]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TFluka/TFluka.cxx
Cleaning the ESD: first step
[u/mrichter/AliRoot.git] / TFluka / TFluka.cxx
CommitLineData
829fb838 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18//
19// Realisation of the TVirtualMC interface for the FLUKA code
20// (See official web side http://www.fluka.org/).
21//
22// This implementation makes use of the TGeo geometry modeller.
23// User configuration is via automatic generation of FLUKA input cards.
24//
25// Authors:
26// A. Fasso
27// E. Futo
28// A. Gheata
29// A. Morsch
30//
31
32#include <Riostream.h>
37b09b91 33#include <TList.h>
829fb838 34
829fb838 35#include "TFluka.h"
a9ea1616 36#include "TFlukaCodes.h"
829fb838 37#include "TCallf77.h" //For the fortran calls
38#include "Fdblprc.h" //(DBLPRC) fluka common
81f1d030 39#include "Fsourcm.h" //(SOURCM) fluka common
40#include "Fgenstk.h" //(GENSTK) fluka common
829fb838 41#include "Fiounit.h" //(IOUNIT) fluka common
42#include "Fpaprop.h" //(PAPROP) fluka common
43#include "Fpart.h" //(PART) fluka common
44#include "Ftrackr.h" //(TRACKR) fluka common
45#include "Fpaprop.h" //(PAPROP) fluka common
46#include "Ffheavy.h" //(FHEAVY) fluka common
3a625972 47#include "Fopphst.h" //(OPPHST) fluka common
81f1d030 48#include "Fflkstk.h" //(FLKSTK) fluka common
07f5b33e 49#include "Fstepsz.h" //(STEPSZ) fluka common
7b203b6e 50#include "Fopphst.h" //(OPPHST) fluka common
a9ea1616 51#include "Fltclcm.h" //(LTCLCM) fluka common
f2a98602 52#include "Falldlt.h" //(ALLDLT) fluka common
829fb838 53
54#include "TVirtualMC.h"
3a625972 55#include "TMCProcess.h"
829fb838 56#include "TGeoManager.h"
57#include "TGeoMaterial.h"
58#include "TGeoMedium.h"
59#include "TFlukaMCGeometry.h"
6f5667d1 60#include "TGeoMCGeometry.h"
829fb838 61#include "TFlukaCerenkov.h"
1df5fa54 62#include "TFlukaConfigOption.h"
b496f27c 63#include "TFlukaScoringOption.h"
829fb838 64#include "TLorentzVector.h"
b496f27c 65#include "TArrayI.h"
a9ea1616 66#include "TArrayD.h"
78df7be0 67#include "TDatabasePDG.h"
4aba9d66 68#include "TStopwatch.h"
69
829fb838 70
71// Fluka methods that may be needed.
72#ifndef WIN32
73# define flukam flukam_
74# define fluka_openinp fluka_openinp_
8e5bf079 75# define fluka_openout fluka_openout_
829fb838 76# define fluka_closeinp fluka_closeinp_
77# define mcihad mcihad_
78# define mpdgha mpdgha_
2047b055 79# define newplo newplo_
4aba9d66 80# define genout genout_
81# define flkend flkend_
829fb838 82#else
83# define flukam FLUKAM
84# define fluka_openinp FLUKA_OPENINP
8e5bf079 85# define fluka_openout FLUKA_OPENOUT
829fb838 86# define fluka_closeinp FLUKA_CLOSEINP
87# define mcihad MCIHAD
88# define mpdgha MPDGHA
eea53470 89# define newplo NEWPLO
4aba9d66 90# define genout GENOUT
91# define flkend FLKEND
829fb838 92#endif
93
94extern "C"
95{
96 //
97 // Prototypes for FLUKA functions
98 //
99 void type_of_call flukam(const int&);
eea53470 100 void type_of_call newplo();
4aba9d66 101 void type_of_call genout();
102 void type_of_call flkend();
829fb838 103 void type_of_call fluka_openinp(const int&, DEFCHARA);
8e5bf079 104 void type_of_call fluka_openout(const int&, DEFCHARA);
829fb838 105 void type_of_call fluka_closeinp(const int&);
106 int type_of_call mcihad(const int&);
107 int type_of_call mpdgha(const int&);
108}
109
110//
111// Class implementation for ROOT
112//
113ClassImp(TFluka)
114
115//
116//----------------------------------------------------------------------------
117// TFluka constructors and destructors.
118//______________________________________________________________________________
119TFluka::TFluka()
120 :TVirtualMC(),
121 fVerbosityLevel(0),
4aba9d66 122 fNEvent(0),
1df5fa54 123 fInputFileName(""),
4aba9d66 124 fCoreInputFileName(""),
125 fCaller(kNoCaller),
126 fIcode(kNoProcess),
127 fNewReg(-1),
128 fRull(0),
129 fXsco(0),
130 fYsco(0),
131 fZsco(0),
132 fTrackIsEntering(kFALSE),
133 fTrackIsExiting(kFALSE),
134 fTrackIsNew(kFALSE),
135 fFieldFlag(kTRUE),
136 fGeneratePemf(kFALSE),
137 fDummyBoundary(kFALSE),
138 fStopped(kFALSE),
139 fStopEvent(kFALSE),
140 fStopRun(kFALSE),
5125d6e5 141 fPrimaryElectronIndex(-1),
4aba9d66 142 fMaterials(0),
143 fNVolumes(0),
144 fCurrentFlukaRegion(-1),
145 fNCerenkov(0),
146 fGeom(0),
147 fMCGeo(0),
fb2cbbec 148 fUserConfig(0),
1df5fa54 149 fUserScore(0)
829fb838 150{
151 //
152 // Default constructor
153 //
829fb838 154}
155
156//______________________________________________________________________________
157TFluka::TFluka(const char *title, Int_t verbosity, Bool_t isRootGeometrySupported)
158 :TVirtualMC("TFluka",title, isRootGeometrySupported),
159 fVerbosityLevel(verbosity),
4aba9d66 160 fNEvent(0),
829fb838 161 fInputFileName(""),
4aba9d66 162 fCoreInputFileName(""),
163 fCaller(kNoCaller),
164 fIcode(kNoProcess),
165 fNewReg(-1),
166 fRull(0),
167 fXsco(0),
168 fYsco(0),
169 fZsco(0),
170 fTrackIsEntering(kFALSE),
171 fTrackIsExiting(kFALSE),
172 fTrackIsNew(kFALSE),
173 fFieldFlag(kTRUE),
174 fGeneratePemf(kFALSE),
175 fDummyBoundary(kFALSE),
176 fStopped(kFALSE),
177 fStopEvent(kFALSE),
178 fStopRun(kFALSE),
5125d6e5 179 fPrimaryElectronIndex(-1),
4aba9d66 180 fMaterials(0),
181 fNVolumes(0),
182 fCurrentFlukaRegion(-1),
183 fNCerenkov(0),
184 fGeom(0),
185 fMCGeo(0),
fb2cbbec 186 fUserConfig(new TObjArray(100)),
1df5fa54 187 fUserScore(new TObjArray(100))
829fb838 188{
189 // create geometry interface
7f13be31 190 if (fVerbosityLevel >=3)
191 cout << "<== TFluka::TFluka(" << title << ") constructor called." << endl;
192 SetCoreInputFileName();
193 SetInputFileName();
11e4ab84 194 fMCGeo = new TGeoMCGeometry("MCGeo", "TGeo Implementation of VirtualMCGeometry", kFALSE);
fb2cbbec 195 fGeom = new TFlukaMCGeometry("geom", "FLUKA VMC Geometry");
829fb838 196 if (verbosity > 2) fGeom->SetDebugMode(kTRUE);
8e5bf079 197 PrintHeader();
829fb838 198}
199
200//______________________________________________________________________________
4aba9d66 201TFluka::~TFluka()
202{
203 // Destructor
1df5fa54 204 if (fVerbosityLevel >=3)
4aba9d66 205 cout << "<== TFluka::~TFluka() destructor called." << endl;
206 if (fMaterials) delete [] fMaterials;
1df5fa54 207
208 delete fGeom;
209 delete fMCGeo;
210
fb2cbbec 211 if (fUserConfig) {
4aba9d66 212 fUserConfig->Delete();
213 delete fUserConfig;
1df5fa54 214 }
6d184c54 215
216 if (fUserScore) {
4aba9d66 217 fUserScore->Delete();
218 delete fUserScore;
6d184c54 219 }
829fb838 220}
221
222//
223//______________________________________________________________________________
224// TFluka control methods
225//______________________________________________________________________________
226void TFluka::Init() {
227//
228// Geometry initialisation
229//
230 if (fVerbosityLevel >=3) cout << "==> TFluka::Init() called." << endl;
231
232 if (!gGeoManager) new TGeoManager("geom", "FLUKA geometry");
233 fApplication->ConstructGeometry();
d59acfe7 234 if (!gGeoManager->IsClosed()) {
235 TGeoVolume *top = (TGeoVolume*)gGeoManager->GetListOfVolumes()->First();
236 gGeoManager->SetTopVolume(top);
237 gGeoManager->CloseGeometry("di");
238 } else {
239 TGeoNodeCache *cache = gGeoManager->GetCache();
240 if (!cache->HasIdArray()) {
a9ea1616 241 Warning("Init", "Node ID tracking must be enabled with TFluka: enabling...\n");
d59acfe7 242 cache->BuildIdArray();
243 }
244 }
829fb838 245 fNVolumes = fGeom->NofVolumes();
246 fGeom->CreateFlukaMatFile("flukaMat.inp");
247 if (fVerbosityLevel >=3) {
248 printf("== Number of volumes: %i\n ==", fNVolumes);
249 cout << "\t* InitPhysics() - Prepare input file to be called" << endl;
6d184c54 250 }
881cb248 251
252 fApplication->InitGeometry();
661663fa 253 fApplication->ConstructOpGeometry();
78df7be0 254 //
255 // Add ions to PDG Data base
256 //
257 AddParticlesToPdgDataBase();
a9923346 258 //
259
260
829fb838 261}
262
263
264//______________________________________________________________________________
265void TFluka::FinishGeometry() {
266//
267// Build-up table with region to medium correspondance
268//
269 if (fVerbosityLevel >=3) {
270 cout << "==> TFluka::FinishGeometry() called." << endl;
2753cb27 271 printf("----FinishGeometry - applying misalignment if any\n");
829fb838 272 cout << "<== TFluka::FinishGeometry() called." << endl;
273 }
2753cb27 274 TVirtualMCApplication::Instance()->MisalignGeometry();
829fb838 275}
276
277//______________________________________________________________________________
278void TFluka::BuildPhysics() {
279//
280// Prepare FLUKA input files and call FLUKA physics initialisation
281//
282
283 if (fVerbosityLevel >=3)
4aba9d66 284 cout << "==> TFluka::BuildPhysics() called." << endl;
6d184c54 285
286
287 if (fVerbosityLevel >=3) {
4aba9d66 288 TList *medlist = gGeoManager->GetListOfMedia();
289 TIter next(medlist);
290 TGeoMedium* med = 0x0;
291 TGeoMaterial* mat = 0x0;
292 Int_t ic = 0;
293
294 while((med = (TGeoMedium*)next()))
295 {
296 mat = med->GetMaterial();
297 printf("Medium %5d %12s %5d %5d\n", ic, (med->GetName()), med->GetId(), mat->GetIndex());
298 ic++;
299 }
6d184c54 300 }
301
302 //
303 // At this stage we have the information on materials and cuts available.
304 // Now create the pemf file
305
306 if (fGeneratePemf) fGeom->CreatePemfFile();
307
308 //
309 // Prepare input file with the current physics settings
310
829fb838 311 InitPhysics();
b8a8a88c 312// Open fortran files
829fb838 313 const char* fname = fInputFileName;
314 fluka_openinp(lunin, PASSCHARA(fname));
8e5bf079 315 fluka_openout(11, PASSCHARA("fluka.out"));
b8a8a88c 316// Read input cards
4aba9d66 317 cout << "==> TFluka::BuildPhysics() Read input cards." << endl;
318 TStopwatch timer;
319 timer.Start();
b8a8a88c 320 GLOBAL.lfdrtr = true;
829fb838 321 flukam(1);
4aba9d66 322 cout << "<== TFluka::BuildPhysics() Read input cards End"
323 << Form(" R:%.2fs C:%.2fs", timer.RealTime(),timer.CpuTime()) << endl;
b8a8a88c 324// Close input file
829fb838 325 fluka_closeinp(lunin);
b8a8a88c 326// Finish geometry
829fb838 327 FinishGeometry();
829fb838 328}
329
330//______________________________________________________________________________
331void TFluka::ProcessEvent() {
332//
333// Process one event
334//
b496f27c 335 if (fStopRun) {
4aba9d66 336 Warning("ProcessEvent", "User Run Abortion: No more events handled !\n");
337 fNEvent += 1;
338 return;
b496f27c 339 }
340
341 if (fVerbosityLevel >=3)
4aba9d66 342 cout << "==> TFluka::ProcessEvent() called." << endl;
b496f27c 343 fApplication->GeneratePrimaries();
81f1d030 344 SOURCM.lsouit = true;
b496f27c 345 flukam(1);
346 if (fVerbosityLevel >=3)
4aba9d66 347 cout << "<== TFluka::ProcessEvent() called." << endl;
b496f27c 348 //
349 // Increase event number
350 //
351 fNEvent += 1;
829fb838 352}
353
354//______________________________________________________________________________
355Bool_t TFluka::ProcessRun(Int_t nevent) {
356//
357// Run steering
358//
359
360 if (fVerbosityLevel >=3)
361 cout << "==> TFluka::ProcessRun(" << nevent << ") called."
4aba9d66 362 << endl;
829fb838 363
364 if (fVerbosityLevel >=2) {
365 cout << "\t* GLOBAL.fdrtr = " << (GLOBAL.lfdrtr?'T':'F') << endl;
366 cout << "\t* Calling flukam again..." << endl;
367 }
368
829fb838 369 Int_t todo = TMath::Abs(nevent);
370 for (Int_t ev = 0; ev < todo; ev++) {
4aba9d66 371 TStopwatch timer;
372 timer.Start();
829fb838 373 fApplication->BeginEvent();
374 ProcessEvent();
375 fApplication->FinishEvent();
4aba9d66 376 cout << "Event: "<< ev
377 << Form(" R:%.2fs C:%.2fs", timer.RealTime(),timer.CpuTime()) << endl;
829fb838 378 }
379
380 if (fVerbosityLevel >=3)
381 cout << "<== TFluka::ProcessRun(" << nevent << ") called."
4aba9d66 382 << endl;
383
eea53470 384 // Write fluka specific scoring output
4aba9d66 385 genout();
eea53470 386 newplo();
4aba9d66 387 flkend();
eea53470 388
829fb838 389 return kTRUE;
390}
391
392//_____________________________________________________________________________
393// methods for building/management of geometry
394
395// functions from GCONS
396//____________________________________________________________________________
397void TFluka::Gfmate(Int_t imat, char *name, Float_t &a, Float_t &z,
4aba9d66 398 Float_t &dens, Float_t &radl, Float_t &absl,
399 Float_t* /*ubuf*/, Int_t& /*nbuf*/) {
829fb838 400//
401 TGeoMaterial *mat;
402 TIter next (gGeoManager->GetListOfMaterials());
403 while ((mat = (TGeoMaterial*)next())) {
404 if (mat->GetUniqueID() == (UInt_t)imat) break;
405 }
406 if (!mat) {
407 Error("Gfmate", "no material with index %i found", imat);
408 return;
409 }
410 sprintf(name, "%s", mat->GetName());
411 a = mat->GetA();
412 z = mat->GetZ();
413 dens = mat->GetDensity();
414 radl = mat->GetRadLen();
415 absl = mat->GetIntLen();
416}
417
418//______________________________________________________________________________
419void TFluka::Gfmate(Int_t imat, char *name, Double_t &a, Double_t &z,
4aba9d66 420 Double_t &dens, Double_t &radl, Double_t &absl,
421 Double_t* /*ubuf*/, Int_t& /*nbuf*/) {
829fb838 422//
423 TGeoMaterial *mat;
424 TIter next (gGeoManager->GetListOfMaterials());
425 while ((mat = (TGeoMaterial*)next())) {
426 if (mat->GetUniqueID() == (UInt_t)imat) break;
427 }
428 if (!mat) {
429 Error("Gfmate", "no material with index %i found", imat);
430 return;
431 }
432 sprintf(name, "%s", mat->GetName());
433 a = mat->GetA();
434 z = mat->GetZ();
435 dens = mat->GetDensity();
436 radl = mat->GetRadLen();
437 absl = mat->GetIntLen();
438}
439
440// detector composition
441//______________________________________________________________________________
442void TFluka::Material(Int_t& kmat, const char* name, Double_t a,
4aba9d66 443 Double_t z, Double_t dens, Double_t radl, Double_t absl,
444 Float_t* buf, Int_t nwbuf) {
829fb838 445//
446 Double_t* dbuf = fGeom->CreateDoubleArray(buf, nwbuf);
447 Material(kmat, name, a, z, dens, radl, absl, dbuf, nwbuf);
448 delete [] dbuf;
449}
450
451//______________________________________________________________________________
452void TFluka::Material(Int_t& kmat, const char* name, Double_t a,
4aba9d66 453 Double_t z, Double_t dens, Double_t radl, Double_t absl,
454 Double_t* /*buf*/, Int_t /*nwbuf*/) {
829fb838 455//
fb2cbbec 456// Define a material
829fb838 457 TGeoMaterial *mat;
458 kmat = gGeoManager->GetListOfMaterials()->GetSize();
459 if ((z-Int_t(z)) > 1E-3) {
460 mat = fGeom->GetMakeWrongMaterial(z);
461 if (mat) {
462 mat->SetRadLen(radl,absl);
463 mat->SetUniqueID(kmat);
464 return;
465 }
466 }
467 gGeoManager->Material(name, a, z, dens, kmat, radl, absl);
468}
469
470//______________________________________________________________________________
471void TFluka::Mixture(Int_t& kmat, const char *name, Float_t *a,
4aba9d66 472 Float_t *z, Double_t dens, Int_t nlmat, Float_t *wmat) {
fb2cbbec 473//
474// Define a material mixture
829fb838 475//
476 Double_t* da = fGeom->CreateDoubleArray(a, TMath::Abs(nlmat));
477 Double_t* dz = fGeom->CreateDoubleArray(z, TMath::Abs(nlmat));
478 Double_t* dwmat = fGeom->CreateDoubleArray(wmat, TMath::Abs(nlmat));
479
480 Mixture(kmat, name, da, dz, dens, nlmat, dwmat);
481 for (Int_t i=0; i<nlmat; i++) {
482 a[i] = da[i]; z[i] = dz[i]; wmat[i] = dwmat[i];
483 }
484
485 delete [] da;
486 delete [] dz;
487 delete [] dwmat;
488}
489
490//______________________________________________________________________________
491void TFluka::Mixture(Int_t& kmat, const char *name, Double_t *a,
4aba9d66 492 Double_t *z, Double_t dens, Int_t nlmat, Double_t *wmat) {
829fb838 493//
494 // Defines mixture OR COMPOUND IMAT as composed by
495 // THE BASIC NLMAT materials defined by arrays A,Z and WMAT
496 //
497 // If NLMAT > 0 then wmat contains the proportion by
498 // weights of each basic material in the mixture.
499 //
500 // If nlmat < 0 then WMAT contains the number of atoms
501 // of a given kind into the molecule of the COMPOUND
502 // In this case, WMAT in output is changed to relative
503 // weigths.
504 //
505 Int_t i,j;
506 if (nlmat < 0) {
507 nlmat = - nlmat;
508 Double_t amol = 0;
509 for (i=0;i<nlmat;i++) {
510 amol += a[i]*wmat[i];
511 }
512 for (i=0;i<nlmat;i++) {
513 wmat[i] *= a[i]/amol;
514 }
515 }
516 kmat = gGeoManager->GetListOfMaterials()->GetSize();
517 // Check if we have elements with fractional Z
518 TGeoMaterial *mat = 0;
519 TGeoMixture *mix = 0;
520 Bool_t mixnew = kFALSE;
521 for (i=0; i<nlmat; i++) {
522 if (z[i]-Int_t(z[i]) < 1E-3) continue;
523 // We have found an element with fractional Z -> loop mixtures to look for it
524 for (j=0; j<kmat; j++) {
525 mat = (TGeoMaterial*)gGeoManager->GetListOfMaterials()->At(j);
526 if (!mat) break;
527 if (!mat->IsMixture()) continue;
528 mix = (TGeoMixture*)mat;
529 if (TMath::Abs(z[i]-mix->GetZ()) >1E-3) continue;
829fb838 530 mixnew = kTRUE;
531 break;
532 }
533 if (!mixnew) Warning("Mixture","%s : cannot find component %i with fractional Z=%f\n", name, i, z[i]);
534 break;
535 }
536 if (mixnew) {
537 Int_t nlmatnew = nlmat+mix->GetNelements()-1;
538 Double_t *anew = new Double_t[nlmatnew];
539 Double_t *znew = new Double_t[nlmatnew];
540 Double_t *wmatnew = new Double_t[nlmatnew];
541 Int_t ind=0;
542 for (j=0; j<nlmat; j++) {
543 if (j==i) continue;
544 anew[ind] = a[j];
545 znew[ind] = z[j];
546 wmatnew[ind] = wmat[j];
547 ind++;
548 }
549 for (j=0; j<mix->GetNelements(); j++) {
550 anew[ind] = mix->GetAmixt()[j];
551 znew[ind] = mix->GetZmixt()[j];
552 wmatnew[ind] = wmat[i]*mix->GetWmixt()[j];
553 ind++;
554 }
555 Mixture(kmat, name, anew, znew, dens, nlmatnew, wmatnew);
556 delete [] anew;
557 delete [] znew;
558 delete [] wmatnew;
559 return;
560 }
561 // Now we need to compact identical elements within the mixture
562 // First check if this happens
563 mixnew = kFALSE;
564 for (i=0; i<nlmat-1; i++) {
565 for (j=i+1; j<nlmat; j++) {
566 if (z[i] == z[j]) {
567 mixnew = kTRUE;
568 break;
569 }
570 }
571 if (mixnew) break;
572 }
573 if (mixnew) {
574 Int_t nlmatnew = 0;
575 Double_t *anew = new Double_t[nlmat];
576 Double_t *znew = new Double_t[nlmat];
577 memset(znew, 0, nlmat*sizeof(Double_t));
578 Double_t *wmatnew = new Double_t[nlmat];
579 Bool_t skipi;
580 for (i=0; i<nlmat; i++) {
581 skipi = kFALSE;
582 for (j=0; j<nlmatnew; j++) {
583 if (z[i] == z[j]) {
584 wmatnew[j] += wmat[i];
585 skipi = kTRUE;
586 break;
587 }
588 }
589 if (skipi) continue;
590 anew[nlmatnew] = a[i];
591 znew[nlmatnew] = z[i];
592 wmatnew[nlmatnew] = wmat[i];
593 nlmatnew++;
594 }
595 Mixture(kmat, name, anew, znew, dens, nlmatnew, wmatnew);
596 delete [] anew;
597 delete [] znew;
598 delete [] wmatnew;
599 return;
600 }
601 gGeoManager->Mixture(name, a, z, dens, nlmat, wmat, kmat);
602}
603
604//______________________________________________________________________________
605void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat,
4aba9d66 606 Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd,
607 Double_t stemax, Double_t deemax, Double_t epsil,
608 Double_t stmin, Float_t* ubuf, Int_t nbuf) {
b2129742 609 // Define a medium
610 //
829fb838 611 kmed = gGeoManager->GetListOfMedia()->GetSize()+1;
612 fMCGeo->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax,
4aba9d66 613 epsil, stmin, ubuf, nbuf);
829fb838 614}
615
616//______________________________________________________________________________
617void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat,
4aba9d66 618 Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd,
619 Double_t stemax, Double_t deemax, Double_t epsil,
620 Double_t stmin, Double_t* ubuf, Int_t nbuf) {
b2129742 621 // Define a medium
622 //
829fb838 623 kmed = gGeoManager->GetListOfMedia()->GetSize()+1;
624 fMCGeo->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax,
4aba9d66 625 epsil, stmin, ubuf, nbuf);
829fb838 626}
627
628//______________________________________________________________________________
629void TFluka::Matrix(Int_t& krot, Double_t thetaX, Double_t phiX,
4aba9d66 630 Double_t thetaY, Double_t phiY, Double_t thetaZ,
631 Double_t phiZ) {
632//
829fb838 633 krot = gGeoManager->GetListOfMatrices()->GetEntriesFast();
634 fMCGeo->Matrix(krot, thetaX, phiX, thetaY, phiY, thetaZ, phiZ);
635}
636
637//______________________________________________________________________________
638void TFluka::Gstpar(Int_t itmed, const char* param, Double_t parval) {
639//
640//
7b203b6e 641//
829fb838 642 Bool_t process = kFALSE;
acf2e119 643 Bool_t modelp = kFALSE;
644
829fb838 645 if (strncmp(param, "DCAY", 4) == 0 ||
646 strncmp(param, "PAIR", 4) == 0 ||
647 strncmp(param, "COMP", 4) == 0 ||
648 strncmp(param, "PHOT", 4) == 0 ||
649 strncmp(param, "PFIS", 4) == 0 ||
650 strncmp(param, "DRAY", 4) == 0 ||
651 strncmp(param, "ANNI", 4) == 0 ||
652 strncmp(param, "BREM", 4) == 0 ||
653 strncmp(param, "MUNU", 4) == 0 ||
654 strncmp(param, "CKOV", 4) == 0 ||
655 strncmp(param, "HADR", 4) == 0 ||
656 strncmp(param, "LOSS", 4) == 0 ||
657 strncmp(param, "MULS", 4) == 0 ||
658 strncmp(param, "RAYL", 4) == 0)
659 {
660 process = kTRUE;
661 }
81f1d030 662
acf2e119 663 if (strncmp(param, "PRIMIO_N", 8) == 0 ||
664 strncmp(param, "PRIMIO_E", 8) == 0)
665 {
666 modelp = kTRUE;
667 }
668
829fb838 669 if (process) {
acf2e119 670 // Process switch
81f1d030 671 SetProcess(param, Int_t (parval), itmed);
acf2e119 672 } else if (modelp) {
673 // Model parameters
674 SetModelParameter(param, parval, itmed);
829fb838 675 } else {
acf2e119 676 // Cuts
81f1d030 677 SetCut(param, parval, itmed);
829fb838 678 }
acf2e119 679
680
829fb838 681}
682
683// functions from GGEOM
684//_____________________________________________________________________________
685void TFluka::Gsatt(const char *name, const char *att, Int_t val)
686{
6f5667d1 687 // Set visualisation attributes for one volume
829fb838 688 char vname[5];
689 fGeom->Vname(name,vname);
690 char vatt[5];
691 fGeom->Vname(att,vatt);
692 gGeoManager->SetVolumeAttribute(vname, vatt, val);
693}
694
695//______________________________________________________________________________
696Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed,
4aba9d66 697 Float_t *upar, Int_t np) {
829fb838 698//
699 return fMCGeo->Gsvolu(name, shape, nmed, upar, np);
700}
701
702//______________________________________________________________________________
703Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed,
4aba9d66 704 Double_t *upar, Int_t np) {
829fb838 705//
706 return fMCGeo->Gsvolu(name, shape, nmed, upar, np);
707}
708
709//______________________________________________________________________________
710void TFluka::Gsdvn(const char *name, const char *mother, Int_t ndiv,
4aba9d66 711 Int_t iaxis) {
829fb838 712//
713 fMCGeo->Gsdvn(name, mother, ndiv, iaxis);
714}
715
716//______________________________________________________________________________
717void TFluka::Gsdvn2(const char *name, const char *mother, Int_t ndiv,
4aba9d66 718 Int_t iaxis, Double_t c0i, Int_t numed) {
829fb838 719//
720 fMCGeo->Gsdvn2(name, mother, ndiv, iaxis, c0i, numed);
721}
722
723//______________________________________________________________________________
724void TFluka::Gsdvt(const char *name, const char *mother, Double_t step,
4aba9d66 725 Int_t iaxis, Int_t numed, Int_t ndvmx) {
726//
829fb838 727 fMCGeo->Gsdvt(name, mother, step, iaxis, numed, ndvmx);
728}
729
730//______________________________________________________________________________
731void TFluka::Gsdvt2(const char *name, const char *mother, Double_t step,
4aba9d66 732 Int_t iaxis, Double_t c0, Int_t numed, Int_t ndvmx) {
829fb838 733//
734 fMCGeo->Gsdvt2(name, mother, step, iaxis, c0, numed, ndvmx);
735}
736
737//______________________________________________________________________________
738void TFluka::Gsord(const char * /*name*/, Int_t /*iax*/) {
739//
740// Nothing to do with TGeo
741}
742
743//______________________________________________________________________________
744void TFluka::Gspos(const char *name, Int_t nr, const char *mother,
4aba9d66 745 Double_t x, Double_t y, Double_t z, Int_t irot,
746 const char *konly) {
829fb838 747//
748 fMCGeo->Gspos(name, nr, mother, x, y, z, irot, konly);
749}
750
751//______________________________________________________________________________
752void TFluka::Gsposp(const char *name, Int_t nr, const char *mother,
4aba9d66 753 Double_t x, Double_t y, Double_t z, Int_t irot,
754 const char *konly, Float_t *upar, Int_t np) {
829fb838 755 //
756 fMCGeo->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np);
757}
758
759//______________________________________________________________________________
760void TFluka::Gsposp(const char *name, Int_t nr, const char *mother,
4aba9d66 761 Double_t x, Double_t y, Double_t z, Int_t irot,
762 const char *konly, Double_t *upar, Int_t np) {
829fb838 763 //
764 fMCGeo->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np);
765}
766
767//______________________________________________________________________________
768void TFluka::Gsbool(const char* /*onlyVolName*/, const char* /*manyVolName*/) {
769//
770// Nothing to do with TGeo
771}
772
a9ea1616 773//______________________________________________________________________
774Bool_t TFluka::GetTransformation(const TString &volumePath,TGeoHMatrix &mat)
775{
776 // Returns the Transformation matrix between the volume specified
777 // by the path volumePath and the Top or mater volume. The format
778 // of the path volumePath is as follows (assuming ALIC is the Top volume)
779 // "/ALIC_1/DDIP_1/S05I_2/S05H_1/S05G_3". Here ALIC is the top most
780 // or master volume which has only 1 instance of. Of all of the daughter
781 // volumes of ALICE, DDIP volume copy #1 is indicated. Similarly for
782 // the daughter volume of DDIP is S05I copy #2 and so on.
783 // Inputs:
784 // TString& volumePath The volume path to the specific volume
785 // for which you want the matrix. Volume name
786 // hierarchy is separated by "/" while the
787 // copy number is appended using a "_".
788 // Outputs:
789 // TGeoHMatrix &mat A matrix with its values set to those
790 // appropriate to the Local to Master transformation
791 // Return:
792 // A logical value if kFALSE then an error occurred and no change to
793 // mat was made.
794
795 // We have to preserve the modeler state
796 return fMCGeo->GetTransformation(volumePath, mat);
797}
798
799//______________________________________________________________________
800Bool_t TFluka::GetShape(const TString &volumePath,TString &shapeType,
801 TArrayD &par)
802{
803 // Returns the shape and its parameters for the volume specified
804 // by volumeName.
805 // Inputs:
806 // TString& volumeName The volume name
807 // Outputs:
808 // TString &shapeType Shape type
809 // TArrayD &par A TArrayD of parameters with all of the
810 // parameters of the specified shape.
811 // Return:
812 // A logical indicating whether there was an error in getting this
813 // information
814 return fMCGeo->GetShape(volumePath, shapeType, par);
815}
816
817//______________________________________________________________________
818Bool_t TFluka::GetMaterial(const TString &volumeName,
819 TString &name,Int_t &imat,
820 Double_t &a,Double_t &z,Double_t &dens,
821 Double_t &radl,Double_t &inter,TArrayD &par)
822{
823 // Returns the Material and its parameters for the volume specified
824 // by volumeName.
825 // Note, Geant3 stores and uses mixtures as an element with an effective
826 // Z and A. Consequently, if the parameter Z is not integer, then
827 // this material represents some sort of mixture.
828 // Inputs:
829 // TString& volumeName The volume name
830 // Outputs:
831 // TSrting &name Material name
832 // Int_t &imat Material index number
833 // Double_t &a Average Atomic mass of material
834 // Double_t &z Average Atomic number of material
835 // Double_t &dens Density of material [g/cm^3]
836 // Double_t &radl Average radiation length of material [cm]
837 // Double_t &inter Average interaction length of material [cm]
838 // TArrayD &par A TArrayD of user defined parameters.
839 // Return:
840 // kTRUE if no errors
841 return fMCGeo->GetMaterial(volumeName,name,imat,a,z,dens,radl,inter,par);
842}
843
844//______________________________________________________________________
845Bool_t TFluka::GetMedium(const TString &volumeName,TString &name,
846 Int_t &imed,Int_t &nmat,Int_t &isvol,Int_t &ifield,
847 Double_t &fieldm,Double_t &tmaxfd,Double_t &stemax,
848 Double_t &deemax,Double_t &epsil, Double_t &stmin,
849 TArrayD &par)
850{
851 // Returns the Medium and its parameters for the volume specified
852 // by volumeName.
853 // Inputs:
854 // TString& volumeName The volume name.
855 // Outputs:
856 // TString &name Medium name
857 // Int_t &nmat Material number defined for this medium
858 // Int_t &imed The medium index number
859 // Int_t &isvol volume number defined for this medium
860 // Int_t &iflield Magnetic field flag
861 // Double_t &fieldm Magnetic field strength
862 // Double_t &tmaxfd Maximum angle of deflection per step
863 // Double_t &stemax Maximum step size
864 // Double_t &deemax Maximum fraction of energy allowed to be lost
865 // to continuous process.
866 // Double_t &epsil Boundary crossing precision
867 // Double_t &stmin Minimum step size allowed
868 // TArrayD &par A TArrayD of user parameters with all of the
869 // parameters of the specified medium.
870 // Return:
871 // kTRUE if there where no errors
872 return fMCGeo->GetMedium(volumeName,name,imed,nmat,isvol,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin,par);
873}
874
829fb838 875//______________________________________________________________________________
876void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Float_t* ppckov,
4aba9d66 877 Float_t* absco, Float_t* effic, Float_t* rindex) {
829fb838 878//
879// Set Cerenkov properties for medium itmed
880//
881// npckov: number of sampling points
882// ppckov: energy values
883// absco: absorption length
884// effic: quantum efficiency
885// rindex: refraction index
886//
887//
888//
889// Create object holding Cerenkov properties
890//
891 TFlukaCerenkov* cerenkovProperties = new TFlukaCerenkov(npckov, ppckov, absco, effic, rindex);
892//
893// Pass object to medium
894 TGeoMedium* medium = gGeoManager->GetMedium(itmed);
895 medium->SetCerenkovProperties(cerenkovProperties);
896}
897
b2be0e73 898void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Float_t* ppckov,
4aba9d66 899 Float_t* absco, Float_t* effic, Float_t* rindex, Float_t* rfl) {
b2be0e73 900//
901// Set Cerenkov properties for medium itmed
902//
903// npckov: number of sampling points
904// ppckov: energy values
905// absco: absorption length
906// effic: quantum efficiency
907// rindex: refraction index
908// rfl: reflectivity for boundary to medium itmed
909//
910//
911// Create object holding Cerenkov properties
912//
913 TFlukaCerenkov* cerenkovProperties = new TFlukaCerenkov(npckov, ppckov, absco, effic, rindex, rfl);
914//
915// Pass object to medium
916 TGeoMedium* medium = gGeoManager->GetMedium(itmed);
917 medium->SetCerenkovProperties(cerenkovProperties);
918}
919
920
829fb838 921//______________________________________________________________________________
922void TFluka::SetCerenkov(Int_t /*itmed*/, Int_t /*npckov*/, Double_t * /*ppckov*/,
4aba9d66 923 Double_t * /*absco*/, Double_t * /*effic*/, Double_t * /*rindex*/) {
829fb838 924//
b2be0e73 925// Double_t version not implemented
829fb838 926}
b2be0e73 927
928void TFluka::SetCerenkov(Int_t /*itmed*/, Int_t /*npckov*/, Double_t* /*ppckov*/,
4aba9d66 929 Double_t* /*absco*/, Double_t* /*effic*/, Double_t* /*rindex*/, Double_t* /*rfl*/) {
b2be0e73 930//
931// // Double_t version not implemented
932}
933
829fb838 934// Euclid
935//______________________________________________________________________________
936void TFluka::WriteEuclid(const char* /*fileName*/, const char* /*topVol*/,
937 Int_t /*number*/, Int_t /*nlevel*/) {
938//
939// Not with TGeo
a9ea1616 940 Warning("WriteEuclid", "Not implemented !");
829fb838 941}
942
943
944
945//_____________________________________________________________________________
946// methods needed by the stepping
947//____________________________________________________________________________
948
949Int_t TFluka::GetMedium() const {
950//
951// Get the medium number for the current fluka region
952//
953 return fGeom->GetMedium(); // this I need to check due to remapping !!!
954}
955
a9ea1616 956//____________________________________________________________________________
957Int_t TFluka::GetDummyRegion() const
958{
959// Returns index of the dummy region.
960 return fGeom->GetDummyRegion();
961}
829fb838 962
a9ea1616 963//____________________________________________________________________________
964Int_t TFluka::GetDummyLattice() const
965{
966// Returns index of the dummy lattice.
967 return fGeom->GetDummyLattice();
968}
829fb838 969
970//____________________________________________________________________________
971// particle table usage
972// ID <--> PDG transformations
973//_____________________________________________________________________________
974Int_t TFluka::IdFromPDG(Int_t pdg) const
975{
976 //
977 // Return Fluka code from PDG and pseudo ENDF code
978
979 // Catch the feedback photons
a9ea1616 980 if (pdg == 50000051) return (kFLUKAoptical);
829fb838 981 // MCIHAD() goes from pdg to fluka internal.
982 Int_t intfluka = mcihad(pdg);
983 // KPTOIP array goes from internal to official
984 return GetFlukaKPTOIP(intfluka);
985}
986
987//______________________________________________________________________________
988Int_t TFluka::PDGFromId(Int_t id) const
989{
990 //
991 // Return PDG code and pseudo ENDF code from Fluka code
f926898e 992 // Alpha He3 Triton Deuteron gen. ion opt. photon
13858fbd 993 Int_t idSpecial[6] = {GetIonPdg(2,4), GetIonPdg(2, 3), GetIonPdg(1,3), GetIonPdg(1,2), GetIonPdg(0,0), 50000050};
829fb838 994 // IPTOKP array goes from official to internal
995
a9ea1616 996 if (id == kFLUKAoptical) {
829fb838 997// Cerenkov photon
4aba9d66 998// if (fVerbosityLevel >= 3)
999// printf("\n PDGFromId: Cerenkov Photon \n");
1000 return 50000050;
829fb838 1001 }
1002// Error id
ece92b30 1003 if (id == 0 || id < kFLUKAcodemin || id > kFLUKAcodemax) {
66e5eb54 1004 if (fVerbosityLevel >= 3)
a9923346 1005 printf("PDGFromId: Error id = 0 %5d %5d\n", id, fCaller);
4aba9d66 1006 return -1;
829fb838 1007 }
1008// Good id
f926898e 1009 if (id > 0) {
4aba9d66 1010 Int_t intfluka = GetFlukaIPTOKP(id);
1011 if (intfluka == 0) {
1012 if (fVerbosityLevel >= 3)
1013 printf("PDGFromId: Error intfluka = 0: %d\n", id);
1014 return -1;
1015 } else if (intfluka < 0) {
1016 if (fVerbosityLevel >= 3)
1017 printf("PDGFromId: Error intfluka < 0: %d\n", id);
1018 return -1;
1019 }
1020// if (fVerbosityLevel >= 3)
1021// printf("mpdgha called with %d %d \n", id, intfluka);
1022 return mpdgha(intfluka);
f926898e 1023 } else {
4aba9d66 1024 // ions and optical photons
1025 return idSpecial[id - kFLUKAcodemin];
829fb838 1026 }
829fb838 1027}
1028
bd3d5c8a 1029void TFluka::StopTrack()
1030{
1031 // Set stopping conditions
1032 // Works for photons and charged particles
1033 fStopped = kTRUE;
1034}
1035
829fb838 1036//_____________________________________________________________________________
1037// methods for physics management
1038//____________________________________________________________________________
1039//
1040// set methods
1041//
1042
1df5fa54 1043void TFluka::SetProcess(const char* flagName, Int_t flagValue, Int_t imed)
829fb838 1044{
1045// Set process user flag for material imat
1df5fa54 1046//
1047//
1048// Update if already in the list
829fb838 1049//
fb2cbbec 1050 TIter next(fUserConfig);
1df5fa54 1051 TFlukaConfigOption* proc;
1052 while((proc = (TFlukaConfigOption*)next()))
1053 {
4aba9d66 1054 if (proc->Medium() == imed) {
1055 proc->SetProcess(flagName, flagValue);
1056 return;
1057 }
1df5fa54 1058 }
fb2cbbec 1059 proc = new TFlukaConfigOption(imed);
1060 proc->SetProcess(flagName, flagValue);
1061 fUserConfig->Add(proc);
1062}
1063
1064//______________________________________________________________________________
1065Bool_t TFluka::SetProcess(const char* flagName, Int_t flagValue)
1066{
1067// Set process user flag
1df5fa54 1068//
1df5fa54 1069//
fb2cbbec 1070 SetProcess(flagName, flagValue, -1);
1df5fa54 1071 return kTRUE;
829fb838 1072}
1073
1074//______________________________________________________________________________
1075void TFluka::SetCut(const char* cutName, Double_t cutValue, Int_t imed)
1076{
1077// Set user cut value for material imed
1078//
fb2cbbec 1079 TIter next(fUserConfig);
1080 TFlukaConfigOption* proc;
1081 while((proc = (TFlukaConfigOption*)next()))
1082 {
4aba9d66 1083 if (proc->Medium() == imed) {
1084 proc->SetCut(cutName, cutValue);
1085 return;
1086 }
fb2cbbec 1087 }
1088
1089 proc = new TFlukaConfigOption(imed);
1090 proc->SetCut(cutName, cutValue);
1091 fUserConfig->Add(proc);
829fb838 1092}
1093
acf2e119 1094
1095//______________________________________________________________________________
1096void TFluka::SetModelParameter(const char* parName, Double_t parValue, Int_t imed)
1097{
1098// Set model parameter for material imed
1099//
1100 TIter next(fUserConfig);
1101 TFlukaConfigOption* proc;
1102 while((proc = (TFlukaConfigOption*)next()))
1103 {
4aba9d66 1104 if (proc->Medium() == imed) {
1105 proc->SetModelParameter(parName, parValue);
1106 return;
1107 }
acf2e119 1108 }
1109
1110 proc = new TFlukaConfigOption(imed);
1111 proc->SetModelParameter(parName, parValue);
1112 fUserConfig->Add(proc);
1113}
1114
829fb838 1115//______________________________________________________________________________
1116Bool_t TFluka::SetCut(const char* cutName, Double_t cutValue)
1117{
1118// Set user cut value
1119//
1df5fa54 1120//
fb2cbbec 1121 SetCut(cutName, cutValue, -1);
1122 return kTRUE;
829fb838 1123}
1124
f450e9d0 1125
6f1aaa8e 1126void TFluka::SetUserScoring(const char* option, const char* sdum, Int_t npr, char* outfile, Float_t* what)
b496f27c 1127{
1128//
f450e9d0 1129// Adds a user scoring option to the list
b496f27c 1130//
6f1aaa8e 1131 TFlukaScoringOption* opt = new TFlukaScoringOption(option, sdum, npr,outfile,what);
f450e9d0 1132 fUserScore->Add(opt);
1133}
1134//______________________________________________________________________________
6f1aaa8e 1135void TFluka::SetUserScoring(const char* option, const char* sdum, Int_t npr, char* outfile, Float_t* what,
1136 const char* det1, const char* det2, const char* det3)
f450e9d0 1137{
1138//
1139// Adds a user scoring option to the list
1140//
6f1aaa8e 1141 TFlukaScoringOption* opt = new TFlukaScoringOption(option, sdum, npr, outfile, what, det1, det2, det3);
b496f27c 1142 fUserScore->Add(opt);
1143}
b496f27c 1144
829fb838 1145//______________________________________________________________________________
1146Double_t TFluka::Xsec(char*, Double_t, Int_t, Int_t)
1147{
a9ea1616 1148 Warning("Xsec", "Not yet implemented.!\n"); return -1.;
829fb838 1149}
1150
1151
1152//______________________________________________________________________________
1153void TFluka::InitPhysics()
1154{
1155//
1156// Physics initialisation with preparation of FLUKA input cards
1157//
fb2cbbec 1158// Construct file names
1159 FILE *pFlukaVmcCoreInp, *pFlukaVmcFlukaMat, *pFlukaVmcInp;
1160 TString sFlukaVmcCoreInp = getenv("ALICE_ROOT");
1161 sFlukaVmcCoreInp +="/TFluka/input/";
1162 TString sFlukaVmcTmp = "flukaMat.inp";
1163 TString sFlukaVmcInp = GetInputFileName();
1164 sFlukaVmcCoreInp += GetCoreInputFileName();
1165
1166// Open files
1167 if ((pFlukaVmcCoreInp = fopen(sFlukaVmcCoreInp.Data(),"r")) == NULL) {
4aba9d66 1168 Warning("InitPhysics", "\nCannot open file %s\n",sFlukaVmcCoreInp.Data());
1169 exit(1);
fb2cbbec 1170 }
1171 if ((pFlukaVmcFlukaMat = fopen(sFlukaVmcTmp.Data(),"r")) == NULL) {
4aba9d66 1172 Warning("InitPhysics", "\nCannot open file %s\n",sFlukaVmcTmp.Data());
1173 exit(1);
fb2cbbec 1174 }
1175 if ((pFlukaVmcInp = fopen(sFlukaVmcInp.Data(),"w")) == NULL) {
4aba9d66 1176 Warning("InitPhysics", "\nCannot open file %s\n",sFlukaVmcInp.Data());
1177 exit(1);
fb2cbbec 1178 }
829fb838 1179
fb2cbbec 1180// Copy core input file
1181 Char_t sLine[255];
1182 Float_t fEventsPerRun;
829fb838 1183
fb2cbbec 1184 while ((fgets(sLine,255,pFlukaVmcCoreInp)) != NULL) {
4aba9d66 1185 if (strncmp(sLine,"GEOEND",6) != 0)
1186 fprintf(pFlukaVmcInp,"%s",sLine); // copy until GEOEND card
1187 else {
1188 fprintf(pFlukaVmcInp,"GEOEND\n"); // add GEOEND card
1189 goto flukamat;
1190 }
fb2cbbec 1191 } // end of while until GEOEND card
1192
829fb838 1193
fb2cbbec 1194 flukamat:
1195 while ((fgets(sLine,255,pFlukaVmcFlukaMat)) != NULL) { // copy flukaMat.inp file
4aba9d66 1196 fprintf(pFlukaVmcInp,"%s\n",sLine);
fb2cbbec 1197 }
1198
1199 while ((fgets(sLine,255,pFlukaVmcCoreInp)) != NULL) {
8fc475a1 1200 if (strncmp(sLine,"START",5) != 0)
4aba9d66 1201 fprintf(pFlukaVmcInp,"%s\n",sLine);
1202 else {
1203 sscanf(sLine+10,"%10f",&fEventsPerRun);
1204 goto fin;
1205 }
8fc475a1 1206 } //end of while until START card
fb2cbbec 1207
1208 fin:
829fb838 1209
f450e9d0 1210
1211// Pass information to configuration objects
829fb838 1212
fb2cbbec 1213 Float_t fLastMaterial = fGeom->GetLastMaterialIndex();
1214 TFlukaConfigOption::SetStaticInfo(pFlukaVmcInp, 3, fLastMaterial, fGeom);
1215
1216 TIter next(fUserConfig);
1217 TFlukaConfigOption* proc;
f450e9d0 1218 while((proc = dynamic_cast<TFlukaConfigOption*> (next()))) proc->WriteFlukaInputCards();
1219//
1220// Process Fluka specific scoring options
1221//
1222 TFlukaScoringOption::SetStaticInfo(pFlukaVmcInp, fGeom);
0bb2c369 1223 Float_t loginp = -49.0;
f450e9d0 1224 Int_t inp = 0;
1225 Int_t nscore = fUserScore->GetEntries();
1226
a9ea1616 1227 TFlukaScoringOption *mopo = 0;
1228 TFlukaScoringOption *mopi = 0;
fb2cbbec 1229
f450e9d0 1230 for (Int_t isc = 0; isc < nscore; isc++)
1231 {
4aba9d66 1232 mopo = dynamic_cast<TFlukaScoringOption*> (fUserScore->At(isc));
1233 char* fileName = mopo->GetFileName();
1234 Int_t size = strlen(fileName);
1235 Float_t lun = -1.;
f450e9d0 1236//
1237// Check if new output file has to be opened
4aba9d66 1238 for (Int_t isci = 0; isci < isc; isci++) {
1239
1240
1241 mopi = dynamic_cast<TFlukaScoringOption*> (fUserScore->At(isci));
1242 if(strncmp(mopi->GetFileName(), fileName, size)==0) {
1243 //
1244 // No, the file already exists
1245 lun = mopi->GetLun();
1246 mopo->SetLun(lun);
1247 break;
1248 }
1249 } // inner loop
1250
1251 if (lun == -1.) {
1252 // Open new output file
1253 inp++;
1254 mopo->SetLun(loginp + inp);
1255 mopo->WriteOpenFlukaFile();
1256 }
1257 mopo->WriteFlukaInputCards();
f450e9d0 1258 }
b8a8a88c 1259
1260// Add RANDOMIZ card
1261 fprintf(pFlukaVmcInp,"RANDOMIZ %10.1f%10.0f\n", 1., Float_t(gRandom->GetSeed()));
8fc475a1 1262// Add START and STOP card
1263 fprintf(pFlukaVmcInp,"START %10.1f\n",fEventsPerRun);
f450e9d0 1264 fprintf(pFlukaVmcInp,"STOP \n");
829fb838 1265
1266
1267// Close files
3b8c325d 1268 fclose(pFlukaVmcCoreInp);
1269 fclose(pFlukaVmcFlukaMat);
1270 fclose(pFlukaVmcInp);
fb2cbbec 1271
1272
1273//
1274// Initialisation needed for Cerenkov photon production and transport
1275 TObjArray *matList = GetFlukaMaterials();
1276 Int_t nmaterial = matList->GetEntriesFast();
1277 fMaterials = new Int_t[nmaterial+3];
1278
1279 for (Int_t im = 0; im < nmaterial; im++)
1280 {
4aba9d66 1281 TGeoMaterial* material = dynamic_cast<TGeoMaterial*> (matList->At(im));
1282 Int_t idmat = material->GetIndex();
1283 fMaterials[idmat] = im;
fb2cbbec 1284 }
829fb838 1285} // end of InitPhysics
1286
1287
1288//______________________________________________________________________________
07f5b33e 1289void TFluka::SetMaxStep(Double_t step)
829fb838 1290{
07f5b33e 1291// Set the maximum step size
4aba9d66 1292// if (step > 1.e4) return;
07f5b33e 1293
4aba9d66 1294// Int_t mreg=0, latt=0;
1295// fGeom->GetCurrentRegion(mreg, latt);
1296 Int_t mreg = fGeom->GetCurrentRegion();
9c0c08ce 1297 STEPSZ.stepmx[mreg - 1] = step;
829fb838 1298}
1299
2f09b80e 1300
1301Double_t TFluka::MaxStep() const
1302{
1303// Return the maximum for current medium
1304 Int_t mreg, latt;
1305 fGeom->GetCurrentRegion(mreg, latt);
1306 return (STEPSZ.stepmx[mreg - 1]);
1307}
1308
829fb838 1309//______________________________________________________________________________
1310void TFluka::SetMaxNStep(Int_t)
1311{
1312// SetMaxNStep is dummy procedure in TFluka !
1313 if (fVerbosityLevel >=3)
1314 cout << "SetMaxNStep is dummy procedure in TFluka !" << endl;
1315}
1316
1317//______________________________________________________________________________
1318void TFluka::SetUserDecay(Int_t)
1319{
1320// SetUserDecay is dummy procedure in TFluka !
1321 if (fVerbosityLevel >=3)
1322 cout << "SetUserDecay is dummy procedure in TFluka !" << endl;
1323}
1324
1325//
1326// dynamic properties
1327//
1328//______________________________________________________________________________
1329void TFluka::TrackPosition(TLorentzVector& position) const
1330{
1331// Return the current position in the master reference frame of the
1332// track being transported
1333// TRACKR.atrack = age of the particle
1334// TRACKR.xtrack = x-position of the last point
1335// TRACKR.ytrack = y-position of the last point
1336// TRACKR.ztrack = z-position of the last point
a9ea1616 1337 FlukaCallerCode_t caller = GetCaller();
1338 if (caller == kENDRAW || caller == kUSDRAW ||
1339 caller == kBXExiting || caller == kBXEntering ||
1340 caller == kUSTCKV) {
829fb838 1341 position.SetX(GetXsco());
1342 position.SetY(GetYsco());
1343 position.SetZ(GetZsco());
1344 position.SetT(TRACKR.atrack);
1345 }
5125d6e5 1346 else if (caller == kMGDRAW) {
1347 Int_t i = -1;
1348 if ((i = fPrimaryElectronIndex) > -1) {
1349 // Primary Electron Ionisation
1350 Double_t x, y, z;
1351 GetPrimaryElectronPosition(i, x, y, z);
1352 position.SetX(x);
1353 position.SetY(y);
1354 position.SetZ(z);
1355 position.SetT(TRACKR.atrack);
1356 } else {
1357 position.SetX(TRACKR.xtrack[TRACKR.ntrack]);
1358 position.SetY(TRACKR.ytrack[TRACKR.ntrack]);
1359 position.SetZ(TRACKR.ztrack[TRACKR.ntrack]);
1360 position.SetT(TRACKR.atrack);
1361 }
829fb838 1362 }
a9ea1616 1363 else if (caller == kSODRAW) {
829fb838 1364 position.SetX(TRACKR.xtrack[TRACKR.ntrack]);
1365 position.SetY(TRACKR.ytrack[TRACKR.ntrack]);
1366 position.SetZ(TRACKR.ztrack[TRACKR.ntrack]);
1367 position.SetT(0);
a9ea1616 1368 } else if (caller == kMGResumedTrack) {
5d80a015 1369 position.SetX(TRACKR.spausr[0]);
1370 position.SetY(TRACKR.spausr[1]);
1371 position.SetZ(TRACKR.spausr[2]);
1372 position.SetT(TRACKR.spausr[3]);
829fb838 1373 }
1374 else
1375 Warning("TrackPosition","position not available");
1376}
1377
1378//______________________________________________________________________________
1379void TFluka::TrackPosition(Double_t& x, Double_t& y, Double_t& z) const
1380{
1381// Return the current position in the master reference frame of the
1382// track being transported
1383// TRACKR.atrack = age of the particle
1384// TRACKR.xtrack = x-position of the last point
1385// TRACKR.ytrack = y-position of the last point
1386// TRACKR.ztrack = z-position of the last point
a9ea1616 1387 FlukaCallerCode_t caller = GetCaller();
1388 if (caller == kENDRAW || caller == kUSDRAW ||
1389 caller == kBXExiting || caller == kBXEntering ||
1390 caller == kUSTCKV) {
5125d6e5 1391 x = GetXsco();
1392 y = GetYsco();
1393 z = GetZsco();
829fb838 1394 }
a9ea1616 1395 else if (caller == kMGDRAW || caller == kSODRAW) {
5125d6e5 1396 Int_t i = -1;
1397 if ((i = fPrimaryElectronIndex) > -1) {
1398 GetPrimaryElectronPosition(i, x, y, z);
1399 } else {
1400 x = TRACKR.xtrack[TRACKR.ntrack];
1401 y = TRACKR.ytrack[TRACKR.ntrack];
1402 z = TRACKR.ztrack[TRACKR.ntrack];
1403 }
829fb838 1404 }
a9ea1616 1405 else if (caller == kMGResumedTrack) {
5d80a015 1406 x = TRACKR.spausr[0];
1407 y = TRACKR.spausr[1];
1408 z = TRACKR.spausr[2];
1409 }
829fb838 1410 else
1411 Warning("TrackPosition","position not available");
1412}
1413
1414//______________________________________________________________________________
1415void TFluka::TrackMomentum(TLorentzVector& momentum) const
1416{
1417// Return the direction and the momentum (GeV/c) of the track
1418// currently being transported
1419// TRACKR.ptrack = momentum of the particle (not always defined, if
1420// < 0 must be obtained from etrack)
1421// TRACKR.cx,y,ztrck = direction cosines of the current particle
1422// TRACKR.etrack = total energy of the particle
1423// TRACKR.jtrack = identity number of the particle
1424// PAPROP.am[TRACKR.jtrack] = particle mass in gev
a9ea1616 1425 FlukaCallerCode_t caller = GetCaller();
1426 FlukaProcessCode_t icode = GetIcode();
1427
1428 if (caller != kEEDRAW && caller != kMGResumedTrack &&
1429 (caller != kENDRAW || (icode != kEMFSCOstopping1 && icode != kEMFSCOstopping2))) {
829fb838 1430 if (TRACKR.ptrack >= 0) {
1431 momentum.SetPx(TRACKR.ptrack*TRACKR.cxtrck);
1432 momentum.SetPy(TRACKR.ptrack*TRACKR.cytrck);
1433 momentum.SetPz(TRACKR.ptrack*TRACKR.cztrck);
1434 momentum.SetE(TRACKR.etrack);
1435 return;
1436 }
1437 else {
ece92b30 1438 Double_t p = sqrt(TRACKR.etrack * TRACKR.etrack - ParticleMassFPC(TRACKR.jtrack) * ParticleMassFPC(TRACKR.jtrack));
829fb838 1439 momentum.SetPx(p*TRACKR.cxtrck);
1440 momentum.SetPy(p*TRACKR.cytrck);
1441 momentum.SetPz(p*TRACKR.cztrck);
1442 momentum.SetE(TRACKR.etrack);
1443 return;
1444 }
a9ea1616 1445 } else if (caller == kMGResumedTrack) {
5d80a015 1446 momentum.SetPx(TRACKR.spausr[4]);
1447 momentum.SetPy(TRACKR.spausr[5]);
1448 momentum.SetPz(TRACKR.spausr[6]);
1449 momentum.SetE (TRACKR.spausr[7]);
1450 return;
a9ea1616 1451 } else if (caller == kENDRAW && (icode == kEMFSCOstopping1 || icode == kEMFSCOstopping2)) {
1452 momentum.SetPx(0.);
1453 momentum.SetPy(0.);
1454 momentum.SetPz(0.);
1455 momentum.SetE(TrackMass());
829fb838 1456 }
1457 else
1458 Warning("TrackMomentum","momentum not available");
1459}
1460
1461//______________________________________________________________________________
1462void TFluka::TrackMomentum(Double_t& px, Double_t& py, Double_t& pz, Double_t& e) const
1463{
1464// Return the direction and the momentum (GeV/c) of the track
1465// currently being transported
1466// TRACKR.ptrack = momentum of the particle (not always defined, if
1467// < 0 must be obtained from etrack)
1468// TRACKR.cx,y,ztrck = direction cosines of the current particle
1469// TRACKR.etrack = total energy of the particle
1470// TRACKR.jtrack = identity number of the particle
1471// PAPROP.am[TRACKR.jtrack] = particle mass in gev
a9ea1616 1472 FlukaCallerCode_t caller = GetCaller();
1473 FlukaProcessCode_t icode = GetIcode();
1474 if (caller != kEEDRAW && caller != kMGResumedTrack &&
1475 (caller != kENDRAW || (icode != kEMFSCOstopping1 && icode != kEMFSCOstopping2))) {
829fb838 1476 if (TRACKR.ptrack >= 0) {
1477 px = TRACKR.ptrack*TRACKR.cxtrck;
1478 py = TRACKR.ptrack*TRACKR.cytrck;
1479 pz = TRACKR.ptrack*TRACKR.cztrck;
a9ea1616 1480 e = TRACKR.etrack;
829fb838 1481 return;
1482 }
1483 else {
ece92b30 1484 Double_t p = sqrt(TRACKR.etrack * TRACKR.etrack - ParticleMassFPC(TRACKR.jtrack) * ParticleMassFPC(TRACKR.jtrack));
829fb838 1485 px = p*TRACKR.cxtrck;
1486 py = p*TRACKR.cytrck;
1487 pz = p*TRACKR.cztrck;
a9ea1616 1488 e = TRACKR.etrack;
829fb838 1489 return;
1490 }
a9ea1616 1491 } else if (caller == kMGResumedTrack) {
5d80a015 1492 px = TRACKR.spausr[4];
1493 py = TRACKR.spausr[5];
1494 pz = TRACKR.spausr[6];
1495 e = TRACKR.spausr[7];
0773d0ac 1496 return;
a9ea1616 1497 } else if (caller == kENDRAW && (icode == kEMFSCOstopping1 || icode == kEMFSCOstopping2)) {
1498 px = 0.;
1499 py = 0.;
1500 pz = 0.;
1501 e = TrackMass();
829fb838 1502 }
1503 else
1504 Warning("TrackMomentum","momentum not available");
1505}
1506
1507//______________________________________________________________________________
1508Double_t TFluka::TrackStep() const
1509{
1510// Return the length in centimeters of the current step
1511// TRACKR.ctrack = total curved path
a9ea1616 1512 FlukaCallerCode_t caller = GetCaller();
1513 if (caller == kBXEntering || caller == kBXExiting ||
1514 caller == kENDRAW || caller == kUSDRAW ||
1515 caller == kUSTCKV || caller == kMGResumedTrack)
829fb838 1516 return 0.0;
a9ea1616 1517 else if (caller == kMGDRAW)
829fb838 1518 return TRACKR.ctrack;
669cede4 1519 else {
1520 Warning("TrackStep", "track step not available");
1521 return 0.0;
1522 }
829fb838 1523}
1524
1525//______________________________________________________________________________
1526Double_t TFluka::TrackLength() const
1527{
1528// TRACKR.cmtrck = cumulative curved path since particle birth
a9ea1616 1529 FlukaCallerCode_t caller = GetCaller();
1530 if (caller == kBXEntering || caller == kBXExiting ||
1531 caller == kENDRAW || caller == kUSDRAW || caller == kMGDRAW ||
1532 caller == kUSTCKV)
829fb838 1533 return TRACKR.cmtrck;
a9ea1616 1534 else if (caller == kMGResumedTrack)
5d80a015 1535 return TRACKR.spausr[8];
669cede4 1536 else {
1537 Warning("TrackLength", "track length not available");
1538 return 0.0;
1539 }
829fb838 1540}
1541
1542//______________________________________________________________________________
1543Double_t TFluka::TrackTime() const
1544{
1545// Return the current time of flight of the track being transported
1546// TRACKR.atrack = age of the particle
a9ea1616 1547 FlukaCallerCode_t caller = GetCaller();
1548 if (caller == kBXEntering || caller == kBXExiting ||
1549 caller == kENDRAW || caller == kUSDRAW || caller == kMGDRAW ||
1550 caller == kUSTCKV)
829fb838 1551 return TRACKR.atrack;
a9ea1616 1552 else if (caller == kMGResumedTrack)
5d80a015 1553 return TRACKR.spausr[3];
669cede4 1554 else {
1555 Warning("TrackTime", "track time not available");
1556 return 0.0;
1557 }
829fb838 1558}
1559
1560//______________________________________________________________________________
1561Double_t TFluka::Edep() const
1562{
1563// Energy deposition
1564// if TRACKR.ntrack = 0, TRACKR.mtrack = 0:
1565// -->local energy deposition (the value and the point are not recorded in TRACKR)
1566// but in the variable "rull" of the procedure "endraw.cxx"
1567// if TRACKR.ntrack > 0, TRACKR.mtrack = 0:
1568// -->no energy loss along the track
1569// if TRACKR.ntrack > 0, TRACKR.mtrack > 0:
1570// -->energy loss distributed along the track
07f5b33e 1571// TRACKR.dtrack = energy deposition of the jth deposition event
829fb838 1572
1573 // If coming from bxdraw we have 2 steps of 0 length and 0 edep
669cede4 1574 // If coming from usdraw we just signal particle production - no edep
1575 // If just first time after resuming, no edep for the primary
a9ea1616 1576 FlukaCallerCode_t caller = GetCaller();
ada781c7 1577
a9ea1616 1578 if (caller == kBXExiting || caller == kBXEntering ||
1579 caller == kUSDRAW || caller == kMGResumedTrack) return 0.0;
829fb838 1580 Double_t sum = 0;
5125d6e5 1581 Int_t i = -1;
09cdde8a 1582
ada781c7 1583 // Material with primary ionisation activated but number of primary electrons nprim = 0
1584 if (fPrimaryElectronIndex == -2) return 0.0;
1585 // nprim > 0
5125d6e5 1586 if ((i = fPrimaryElectronIndex) > -1) {
1587 // Primary ionisation
ada781c7 1588 sum = GetPrimaryElectronKineticEnergy(i);
1589 if (sum > 100.) {
1590 printf("edep > 100. %d %d %f \n", i, ALLDLT.nalldl, sum);
1591 }
1592 return sum;
5125d6e5 1593 } else {
1594 // Normal ionisation
1595 if (TRACKR.mtrack > 1) printf("Edep: %6d\n", TRACKR.mtrack);
1596
1597 for ( Int_t j=0;j<TRACKR.mtrack;j++) {
1598 sum +=TRACKR.dtrack[j];
1599 }
1600 if (TRACKR.ntrack == 0 && TRACKR.mtrack == 0)
1601 return fRull + sum;
1602 else {
1603 return sum;
1604 }
829fb838 1605 }
1606}
1607
18e0cabb 1608//______________________________________________________________________________
1609Int_t TFluka::CorrectFlukaId() const
1610{
1611 // since we don't put photons and e- created bellow transport cut on the vmc stack
1612 // and there is a call to endraw for energy deposition for each of them
1613 // and they have the track number of their parent, but different identity (pdg)
4aba9d66 1614 // so we want to assign also their parent identity.
cc7af78a 1615
a9923346 1616 if( (IsTrackStop())
18e0cabb 1617 && TRACKR.ispusr[mkbmx2 - 4] == TRACKR.ispusr[mkbmx2 - 1]
1618 && TRACKR.jtrack != TRACKR.ispusr[mkbmx2 - 3] ) {
1619 if (fVerbosityLevel >=3)
1620 cout << "CorrectFlukaId() for icode=" << GetIcode()
1621 << " track=" << TRACKR.ispusr[mkbmx2 - 1]
1622 << " current PDG=" << PDGFromId(TRACKR.jtrack)
1623 << " assign parent PDG=" << PDGFromId(TRACKR.ispusr[mkbmx2 - 3]) << endl;
1624 return TRACKR.ispusr[mkbmx2 - 3]; // assign parent identity
1625 }
13858fbd 1626 if (TRACKR.jtrack <= 64){
cc7af78a 1627 return TRACKR.jtrack;
1628 } else {
1629 return TRACKR.j0trck;
1630 }
18e0cabb 1631}
1632
1633
829fb838 1634//______________________________________________________________________________
1635Int_t TFluka::TrackPid() const
1636{
1637// Return the id of the particle transported
1638// TRACKR.jtrack = identity number of the particle
a9ea1616 1639 FlukaCallerCode_t caller = GetCaller();
1640 if (caller != kEEDRAW) {
18e0cabb 1641 return PDGFromId( CorrectFlukaId() );
f926898e 1642 }
829fb838 1643 else
1644 return -1000;
1645}
1646
1647//______________________________________________________________________________
1648Double_t TFluka::TrackCharge() const
1649{
1650// Return charge of the track currently transported
1651// PAPROP.ichrge = electric charge of the particle
1652// TRACKR.jtrack = identity number of the particle
13858fbd 1653
a9ea1616 1654 FlukaCallerCode_t caller = GetCaller();
1655 if (caller != kEEDRAW)
18e0cabb 1656 return PAPROP.ichrge[CorrectFlukaId()+6];
829fb838 1657 else
1658 return -1000.0;
1659}
1660
1661//______________________________________________________________________________
1662Double_t TFluka::TrackMass() const
1663{
1664// PAPROP.am = particle mass in GeV
1665// TRACKR.jtrack = identity number of the particle
a9ea1616 1666 FlukaCallerCode_t caller = GetCaller();
1667 if (caller != kEEDRAW)
18e0cabb 1668 return PAPROP.am[CorrectFlukaId()+6];
829fb838 1669 else
1670 return -1000.0;
1671}
1672
1673//______________________________________________________________________________
1674Double_t TFluka::Etot() const
1675{
1676// TRACKR.etrack = total energy of the particle
a9ea1616 1677 FlukaCallerCode_t caller = GetCaller();
1678 if (caller != kEEDRAW)
829fb838 1679 return TRACKR.etrack;
1680 else
1681 return -1000.0;
1682}
1683
1684//
1685// track status
1686//
1687//______________________________________________________________________________
1688Bool_t TFluka::IsNewTrack() const
1689{
1690// Return true for the first call of Stepping()
1691 return fTrackIsNew;
1692}
1693
0dabe425 1694void TFluka::SetTrackIsNew(Bool_t flag)
1695{
1696// Return true for the first call of Stepping()
1697 fTrackIsNew = flag;
1698
1699}
1700
1701
829fb838 1702//______________________________________________________________________________
1703Bool_t TFluka::IsTrackInside() const
1704{
1705// True if the track is not at the boundary of the current volume
1706// In Fluka a step is always inside one kind of material
1707// If the step would go behind the region of one material,
1708// it will be shortened to reach only the boundary.
1709// Therefore IsTrackInside() is always true.
a9ea1616 1710 FlukaCallerCode_t caller = GetCaller();
1711 if (caller == kBXEntering || caller == kBXExiting)
829fb838 1712 return 0;
1713 else
1714 return 1;
1715}
1716
1717//______________________________________________________________________________
1718Bool_t TFluka::IsTrackEntering() const
1719{
1720// True if this is the first step of the track in the current volume
1721
a9ea1616 1722 FlukaCallerCode_t caller = GetCaller();
1723 if (caller == kBXEntering)
829fb838 1724 return 1;
1725 else return 0;
1726}
1727
1728//______________________________________________________________________________
1729Bool_t TFluka::IsTrackExiting() const
1730{
1731// True if track is exiting volume
1732//
a9ea1616 1733 FlukaCallerCode_t caller = GetCaller();
1734 if (caller == kBXExiting)
829fb838 1735 return 1;
1736 else return 0;
1737}
1738
1739//______________________________________________________________________________
1740Bool_t TFluka::IsTrackOut() const
1741{
1742// True if the track is out of the setup
1743// means escape
a9ea1616 1744 FlukaProcessCode_t icode = GetIcode();
1745
1746 if (icode == kKASKADescape ||
1747 icode == kEMFSCOescape ||
1748 icode == kKASNEUescape ||
1749 icode == kKASHEAescape ||
1750 icode == kKASOPHescape)
1751 return 1;
829fb838 1752 else return 0;
1753}
1754
1755//______________________________________________________________________________
1756Bool_t TFluka::IsTrackDisappeared() const
1757{
a9ea1616 1758// All inelastic interactions and decays
829fb838 1759// fIcode from usdraw
a9ea1616 1760 FlukaProcessCode_t icode = GetIcode();
1761 if (icode == kKASKADinelint || // inelastic interaction
1762 icode == kKASKADdecay || // particle decay
1763 icode == kKASKADdray || // delta ray generation by hadron
1764 icode == kKASKADpair || // direct pair production
1765 icode == kKASKADbrems || // bremsstrahlung (muon)
1766 icode == kEMFSCObrems || // bremsstrahlung (electron)
1767 icode == kEMFSCOmoller || // Moller scattering
1768 icode == kEMFSCObhabha || // Bhaba scattering
1769 icode == kEMFSCOanniflight || // in-flight annihilation
1770 icode == kEMFSCOannirest || // annihilation at rest
1771 icode == kEMFSCOpair || // pair production
1772 icode == kEMFSCOcompton || // Compton scattering
1773 icode == kEMFSCOphotoel || // Photoelectric effect
1774 icode == kKASNEUhadronic || // hadronic interaction
2047b055 1775 icode == kKASHEAdray // delta-ray
0dabe425 1776 ) return 1;
829fb838 1777 else return 0;
1778}
1779
1780//______________________________________________________________________________
1781Bool_t TFluka::IsTrackStop() const
1782{
1783// True if the track energy has fallen below the threshold
1784// means stopped by signal or below energy threshold
a9ea1616 1785 FlukaProcessCode_t icode = GetIcode();
18e0cabb 1786 if (icode == kKASKADstopping || // stopping particle
1787 icode == kKASKADtimekill || // time kill
1788 icode == kEMFSCOstopping1 || // below user-defined cut-off
1789 icode == kEMFSCOstopping2 || // below user cut-off
1790 icode == kEMFSCOtimekill || // time kill
1791 icode == kKASNEUstopping || // neutron below threshold
1792 icode == kKASNEUtimekill || // time kill
1793 icode == kKASHEAtimekill || // time kill
1794 icode == kKASOPHtimekill) return 1; // time kill
829fb838 1795 else return 0;
1796}
1797
1798//______________________________________________________________________________
1799Bool_t TFluka::IsTrackAlive() const
1800{
1801// means not disappeared or not out
1802 if (IsTrackDisappeared() || IsTrackOut() ) return 0;
1803 else return 1;
1804}
1805
1806//
1807// secondaries
1808//
1809
1810//______________________________________________________________________________
1811Int_t TFluka::NSecondaries() const
1812
1813{
1814// Number of secondary particles generated in the current step
81f1d030 1815// GENSTK.np = number of secondaries except light and heavy ions
829fb838 1816// FHEAVY.npheav = number of secondaries for light and heavy secondary ions
a9ea1616 1817 FlukaCallerCode_t caller = GetCaller();
1818 if (caller == kUSDRAW) // valid only after usdraw
4aba9d66 1819 return GENSTK.np + FHEAVY.npheav;
a9ea1616 1820 else if (caller == kUSTCKV) {
4aba9d66 1821 // Cerenkov Photon production
1822 return fNCerenkov;
7b203b6e 1823 }
829fb838 1824 return 0;
1825} // end of NSecondaries
1826
1827//______________________________________________________________________________
1828void TFluka::GetSecondary(Int_t isec, Int_t& particleId,
4aba9d66 1829 TLorentzVector& position, TLorentzVector& momentum)
829fb838 1830{
1831// Copy particles from secondary stack to vmc stack
1832//
1833
a9ea1616 1834 FlukaCallerCode_t caller = GetCaller();
1835 if (caller == kUSDRAW) { // valid only after usdraw
4aba9d66 1836 if (GENSTK.np > 0) {
1837 // Hadronic interaction
1838 if (isec >= 0 && isec < GENSTK.np) {
1839 particleId = PDGFromId(GENSTK.kpart[isec]);
1840 position.SetX(fXsco);
1841 position.SetY(fYsco);
1842 position.SetZ(fZsco);
1843 position.SetT(TRACKR.atrack);
1844 momentum.SetPx(GENSTK.plr[isec]*GENSTK.cxr[isec]);
1845 momentum.SetPy(GENSTK.plr[isec]*GENSTK.cyr[isec]);
1846 momentum.SetPz(GENSTK.plr[isec]*GENSTK.czr[isec]);
1847 momentum.SetE(GENSTK.tki[isec] + PAPROP.am[GENSTK.kpart[isec]+6]);
1848 }
1849 else if (isec >= GENSTK.np && isec < GENSTK.np + FHEAVY.npheav) {
1850 Int_t jsec = isec - GENSTK.np;
1851 particleId = FHEAVY.kheavy[jsec]; // this is Fluka id !!!
1852 position.SetX(fXsco);
1853 position.SetY(fYsco);
1854 position.SetZ(fZsco);
1855 position.SetT(TRACKR.atrack);
1856 momentum.SetPx(FHEAVY.pheavy[jsec]*FHEAVY.cxheav[jsec]);
1857 momentum.SetPy(FHEAVY.pheavy[jsec]*FHEAVY.cyheav[jsec]);
1858 momentum.SetPz(FHEAVY.pheavy[jsec]*FHEAVY.czheav[jsec]);
1859 if (FHEAVY.tkheav[jsec] >= 3 && FHEAVY.tkheav[jsec] <= 6)
1860 momentum.SetE(FHEAVY.tkheav[jsec] + PAPROP.am[jsec+6]);
1861 else if (FHEAVY.tkheav[jsec] > 6)
1862 momentum.SetE(FHEAVY.tkheav[jsec] + FHEAVY.amnhea[jsec]); // to be checked !!!
1863 }
1864 else
1865 Warning("GetSecondary","isec out of range");
1866 }
a9ea1616 1867 } else if (caller == kUSTCKV) {
4aba9d66 1868 Int_t index = OPPHST.lstopp - isec;
1869 position.SetX(OPPHST.xoptph[index]);
1870 position.SetY(OPPHST.yoptph[index]);
1871 position.SetZ(OPPHST.zoptph[index]);
1872 position.SetT(OPPHST.agopph[index]);
1873 Double_t p = OPPHST.poptph[index];
1874
1875 momentum.SetPx(p * OPPHST.txopph[index]);
1876 momentum.SetPy(p * OPPHST.tyopph[index]);
1877 momentum.SetPz(p * OPPHST.tzopph[index]);
1878 momentum.SetE(p);
829fb838 1879 }
1880 else
4aba9d66 1881 Warning("GetSecondary","no secondaries available");
7b203b6e 1882
829fb838 1883} // end of GetSecondary
1884
7b203b6e 1885
829fb838 1886//______________________________________________________________________________
1887TMCProcess TFluka::ProdProcess(Int_t) const
1888
1889{
1890// Name of the process that has produced the secondary particles
1891// in the current step
0dabe425 1892
a9ea1616 1893 Int_t mugamma = (TRACKR.jtrack == kFLUKAphoton ||
4aba9d66 1894 TRACKR.jtrack == kFLUKAmuplus ||
1895 TRACKR.jtrack == kFLUKAmuminus);
a9ea1616 1896 FlukaProcessCode_t icode = GetIcode();
1897
1898 if (icode == kKASKADdecay) return kPDecay;
1899 else if (icode == kKASKADpair || icode == kEMFSCOpair) return kPPair;
1900 else if (icode == kEMFSCOcompton) return kPCompton;
1901 else if (icode == kEMFSCOphotoel) return kPPhotoelectric;
1902 else if (icode == kKASKADbrems || icode == kEMFSCObrems) return kPBrem;
1903 else if (icode == kKASKADdray || icode == kKASHEAdray) return kPDeltaRay;
1904 else if (icode == kEMFSCOmoller || icode == kEMFSCObhabha) return kPDeltaRay;
1905 else if (icode == kEMFSCOanniflight || icode == kEMFSCOannirest) return kPAnnihilation;
1906 else if (icode == kKASKADinelint) {
4aba9d66 1907 if (!mugamma) return kPHadronic;
1908 else if (TRACKR.jtrack == kFLUKAphoton) return kPPhotoFission;
1909 else return kPMuonNuclear;
829fb838 1910 }
a9ea1616 1911 else if (icode == kEMFSCOrayleigh) return kPRayleigh;
829fb838 1912// Fluka codes 100, 300 and 400 still to be investigasted
a9ea1616 1913 else return kPNoProcess;
829fb838 1914}
1915
829fb838 1916
b496f27c 1917Int_t TFluka::StepProcesses(TArrayI &proc) const
1918{
1919 //
1920 // Return processes active in the current step
1921 //
a9ea1616 1922 FlukaProcessCode_t icode = GetIcode();
b496f27c 1923 proc.Set(1);
1924 TMCProcess iproc;
a9ea1616 1925 switch (icode) {
1926 case kKASKADtimekill:
1927 case kEMFSCOtimekill:
1928 case kKASNEUtimekill:
1929 case kKASHEAtimekill:
1930 case kKASOPHtimekill:
4aba9d66 1931 iproc = kPTOFlimit;
1932 break;
a9ea1616 1933 case kKASKADstopping:
1934 case kKASKADescape:
1935 case kEMFSCOstopping1:
1936 case kEMFSCOstopping2:
1937 case kEMFSCOescape:
1938 case kKASNEUstopping:
1939 case kKASNEUescape:
1940 case kKASHEAescape:
1941 case kKASOPHescape:
4aba9d66 1942 iproc = kPStop;
1943 break;
a9ea1616 1944 case kKASOPHabsorption:
4aba9d66 1945 iproc = kPLightAbsorption;
1946 break;
a9ea1616 1947 case kKASOPHrefraction:
4aba9d66 1948 iproc = kPLightRefraction;
a9923346 1949 case kEMFSCOlocaldep :
4aba9d66 1950 iproc = kPPhotoelectric;
1951 break;
b496f27c 1952 default:
4aba9d66 1953 iproc = ProdProcess(0);
b496f27c 1954 }
07f5b33e 1955 proc[0] = iproc;
b496f27c 1956 return 1;
1957}
829fb838 1958//______________________________________________________________________________
1959Int_t TFluka::VolId2Mate(Int_t id) const
1960{
1961//
1962// Returns the material number for a given volume ID
1963//
1964 return fMCGeo->VolId2Mate(id);
1965}
1966
1967//______________________________________________________________________________
1968const char* TFluka::VolName(Int_t id) const
1969{
1970//
1971// Returns the volume name for a given volume ID
1972//
1973 return fMCGeo->VolName(id);
1974}
1975
1976//______________________________________________________________________________
1977Int_t TFluka::VolId(const Text_t* volName) const
1978{
1979//
1980// Converts from volume name to volume ID.
1981// Time consuming. (Only used during set-up)
1982// Could be replaced by hash-table
1983//
09cd6497 1984 char sname[20];
1985 Int_t len;
1986 strncpy(sname, volName, len = strlen(volName));
1987 sname[len] = 0;
1988 while (sname[len - 1] == ' ') sname[--len] = 0;
1989 return fMCGeo->VolId(sname);
829fb838 1990}
1991
1992//______________________________________________________________________________
1993Int_t TFluka::CurrentVolID(Int_t& copyNo) const
1994{
1995//
1996// Return the logical id and copy number corresponding to the current fluka region
1997//
1998 if (gGeoManager->IsOutside()) return 0;
1999 TGeoNode *node = gGeoManager->GetCurrentNode();
2000 copyNo = node->GetNumber();
2001 Int_t id = node->GetVolume()->GetNumber();
2002 return id;
2003}
2004
2005//______________________________________________________________________________
2006Int_t TFluka::CurrentVolOffID(Int_t off, Int_t& copyNo) const
2007{
2008//
2009// Return the logical id and copy number of off'th mother
2010// corresponding to the current fluka region
2011//
2012 if (off<0 || off>gGeoManager->GetLevel()) return 0;
2013 if (off==0) return CurrentVolID(copyNo);
2014 TGeoNode *node = gGeoManager->GetMother(off);
2015 if (!node) return 0;
2016 copyNo = node->GetNumber();
2017 return node->GetVolume()->GetNumber();
2018}
2019
2020//______________________________________________________________________________
2021const char* TFluka::CurrentVolName() const
2022{
2023//
2024// Return the current volume name
2025//
2026 if (gGeoManager->IsOutside()) return 0;
2027 return gGeoManager->GetCurrentVolume()->GetName();
2028}
2029
2030//______________________________________________________________________________
2031const char* TFluka::CurrentVolOffName(Int_t off) const
2032{
2033//
2034// Return the volume name of the off'th mother of the current volume
2035//
2036 if (off<0 || off>gGeoManager->GetLevel()) return 0;
2037 if (off==0) return CurrentVolName();
2038 TGeoNode *node = gGeoManager->GetMother(off);
2039 if (!node) return 0;
2040 return node->GetVolume()->GetName();
2041}
2042
d59acfe7 2043const char* TFluka::CurrentVolPath() {
2044 // Return the current volume path
2045 return gGeoManager->GetPath();
2046}
829fb838 2047//______________________________________________________________________________
a60813de 2048Int_t TFluka::CurrentMaterial(Float_t & a, Float_t & z,
4aba9d66 2049 Float_t & dens, Float_t & radl, Float_t & absl) const
829fb838 2050{
2051//
a60813de 2052// Return the current medium number and material properties
829fb838 2053//
2054 Int_t copy;
2055 Int_t id = TFluka::CurrentVolID(copy);
2056 Int_t med = TFluka::VolId2Mate(id);
a60813de 2057 TGeoVolume* vol = gGeoManager->GetCurrentVolume();
2058 TGeoMaterial* mat = vol->GetMaterial();
2059 a = mat->GetA();
2060 z = mat->GetZ();
2061 dens = mat->GetDensity();
2062 radl = mat->GetRadLen();
2063 absl = mat->GetIntLen();
2064
829fb838 2065 return med;
2066}
2067
2068//______________________________________________________________________________
2069void TFluka::Gmtod(Float_t* xm, Float_t* xd, Int_t iflag)
2070{
2071// Transforms a position from the world reference frame
2072// to the current volume reference frame.
2073//
2074// Geant3 desription:
2075// ==================
2076// Computes coordinates XD (in DRS)
2077// from known coordinates XM in MRS
2078// The local reference system can be initialized by
2079// - the tracking routines and GMTOD used in GUSTEP
2080// - a call to GMEDIA(XM,NUMED)
2081// - a call to GLVOLU(NLEVEL,NAMES,NUMBER,IER)
2082// (inverse routine is GDTOM)
2083//
2084// If IFLAG=1 convert coordinates
2085// IFLAG=2 convert direction cosinus
2086//
2087// ---
2088 Double_t xmL[3], xdL[3];
2089 Int_t i;
2090 for (i=0;i<3;i++) xmL[i]=xm[i];
2091 if (iflag == 1) gGeoManager->MasterToLocal(xmL,xdL);
2092 else gGeoManager->MasterToLocalVect(xmL,xdL);
2093 for (i=0;i<3;i++) xd[i] = xdL[i];
2094}
2095
2096//______________________________________________________________________________
2097void TFluka::Gmtod(Double_t* xm, Double_t* xd, Int_t iflag)
2098{
2047b055 2099//
2100// See Gmtod(Float_t*, Float_t*, Int_t)
2101//
829fb838 2102 if (iflag == 1) gGeoManager->MasterToLocal(xm,xd);
2103 else gGeoManager->MasterToLocalVect(xm,xd);
2104}
2105
2106//______________________________________________________________________________
2107void TFluka::Gdtom(Float_t* xd, Float_t* xm, Int_t iflag)
2108{
2109// Transforms a position from the current volume reference frame
2110// to the world reference frame.
2111//
2112// Geant3 desription:
2113// ==================
2114// Computes coordinates XM (Master Reference System
2115// knowing the coordinates XD (Detector Ref System)
2116// The local reference system can be initialized by
2117// - the tracking routines and GDTOM used in GUSTEP
2118// - a call to GSCMED(NLEVEL,NAMES,NUMBER)
2119// (inverse routine is GMTOD)
2120//
2121// If IFLAG=1 convert coordinates
2122// IFLAG=2 convert direction cosinus
2123//
2124// ---
2125 Double_t xmL[3], xdL[3];
2126 Int_t i;
2127 for (i=0;i<3;i++) xdL[i] = xd[i];
2128 if (iflag == 1) gGeoManager->LocalToMaster(xdL,xmL);
2129 else gGeoManager->LocalToMasterVect(xdL,xmL);
2130 for (i=0;i<3;i++) xm[i]=xmL[i];
2131}
2132
2133//______________________________________________________________________________
2134void TFluka::Gdtom(Double_t* xd, Double_t* xm, Int_t iflag)
2135{
2047b055 2136//
2137// See Gdtom(Float_t*, Float_t*, Int_t)
2138//
829fb838 2139 if (iflag == 1) gGeoManager->LocalToMaster(xd,xm);
2140 else gGeoManager->LocalToMasterVect(xd,xm);
2141}
2142
2143//______________________________________________________________________________
2144TObjArray *TFluka::GetFlukaMaterials()
2145{
2047b055 2146//
2147// Get array of Fluka materials
829fb838 2148 return fGeom->GetMatList();
2149}
2150
2151//______________________________________________________________________________
a9ea1616 2152void TFluka::SetMreg(Int_t l, Int_t lttc)
829fb838 2153{
2154// Set current fluka region
2155 fCurrentFlukaRegion = l;
a9ea1616 2156 fGeom->SetMreg(l,lttc);
829fb838 2157}
2158
2159
b496f27c 2160
2161
4aba9d66 2162//______________________________________________________________________________
b496f27c 2163TString TFluka::ParticleName(Int_t pdg) const
2164{
2165 // Return particle name for particle with pdg code pdg.
2166 Int_t ifluka = IdFromPDG(pdg);
ece92b30 2167 return TString((CHPPRP.btype[ifluka - kFLUKAcodemin]), 8);
b496f27c 2168}
2169
2170
4aba9d66 2171//______________________________________________________________________________
b496f27c 2172Double_t TFluka::ParticleMass(Int_t pdg) const
2173{
2174 // Return particle mass for particle with pdg code pdg.
2175 Int_t ifluka = IdFromPDG(pdg);
ece92b30 2176 return (PAPROP.am[ifluka - kFLUKAcodemin]);
2177}
2178
4aba9d66 2179//______________________________________________________________________________
ece92b30 2180Double_t TFluka::ParticleMassFPC(Int_t fpc) const
2181{
2182 // Return particle mass for particle with Fluka particle code fpc
2183 return (PAPROP.am[fpc - kFLUKAcodemin]);
b496f27c 2184}
2185
4aba9d66 2186//______________________________________________________________________________
b496f27c 2187Double_t TFluka::ParticleCharge(Int_t pdg) const
2188{
2189 // Return particle charge for particle with pdg code pdg.
2190 Int_t ifluka = IdFromPDG(pdg);
ece92b30 2191 return Double_t(PAPROP.ichrge[ifluka - kFLUKAcodemin]);
b496f27c 2192}
2193
4aba9d66 2194//______________________________________________________________________________
b496f27c 2195Double_t TFluka::ParticleLifeTime(Int_t pdg) const
2196{
2197 // Return particle lifetime for particle with pdg code pdg.
2198 Int_t ifluka = IdFromPDG(pdg);
ece92b30 2199 return (PAPROP.tmnlf[ifluka - kFLUKAcodemin]);
b496f27c 2200}
2201
4aba9d66 2202//______________________________________________________________________________
b496f27c 2203void TFluka::Gfpart(Int_t pdg, char* name, Int_t& type, Float_t& mass, Float_t& charge, Float_t& tlife)
2204{
2205 // Retrieve particle properties for particle with pdg code pdg.
2206
2207 strcpy(name, ParticleName(pdg).Data());
2208 type = ParticleMCType(pdg);
2209 mass = ParticleMass(pdg);
2210 charge = ParticleCharge(pdg);
2211 tlife = ParticleLifeTime(pdg);
2212}
2213
4aba9d66 2214//______________________________________________________________________________
8e5bf079 2215void TFluka::PrintHeader()
2216{
2217 //
2218 // Print a header
2219 printf("\n");
2220 printf("\n");
2221 printf("------------------------------------------------------------------------------\n");
2222 printf("- You are using the TFluka Virtual Monte Carlo Interface to FLUKA. -\n");
2223 printf("- Please see the file fluka.out for FLUKA output and licensing information. -\n");
2224 printf("------------------------------------------------------------------------------\n");
2225 printf("\n");
2226 printf("\n");
2227}
2228
b496f27c 2229
81f1d030 2230#define pshckp pshckp_
2231#define ustckv ustckv_
3a625972 2232
2233
2234extern "C" {
81f1d030 2235 void pshckp(Double_t & px, Double_t & py, Double_t & pz, Double_t & e,
4aba9d66 2236 Double_t & vx, Double_t & vy, Double_t & vz, Double_t & tof,
2237 Double_t & polx, Double_t & poly, Double_t & polz, Double_t & wgt, Int_t& ntr)
81f1d030 2238 {
2239 //
2240 // Pushes one cerenkov photon to the stack
2241 //
2242
2243 TFluka* fluka = (TFluka*) gMC;
2244 TVirtualMCStack* cppstack = fluka->GetStack();
2245 Int_t parent = TRACKR.ispusr[mkbmx2-1];
2246 cppstack->PushTrack(0, parent, 50000050,
4aba9d66 2247 px, py, pz, e,
2248 vx, vy, vz, tof,
2249 polx, poly, polz,
2250 kPCerenkov, ntr, wgt, 0);
2251 if (fluka->GetVerbosityLevel() >= 3)
2252 printf("pshckp: track=%d parent=%d lattc=%d %s\n", ntr, parent, TRACKR.lt1trk, fluka->CurrentVolName());
81f1d030 2253 }
2254
2255 void ustckv(Int_t & nphot, Int_t & mreg, Double_t & x, Double_t & y, Double_t & z)
7b203b6e 2256 {
4aba9d66 2257 //
2258 // Calls stepping in order to signal cerenkov production
2259 //
2260 TFluka *fluka = (TFluka*)gMC;
2261 fluka->SetMreg(mreg, TRACKR.lt1trk); //LTCLCM.mlatm1);
2262 fluka->SetXsco(x);
2263 fluka->SetYsco(y);
2264 fluka->SetZsco(z);
2265 fluka->SetNCerenkov(nphot);
2266 fluka->SetCaller(kUSTCKV);
2267 if (fluka->GetVerbosityLevel() >= 3)
2268 printf("ustckv: %10d mreg=%d lattc=%d newlat=%d (%f, %f, %f) edep=%f vol=%s\n",
2269 nphot, mreg, TRACKR.lt1trk, LTCLCM.newlat, x, y, z, fluka->Edep(), fluka->CurrentVolName());
2270
2271 // check region lattice consistency (debug Ernesto)
2272 // *****************************************************
2273 Int_t nodeId;
2274 Int_t volId = fluka->CurrentVolID(nodeId);
2275 Int_t crtlttc = gGeoManager->GetCurrentNodeId()+1;
2276
2277 if( mreg != volId && !gGeoManager->IsOutside() ) {
2278 cout << " ustckv: track=" << TRACKR.ispusr[mkbmx2-1] << " pdg=" << fluka->PDGFromId(TRACKR.jtrack)
2279 << " icode=" << fluka->GetIcode() << " gNstep=" << fluka->GetNstep() << endl
2280 << " fluka mreg=" << mreg << " mlttc=" << TRACKR.lt1trk << endl
2281 << " TGeo volId=" << volId << " crtlttc=" << crtlttc << endl
2282 << " common TRACKR lt1trk=" << TRACKR.lt1trk << " lt2trk=" << TRACKR.lt2trk << endl
2283 << " common LTCLCM newlat=" << LTCLCM.newlat << " mlatld=" << LTCLCM.mlatld << endl
2284 << " mlatm1=" << LTCLCM.mlatm1 << " mltsen=" << LTCLCM.mltsen << endl
2285 << " mltsm1=" << LTCLCM.mltsm1 << " mlattc=" << LTCLCM.mlattc << endl;
2286 if( TRACKR.lt1trk == crtlttc ) cout << " *************************************************************" << endl;
2287 }
2288 // *****************************************************
2289
2290
2291
2292 (TVirtualMCApplication::Instance())->Stepping();
7b203b6e 2293 }
3a625972 2294}
a9ea1616 2295
4aba9d66 2296//______________________________________________________________________________
78df7be0 2297void TFluka::AddParticlesToPdgDataBase() const
2298{
2299
2300//
2301// Add particles to the PDG data base
2302
2303 TDatabasePDG *pdgDB = TDatabasePDG::Instance();
2304
78df7be0 2305 const Double_t kAu2Gev = 0.9314943228;
2306 const Double_t khSlash = 1.0545726663e-27;
2307 const Double_t kErg2Gev = 1/1.6021773349e-3;
2308 const Double_t khShGev = khSlash*kErg2Gev;
2309 const Double_t kYear2Sec = 3600*24*365.25;
2310//
2311// Ions
2312//
78df7be0 2313 pdgDB->AddParticle("Deuteron","Deuteron",2*kAu2Gev+8.071e-3,kTRUE,
13858fbd 2314 0,3,"Ion",GetIonPdg(1,2));
78df7be0 2315 pdgDB->AddParticle("Triton","Triton",3*kAu2Gev+14.931e-3,kFALSE,
13858fbd 2316 khShGev/(12.33*kYear2Sec),3,"Ion",GetIonPdg(1,3));
78df7be0 2317 pdgDB->AddParticle("Alpha","Alpha",4*kAu2Gev+2.424e-3,kTRUE,
13858fbd 2318 khShGev/(12.33*kYear2Sec),6,"Ion",GetIonPdg(2,4));
78df7be0 2319 pdgDB->AddParticle("HE3","HE3",3*kAu2Gev+14.931e-3,kFALSE,
13858fbd 2320 0,6,"Ion",GetIonPdg(2,3));
78df7be0 2321}
2322
4aba9d66 2323//
2324// Info about primary ionization electrons
2325//
2326
2327//______________________________________________________________________________
2328Int_t TFluka::GetNPrimaryElectrons()
f2a98602 2329{
2330 // Get number of primary electrons
2331 return ALLDLT.nalldl;
2332}
2333
4aba9d66 2334//______________________________________________________________________________
5125d6e5 2335Double_t TFluka::GetPrimaryElectronKineticEnergy(Int_t i) const
f2a98602 2336{
2337 // Returns kinetic energy of primary electron i
5125d6e5 2338
2339 Double_t ekin = -1.;
f2a98602 2340 if (i >= 0 && i < ALLDLT.nalldl) {
4aba9d66 2341 ekin = ALLDLT.talldl[i];
f2a98602 2342 } else {
4aba9d66 2343 Warning("GetPrimaryElectronKineticEnergy",
2344 "Primary electron index out of range %d %d \n",
2345 i, ALLDLT.nalldl);
f2a98602 2346 }
f0734960 2347 return ekin;
f2a98602 2348}
5125d6e5 2349
2350void TFluka::GetPrimaryElectronPosition(Int_t i, Double_t& x, Double_t& y, Double_t& z) const
2351{
2352 // Returns position of primary electron i
2353 if (i >= 0 && i < ALLDLT.nalldl) {
2354 x = ALLDLT.xalldl[i];
2355 y = ALLDLT.yalldl[i];
2356 z = ALLDLT.zalldl[i];
2357 return;
2358 } else {
2359 Warning("GetPrimaryElectronPosition",
2360 "Primary electron index out of range %d %d \n",
2361 i, ALLDLT.nalldl);
2362 return;
2363 }
2364 return;
2365}
2366
13858fbd 2367Int_t TFluka::GetIonPdg(Int_t z, Int_t a, Int_t i) const
2368{
2369// Acording to
2370// http://cepa.fnal.gov/psm/stdhep/pdg/montecarlorpp-2006.pdf
5125d6e5 2371
13858fbd 2372 return 1000000000 + 10*1000*z + 10*a + i;
2373}
2374