13; |
1447 | gMC->Gsposp("CC3A", 1, "CM21",kXMC3A,kYMC3Am,kZMCm, 0, "ONLY", tpar, 3); |
1448 | gMC->Gsposp("CC3A", 2, "CM21",-kXMC3A,kYMC3Ap,kZMCp, 0, "ONLY", tpar, 3); |
1449 | |
1450 | |
1451 | // chamber type B |
1452 | tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ13; |
1453 | tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ13; |
1454 | |
1455 | const Float_t kXMC3B=kXMC1B*kZ13; |
1456 | const Float_t kYMC3Bp=kYMC1Bp*kZ13; |
1457 | const Float_t kYMC3Bm=kYMC1Bm*kZ13; |
1458 | gMC->Gsposp("CC3A", 3, "CM21",kXMC3B,kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3); |
1459 | gMC->Gsposp("CC3A", 4, "CM21",-kXMC3B,kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3); |
1460 | gMC->Gsposp("CC3A", 5, "CM21",kXMC3B,-kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3); |
1461 | gMC->Gsposp("CC3A", 6, "CM21",-kXMC3B,-kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3); |
1462 | |
1463 | |
1464 | // chamber type C (end of type B !!) |
1465 | tpar[0] = (kXMC1MAX/2)*kZ13; |
1466 | tpar[1] = (kYMC1MAX/2)*kZ13; |
1467 | |
1468 | const Float_t kXMC3C=kXMC1C*kZ13; |
1469 | const Float_t kYMC3Cp=kYMC1Cp*kZ13; |
1470 | const Float_t kYMC3Cm=kYMC1Cm*kZ13; |
1471 | gMC->Gsposp("CC3A", 7, "CM21",kXMC3C,kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3); |
1472 | gMC->Gsposp("CC3A", 8, "CM21",-kXMC3C,kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3); |
1473 | gMC->Gsposp("CC3A", 9, "CM21",kXMC3C,-kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3); |
1474 | gMC->Gsposp("CC3A", 10, "CM21",-kXMC3C,-kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3); |
1475 | |
1476 | |
1477 | // chamber type D, E and F (same size) |
1478 | |
1479 | tpar[0] = (kXMC1MAX/2.)*kZ13; |
1480 | tpar[1] = kYMC1MIN*kZ13; |
1481 | |
1482 | const Float_t kXMC3D=kXMC1D*kZ13; |
1483 | const Float_t kYMC3Dp=kYMC1Dp*kZ13; |
1484 | const Float_t kYMC3Dm=kYMC1Dm*kZ13; |
1485 | gMC->Gsposp("CC3A", 11, "CM21",kXMC3D,kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3); |
1486 | gMC->Gsposp("CC3A", 12, "CM21",-kXMC3D,kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3); |
1487 | gMC->Gsposp("CC3A", 13, "CM21",kXMC3D,-kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3); |
1488 | gMC->Gsposp("CC3A", 14, "CM21",-kXMC3D,-kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3); |
1489 | |
1490 | const Float_t kYMC3Ep=kYMC1Ep*kZ13; |
1491 | const Float_t kYMC3Em=kYMC1Em*kZ13; |
1492 | gMC->Gsposp("CC3A", 15, "CM21",kXMC3D,kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3); |
1493 | gMC->Gsposp("CC3A", 16, "CM21",-kXMC3D,kYMC3Em,kZMCm, 0, "ONLY", tpar, 3); |
1494 | gMC->Gsposp("CC3A", 17, "CM21",kXMC3D,-kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3); |
1495 | gMC->Gsposp("CC3A", 18, "CM21",-kXMC3D,-kYMC3Em,kZMCm, 0, "ONLY", tpar, 3); |
1496 | |
1497 | const Float_t kYMC3Fp=kYMC1Fp*kZ13; |
1498 | const Float_t kYMC3Fm=kYMC1Fm*kZ13; |
1499 | gMC->Gsposp("CC3A", 19, "CM21",kXMC3D,kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3); |
1500 | gMC->Gsposp("CC3A", 20, "CM21",-kXMC3D,kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3); |
1501 | gMC->Gsposp("CC3A", 21, "CM21",kXMC3D,-kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3); |
1502 | gMC->Gsposp("CC3A", 22, "CM21",-kXMC3D,-kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3); |
1503 | |
1504 | |
1505 | // Positioning first plane of station 2 in ALICE |
1506 | |
1507 | gMC->Gspos("CM21", 1, "ALIC", 0., 0., zpos3, 0, "ONLY"); |
1508 | |
1509 | // End of geometry definition for the first plane of station 2 |
1510 | |
1511 | |
1512 | |
1513 | |
1514 | // SECOND PLANE OF STATION 2 : proj ratio = zpos4/zpos1 |
1515 | |
1516 | const Float_t kZ14=zpos4/zpos1; |
1517 | |
1518 | // Definition of prototype for chambers in the second plane of station 2 |
1519 | |
1520 | tpar[0]= 0.; |
1521 | tpar[1]= 0.; |
1522 | tpar[2]= 0.; |
1523 | |
1524 | gMC->Gsvolu("CC4A", "BOX ", idAlu1, tpar, 0); //Al |
1525 | gMC->Gsvolu("CB4A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1526 | gMC->Gsvolu("CG4A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1527 | |
1528 | // chamber type A |
1529 | tpar[0] = -1.; |
1530 | tpar[1] = -1.; |
1531 | |
1532 | const Float_t kXMC4A=kXMC1A*kZ14; |
1533 | const Float_t kYMC4Am=0.; |
1534 | const Float_t kYMC4Ap=0.; |
1535 | |
1536 | tpar[2] = 0.1; |
1537 | gMC->Gsposp("CG4A", 1, "CB4A", 0., 0., 0., 0, "ONLY",tpar,3); |
1538 | tpar[2] = 0.3; |
1539 | gMC->Gsposp("CB4A", 1, "CC4A", 0., 0., 0., 0, "ONLY",tpar,3); |
1540 | |
1541 | tpar[2] = 0.4; |
1542 | tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ14; |
1543 | tpar[1] = kYMC1MIN*kZ14; |
1544 | gMC->Gsposp("CC4A", 1, "CM22",kXMC4A,kYMC4Am,kZMCm, 0, "ONLY", tpar, 3); |
1545 | gMC->Gsposp("CC4A", 2, "CM22",-kXMC4A,kYMC4Ap,kZMCp, 0, "ONLY", tpar, 3); |
1546 | |
1547 | |
1548 | // chamber type B |
1549 | tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ14; |
1550 | tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ14; |
1551 | |
1552 | const Float_t kXMC4B=kXMC1B*kZ14; |
1553 | const Float_t kYMC4Bp=kYMC1Bp*kZ14; |
1554 | const Float_t kYMC4Bm=kYMC1Bm*kZ14; |
1555 | gMC->Gsposp("CC4A", 3, "CM22",kXMC4B,kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3); |
1556 | gMC->Gsposp("CC4A", 4, "CM22",-kXMC4B,kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3); |
1557 | gMC->Gsposp("CC4A", 5, "CM22",kXMC4B,-kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3); |
1558 | gMC->Gsposp("CC4A", 6, "CM22",-kXMC4B,-kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3); |
1559 | |
1560 | |
1561 | // chamber type C (end of type B !!) |
1562 | tpar[0] =(kXMC1MAX/2)*kZ14; |
1563 | tpar[1] = (kYMC1MAX/2)*kZ14; |
1564 | |
1565 | const Float_t kXMC4C=kXMC1C*kZ14; |
1566 | const Float_t kYMC4Cp=kYMC1Cp*kZ14; |
1567 | const Float_t kYMC4Cm=kYMC1Cm*kZ14; |
1568 | gMC->Gsposp("CC4A", 7, "CM22",kXMC4C,kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3); |
1569 | gMC->Gsposp("CC4A", 8, "CM22",-kXMC4C,kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3); |
1570 | gMC->Gsposp("CC4A", 9, "CM22",kXMC4C,-kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3); |
1571 | gMC->Gsposp("CC4A", 10, "CM22",-kXMC4C,-kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3); |
1572 | |
1573 | |
1574 | // chamber type D, E and F (same size) |
1575 | tpar[0] = (kXMC1MAX/2.)*kZ14; |
1576 | tpar[1] = kYMC1MIN*kZ14; |
1577 | |
1578 | const Float_t kXMC4D=kXMC1D*kZ14; |
1579 | const Float_t kYMC4Dp=kYMC1Dp*kZ14; |
1580 | const Float_t kYMC4Dm=kYMC1Dm*kZ14; |
1581 | gMC->Gsposp("CC4A", 11, "CM22",kXMC4D,kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3); |
1582 | gMC->Gsposp("CC4A", 12, "CM22",-kXMC4D,kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3); |
1583 | gMC->Gsposp("CC4A", 13, "CM22",kXMC4D,-kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3); |
1584 | gMC->Gsposp("CC4A", 14, "CM22",-kXMC4D,-kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3); |
1585 | |
1586 | const Float_t kYMC4Ep=kYMC1Ep*kZ14; |
1587 | const Float_t kYMC4Em=kYMC1Em*kZ14; |
1588 | gMC->Gsposp("CC4A", 15, "CM22",kXMC4D,kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3); |
1589 | gMC->Gsposp("CC4A", 16, "CM22",-kXMC4D,kYMC4Em,kZMCm, 0, "ONLY", tpar, 3); |
1590 | gMC->Gsposp("CC4A", 17, "CM22",kXMC4D,-kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3); |
1591 | gMC->Gsposp("CC4A", 18, "CM22",-kXMC4D,-kYMC4Em,kZMCm, 0, "ONLY", tpar, 3); |
1592 | |
1593 | const Float_t kYMC4Fp=kYMC1Fp*kZ14; |
1594 | const Float_t kYMC4Fm=kYMC1Fm*kZ14; |
1595 | gMC->Gsposp("CC4A", 19, "CM22",kXMC4D,kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3); |
1596 | gMC->Gsposp("CC4A", 20, "CM22",-kXMC4D,kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3); |
1597 | gMC->Gsposp("CC4A", 21, "CM22",kXMC4D,-kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3); |
1598 | gMC->Gsposp("CC4A", 22, "CM22",-kXMC4D,-kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3); |
1599 | |
1600 | |
1601 | // Positioning second plane of station 2 in ALICE |
1602 | |
1603 | gMC->Gspos("CM22", 1, "ALIC", 0., 0., zpos4, 0, "ONLY"); |
1604 | |
1605 | // End of geometry definition for the second plane of station 2 |
1606 | |
1607 | // End of trigger geometry definition |
1608 | |
1609 | } |
1610 | |
1611 | |
1612 | |
1613 | //___________________________________________ |
1614 | void AliMUONv1::CreateMaterials() |
1615 | { |
1616 | // *** DEFINITION OF AVAILABLE MUON MATERIALS *** |
1617 | // |
1618 | // Ar-CO2 gas |
1619 | Float_t ag1[3] = { 39.95,12.01,16. }; |
1620 | Float_t zg1[3] = { 18.,6.,8. }; |
1621 | Float_t wg1[3] = { .8,.0667,.13333 }; |
1622 | Float_t dg1 = .001821; |
1623 | // |
1624 | // Ar-buthane-freon gas -- trigger chambers |
1625 | Float_t atr1[4] = { 39.95,12.01,1.01,19. }; |
1626 | Float_t ztr1[4] = { 18.,6.,1.,9. }; |
1627 | Float_t wtr1[4] = { .56,.1262857,.2857143,.028 }; |
1628 | Float_t dtr1 = .002599; |
1629 | // |
1630 | // Ar-CO2 gas |
1631 | Float_t agas[3] = { 39.95,12.01,16. }; |
1632 | Float_t zgas[3] = { 18.,6.,8. }; |
1633 | Float_t wgas[3] = { .74,.086684,.173316 }; |
1634 | Float_t dgas = .0018327; |
1635 | // |
1636 | // Ar-Isobutane gas (80%+20%) -- tracking |
1637 | Float_t ag[3] = { 39.95,12.01,1.01 }; |
1638 | Float_t zg[3] = { 18.,6.,1. }; |
1639 | Float_t wg[3] = { .8,.057,.143 }; |
1640 | Float_t dg = .0019596; |
1641 | // |
1642 | // Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger |
1643 | Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 }; |
1644 | Float_t ztrig[5] = { 18.,6.,1.,9.,16. }; |
1645 | Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 }; |
1646 | Float_t dtrig = .0031463; |
1647 | // |
1648 | // bakelite |
1649 | |
1650 | Float_t abak[3] = {12.01 , 1.01 , 16.}; |
1651 | Float_t zbak[3] = {6. , 1. , 8.}; |
1652 | Float_t wbak[3] = {6. , 6. , 1.}; |
1653 | Float_t dbak = 1.4; |
1654 | |
1655 | Float_t epsil, stmin, deemax, tmaxfd, stemax; |
1656 | |
1657 | Int_t iSXFLD = gAlice->Field()->Integ(); |
1658 | Float_t sXMGMX = gAlice->Field()->Max(); |
1659 | // |
1660 | // --- Define the various materials for GEANT --- |
1661 | AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); |
1662 | AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); |
1663 | AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500); |
1664 | AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak); |
1665 | AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg); |
1666 | AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig); |
1667 | AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1); |
1668 | AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1); |
1669 | AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas); |
1e8fff9c |
1670 | // materials for slat: |
1671 | // Sensitive area: gas (already defined) |
1672 | // PCB: copper |
1673 | // insulating material and frame: vetronite |
1674 | // walls: carbon, rohacell, carbon |
1675 | Float_t aglass[5]={12.01, 28.09, 16., 10.8, 23.}; |
1676 | Float_t zglass[5]={ 6., 14., 8., 5., 11.}; |
1677 | Float_t wglass[5]={ 0.5, 0.105, 0.355, 0.03, 0.01}; |
1678 | Float_t dglass=1.74; |
1679 | |
1680 | // rohacell: C9 H13 N1 O2 |
1681 | Float_t arohac[4] = {12.01, 1.01, 14.010, 16.}; |
1682 | Float_t zrohac[4] = { 6., 1., 7., 8.}; |
1683 | Float_t wrohac[4] = { 9., 13., 1., 2.}; |
1684 | Float_t drohac = 0.03; |
1685 | |
1686 | AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.); |
1687 | AliMixture(32, "Vetronite$",aglass, zglass, dglass, 5, wglass); |
1688 | AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9); |
1689 | AliMixture(34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac); |
1690 | |
a9e2aefa |
1691 | |
1692 | epsil = .001; // Tracking precision, |
1693 | stemax = -1.; // Maximum displacement for multiple scat |
1694 | tmaxfd = -20.; // Maximum angle due to field deflection |
1695 | deemax = -.3; // Maximum fractional energy loss, DLS |
1696 | stmin = -.8; |
1697 | // |
1698 | // Air |
1699 | AliMedium(1, "AIR_CH_US ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin); |
1700 | // |
1701 | // Aluminum |
1702 | |
1703 | AliMedium(4, "ALU_CH_US ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, |
1704 | fMaxDestepAlu, epsil, stmin); |
1705 | AliMedium(5, "ALU_CH_US ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, |
1706 | fMaxDestepAlu, epsil, stmin); |
1707 | // |
1708 | // Ar-isoC4H10 gas |
1709 | |
1710 | AliMedium(6, "AR_CH_US ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, |
1711 | fMaxDestepGas, epsil, stmin); |
1712 | // |
1713 | // Ar-Isobuthane-Forane-SF6 gas |
1714 | |
1715 | AliMedium(7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin); |
1716 | |
1717 | AliMedium(8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, |
1718 | fMaxDestepAlu, epsil, stmin); |
1719 | |
1720 | AliMedium(9, "ARG_CO2 ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, |
1721 | fMaxDestepAlu, epsil, stmin); |
1e8fff9c |
1722 | // tracking media for slats: check the parameters!! |
1723 | AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, sXMGMX, tmaxfd, |
1724 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
1725 | AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, sXMGMX, tmaxfd, |
1726 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
1727 | AliMedium(13, "CARBON ", 33, 0, iSXFLD, sXMGMX, tmaxfd, |
1728 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
1729 | AliMedium(14, "Rohacell ", 34, 0, iSXFLD, sXMGMX, tmaxfd, |
1730 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
a9e2aefa |
1731 | } |
1732 | |
1733 | //___________________________________________ |
1734 | |
1735 | void AliMUONv1::Init() |
1736 | { |
1737 | // |
1738 | // Initialize Tracking Chambers |
1739 | // |
1740 | |
1741 | printf("\n\n\n Start Init for version 1 - CPC chamber type\n\n\n"); |
e17592e9 |
1742 | Int_t i; |
f665c1ea |
1743 | for (i=0; i<AliMUONConstants::NCh(); i++) { |
a9e2aefa |
1744 | ( (AliMUONChamber*) (*fChambers)[i])->Init(); |
1745 | } |
1746 | |
1747 | // |
1748 | // Set the chamber (sensitive region) GEANT identifier |
1749 | AliMC* gMC = AliMC::GetMC(); |
1750 | ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("C01G")); |
1751 | ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("C02G")); |
1752 | ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("C03G")); |
1753 | ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("C04G")); |
1e8fff9c |
1754 | ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G")); |
1755 | ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G")); |
1756 | ((AliMUONChamber*)(*fChambers)[6])->SetGid(gMC->VolId("S07G")); |
1757 | ((AliMUONChamber*)(*fChambers)[7])->SetGid(gMC->VolId("S08G")); |
1758 | ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G")); |
1759 | ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G")); |
a9e2aefa |
1760 | ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("CG1A")); |
1761 | ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("CG2A")); |
1762 | ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("CG3A")); |
1763 | ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("CG4A")); |
1764 | |
1765 | printf("\n\n\n Finished Init for version 0 - CPC chamber type\n\n\n"); |
1766 | |
1767 | //cp |
1768 | printf("\n\n\n Start Init for Trigger Circuits\n\n\n"); |
f665c1ea |
1769 | for (i=0; i<AliMUONConstants::NTriggerCircuit(); i++) { |
a9e2aefa |
1770 | ( (AliMUONTriggerCircuit*) (*fTriggerCircuits)[i])->Init(i); |
1771 | } |
1772 | printf(" Finished Init for Trigger Circuits\n\n\n"); |
1773 | //cp |
1774 | |
1775 | } |
1776 | |
1777 | //___________________________________________ |
1778 | void AliMUONv1::StepManager() |
1779 | { |
1780 | Int_t copy, id; |
1781 | static Int_t idvol; |
1782 | static Int_t vol[2]; |
1783 | Int_t ipart; |
1784 | TLorentzVector pos; |
1785 | TLorentzVector mom; |
1786 | Float_t theta,phi; |
1787 | Float_t destep, step; |
1788 | |
1e8fff9c |
1789 | static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength; |
a9e2aefa |
1790 | const Float_t kBig=1.e10; |
a9e2aefa |
1791 | // modifs perso |
1792 | static Float_t hits[15]; |
1793 | |
1794 | TClonesArray &lhits = *fHits; |
1795 | |
1796 | // |
1797 | // Set maximum step size for gas |
1798 | // numed=gMC->GetMedium(); |
1799 | // |
1800 | // Only charged tracks |
1801 | if( !(gMC->TrackCharge()) ) return; |
1802 | // |
1803 | // Only gas gap inside chamber |
1804 | // Tag chambers and record hits when track enters |
1805 | idvol=-1; |
1806 | id=gMC->CurrentVolID(copy); |
1807 | |
f665c1ea |
1808 | for (Int_t i=1; i<=AliMUONConstants::NCh(); i++) { |
a9e2aefa |
1809 | if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()){ |
1810 | vol[0]=i; |
1811 | idvol=i-1; |
1812 | } |
1813 | } |
1814 | if (idvol == -1) return; |
1815 | // |
1816 | // Get current particle id (ipart), track position (pos) and momentum (mom) |
1817 | gMC->TrackPosition(pos); |
1818 | gMC->TrackMomentum(mom); |
1819 | |
1820 | ipart = gMC->TrackPid(); |
1821 | //Int_t ipart1 = gMC->IdFromPDG(ipart); |
1822 | //printf("ich, ipart %d %d \n",vol[0],ipart1); |
1823 | |
1824 | // |
1825 | // momentum loss and steplength in last step |
1826 | destep = gMC->Edep(); |
1827 | step = gMC->TrackStep(); |
1828 | |
1829 | // |
1830 | // record hits when track enters ... |
1831 | if( gMC->IsTrackEntering()) { |
1832 | gMC->SetMaxStep(fMaxStepGas); |
1833 | Double_t tc = mom[0]*mom[0]+mom[1]*mom[1]; |
1834 | Double_t rt = TMath::Sqrt(tc); |
1835 | Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]); |
1836 | Double_t tx=mom[0]/pmom; |
1837 | Double_t ty=mom[1]/pmom; |
1838 | Double_t tz=mom[2]/pmom; |
1839 | Double_t s=((AliMUONChamber*)(*fChambers)[idvol]) |
1840 | ->ResponseModel() |
1841 | ->Pitch()/tz; |
1842 | theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg; |
1843 | phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg; |
1844 | hits[0] = Float_t(ipart); // Geant3 particle type |
1845 | hits[1] = pos[0]+s*tx; // X-position for hit |
1846 | hits[2] = pos[1]+s*ty; // Y-position for hit |
1847 | hits[3] = pos[2]+s*tz; // Z-position for hit |
1848 | hits[4] = theta; // theta angle of incidence |
1849 | hits[5] = phi; // phi angle of incidence |
1850 | hits[8] = (Float_t) fNPadHits; // first padhit |
1851 | hits[9] = -1; // last pad hit |
1852 | |
1853 | // modifs perso |
1854 | hits[10] = mom[3]; // hit momentum P |
1855 | hits[11] = mom[0]; // Px/P |
1856 | hits[12] = mom[1]; // Py/P |
1857 | hits[13] = mom[2]; // Pz/P |
1858 | // fin modifs perso |
1859 | tof=gMC->TrackTime(); |
1860 | hits[14] = tof; // Time of flight |
1861 | // phi angle of incidence |
1862 | tlength = 0; |
1863 | eloss = 0; |
1864 | eloss2 = 0; |
1865 | xhit = pos[0]; |
1866 | yhit = pos[1]; |
1e8fff9c |
1867 | zhit = pos[2]; |
a9e2aefa |
1868 | // Only if not trigger chamber |
1e8fff9c |
1869 | |
1870 | |
1871 | |
1872 | |
a9e2aefa |
1873 | if(idvol<10) { |
1874 | // |
1875 | // Initialize hit position (cursor) in the segmentation model |
1876 | ((AliMUONChamber*) (*fChambers)[idvol]) |
1877 | ->SigGenInit(pos[0], pos[1], pos[2]); |
1878 | } else { |
1879 | //geant3->Gpcxyz(); |
1880 | //printf("In the Trigger Chamber #%d\n",idvol-9); |
1881 | } |
1882 | } |
1883 | eloss2+=destep; |
1884 | |
1885 | // |
1886 | // Calculate the charge induced on a pad (disintegration) in case |
1887 | // |
1888 | // Mip left chamber ... |
1889 | if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){ |
1890 | gMC->SetMaxStep(kBig); |
1891 | eloss += destep; |
1892 | tlength += step; |
1893 | |
802a864d |
1894 | Float_t x0,y0,z0; |
1895 | Float_t localPos[3]; |
1896 | Float_t globalPos[3] = {pos[0], pos[1], pos[2]}; |
802a864d |
1897 | gMC->Gmtod(globalPos,localPos,1); |
1898 | |
a9e2aefa |
1899 | if(idvol<10) { |
1900 | // tracking chambers |
1901 | x0 = 0.5*(xhit+pos[0]); |
1902 | y0 = 0.5*(yhit+pos[1]); |
1e8fff9c |
1903 | z0 = 0.5*(zhit+pos[2]); |
1904 | // z0 = localPos[2]; |
a9e2aefa |
1905 | } else { |
1906 | // trigger chambers |
1907 | x0=xhit; |
1908 | y0=yhit; |
1e8fff9c |
1909 | // z0=yhit; |
802a864d |
1910 | z0=0.; |
a9e2aefa |
1911 | } |
1912 | |
1e8fff9c |
1913 | |
802a864d |
1914 | if (eloss >0) MakePadHits(x0,y0,z0,eloss,tof,idvol); |
a9e2aefa |
1915 | |
1916 | |
1917 | hits[6]=tlength; |
1918 | hits[7]=eloss2; |
1919 | if (fNPadHits > (Int_t)hits[8]) { |
1920 | hits[8]= hits[8]+1; |
1921 | hits[9]= (Float_t) fNPadHits; |
1922 | } |
1923 | |
1924 | new(lhits[fNhits++]) |
1925 | AliMUONHit(fIshunt,gAlice->CurrentTrack(),vol,hits); |
1926 | eloss = 0; |
1927 | // |
1928 | // Check additional signal generation conditions |
1929 | // defined by the segmentation |
1930 | // model (boundary crossing conditions) |
1931 | } else if |
1932 | (((AliMUONChamber*) (*fChambers)[idvol]) |
1933 | ->SigGenCond(pos[0], pos[1], pos[2])) |
1934 | { |
1935 | ((AliMUONChamber*) (*fChambers)[idvol]) |
1936 | ->SigGenInit(pos[0], pos[1], pos[2]); |
802a864d |
1937 | |
1938 | Float_t localPos[3]; |
1939 | Float_t globalPos[3] = {pos[0], pos[1], pos[2]}; |
1940 | gMC->Gmtod(globalPos,localPos,1); |
1941 | |
1942 | |
a9e2aefa |
1943 | if (eloss > 0 && idvol < 10) |
1e8fff9c |
1944 | MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol); |
a9e2aefa |
1945 | xhit = pos[0]; |
1946 | yhit = pos[1]; |
1e8fff9c |
1947 | zhit = pos[2]; |
a9e2aefa |
1948 | eloss = destep; |
1949 | tlength += step ; |
1950 | // |
1951 | // nothing special happened, add up energy loss |
1952 | } else { |
1953 | eloss += destep; |
1954 | tlength += step ; |
1955 | } |
1956 | } |
1957 | |
1958 | |