]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PWGPP/EVCHAR/AliTrackletAlg.h
Changes in drawing macros:
[u/mrichter/AliRoot.git] / PWGPP / EVCHAR / AliTrackletAlg.h
CommitLineData
11ba093e 1#ifndef ALITRACKLETALG_H
2#define ALITRACKLETALG_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
6//_________________________________________________________________________
7//
8// Implementation of the ITS-SPD trackleter class
9// Clone version of the AliITSMultReconstructor class (October 2010)
10// that can be used in an AliAnalysisTask
11//
12//_________________________________________________________________________
13#include "AliTrackleter.h"
14
15class TBits;
16class TTree;
17class TH1F;
18class TH2F;
19class AliITSDetTypeRec;
20class AliITSgeom;
21class AliESDEvent;
22class AliESDtrack;
23class AliVertex;
24class AliESDVertex;
25class AliMultiplicity;
26
27class AliTrackletAlg : public AliTrackleter
28{
29public:
30 //
31 enum {kClTh,kClPh,kClZ,kClMC0,kClMC1,kClMC2,kClNPar};
32 enum {kTrTheta,kTrPhi,kTrDPhi,kTrDTheta,kTrLab1,kTrLab2,kClID1,kClID2,kTrNPar};
33 enum {kSCTh,kSCPh,kSCLab,kSCID,kSCNPar};
34 enum {kITSTPC,kITSSAP,kITSTPCBit=BIT(kITSTPC),kITSSAPBit=BIT(kITSSAP)}; // RS
35 AliTrackletAlg();
36 virtual ~AliTrackletAlg();
37
38 void Reconstruct(AliESDEvent* esd, TTree* treeRP);
39 void Reconstruct(TTree* tree, Float_t* vtx, Float_t* vtxRes); // old reconstructor invocation
40 void FindTracklets(const Float_t* vtx);
41 void LoadClusterFiredChips(TTree* tree);
42 void FlagClustersInOverlapRegions(Int_t ic1,Int_t ic2);
43 void FlagTrackClusters(Int_t id);
44 void FlagIfSecondary(AliESDtrack* track, const AliVertex* vtx);
45 void FlagV0s(const AliESDVertex *vtx);
46 void ProcessESDTracks();
47 Bool_t CanBeElectron(const AliESDtrack* trc) const;
48
49 void CreateMultiplicityObject();
50 //
51 void SetPhiWindow(Float_t w=0.08) {fPhiWindow=w;}
52 void SetThetaWindow(Float_t w=0.025) {fThetaWindow=w;}
53 void SetPhiShift(Float_t w=0.0045) {fPhiShift=w;}
54 void SetRemoveClustersFromOverlaps(Bool_t b = kFALSE) {fRemoveClustersFromOverlaps = b;}
55 void SetPhiOverlapCut(Float_t w=0.005) {fPhiOverlapCut=w;}
56 void SetZetaOverlapCut(Float_t w=0.05) {fZetaOverlapCut=w;}
57 void SetPhiRotationAngle(Float_t w=0.0) {fPhiRotationAngle=w;}
58
59 Int_t GetNClustersLayer1() const {return fNClustersLay1;}
60 Int_t GetNClustersLayer2() const {return fNClustersLay2;}
61 Int_t GetNTracklets() const {return fNTracklets;}
62 Int_t GetNSingleClusters() const {return fNSingleCluster;}
63 Short_t GetNFiredChips(Int_t layer) const {return fNFiredChips[layer];}
64
65 Float_t* GetClusterLayer1(Int_t n) {return &fClustersLay1[n*kClNPar];}
66 Float_t* GetClusterLayer2(Int_t n) {return &fClustersLay2[n*kClNPar];}
67
68 Float_t* GetTracklet(Int_t n) {return fTracklets[n];}
69 Float_t* GetCluster(Int_t n) {return fSClusters[n];}
70
71 void SetHistOn(Bool_t b=kFALSE) {fHistOn=b;}
72 void SaveHists();
73
74 AliITSDetTypeRec *GetDetTypeRec() const {return fDetTypeRec;}
75 void SetDetTypeRec(AliITSDetTypeRec *ptr){fDetTypeRec = ptr;}
76 //
77 void SetCutPxDrSPDin(Float_t v=0.1) { fCutPxDrSPDin = v;}
78 void SetCutPxDrSPDout(Float_t v=0.15) { fCutPxDrSPDout = v;}
79 void SetCutPxDz(Float_t v=0.2) { fCutPxDz = v;}
80 void SetCutDCArz(Float_t v=0.5) { fCutDCArz = v;}
81 void SetCutMinElectronProbTPC(Float_t v=0.5) { fCutMinElectronProbTPC = v;}
82 void SetCutMinElectronProbESD(Float_t v=0.1) { fCutMinElectronProbESD = v;}
83 void SetCutMinP(Float_t v=0.05) { fCutMinP = v;}
84 void SetCutMinRGamma(Float_t v=2.) { fCutMinRGamma = v;}
85 void SetCutMinRK0(Float_t v=1.) { fCutMinRK0 = v;}
86 void SetCutMinPointAngle(Float_t v=0.98) { fCutMinPointAngle = v;}
87 void SetCutMaxDCADauther(Float_t v=0.5) { fCutMaxDCADauther = v;}
88 void SetCutMassGamma(Float_t v=0.03) { fCutMassGamma = v;}
89 void SetCutMassGammaNSigma(Float_t v=5.) { fCutMassGammaNSigma = v;}
90 void SetCutMassK0(Float_t v=0.03) { fCutMassK0 = v;}
91 void SetCutMassK0NSigma(Float_t v=5.) { fCutMassK0NSigma = v;}
92 void SetCutChi2cGamma(Float_t v=2.) { fCutChi2cGamma = v;}
93 void SetCutChi2cK0(Float_t v=2.) { fCutChi2cK0 = v;}
94 void SetCutGammaSFromDecay(Float_t v=-10.) { fCutGammaSFromDecay = v;}
95 void SetCutK0SFromDecay(Float_t v=-10.) { fCutK0SFromDecay = v;}
96 void SetCutMaxDCA(Float_t v=1.) { fCutMaxDCA = v;}
97 //
98 Float_t GetCutPxDrSPDin() const {return fCutPxDrSPDin;}
99 Float_t GetCutPxDrSPDout() const {return fCutPxDrSPDout;}
100 Float_t GetCutPxDz() const {return fCutPxDz;}
101 Float_t GetCutDCArz() const {return fCutDCArz;}
102 Float_t GetCutMinElectronProbTPC() const {return fCutMinElectronProbTPC;}
103 Float_t GetCutMinElectronProbESD() const {return fCutMinElectronProbESD;}
104 Float_t GetCutMinP() const {return fCutMinP;}
105 Float_t GetCutMinRGamma() const {return fCutMinRGamma;}
106 Float_t GetCutMinRK0() const {return fCutMinRK0;}
107 Float_t GetCutMinPointAngle() const {return fCutMinPointAngle;}
108 Float_t GetCutMaxDCADauther() const {return fCutMaxDCADauther;}
109 Float_t GetCutMassGamma() const {return fCutMassGamma;}
110 Float_t GetCutMassGammaNSigma() const {return fCutMassGammaNSigma;}
111 Float_t GetCutMassK0() const {return fCutMassK0;}
112 Float_t GetCutMassK0NSigma() const {return fCutMassK0NSigma;}
113 Float_t GetCutChi2cGamma() const {return fCutChi2cGamma;}
114 Float_t GetCutChi2cK0() const {return fCutChi2cK0;}
115 Float_t GetCutGammaSFromDecay() const {return fCutGammaSFromDecay;}
116 Float_t GetCutK0SFromDecay() const {return fCutK0SFromDecay;}
117 Float_t GetCutMaxDCA() const {return fCutMaxDCA;}
118
119 //
120protected:
121 AliTrackletAlg(const AliTrackletAlg& mr);
122 AliTrackletAlg& operator=(const AliTrackletAlg& mr);
123 AliITSDetTypeRec* fDetTypeRec; //! pointer to DetTypeRec
124 AliESDEvent* fESDEvent; //! pointer to ESD event
125 TTree* fTreeRP; //! ITS recpoints
126
127 UInt_t* fUsedClusLay1; // RS: flag of clusters usage in ESD tracks: 0=unused, else ID+1 in word0=TPC/ITS+ITSSA, word1=ITSSA_Pure
128 UInt_t* fUsedClusLay2; // RS: flag of clusters usage in ESD tracks: 0=unused, else ID+1 word0=TPC/ITS+ITSSA, word1=ITSSA_Pure
129
130 Float_t* fClustersLay1; // clusters in the 1st layer of ITS
131 Float_t* fClustersLay2; // clusters in the 2nd layer of ITS
132 Int_t* fDetectorIndexClustersLay1; // module index for clusters 1st ITS layer
133 Int_t* fDetectorIndexClustersLay2; // module index for clusters 2nd ITS layer
134 Bool_t* fOverlapFlagClustersLay1; // flag for clusters in the overlap regions 1st ITS layer
135 Bool_t* fOverlapFlagClustersLay2; // flag for clusters in the overlap regions 2nd ITS layer
136
137 Float_t** fTracklets; // tracklets
138 Float_t** fSClusters; // single clusters (unassociated)
139
140 Int_t fNClustersLay1; // Number of clusters (Layer1)
141 Int_t fNClustersLay2; // Number of clusters (Layer2)
142 Int_t fNTracklets; // Number of tracklets
143 Int_t fNSingleCluster; // Number of unassociated clusters
144 Short_t fNFiredChips[2]; // Number of fired chips in the two SPD layers
145 //
146 // Following members are set via AliITSRecoParam
147 //
148 Float_t fPhiWindow; // Search window in phi
149 Float_t fThetaWindow; // Search window in theta
150 Float_t fPhiShift; // Phi shift reference value (at 0.5 T)
151 Bool_t fRemoveClustersFromOverlaps; // Option to skip clusters in the overlaps
152 Float_t fPhiOverlapCut; // Fiducial window in phi for overlap cut
153 Float_t fZetaOverlapCut; // Fiducial window in eta for overlap cut
154 Float_t fPhiRotationAngle; // Angle to rotate the inner layer cluster for combinatorial reco only
155
156 // cuts for secondaries identification
157 Float_t fCutPxDrSPDin; // max P*DR for primaries involving at least 1 SPD
158 Float_t fCutPxDrSPDout; // max P*DR for primaries not involving any SPD
159 Float_t fCutPxDz; // max P*DZ for primaries
160 Float_t fCutDCArz; // max DR or DZ for primares
161 //
162 // cuts for flagging tracks in V0s
163 Float_t fCutMinElectronProbTPC; // min probability for e+/e- PID involving TPC
164 Float_t fCutMinElectronProbESD; // min probability for e+/e- PID not involving TPC
165 //
166 Float_t fCutMinP; // min P of V0
167 Float_t fCutMinRGamma; // min transv. distance from ESDVertex to V0 for gammas
168 Float_t fCutMinRK0; // min transv. distance from ESDVertex to V0 for K0s
169 Float_t fCutMinPointAngle; // min pointing angle cosine
170 Float_t fCutMaxDCADauther; // max DCA of daughters at V0
171 Float_t fCutMassGamma; // max gamma mass
172 Float_t fCutMassGammaNSigma; // max standard deviations from 0 for gamma
173 Float_t fCutMassK0; // max K0 mass difference from PGD value
174 Float_t fCutMassK0NSigma; // max standard deviations for K0 mass from PDG value
175 Float_t fCutChi2cGamma; // max constrained chi2 cut for gammas
176 Float_t fCutChi2cK0; // max constrained chi2 cut for K0s
177 Float_t fCutGammaSFromDecay; // min path*P for gammas
178 Float_t fCutK0SFromDecay; // min path*P for K0s
179 Float_t fCutMaxDCA; // max DCA for V0 at ESD vertex
180
181 Bool_t fHistOn; // Option to define and fill the histograms
182
183 TH1F* fhClustersDPhiAcc; // Phi2 - Phi1 for tracklets
184 TH1F* fhClustersDThetaAcc; // Theta2 - Theta1 for tracklets
185 TH1F* fhClustersDPhiAll; // Phi2 - Phi1 all the combinations
186 TH1F* fhClustersDThetaAll; // Theta2 - Theta1 all the combinations
187
188 TH2F* fhDPhiVsDThetaAll; // 2D plot for all the combinations
189 TH2F* fhDPhiVsDThetaAcc; // same plot for tracklets
190
191 TH1F* fhetaTracklets; // Pseudorapidity distr. for tracklets
192 TH1F* fhphiTracklets; // Azimuthal (Phi) distr. for tracklets
193 TH1F* fhetaClustersLay1; // Pseudorapidity distr. for Clusters L. 1
194 TH1F* fhphiClustersLay1; // Azimuthal (Phi) distr. for Clusters L. 1
195
196
197 void LoadClusterArrays(TTree* tree);
198
199 ClassDef(AliTrackletAlg,1)
200};
201
202#endif