Protection in calculation of sqrt(1-c*c) expression.
[u/mrichter/AliRoot.git] / TFluka / TFluka.cxx
CommitLineData
829fb838 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18//
19// Realisation of the TVirtualMC interface for the FLUKA code
20// (See official web side http://www.fluka.org/).
21//
22// This implementation makes use of the TGeo geometry modeller.
23// User configuration is via automatic generation of FLUKA input cards.
24//
25// Authors:
26// A. Fasso
27// E. Futo
28// A. Gheata
29// A. Morsch
30//
31
32#include <Riostream.h>
37b09b91 33#include <TList.h>
829fb838 34
829fb838 35#include "TFluka.h"
a9ea1616 36#include "TFlukaCodes.h"
829fb838 37#include "TCallf77.h" //For the fortran calls
38#include "Fdblprc.h" //(DBLPRC) fluka common
81f1d030 39#include "Fsourcm.h" //(SOURCM) fluka common
40#include "Fgenstk.h" //(GENSTK) fluka common
829fb838 41#include "Fiounit.h" //(IOUNIT) fluka common
42#include "Fpaprop.h" //(PAPROP) fluka common
43#include "Fpart.h" //(PART) fluka common
44#include "Ftrackr.h" //(TRACKR) fluka common
45#include "Fpaprop.h" //(PAPROP) fluka common
46#include "Ffheavy.h" //(FHEAVY) fluka common
3a625972 47#include "Fopphst.h" //(OPPHST) fluka common
81f1d030 48#include "Fflkstk.h" //(FLKSTK) fluka common
07f5b33e 49#include "Fstepsz.h" //(STEPSZ) fluka common
7b203b6e 50#include "Fopphst.h" //(OPPHST) fluka common
a9ea1616 51#include "Fltclcm.h" //(LTCLCM) fluka common
f2a98602 52#include "Falldlt.h" //(ALLDLT) fluka common
829fb838 53
54#include "TVirtualMC.h"
3a625972 55#include "TMCProcess.h"
829fb838 56#include "TGeoManager.h"
57#include "TGeoMaterial.h"
58#include "TGeoMedium.h"
59#include "TFlukaMCGeometry.h"
6f5667d1 60#include "TGeoMCGeometry.h"
829fb838 61#include "TFlukaCerenkov.h"
1df5fa54 62#include "TFlukaConfigOption.h"
b496f27c 63#include "TFlukaScoringOption.h"
829fb838 64#include "TLorentzVector.h"
b496f27c 65#include "TArrayI.h"
a9ea1616 66#include "TArrayD.h"
78df7be0 67#include "TDatabasePDG.h"
4aba9d66 68#include "TStopwatch.h"
69
829fb838 70
71// Fluka methods that may be needed.
72#ifndef WIN32
73# define flukam flukam_
74# define fluka_openinp fluka_openinp_
8e5bf079 75# define fluka_openout fluka_openout_
829fb838 76# define fluka_closeinp fluka_closeinp_
77# define mcihad mcihad_
78# define mpdgha mpdgha_
2047b055 79# define newplo newplo_
4aba9d66 80# define genout genout_
81# define flkend flkend_
829fb838 82#else
83# define flukam FLUKAM
84# define fluka_openinp FLUKA_OPENINP
8e5bf079 85# define fluka_openout FLUKA_OPENOUT
829fb838 86# define fluka_closeinp FLUKA_CLOSEINP
87# define mcihad MCIHAD
88# define mpdgha MPDGHA
eea53470 89# define newplo NEWPLO
4aba9d66 90# define genout GENOUT
91# define flkend FLKEND
829fb838 92#endif
93
94extern "C"
95{
96 //
97 // Prototypes for FLUKA functions
98 //
99 void type_of_call flukam(const int&);
eea53470 100 void type_of_call newplo();
4aba9d66 101 void type_of_call genout();
102 void type_of_call flkend();
829fb838 103 void type_of_call fluka_openinp(const int&, DEFCHARA);
8e5bf079 104 void type_of_call fluka_openout(const int&, DEFCHARA);
829fb838 105 void type_of_call fluka_closeinp(const int&);
106 int type_of_call mcihad(const int&);
107 int type_of_call mpdgha(const int&);
108}
109
110//
111// Class implementation for ROOT
112//
113ClassImp(TFluka)
114
115//
116//----------------------------------------------------------------------------
117// TFluka constructors and destructors.
118//______________________________________________________________________________
119TFluka::TFluka()
120 :TVirtualMC(),
121 fVerbosityLevel(0),
4aba9d66 122 fNEvent(0),
1df5fa54 123 fInputFileName(""),
4aba9d66 124 fCoreInputFileName(""),
125 fCaller(kNoCaller),
126 fIcode(kNoProcess),
127 fNewReg(-1),
128 fRull(0),
129 fXsco(0),
130 fYsco(0),
131 fZsco(0),
132 fTrackIsEntering(kFALSE),
133 fTrackIsExiting(kFALSE),
134 fTrackIsNew(kFALSE),
135 fFieldFlag(kTRUE),
4aba9d66 136 fDummyBoundary(kFALSE),
137 fStopped(kFALSE),
138 fStopEvent(kFALSE),
139 fStopRun(kFALSE),
5125d6e5 140 fPrimaryElectronIndex(-1),
4aba9d66 141 fMaterials(0),
142 fNVolumes(0),
143 fCurrentFlukaRegion(-1),
144 fNCerenkov(0),
145 fGeom(0),
146 fMCGeo(0),
fb2cbbec 147 fUserConfig(0),
1df5fa54 148 fUserScore(0)
829fb838 149{
150 //
151 // Default constructor
152 //
829fb838 153}
154
155//______________________________________________________________________________
156TFluka::TFluka(const char *title, Int_t verbosity, Bool_t isRootGeometrySupported)
157 :TVirtualMC("TFluka",title, isRootGeometrySupported),
158 fVerbosityLevel(verbosity),
4aba9d66 159 fNEvent(0),
829fb838 160 fInputFileName(""),
4aba9d66 161 fCoreInputFileName(""),
162 fCaller(kNoCaller),
163 fIcode(kNoProcess),
164 fNewReg(-1),
165 fRull(0),
166 fXsco(0),
167 fYsco(0),
168 fZsco(0),
169 fTrackIsEntering(kFALSE),
170 fTrackIsExiting(kFALSE),
171 fTrackIsNew(kFALSE),
172 fFieldFlag(kTRUE),
4aba9d66 173 fDummyBoundary(kFALSE),
174 fStopped(kFALSE),
175 fStopEvent(kFALSE),
176 fStopRun(kFALSE),
5125d6e5 177 fPrimaryElectronIndex(-1),
4aba9d66 178 fMaterials(0),
179 fNVolumes(0),
180 fCurrentFlukaRegion(-1),
181 fNCerenkov(0),
182 fGeom(0),
183 fMCGeo(0),
fb2cbbec 184 fUserConfig(new TObjArray(100)),
1df5fa54 185 fUserScore(new TObjArray(100))
829fb838 186{
187 // create geometry interface
7f13be31 188 if (fVerbosityLevel >=3)
189 cout << "<== TFluka::TFluka(" << title << ") constructor called." << endl;
190 SetCoreInputFileName();
191 SetInputFileName();
11e4ab84 192 fMCGeo = new TGeoMCGeometry("MCGeo", "TGeo Implementation of VirtualMCGeometry", kFALSE);
fb2cbbec 193 fGeom = new TFlukaMCGeometry("geom", "FLUKA VMC Geometry");
829fb838 194 if (verbosity > 2) fGeom->SetDebugMode(kTRUE);
8e5bf079 195 PrintHeader();
829fb838 196}
197
198//______________________________________________________________________________
4aba9d66 199TFluka::~TFluka()
200{
201 // Destructor
1df5fa54 202 if (fVerbosityLevel >=3)
4aba9d66 203 cout << "<== TFluka::~TFluka() destructor called." << endl;
204 if (fMaterials) delete [] fMaterials;
1df5fa54 205
206 delete fGeom;
207 delete fMCGeo;
208
fb2cbbec 209 if (fUserConfig) {
4aba9d66 210 fUserConfig->Delete();
211 delete fUserConfig;
1df5fa54 212 }
6d184c54 213
214 if (fUserScore) {
4aba9d66 215 fUserScore->Delete();
216 delete fUserScore;
6d184c54 217 }
829fb838 218}
219
220//
221//______________________________________________________________________________
222// TFluka control methods
223//______________________________________________________________________________
224void TFluka::Init() {
225//
226// Geometry initialisation
227//
228 if (fVerbosityLevel >=3) cout << "==> TFluka::Init() called." << endl;
229
230 if (!gGeoManager) new TGeoManager("geom", "FLUKA geometry");
231 fApplication->ConstructGeometry();
d59acfe7 232 if (!gGeoManager->IsClosed()) {
233 TGeoVolume *top = (TGeoVolume*)gGeoManager->GetListOfVolumes()->First();
234 gGeoManager->SetTopVolume(top);
235 gGeoManager->CloseGeometry("di");
236 } else {
237 TGeoNodeCache *cache = gGeoManager->GetCache();
238 if (!cache->HasIdArray()) {
a9ea1616 239 Warning("Init", "Node ID tracking must be enabled with TFluka: enabling...\n");
d59acfe7 240 cache->BuildIdArray();
241 }
242 }
829fb838 243 fNVolumes = fGeom->NofVolumes();
244 fGeom->CreateFlukaMatFile("flukaMat.inp");
245 if (fVerbosityLevel >=3) {
246 printf("== Number of volumes: %i\n ==", fNVolumes);
247 cout << "\t* InitPhysics() - Prepare input file to be called" << endl;
6d184c54 248 }
881cb248 249
250 fApplication->InitGeometry();
661663fa 251 fApplication->ConstructOpGeometry();
78df7be0 252 //
253 // Add ions to PDG Data base
254 //
255 AddParticlesToPdgDataBase();
a9923346 256 //
829fb838 257}
258
259
260//______________________________________________________________________________
261void TFluka::FinishGeometry() {
262//
263// Build-up table with region to medium correspondance
264//
265 if (fVerbosityLevel >=3) {
266 cout << "==> TFluka::FinishGeometry() called." << endl;
2753cb27 267 printf("----FinishGeometry - applying misalignment if any\n");
829fb838 268 cout << "<== TFluka::FinishGeometry() called." << endl;
269 }
2753cb27 270 TVirtualMCApplication::Instance()->MisalignGeometry();
829fb838 271}
272
273//______________________________________________________________________________
274void TFluka::BuildPhysics() {
275//
276// Prepare FLUKA input files and call FLUKA physics initialisation
277//
278
279 if (fVerbosityLevel >=3)
4aba9d66 280 cout << "==> TFluka::BuildPhysics() called." << endl;
6d184c54 281
282
283 if (fVerbosityLevel >=3) {
4aba9d66 284 TList *medlist = gGeoManager->GetListOfMedia();
285 TIter next(medlist);
286 TGeoMedium* med = 0x0;
287 TGeoMaterial* mat = 0x0;
288 Int_t ic = 0;
289
290 while((med = (TGeoMedium*)next()))
291 {
292 mat = med->GetMaterial();
293 printf("Medium %5d %12s %5d %5d\n", ic, (med->GetName()), med->GetId(), mat->GetIndex());
294 ic++;
295 }
6d184c54 296 }
297
d23f4fcd 298
6d184c54 299 // Prepare input file with the current physics settings
300
829fb838 301 InitPhysics();
b8a8a88c 302// Open fortran files
829fb838 303 const char* fname = fInputFileName;
304 fluka_openinp(lunin, PASSCHARA(fname));
8e5bf079 305 fluka_openout(11, PASSCHARA("fluka.out"));
b8a8a88c 306// Read input cards
4aba9d66 307 cout << "==> TFluka::BuildPhysics() Read input cards." << endl;
308 TStopwatch timer;
309 timer.Start();
b8a8a88c 310 GLOBAL.lfdrtr = true;
829fb838 311 flukam(1);
4aba9d66 312 cout << "<== TFluka::BuildPhysics() Read input cards End"
313 << Form(" R:%.2fs C:%.2fs", timer.RealTime(),timer.CpuTime()) << endl;
b8a8a88c 314// Close input file
829fb838 315 fluka_closeinp(lunin);
b8a8a88c 316// Finish geometry
829fb838 317 FinishGeometry();
829fb838 318}
319
320//______________________________________________________________________________
321void TFluka::ProcessEvent() {
322//
323// Process one event
324//
b496f27c 325 if (fStopRun) {
4aba9d66 326 Warning("ProcessEvent", "User Run Abortion: No more events handled !\n");
327 fNEvent += 1;
328 return;
b496f27c 329 }
330
331 if (fVerbosityLevel >=3)
4aba9d66 332 cout << "==> TFluka::ProcessEvent() called." << endl;
b496f27c 333 fApplication->GeneratePrimaries();
81f1d030 334 SOURCM.lsouit = true;
b496f27c 335 flukam(1);
336 if (fVerbosityLevel >=3)
4aba9d66 337 cout << "<== TFluka::ProcessEvent() called." << endl;
b496f27c 338 //
339 // Increase event number
340 //
341 fNEvent += 1;
829fb838 342}
343
344//______________________________________________________________________________
345Bool_t TFluka::ProcessRun(Int_t nevent) {
346//
347// Run steering
348//
349
350 if (fVerbosityLevel >=3)
351 cout << "==> TFluka::ProcessRun(" << nevent << ") called."
4aba9d66 352 << endl;
829fb838 353
354 if (fVerbosityLevel >=2) {
355 cout << "\t* GLOBAL.fdrtr = " << (GLOBAL.lfdrtr?'T':'F') << endl;
356 cout << "\t* Calling flukam again..." << endl;
357 }
358
829fb838 359 Int_t todo = TMath::Abs(nevent);
360 for (Int_t ev = 0; ev < todo; ev++) {
4aba9d66 361 TStopwatch timer;
362 timer.Start();
829fb838 363 fApplication->BeginEvent();
364 ProcessEvent();
365 fApplication->FinishEvent();
4aba9d66 366 cout << "Event: "<< ev
367 << Form(" R:%.2fs C:%.2fs", timer.RealTime(),timer.CpuTime()) << endl;
829fb838 368 }
369
370 if (fVerbosityLevel >=3)
371 cout << "<== TFluka::ProcessRun(" << nevent << ") called."
4aba9d66 372 << endl;
373
eea53470 374 // Write fluka specific scoring output
4aba9d66 375 genout();
eea53470 376 newplo();
4aba9d66 377 flkend();
eea53470 378
829fb838 379 return kTRUE;
380}
381
382//_____________________________________________________________________________
383// methods for building/management of geometry
384
385// functions from GCONS
386//____________________________________________________________________________
387void TFluka::Gfmate(Int_t imat, char *name, Float_t &a, Float_t &z,
4aba9d66 388 Float_t &dens, Float_t &radl, Float_t &absl,
389 Float_t* /*ubuf*/, Int_t& /*nbuf*/) {
829fb838 390//
391 TGeoMaterial *mat;
392 TIter next (gGeoManager->GetListOfMaterials());
393 while ((mat = (TGeoMaterial*)next())) {
394 if (mat->GetUniqueID() == (UInt_t)imat) break;
395 }
396 if (!mat) {
397 Error("Gfmate", "no material with index %i found", imat);
398 return;
399 }
400 sprintf(name, "%s", mat->GetName());
401 a = mat->GetA();
402 z = mat->GetZ();
403 dens = mat->GetDensity();
404 radl = mat->GetRadLen();
405 absl = mat->GetIntLen();
406}
407
408//______________________________________________________________________________
409void TFluka::Gfmate(Int_t imat, char *name, Double_t &a, Double_t &z,
4aba9d66 410 Double_t &dens, Double_t &radl, Double_t &absl,
411 Double_t* /*ubuf*/, Int_t& /*nbuf*/) {
829fb838 412//
413 TGeoMaterial *mat;
414 TIter next (gGeoManager->GetListOfMaterials());
415 while ((mat = (TGeoMaterial*)next())) {
416 if (mat->GetUniqueID() == (UInt_t)imat) break;
417 }
418 if (!mat) {
419 Error("Gfmate", "no material with index %i found", imat);
420 return;
421 }
422 sprintf(name, "%s", mat->GetName());
423 a = mat->GetA();
424 z = mat->GetZ();
425 dens = mat->GetDensity();
426 radl = mat->GetRadLen();
427 absl = mat->GetIntLen();
428}
429
430// detector composition
431//______________________________________________________________________________
432void TFluka::Material(Int_t& kmat, const char* name, Double_t a,
4aba9d66 433 Double_t z, Double_t dens, Double_t radl, Double_t absl,
434 Float_t* buf, Int_t nwbuf) {
829fb838 435//
436 Double_t* dbuf = fGeom->CreateDoubleArray(buf, nwbuf);
437 Material(kmat, name, a, z, dens, radl, absl, dbuf, nwbuf);
438 delete [] dbuf;
439}
440
441//______________________________________________________________________________
442void TFluka::Material(Int_t& kmat, const char* name, Double_t a,
4aba9d66 443 Double_t z, Double_t dens, Double_t radl, Double_t absl,
444 Double_t* /*buf*/, Int_t /*nwbuf*/) {
829fb838 445//
fb2cbbec 446// Define a material
829fb838 447 TGeoMaterial *mat;
448 kmat = gGeoManager->GetListOfMaterials()->GetSize();
449 if ((z-Int_t(z)) > 1E-3) {
450 mat = fGeom->GetMakeWrongMaterial(z);
451 if (mat) {
452 mat->SetRadLen(radl,absl);
453 mat->SetUniqueID(kmat);
454 return;
455 }
456 }
457 gGeoManager->Material(name, a, z, dens, kmat, radl, absl);
458}
459
460//______________________________________________________________________________
461void TFluka::Mixture(Int_t& kmat, const char *name, Float_t *a,
4aba9d66 462 Float_t *z, Double_t dens, Int_t nlmat, Float_t *wmat) {
829fb838 463//
fb2cbbec 464// Define a material mixture
465//
829fb838 466 Double_t* da = fGeom->CreateDoubleArray(a, TMath::Abs(nlmat));
467 Double_t* dz = fGeom->CreateDoubleArray(z, TMath::Abs(nlmat));
468 Double_t* dwmat = fGeom->CreateDoubleArray(wmat, TMath::Abs(nlmat));
469
470 Mixture(kmat, name, da, dz, dens, nlmat, dwmat);
471 for (Int_t i=0; i<nlmat; i++) {
472 a[i] = da[i]; z[i] = dz[i]; wmat[i] = dwmat[i];
473 }
474
475 delete [] da;
476 delete [] dz;
477 delete [] dwmat;
478}
479
480//______________________________________________________________________________
481void TFluka::Mixture(Int_t& kmat, const char *name, Double_t *a,
4aba9d66 482 Double_t *z, Double_t dens, Int_t nlmat, Double_t *wmat) {
829fb838 483//
484 // Defines mixture OR COMPOUND IMAT as composed by
485 // THE BASIC NLMAT materials defined by arrays A,Z and WMAT
486 //
487 // If NLMAT > 0 then wmat contains the proportion by
488 // weights of each basic material in the mixture.
489 //
490 // If nlmat < 0 then WMAT contains the number of atoms
491 // of a given kind into the molecule of the COMPOUND
492 // In this case, WMAT in output is changed to relative
493 // weigths.
494 //
495 Int_t i,j;
496 if (nlmat < 0) {
497 nlmat = - nlmat;
498 Double_t amol = 0;
499 for (i=0;i<nlmat;i++) {
500 amol += a[i]*wmat[i];
501 }
502 for (i=0;i<nlmat;i++) {
503 wmat[i] *= a[i]/amol;
504 }
505 }
506 kmat = gGeoManager->GetListOfMaterials()->GetSize();
507 // Check if we have elements with fractional Z
508 TGeoMaterial *mat = 0;
509 TGeoMixture *mix = 0;
510 Bool_t mixnew = kFALSE;
511 for (i=0; i<nlmat; i++) {
512 if (z[i]-Int_t(z[i]) < 1E-3) continue;
513 // We have found an element with fractional Z -> loop mixtures to look for it
514 for (j=0; j<kmat; j++) {
515 mat = (TGeoMaterial*)gGeoManager->GetListOfMaterials()->At(j);
516 if (!mat) break;
517 if (!mat->IsMixture()) continue;
518 mix = (TGeoMixture*)mat;
519 if (TMath::Abs(z[i]-mix->GetZ()) >1E-3) continue;
829fb838 520 mixnew = kTRUE;
521 break;
522 }
523 if (!mixnew) Warning("Mixture","%s : cannot find component %i with fractional Z=%f\n", name, i, z[i]);
524 break;
525 }
526 if (mixnew) {
527 Int_t nlmatnew = nlmat+mix->GetNelements()-1;
528 Double_t *anew = new Double_t[nlmatnew];
529 Double_t *znew = new Double_t[nlmatnew];
530 Double_t *wmatnew = new Double_t[nlmatnew];
531 Int_t ind=0;
532 for (j=0; j<nlmat; j++) {
533 if (j==i) continue;
534 anew[ind] = a[j];
535 znew[ind] = z[j];
536 wmatnew[ind] = wmat[j];
537 ind++;
538 }
539 for (j=0; j<mix->GetNelements(); j++) {
540 anew[ind] = mix->GetAmixt()[j];
541 znew[ind] = mix->GetZmixt()[j];
542 wmatnew[ind] = wmat[i]*mix->GetWmixt()[j];
543 ind++;
544 }
545 Mixture(kmat, name, anew, znew, dens, nlmatnew, wmatnew);
546 delete [] anew;
547 delete [] znew;
548 delete [] wmatnew;
549 return;
550 }
551 // Now we need to compact identical elements within the mixture
552 // First check if this happens
553 mixnew = kFALSE;
554 for (i=0; i<nlmat-1; i++) {
555 for (j=i+1; j<nlmat; j++) {
556 if (z[i] == z[j]) {
557 mixnew = kTRUE;
558 break;
559 }
560 }
561 if (mixnew) break;
562 }
563 if (mixnew) {
564 Int_t nlmatnew = 0;
565 Double_t *anew = new Double_t[nlmat];
566 Double_t *znew = new Double_t[nlmat];
567 memset(znew, 0, nlmat*sizeof(Double_t));
568 Double_t *wmatnew = new Double_t[nlmat];
569 Bool_t skipi;
570 for (i=0; i<nlmat; i++) {
571 skipi = kFALSE;
572 for (j=0; j<nlmatnew; j++) {
573 if (z[i] == z[j]) {
574 wmatnew[j] += wmat[i];
575 skipi = kTRUE;
576 break;
577 }
578 }
579 if (skipi) continue;
580 anew[nlmatnew] = a[i];
581 znew[nlmatnew] = z[i];
582 wmatnew[nlmatnew] = wmat[i];
583 nlmatnew++;
584 }
585 Mixture(kmat, name, anew, znew, dens, nlmatnew, wmatnew);
586 delete [] anew;
587 delete [] znew;
588 delete [] wmatnew;
589 return;
590 }
591 gGeoManager->Mixture(name, a, z, dens, nlmat, wmat, kmat);
592}
593
594//______________________________________________________________________________
595void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat,
4aba9d66 596 Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd,
597 Double_t stemax, Double_t deemax, Double_t epsil,
598 Double_t stmin, Float_t* ubuf, Int_t nbuf) {
b2129742 599 // Define a medium
600 //
829fb838 601 kmed = gGeoManager->GetListOfMedia()->GetSize()+1;
602 fMCGeo->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax,
4aba9d66 603 epsil, stmin, ubuf, nbuf);
829fb838 604}
605
606//______________________________________________________________________________
607void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat,
4aba9d66 608 Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd,
609 Double_t stemax, Double_t deemax, Double_t epsil,
610 Double_t stmin, Double_t* ubuf, Int_t nbuf) {
b2129742 611 // Define a medium
612 //
829fb838 613 kmed = gGeoManager->GetListOfMedia()->GetSize()+1;
614 fMCGeo->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax,
4aba9d66 615 epsil, stmin, ubuf, nbuf);
829fb838 616}
617
618//______________________________________________________________________________
619void TFluka::Matrix(Int_t& krot, Double_t thetaX, Double_t phiX,
4aba9d66 620 Double_t thetaY, Double_t phiY, Double_t thetaZ,
621 Double_t phiZ) {
622//
829fb838 623 krot = gGeoManager->GetListOfMatrices()->GetEntriesFast();
624 fMCGeo->Matrix(krot, thetaX, phiX, thetaY, phiY, thetaZ, phiZ);
625}
626
627//______________________________________________________________________________
628void TFluka::Gstpar(Int_t itmed, const char* param, Double_t parval) {
629//
630//
7b203b6e 631//
829fb838 632 Bool_t process = kFALSE;
acf2e119 633 Bool_t modelp = kFALSE;
634
829fb838 635 if (strncmp(param, "DCAY", 4) == 0 ||
636 strncmp(param, "PAIR", 4) == 0 ||
637 strncmp(param, "COMP", 4) == 0 ||
638 strncmp(param, "PHOT", 4) == 0 ||
639 strncmp(param, "PFIS", 4) == 0 ||
640 strncmp(param, "DRAY", 4) == 0 ||
641 strncmp(param, "ANNI", 4) == 0 ||
642 strncmp(param, "BREM", 4) == 0 ||
643 strncmp(param, "MUNU", 4) == 0 ||
644 strncmp(param, "CKOV", 4) == 0 ||
645 strncmp(param, "HADR", 4) == 0 ||
646 strncmp(param, "LOSS", 4) == 0 ||
647 strncmp(param, "MULS", 4) == 0 ||
ea262cc6 648 strncmp(param, "RAYL", 4) == 0)
829fb838 649 {
650 process = kTRUE;
651 }
81f1d030 652
acf2e119 653 if (strncmp(param, "PRIMIO_N", 8) == 0 ||
654 strncmp(param, "PRIMIO_E", 8) == 0)
655 {
656 modelp = kTRUE;
657 }
658
829fb838 659 if (process) {
acf2e119 660 // Process switch
81f1d030 661 SetProcess(param, Int_t (parval), itmed);
acf2e119 662 } else if (modelp) {
663 // Model parameters
664 SetModelParameter(param, parval, itmed);
829fb838 665 } else {
acf2e119 666 // Cuts
81f1d030 667 SetCut(param, parval, itmed);
829fb838 668 }
acf2e119 669
670
829fb838 671}
672
673// functions from GGEOM
674//_____________________________________________________________________________
675void TFluka::Gsatt(const char *name, const char *att, Int_t val)
676{
6f5667d1 677 // Set visualisation attributes for one volume
829fb838 678 char vname[5];
679 fGeom->Vname(name,vname);
680 char vatt[5];
681 fGeom->Vname(att,vatt);
682 gGeoManager->SetVolumeAttribute(vname, vatt, val);
683}
684
685//______________________________________________________________________________
686Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed,
4aba9d66 687 Float_t *upar, Int_t np) {
829fb838 688//
689 return fMCGeo->Gsvolu(name, shape, nmed, upar, np);
690}
691
692//______________________________________________________________________________
693Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed,
4aba9d66 694 Double_t *upar, Int_t np) {
829fb838 695//
696 return fMCGeo->Gsvolu(name, shape, nmed, upar, np);
697}
698
699//______________________________________________________________________________
700void TFluka::Gsdvn(const char *name, const char *mother, Int_t ndiv,
4aba9d66 701 Int_t iaxis) {
829fb838 702//
703 fMCGeo->Gsdvn(name, mother, ndiv, iaxis);
704}
705
706//______________________________________________________________________________
707void TFluka::Gsdvn2(const char *name, const char *mother, Int_t ndiv,
4aba9d66 708 Int_t iaxis, Double_t c0i, Int_t numed) {
829fb838 709//
710 fMCGeo->Gsdvn2(name, mother, ndiv, iaxis, c0i, numed);
711}
712
713//______________________________________________________________________________
714void TFluka::Gsdvt(const char *name, const char *mother, Double_t step,
4aba9d66 715 Int_t iaxis, Int_t numed, Int_t ndvmx) {
716//
829fb838 717 fMCGeo->Gsdvt(name, mother, step, iaxis, numed, ndvmx);
718}
719
720//______________________________________________________________________________
721void TFluka::Gsdvt2(const char *name, const char *mother, Double_t step,
4aba9d66 722 Int_t iaxis, Double_t c0, Int_t numed, Int_t ndvmx) {
829fb838 723//
724 fMCGeo->Gsdvt2(name, mother, step, iaxis, c0, numed, ndvmx);
725}
726
727//______________________________________________________________________________
728void TFluka::Gsord(const char * /*name*/, Int_t /*iax*/) {
729//
730// Nothing to do with TGeo
731}
732
733//______________________________________________________________________________
734void TFluka::Gspos(const char *name, Int_t nr, const char *mother,
4aba9d66 735 Double_t x, Double_t y, Double_t z, Int_t irot,
736 const char *konly) {
829fb838 737//
738 fMCGeo->Gspos(name, nr, mother, x, y, z, irot, konly);
739}
740
741//______________________________________________________________________________
742void TFluka::Gsposp(const char *name, Int_t nr, const char *mother,
4aba9d66 743 Double_t x, Double_t y, Double_t z, Int_t irot,
744 const char *konly, Float_t *upar, Int_t np) {
829fb838 745 //
746 fMCGeo->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np);
747}
748
749//______________________________________________________________________________
750void TFluka::Gsposp(const char *name, Int_t nr, const char *mother,
4aba9d66 751 Double_t x, Double_t y, Double_t z, Int_t irot,
752 const char *konly, Double_t *upar, Int_t np) {
829fb838 753 //
754 fMCGeo->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np);
755}
756
757//______________________________________________________________________________
758void TFluka::Gsbool(const char* /*onlyVolName*/, const char* /*manyVolName*/) {
759//
760// Nothing to do with TGeo
761}
762
a9ea1616 763//______________________________________________________________________
764Bool_t TFluka::GetTransformation(const TString &volumePath,TGeoHMatrix &mat)
765{
766 // Returns the Transformation matrix between the volume specified
767 // by the path volumePath and the Top or mater volume. The format
768 // of the path volumePath is as follows (assuming ALIC is the Top volume)
769 // "/ALIC_1/DDIP_1/S05I_2/S05H_1/S05G_3". Here ALIC is the top most
770 // or master volume which has only 1 instance of. Of all of the daughter
771 // volumes of ALICE, DDIP volume copy #1 is indicated. Similarly for
772 // the daughter volume of DDIP is S05I copy #2 and so on.
773 // Inputs:
774 // TString& volumePath The volume path to the specific volume
775 // for which you want the matrix. Volume name
776 // hierarchy is separated by "/" while the
777 // copy number is appended using a "_".
778 // Outputs:
779 // TGeoHMatrix &mat A matrix with its values set to those
780 // appropriate to the Local to Master transformation
781 // Return:
782 // A logical value if kFALSE then an error occurred and no change to
783 // mat was made.
784
785 // We have to preserve the modeler state
786 return fMCGeo->GetTransformation(volumePath, mat);
787}
788
789//______________________________________________________________________
790Bool_t TFluka::GetShape(const TString &volumePath,TString &shapeType,
791 TArrayD &par)
792{
793 // Returns the shape and its parameters for the volume specified
794 // by volumeName.
795 // Inputs:
796 // TString& volumeName The volume name
797 // Outputs:
798 // TString &shapeType Shape type
799 // TArrayD &par A TArrayD of parameters with all of the
800 // parameters of the specified shape.
801 // Return:
802 // A logical indicating whether there was an error in getting this
803 // information
804 return fMCGeo->GetShape(volumePath, shapeType, par);
805}
806
807//______________________________________________________________________
808Bool_t TFluka::GetMaterial(const TString &volumeName,
809 TString &name,Int_t &imat,
810 Double_t &a,Double_t &z,Double_t &dens,
811 Double_t &radl,Double_t &inter,TArrayD &par)
812{
813 // Returns the Material and its parameters for the volume specified
814 // by volumeName.
815 // Note, Geant3 stores and uses mixtures as an element with an effective
816 // Z and A. Consequently, if the parameter Z is not integer, then
817 // this material represents some sort of mixture.
818 // Inputs:
819 // TString& volumeName The volume name
820 // Outputs:
821 // TSrting &name Material name
822 // Int_t &imat Material index number
823 // Double_t &a Average Atomic mass of material
824 // Double_t &z Average Atomic number of material
825 // Double_t &dens Density of material [g/cm^3]
826 // Double_t &radl Average radiation length of material [cm]
827 // Double_t &inter Average interaction length of material [cm]
828 // TArrayD &par A TArrayD of user defined parameters.
829 // Return:
830 // kTRUE if no errors
831 return fMCGeo->GetMaterial(volumeName,name,imat,a,z,dens,radl,inter,par);
832}
833
834//______________________________________________________________________
835Bool_t TFluka::GetMedium(const TString &volumeName,TString &name,
836 Int_t &imed,Int_t &nmat,Int_t &isvol,Int_t &ifield,
837 Double_t &fieldm,Double_t &tmaxfd,Double_t &stemax,
838 Double_t &deemax,Double_t &epsil, Double_t &stmin,
839 TArrayD &par)
840{
841 // Returns the Medium and its parameters for the volume specified
842 // by volumeName.
843 // Inputs:
844 // TString& volumeName The volume name.
845 // Outputs:
846 // TString &name Medium name
847 // Int_t &nmat Material number defined for this medium
848 // Int_t &imed The medium index number
849 // Int_t &isvol volume number defined for this medium
850 // Int_t &iflield Magnetic field flag
851 // Double_t &fieldm Magnetic field strength
852 // Double_t &tmaxfd Maximum angle of deflection per step
853 // Double_t &stemax Maximum step size
854 // Double_t &deemax Maximum fraction of energy allowed to be lost
855 // to continuous process.
856 // Double_t &epsil Boundary crossing precision
857 // Double_t &stmin Minimum step size allowed
858 // TArrayD &par A TArrayD of user parameters with all of the
859 // parameters of the specified medium.
860 // Return:
861 // kTRUE if there where no errors
862 return fMCGeo->GetMedium(volumeName,name,imed,nmat,isvol,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin,par);
863}
864
829fb838 865//______________________________________________________________________________
866void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Float_t* ppckov,
4aba9d66 867 Float_t* absco, Float_t* effic, Float_t* rindex) {
829fb838 868//
869// Set Cerenkov properties for medium itmed
870//
871// npckov: number of sampling points
872// ppckov: energy values
873// absco: absorption length
874// effic: quantum efficiency
875// rindex: refraction index
876//
877//
878//
879// Create object holding Cerenkov properties
880//
881 TFlukaCerenkov* cerenkovProperties = new TFlukaCerenkov(npckov, ppckov, absco, effic, rindex);
882//
883// Pass object to medium
884 TGeoMedium* medium = gGeoManager->GetMedium(itmed);
885 medium->SetCerenkovProperties(cerenkovProperties);
886}
887
b2be0e73 888void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Float_t* ppckov,
4aba9d66 889 Float_t* absco, Float_t* effic, Float_t* rindex, Float_t* rfl) {
b2be0e73 890//
891// Set Cerenkov properties for medium itmed
892//
893// npckov: number of sampling points
894// ppckov: energy values
895// absco: absorption length
896// effic: quantum efficiency
897// rindex: refraction index
898// rfl: reflectivity for boundary to medium itmed
899//
900//
901// Create object holding Cerenkov properties
902//
903 TFlukaCerenkov* cerenkovProperties = new TFlukaCerenkov(npckov, ppckov, absco, effic, rindex, rfl);
904//
905// Pass object to medium
906 TGeoMedium* medium = gGeoManager->GetMedium(itmed);
907 medium->SetCerenkovProperties(cerenkovProperties);
908}
909
910
829fb838 911//______________________________________________________________________________
912void TFluka::SetCerenkov(Int_t /*itmed*/, Int_t /*npckov*/, Double_t * /*ppckov*/,
4aba9d66 913 Double_t * /*absco*/, Double_t * /*effic*/, Double_t * /*rindex*/) {
829fb838 914//
b2be0e73 915// Double_t version not implemented
829fb838 916}
b2be0e73 917
918void TFluka::SetCerenkov(Int_t /*itmed*/, Int_t /*npckov*/, Double_t* /*ppckov*/,
4aba9d66 919 Double_t* /*absco*/, Double_t* /*effic*/, Double_t* /*rindex*/, Double_t* /*rfl*/) {
b2be0e73 920//
921// // Double_t version not implemented
922}
923
829fb838 924// Euclid
925//______________________________________________________________________________
926void TFluka::WriteEuclid(const char* /*fileName*/, const char* /*topVol*/,
927 Int_t /*number*/, Int_t /*nlevel*/) {
928//
929// Not with TGeo
a9ea1616 930 Warning("WriteEuclid", "Not implemented !");
829fb838 931}
932
933
934
935//_____________________________________________________________________________
936// methods needed by the stepping
937//____________________________________________________________________________
938
939Int_t TFluka::GetMedium() const {
940//
941// Get the medium number for the current fluka region
942//
943 return fGeom->GetMedium(); // this I need to check due to remapping !!!
944}
945
a9ea1616 946//____________________________________________________________________________
947Int_t TFluka::GetDummyRegion() const
948{
949// Returns index of the dummy region.
950 return fGeom->GetDummyRegion();
951}
829fb838 952
a9ea1616 953//____________________________________________________________________________
954Int_t TFluka::GetDummyLattice() const
955{
956// Returns index of the dummy lattice.
957 return fGeom->GetDummyLattice();
958}
829fb838 959
960//____________________________________________________________________________
961// particle table usage
962// ID <--> PDG transformations
963//_____________________________________________________________________________
964Int_t TFluka::IdFromPDG(Int_t pdg) const
965{
966 //
967 // Return Fluka code from PDG and pseudo ENDF code
968
969 // Catch the feedback photons
a9ea1616 970 if (pdg == 50000051) return (kFLUKAoptical);
829fb838 971 // MCIHAD() goes from pdg to fluka internal.
972 Int_t intfluka = mcihad(pdg);
973 // KPTOIP array goes from internal to official
974 return GetFlukaKPTOIP(intfluka);
975}
976
977//______________________________________________________________________________
978Int_t TFluka::PDGFromId(Int_t id) const
979{
980 //
981 // Return PDG code and pseudo ENDF code from Fluka code
f926898e 982 // Alpha He3 Triton Deuteron gen. ion opt. photon
13858fbd 983 Int_t idSpecial[6] = {GetIonPdg(2,4), GetIonPdg(2, 3), GetIonPdg(1,3), GetIonPdg(1,2), GetIonPdg(0,0), 50000050};
829fb838 984 // IPTOKP array goes from official to internal
985
a9ea1616 986 if (id == kFLUKAoptical) {
829fb838 987// Cerenkov photon
4aba9d66 988// if (fVerbosityLevel >= 3)
989// printf("\n PDGFromId: Cerenkov Photon \n");
990 return 50000050;
829fb838 991 }
992// Error id
ece92b30 993 if (id == 0 || id < kFLUKAcodemin || id > kFLUKAcodemax) {
66e5eb54 994 if (fVerbosityLevel >= 3)
a9923346 995 printf("PDGFromId: Error id = 0 %5d %5d\n", id, fCaller);
4aba9d66 996 return -1;
829fb838 997 }
998// Good id
f926898e 999 if (id > 0) {
4aba9d66 1000 Int_t intfluka = GetFlukaIPTOKP(id);
1001 if (intfluka == 0) {
1002 if (fVerbosityLevel >= 3)
1003 printf("PDGFromId: Error intfluka = 0: %d\n", id);
1004 return -1;
1005 } else if (intfluka < 0) {
1006 if (fVerbosityLevel >= 3)
1007 printf("PDGFromId: Error intfluka < 0: %d\n", id);
1008 return -1;
1009 }
1010// if (fVerbosityLevel >= 3)
1011// printf("mpdgha called with %d %d \n", id, intfluka);
1012 return mpdgha(intfluka);
f926898e 1013 } else {
4aba9d66 1014 // ions and optical photons
1015 return idSpecial[id - kFLUKAcodemin];
829fb838 1016 }
829fb838 1017}
1018
bd3d5c8a 1019void TFluka::StopTrack()
1020{
1021 // Set stopping conditions
1022 // Works for photons and charged particles
1023 fStopped = kTRUE;
1024}
1025
829fb838 1026//_____________________________________________________________________________
1027// methods for physics management
1028//____________________________________________________________________________
1029//
1030// set methods
1031//
1032
1df5fa54 1033void TFluka::SetProcess(const char* flagName, Int_t flagValue, Int_t imed)
829fb838 1034{
1035// Set process user flag for material imat
1036//
1df5fa54 1037//
1038// Update if already in the list
1039//
fb2cbbec 1040 TIter next(fUserConfig);
1df5fa54 1041 TFlukaConfigOption* proc;
1042 while((proc = (TFlukaConfigOption*)next()))
1043 {
4aba9d66 1044 if (proc->Medium() == imed) {
1045 proc->SetProcess(flagName, flagValue);
1046 return;
1047 }
1df5fa54 1048 }
fb2cbbec 1049 proc = new TFlukaConfigOption(imed);
1050 proc->SetProcess(flagName, flagValue);
1051 fUserConfig->Add(proc);
1052}
1053
1054//______________________________________________________________________________
1055Bool_t TFluka::SetProcess(const char* flagName, Int_t flagValue)
1056{
1057// Set process user flag
1df5fa54 1058//
1df5fa54 1059//
fb2cbbec 1060 SetProcess(flagName, flagValue, -1);
1df5fa54 1061 return kTRUE;
829fb838 1062}
1063
1064//______________________________________________________________________________
1065void TFluka::SetCut(const char* cutName, Double_t cutValue, Int_t imed)
1066{
1067// Set user cut value for material imed
1068//
fb2cbbec 1069 TIter next(fUserConfig);
1070 TFlukaConfigOption* proc;
1071 while((proc = (TFlukaConfigOption*)next()))
1072 {
4aba9d66 1073 if (proc->Medium() == imed) {
1074 proc->SetCut(cutName, cutValue);
1075 return;
1076 }
fb2cbbec 1077 }
1078
1079 proc = new TFlukaConfigOption(imed);
1080 proc->SetCut(cutName, cutValue);
1081 fUserConfig->Add(proc);
829fb838 1082}
1083
acf2e119 1084
1085//______________________________________________________________________________
1086void TFluka::SetModelParameter(const char* parName, Double_t parValue, Int_t imed)
1087{
1088// Set model parameter for material imed
1089//
1090 TIter next(fUserConfig);
1091 TFlukaConfigOption* proc;
1092 while((proc = (TFlukaConfigOption*)next()))
1093 {
4aba9d66 1094 if (proc->Medium() == imed) {
1095 proc->SetModelParameter(parName, parValue);
1096 return;
1097 }
acf2e119 1098 }
1099
1100 proc = new TFlukaConfigOption(imed);
1101 proc->SetModelParameter(parName, parValue);
1102 fUserConfig->Add(proc);
1103}
1104
829fb838 1105//______________________________________________________________________________
1106Bool_t TFluka::SetCut(const char* cutName, Double_t cutValue)
1107{
1108// Set user cut value
1109//
1df5fa54 1110//
fb2cbbec 1111 SetCut(cutName, cutValue, -1);
1112 return kTRUE;
829fb838 1113}
1114
f450e9d0 1115
6f1aaa8e 1116void TFluka::SetUserScoring(const char* option, const char* sdum, Int_t npr, char* outfile, Float_t* what)
b496f27c 1117{
1118//
f450e9d0 1119// Adds a user scoring option to the list
b496f27c 1120//
6f1aaa8e 1121 TFlukaScoringOption* opt = new TFlukaScoringOption(option, sdum, npr,outfile,what);
f450e9d0 1122 fUserScore->Add(opt);
1123}
1124//______________________________________________________________________________
6f1aaa8e 1125void TFluka::SetUserScoring(const char* option, const char* sdum, Int_t npr, char* outfile, Float_t* what,
1126 const char* det1, const char* det2, const char* det3)
f450e9d0 1127{
1128//
1129// Adds a user scoring option to the list
1130//
6f1aaa8e 1131 TFlukaScoringOption* opt = new TFlukaScoringOption(option, sdum, npr, outfile, what, det1, det2, det3);
b496f27c 1132 fUserScore->Add(opt);
1133}
b496f27c 1134
829fb838 1135//______________________________________________________________________________
1136Double_t TFluka::Xsec(char*, Double_t, Int_t, Int_t)
1137{
a9ea1616 1138 Warning("Xsec", "Not yet implemented.!\n"); return -1.;
829fb838 1139}
1140
1141
1142//______________________________________________________________________________
1143void TFluka::InitPhysics()
1144{
1145//
1146// Physics initialisation with preparation of FLUKA input cards
1147//
fb2cbbec 1148// Construct file names
1149 FILE *pFlukaVmcCoreInp, *pFlukaVmcFlukaMat, *pFlukaVmcInp;
1150 TString sFlukaVmcCoreInp = getenv("ALICE_ROOT");
1151 sFlukaVmcCoreInp +="/TFluka/input/";
1152 TString sFlukaVmcTmp = "flukaMat.inp";
1153 TString sFlukaVmcInp = GetInputFileName();
1154 sFlukaVmcCoreInp += GetCoreInputFileName();
1155
1156// Open files
1157 if ((pFlukaVmcCoreInp = fopen(sFlukaVmcCoreInp.Data(),"r")) == NULL) {
4aba9d66 1158 Warning("InitPhysics", "\nCannot open file %s\n",sFlukaVmcCoreInp.Data());
1159 exit(1);
fb2cbbec 1160 }
1161 if ((pFlukaVmcFlukaMat = fopen(sFlukaVmcTmp.Data(),"r")) == NULL) {
4aba9d66 1162 Warning("InitPhysics", "\nCannot open file %s\n",sFlukaVmcTmp.Data());
1163 exit(1);
fb2cbbec 1164 }
1165 if ((pFlukaVmcInp = fopen(sFlukaVmcInp.Data(),"w")) == NULL) {
4aba9d66 1166 Warning("InitPhysics", "\nCannot open file %s\n",sFlukaVmcInp.Data());
1167 exit(1);
fb2cbbec 1168 }
829fb838 1169
fb2cbbec 1170// Copy core input file
1171 Char_t sLine[255];
1172 Float_t fEventsPerRun;
829fb838 1173
fb2cbbec 1174 while ((fgets(sLine,255,pFlukaVmcCoreInp)) != NULL) {
4aba9d66 1175 if (strncmp(sLine,"GEOEND",6) != 0)
1176 fprintf(pFlukaVmcInp,"%s",sLine); // copy until GEOEND card
1177 else {
1178 fprintf(pFlukaVmcInp,"GEOEND\n"); // add GEOEND card
1179 goto flukamat;
1180 }
fb2cbbec 1181 } // end of while until GEOEND card
1182
829fb838 1183
fb2cbbec 1184 flukamat:
1185 while ((fgets(sLine,255,pFlukaVmcFlukaMat)) != NULL) { // copy flukaMat.inp file
4aba9d66 1186 fprintf(pFlukaVmcInp,"%s\n",sLine);
fb2cbbec 1187 }
1188
1189 while ((fgets(sLine,255,pFlukaVmcCoreInp)) != NULL) {
8fc475a1 1190 if (strncmp(sLine,"START",5) != 0)
4aba9d66 1191 fprintf(pFlukaVmcInp,"%s\n",sLine);
1192 else {
1193 sscanf(sLine+10,"%10f",&fEventsPerRun);
1194 goto fin;
1195 }
8fc475a1 1196 } //end of while until START card
fb2cbbec 1197
1198 fin:
829fb838 1199
f450e9d0 1200
1201// Pass information to configuration objects
829fb838 1202
fb2cbbec 1203 Float_t fLastMaterial = fGeom->GetLastMaterialIndex();
1204 TFlukaConfigOption::SetStaticInfo(pFlukaVmcInp, 3, fLastMaterial, fGeom);
1205
1206 TIter next(fUserConfig);
1207 TFlukaConfigOption* proc;
f450e9d0 1208 while((proc = dynamic_cast<TFlukaConfigOption*> (next()))) proc->WriteFlukaInputCards();
1209//
1210// Process Fluka specific scoring options
1211//
1212 TFlukaScoringOption::SetStaticInfo(pFlukaVmcInp, fGeom);
0bb2c369 1213 Float_t loginp = -49.0;
f450e9d0 1214 Int_t inp = 0;
1215 Int_t nscore = fUserScore->GetEntries();
1216
a9ea1616 1217 TFlukaScoringOption *mopo = 0;
1218 TFlukaScoringOption *mopi = 0;
fb2cbbec 1219
f450e9d0 1220 for (Int_t isc = 0; isc < nscore; isc++)
1221 {
4aba9d66 1222 mopo = dynamic_cast<TFlukaScoringOption*> (fUserScore->At(isc));
1223 char* fileName = mopo->GetFileName();
1224 Int_t size = strlen(fileName);
1225 Float_t lun = -1.;
f450e9d0 1226//
1227// Check if new output file has to be opened
4aba9d66 1228 for (Int_t isci = 0; isci < isc; isci++) {
1229
1230
1231 mopi = dynamic_cast<TFlukaScoringOption*> (fUserScore->At(isci));
1232 if(strncmp(mopi->GetFileName(), fileName, size)==0) {
1233 //
1234 // No, the file already exists
1235 lun = mopi->GetLun();
1236 mopo->SetLun(lun);
1237 break;
1238 }
1239 } // inner loop
1240
1241 if (lun == -1.) {
1242 // Open new output file
1243 inp++;
1244 mopo->SetLun(loginp + inp);
1245 mopo->WriteOpenFlukaFile();
1246 }
1247 mopo->WriteFlukaInputCards();
f450e9d0 1248 }
b8a8a88c 1249
1250// Add RANDOMIZ card
1251 fprintf(pFlukaVmcInp,"RANDOMIZ %10.1f%10.0f\n", 1., Float_t(gRandom->GetSeed()));
8fc475a1 1252// Add START and STOP card
1253 fprintf(pFlukaVmcInp,"START %10.1f\n",fEventsPerRun);
f450e9d0 1254 fprintf(pFlukaVmcInp,"STOP \n");
829fb838 1255
1256
1257// Close files
3b8c325d 1258 fclose(pFlukaVmcCoreInp);
1259 fclose(pFlukaVmcFlukaMat);
1260 fclose(pFlukaVmcInp);
fb2cbbec 1261
1262
1263//
1264// Initialisation needed for Cerenkov photon production and transport
1265 TObjArray *matList = GetFlukaMaterials();
1266 Int_t nmaterial = matList->GetEntriesFast();
9968e86c 1267 fMaterials = new Int_t[nmaterial+25];
fb2cbbec 1268
1269 for (Int_t im = 0; im < nmaterial; im++)
1270 {
4aba9d66 1271 TGeoMaterial* material = dynamic_cast<TGeoMaterial*> (matList->At(im));
1272 Int_t idmat = material->GetIndex();
1273 fMaterials[idmat] = im;
fb2cbbec 1274 }
829fb838 1275} // end of InitPhysics
1276
1277
1278//______________________________________________________________________________
07f5b33e 1279void TFluka::SetMaxStep(Double_t step)
829fb838 1280{
07f5b33e 1281// Set the maximum step size
4aba9d66 1282// if (step > 1.e4) return;
07f5b33e 1283
4aba9d66 1284// Int_t mreg=0, latt=0;
1285// fGeom->GetCurrentRegion(mreg, latt);
1286 Int_t mreg = fGeom->GetCurrentRegion();
9c0c08ce 1287 STEPSZ.stepmx[mreg - 1] = step;
829fb838 1288}
1289
2f09b80e 1290
1291Double_t TFluka::MaxStep() const
1292{
1293// Return the maximum for current medium
1294 Int_t mreg, latt;
1295 fGeom->GetCurrentRegion(mreg, latt);
1296 return (STEPSZ.stepmx[mreg - 1]);
1297}
1298
829fb838 1299//______________________________________________________________________________
1300void TFluka::SetMaxNStep(Int_t)
1301{
1302// SetMaxNStep is dummy procedure in TFluka !
1303 if (fVerbosityLevel >=3)
1304 cout << "SetMaxNStep is dummy procedure in TFluka !" << endl;
1305}
1306
1307//______________________________________________________________________________
1308void TFluka::SetUserDecay(Int_t)
1309{
1310// SetUserDecay is dummy procedure in TFluka !
1311 if (fVerbosityLevel >=3)
1312 cout << "SetUserDecay is dummy procedure in TFluka !" << endl;
1313}
1314
1315//
1316// dynamic properties
1317//
1318//______________________________________________________________________________
1319void TFluka::TrackPosition(TLorentzVector& position) const
1320{
1321// Return the current position in the master reference frame of the
1322// track being transported
1323// TRACKR.atrack = age of the particle
1324// TRACKR.xtrack = x-position of the last point
1325// TRACKR.ytrack = y-position of the last point
1326// TRACKR.ztrack = z-position of the last point
a9ea1616 1327 FlukaCallerCode_t caller = GetCaller();
1328 if (caller == kENDRAW || caller == kUSDRAW ||
1329 caller == kBXExiting || caller == kBXEntering ||
1330 caller == kUSTCKV) {
829fb838 1331 position.SetX(GetXsco());
1332 position.SetY(GetYsco());
1333 position.SetZ(GetZsco());
1334 position.SetT(TRACKR.atrack);
1335 }
5125d6e5 1336 else if (caller == kMGDRAW) {
1337 Int_t i = -1;
1338 if ((i = fPrimaryElectronIndex) > -1) {
1339 // Primary Electron Ionisation
1340 Double_t x, y, z;
1341 GetPrimaryElectronPosition(i, x, y, z);
1342 position.SetX(x);
1343 position.SetY(y);
1344 position.SetZ(z);
1345 position.SetT(TRACKR.atrack);
1346 } else {
1347 position.SetX(TRACKR.xtrack[TRACKR.ntrack]);
1348 position.SetY(TRACKR.ytrack[TRACKR.ntrack]);
1349 position.SetZ(TRACKR.ztrack[TRACKR.ntrack]);
1350 position.SetT(TRACKR.atrack);
1351 }
829fb838 1352 }
a9ea1616 1353 else if (caller == kSODRAW) {
829fb838 1354 position.SetX(TRACKR.xtrack[TRACKR.ntrack]);
1355 position.SetY(TRACKR.ytrack[TRACKR.ntrack]);
1356 position.SetZ(TRACKR.ztrack[TRACKR.ntrack]);
1357 position.SetT(0);
a9ea1616 1358 } else if (caller == kMGResumedTrack) {
5d80a015 1359 position.SetX(TRACKR.spausr[0]);
1360 position.SetY(TRACKR.spausr[1]);
1361 position.SetZ(TRACKR.spausr[2]);
1362 position.SetT(TRACKR.spausr[3]);
829fb838 1363 }
1364 else
1365 Warning("TrackPosition","position not available");
1366}
1367
1368//______________________________________________________________________________
1369void TFluka::TrackPosition(Double_t& x, Double_t& y, Double_t& z) const
1370{
1371// Return the current position in the master reference frame of the
1372// track being transported
1373// TRACKR.atrack = age of the particle
1374// TRACKR.xtrack = x-position of the last point
1375// TRACKR.ytrack = y-position of the last point
1376// TRACKR.ztrack = z-position of the last point
a9ea1616 1377 FlukaCallerCode_t caller = GetCaller();
1378 if (caller == kENDRAW || caller == kUSDRAW ||
1379 caller == kBXExiting || caller == kBXEntering ||
1380 caller == kUSTCKV) {
5125d6e5 1381 x = GetXsco();
1382 y = GetYsco();
1383 z = GetZsco();
829fb838 1384 }
a9ea1616 1385 else if (caller == kMGDRAW || caller == kSODRAW) {
5125d6e5 1386 Int_t i = -1;
1387 if ((i = fPrimaryElectronIndex) > -1) {
1388 GetPrimaryElectronPosition(i, x, y, z);
1389 } else {
1390 x = TRACKR.xtrack[TRACKR.ntrack];
1391 y = TRACKR.ytrack[TRACKR.ntrack];
1392 z = TRACKR.ztrack[TRACKR.ntrack];
1393 }
829fb838 1394 }
a9ea1616 1395 else if (caller == kMGResumedTrack) {
5d80a015 1396 x = TRACKR.spausr[0];
1397 y = TRACKR.spausr[1];
1398 z = TRACKR.spausr[2];
1399 }
829fb838 1400 else
1401 Warning("TrackPosition","position not available");
1402}
1403
1404//______________________________________________________________________________
1405void TFluka::TrackMomentum(TLorentzVector& momentum) const
1406{
1407// Return the direction and the momentum (GeV/c) of the track
1408// currently being transported
1409// TRACKR.ptrack = momentum of the particle (not always defined, if
1410// < 0 must be obtained from etrack)
1411// TRACKR.cx,y,ztrck = direction cosines of the current particle
1412// TRACKR.etrack = total energy of the particle
1413// TRACKR.jtrack = identity number of the particle
1414// PAPROP.am[TRACKR.jtrack] = particle mass in gev
a9ea1616 1415 FlukaCallerCode_t caller = GetCaller();
1416 FlukaProcessCode_t icode = GetIcode();
1417
1418 if (caller != kEEDRAW && caller != kMGResumedTrack &&
1419 (caller != kENDRAW || (icode != kEMFSCOstopping1 && icode != kEMFSCOstopping2))) {
829fb838 1420 if (TRACKR.ptrack >= 0) {
1421 momentum.SetPx(TRACKR.ptrack*TRACKR.cxtrck);
1422 momentum.SetPy(TRACKR.ptrack*TRACKR.cytrck);
1423 momentum.SetPz(TRACKR.ptrack*TRACKR.cztrck);
1424 momentum.SetE(TRACKR.etrack);
1425 return;
1426 }
1427 else {
ece92b30 1428 Double_t p = sqrt(TRACKR.etrack * TRACKR.etrack - ParticleMassFPC(TRACKR.jtrack) * ParticleMassFPC(TRACKR.jtrack));
829fb838 1429 momentum.SetPx(p*TRACKR.cxtrck);
1430 momentum.SetPy(p*TRACKR.cytrck);
1431 momentum.SetPz(p*TRACKR.cztrck);
1432 momentum.SetE(TRACKR.etrack);
1433 return;
1434 }
a9ea1616 1435 } else if (caller == kMGResumedTrack) {
5d80a015 1436 momentum.SetPx(TRACKR.spausr[4]);
1437 momentum.SetPy(TRACKR.spausr[5]);
1438 momentum.SetPz(TRACKR.spausr[6]);
1439 momentum.SetE (TRACKR.spausr[7]);
1440 return;
a9ea1616 1441 } else if (caller == kENDRAW && (icode == kEMFSCOstopping1 || icode == kEMFSCOstopping2)) {
1442 momentum.SetPx(0.);
1443 momentum.SetPy(0.);
1444 momentum.SetPz(0.);
1445 momentum.SetE(TrackMass());
829fb838 1446 }
1447 else
1448 Warning("TrackMomentum","momentum not available");
1449}
1450
1451//______________________________________________________________________________
1452void TFluka::TrackMomentum(Double_t& px, Double_t& py, Double_t& pz, Double_t& e) const
1453{
1454// Return the direction and the momentum (GeV/c) of the track
1455// currently being transported
1456// TRACKR.ptrack = momentum of the particle (not always defined, if
1457// < 0 must be obtained from etrack)
1458// TRACKR.cx,y,ztrck = direction cosines of the current particle
1459// TRACKR.etrack = total energy of the particle
1460// TRACKR.jtrack = identity number of the particle
1461// PAPROP.am[TRACKR.jtrack] = particle mass in gev
a9ea1616 1462 FlukaCallerCode_t caller = GetCaller();
1463 FlukaProcessCode_t icode = GetIcode();
1464 if (caller != kEEDRAW && caller != kMGResumedTrack &&
1465 (caller != kENDRAW || (icode != kEMFSCOstopping1 && icode != kEMFSCOstopping2))) {
829fb838 1466 if (TRACKR.ptrack >= 0) {
1467 px = TRACKR.ptrack*TRACKR.cxtrck;
1468 py = TRACKR.ptrack*TRACKR.cytrck;
1469 pz = TRACKR.ptrack*TRACKR.cztrck;
a9ea1616 1470 e = TRACKR.etrack;
829fb838 1471 return;
1472 }
1473 else {
ece92b30 1474 Double_t p = sqrt(TRACKR.etrack * TRACKR.etrack - ParticleMassFPC(TRACKR.jtrack) * ParticleMassFPC(TRACKR.jtrack));
829fb838 1475 px = p*TRACKR.cxtrck;
1476 py = p*TRACKR.cytrck;
1477 pz = p*TRACKR.cztrck;
a9ea1616 1478 e = TRACKR.etrack;
829fb838 1479 return;
1480 }
a9ea1616 1481 } else if (caller == kMGResumedTrack) {
5d80a015 1482 px = TRACKR.spausr[4];
1483 py = TRACKR.spausr[5];
1484 pz = TRACKR.spausr[6];
1485 e = TRACKR.spausr[7];
0773d0ac 1486 return;
a9ea1616 1487 } else if (caller == kENDRAW && (icode == kEMFSCOstopping1 || icode == kEMFSCOstopping2)) {
1488 px = 0.;
1489 py = 0.;
1490 pz = 0.;
1491 e = TrackMass();
829fb838 1492 }
1493 else
1494 Warning("TrackMomentum","momentum not available");
1495}
1496
1497//______________________________________________________________________________
1498Double_t TFluka::TrackStep() const
1499{
1500// Return the length in centimeters of the current step
1501// TRACKR.ctrack = total curved path
a9ea1616 1502 FlukaCallerCode_t caller = GetCaller();
1503 if (caller == kBXEntering || caller == kBXExiting ||
1504 caller == kENDRAW || caller == kUSDRAW ||
1505 caller == kUSTCKV || caller == kMGResumedTrack)
829fb838 1506 return 0.0;
a9ea1616 1507 else if (caller == kMGDRAW)
829fb838 1508 return TRACKR.ctrack;
669cede4 1509 else {
1510 Warning("TrackStep", "track step not available");
1511 return 0.0;
1512 }
829fb838 1513}
1514
1515//______________________________________________________________________________
1516Double_t TFluka::TrackLength() const
1517{
1518// TRACKR.cmtrck = cumulative curved path since particle birth
a9ea1616 1519 FlukaCallerCode_t caller = GetCaller();
1520 if (caller == kBXEntering || caller == kBXExiting ||
1521 caller == kENDRAW || caller == kUSDRAW || caller == kMGDRAW ||
1522 caller == kUSTCKV)
829fb838 1523 return TRACKR.cmtrck;
a9ea1616 1524 else if (caller == kMGResumedTrack)
5d80a015 1525 return TRACKR.spausr[8];
669cede4 1526 else {
1527 Warning("TrackLength", "track length not available");
1528 return 0.0;
1529 }
829fb838 1530}
1531
1532//______________________________________________________________________________
1533Double_t TFluka::TrackTime() const
1534{
1535// Return the current time of flight of the track being transported
1536// TRACKR.atrack = age of the particle
a9ea1616 1537 FlukaCallerCode_t caller = GetCaller();
1538 if (caller == kBXEntering || caller == kBXExiting ||
1539 caller == kENDRAW || caller == kUSDRAW || caller == kMGDRAW ||
1540 caller == kUSTCKV)
829fb838 1541 return TRACKR.atrack;
a9ea1616 1542 else if (caller == kMGResumedTrack)
5d80a015 1543 return TRACKR.spausr[3];
669cede4 1544 else {
1545 Warning("TrackTime", "track time not available");
1546 return 0.0;
1547 }
829fb838 1548}
1549
1550//______________________________________________________________________________
1551Double_t TFluka::Edep() const
1552{
1553// Energy deposition
1554// if TRACKR.ntrack = 0, TRACKR.mtrack = 0:
1555// -->local energy deposition (the value and the point are not recorded in TRACKR)
1556// but in the variable "rull" of the procedure "endraw.cxx"
1557// if TRACKR.ntrack > 0, TRACKR.mtrack = 0:
1558// -->no energy loss along the track
1559// if TRACKR.ntrack > 0, TRACKR.mtrack > 0:
1560// -->energy loss distributed along the track
07f5b33e 1561// TRACKR.dtrack = energy deposition of the jth deposition event
829fb838 1562
1563 // If coming from bxdraw we have 2 steps of 0 length and 0 edep
669cede4 1564 // If coming from usdraw we just signal particle production - no edep
1565 // If just first time after resuming, no edep for the primary
a9ea1616 1566 FlukaCallerCode_t caller = GetCaller();
ada781c7 1567
a9ea1616 1568 if (caller == kBXExiting || caller == kBXEntering ||
1569 caller == kUSDRAW || caller == kMGResumedTrack) return 0.0;
829fb838 1570 Double_t sum = 0;
5125d6e5 1571 Int_t i = -1;
09cdde8a 1572
ada781c7 1573 // Material with primary ionisation activated but number of primary electrons nprim = 0
1574 if (fPrimaryElectronIndex == -2) return 0.0;
1575 // nprim > 0
5125d6e5 1576 if ((i = fPrimaryElectronIndex) > -1) {
1577 // Primary ionisation
ada781c7 1578 sum = GetPrimaryElectronKineticEnergy(i);
1579 if (sum > 100.) {
1580 printf("edep > 100. %d %d %f \n", i, ALLDLT.nalldl, sum);
1581 }
1582 return sum;
5125d6e5 1583 } else {
1584 // Normal ionisation
1585 if (TRACKR.mtrack > 1) printf("Edep: %6d\n", TRACKR.mtrack);
1586
1587 for ( Int_t j=0;j<TRACKR.mtrack;j++) {
1588 sum +=TRACKR.dtrack[j];
1589 }
1590 if (TRACKR.ntrack == 0 && TRACKR.mtrack == 0)
1591 return fRull + sum;
1592 else {
1593 return sum;
1594 }
829fb838 1595 }
1596}
1597
1598//______________________________________________________________________________
18e0cabb 1599Int_t TFluka::CorrectFlukaId() const
1600{
1601 // since we don't put photons and e- created bellow transport cut on the vmc stack
1602 // and there is a call to endraw for energy deposition for each of them
1603 // and they have the track number of their parent, but different identity (pdg)
4aba9d66 1604 // so we want to assign also their parent identity.
cc7af78a 1605
a9923346 1606 if( (IsTrackStop())
18e0cabb 1607 && TRACKR.ispusr[mkbmx2 - 4] == TRACKR.ispusr[mkbmx2 - 1]
1608 && TRACKR.jtrack != TRACKR.ispusr[mkbmx2 - 3] ) {
1609 if (fVerbosityLevel >=3)
1610 cout << "CorrectFlukaId() for icode=" << GetIcode()
1611 << " track=" << TRACKR.ispusr[mkbmx2 - 1]
1612 << " current PDG=" << PDGFromId(TRACKR.jtrack)
1613 << " assign parent PDG=" << PDGFromId(TRACKR.ispusr[mkbmx2 - 3]) << endl;
1614 return TRACKR.ispusr[mkbmx2 - 3]; // assign parent identity
1615 }
13858fbd 1616 if (TRACKR.jtrack <= 64){
cc7af78a 1617 return TRACKR.jtrack;
1618 } else {
1619 return TRACKR.j0trck;
1620 }
18e0cabb 1621}
1622
1623
1624//______________________________________________________________________________
829fb838 1625Int_t TFluka::TrackPid() const
1626{
1627// Return the id of the particle transported
1628// TRACKR.jtrack = identity number of the particle
a9ea1616 1629 FlukaCallerCode_t caller = GetCaller();
1630 if (caller != kEEDRAW) {
18e0cabb 1631 return PDGFromId( CorrectFlukaId() );
f926898e 1632 }
829fb838 1633 else
1634 return -1000;
1635}
1636
1637//______________________________________________________________________________
1638Double_t TFluka::TrackCharge() const
1639{
1640// Return charge of the track currently transported
1641// PAPROP.ichrge = electric charge of the particle
1642// TRACKR.jtrack = identity number of the particle
13858fbd 1643
a9ea1616 1644 FlukaCallerCode_t caller = GetCaller();
1645 if (caller != kEEDRAW)
18e0cabb 1646 return PAPROP.ichrge[CorrectFlukaId()+6];
829fb838 1647 else
1648 return -1000.0;
1649}
1650
1651//______________________________________________________________________________
1652Double_t TFluka::TrackMass() const
1653{
1654// PAPROP.am = particle mass in GeV
1655// TRACKR.jtrack = identity number of the particle
a9ea1616 1656 FlukaCallerCode_t caller = GetCaller();
1657 if (caller != kEEDRAW)
18e0cabb 1658 return PAPROP.am[CorrectFlukaId()+6];
829fb838 1659 else
1660 return -1000.0;
1661}
1662
1663//______________________________________________________________________________
1664Double_t TFluka::Etot() const
1665{
1666// TRACKR.etrack = total energy of the particle
a9ea1616 1667 FlukaCallerCode_t caller = GetCaller();
1668 if (caller != kEEDRAW)
829fb838 1669 return TRACKR.etrack;
1670 else
1671 return -1000.0;
1672}
1673
1674//
1675// track status
1676//
1677//______________________________________________________________________________
1678Bool_t TFluka::IsNewTrack() const
1679{
1680// Return true for the first call of Stepping()
1681 return fTrackIsNew;
1682}
1683
0dabe425 1684void TFluka::SetTrackIsNew(Bool_t flag)
1685{
1686// Return true for the first call of Stepping()
1687 fTrackIsNew = flag;
1688
1689}
1690
1691
829fb838 1692//______________________________________________________________________________
1693Bool_t TFluka::IsTrackInside() const
1694{
1695// True if the track is not at the boundary of the current volume
1696// In Fluka a step is always inside one kind of material
1697// If the step would go behind the region of one material,
1698// it will be shortened to reach only the boundary.
1699// Therefore IsTrackInside() is always true.
a9ea1616 1700 FlukaCallerCode_t caller = GetCaller();
1701 if (caller == kBXEntering || caller == kBXExiting)
829fb838 1702 return 0;
1703 else
1704 return 1;
1705}
1706
1707//______________________________________________________________________________
1708Bool_t TFluka::IsTrackEntering() const
1709{
1710// True if this is the first step of the track in the current volume
1711
a9ea1616 1712 FlukaCallerCode_t caller = GetCaller();
1713 if (caller == kBXEntering)
829fb838 1714 return 1;
1715 else return 0;
1716}
1717
1718//______________________________________________________________________________
1719Bool_t TFluka::IsTrackExiting() const
1720{
1721// True if track is exiting volume
1722//
a9ea1616 1723 FlukaCallerCode_t caller = GetCaller();
1724 if (caller == kBXExiting)
829fb838 1725 return 1;
1726 else return 0;
1727}
1728
1729//______________________________________________________________________________
1730Bool_t TFluka::IsTrackOut() const
1731{
1732// True if the track is out of the setup
1733// means escape
a9ea1616 1734 FlukaProcessCode_t icode = GetIcode();
1735
1736 if (icode == kKASKADescape ||
1737 icode == kEMFSCOescape ||
1738 icode == kKASNEUescape ||
1739 icode == kKASHEAescape ||
1740 icode == kKASOPHescape)
1741 return 1;
829fb838 1742 else return 0;
1743}
1744
1745//______________________________________________________________________________
1746Bool_t TFluka::IsTrackDisappeared() const
1747{
a9ea1616 1748// All inelastic interactions and decays
829fb838 1749// fIcode from usdraw
a9ea1616 1750 FlukaProcessCode_t icode = GetIcode();
1751 if (icode == kKASKADinelint || // inelastic interaction
1752 icode == kKASKADdecay || // particle decay
1753 icode == kKASKADdray || // delta ray generation by hadron
1754 icode == kKASKADpair || // direct pair production
1755 icode == kKASKADbrems || // bremsstrahlung (muon)
1756 icode == kEMFSCObrems || // bremsstrahlung (electron)
1757 icode == kEMFSCOmoller || // Moller scattering
1758 icode == kEMFSCObhabha || // Bhaba scattering
1759 icode == kEMFSCOanniflight || // in-flight annihilation
1760 icode == kEMFSCOannirest || // annihilation at rest
1761 icode == kEMFSCOpair || // pair production
1762 icode == kEMFSCOcompton || // Compton scattering
1763 icode == kEMFSCOphotoel || // Photoelectric effect
1764 icode == kKASNEUhadronic || // hadronic interaction
2047b055 1765 icode == kKASHEAdray // delta-ray
0dabe425 1766 ) return 1;
829fb838 1767 else return 0;
1768}
1769
1770//______________________________________________________________________________
1771Bool_t TFluka::IsTrackStop() const
1772{
1773// True if the track energy has fallen below the threshold
1774// means stopped by signal or below energy threshold
a9ea1616 1775 FlukaProcessCode_t icode = GetIcode();
18e0cabb 1776 if (icode == kKASKADstopping || // stopping particle
1777 icode == kKASKADtimekill || // time kill
1778 icode == kEMFSCOstopping1 || // below user-defined cut-off
1779 icode == kEMFSCOstopping2 || // below user cut-off
1780 icode == kEMFSCOtimekill || // time kill
1781 icode == kKASNEUstopping || // neutron below threshold
1782 icode == kKASNEUtimekill || // time kill
1783 icode == kKASHEAtimekill || // time kill
1784 icode == kKASOPHtimekill) return 1; // time kill
829fb838 1785 else return 0;
1786}
1787
1788//______________________________________________________________________________
1789Bool_t TFluka::IsTrackAlive() const
1790{
1791// means not disappeared or not out
ea262cc6 1792 if (IsTrackDisappeared() || IsTrackOut() ) return 0;
1793 else return 1;
829fb838 1794}
1795
1796//
1797// secondaries
1798//
1799
1800//______________________________________________________________________________
1801Int_t TFluka::NSecondaries() const
1802
1803{
1804// Number of secondary particles generated in the current step
81f1d030 1805// GENSTK.np = number of secondaries except light and heavy ions
829fb838 1806// FHEAVY.npheav = number of secondaries for light and heavy secondary ions
a9ea1616 1807 FlukaCallerCode_t caller = GetCaller();
1808 if (caller == kUSDRAW) // valid only after usdraw
4aba9d66 1809 return GENSTK.np + FHEAVY.npheav;
a9ea1616 1810 else if (caller == kUSTCKV) {
4aba9d66 1811 // Cerenkov Photon production
1812 return fNCerenkov;
7b203b6e 1813 }
829fb838 1814 return 0;
1815} // end of NSecondaries
1816
1817//______________________________________________________________________________
1818void TFluka::GetSecondary(Int_t isec, Int_t& particleId,
4aba9d66 1819 TLorentzVector& position, TLorentzVector& momentum)
829fb838 1820{
1821// Copy particles from secondary stack to vmc stack
1822//
1823
a9ea1616 1824 FlukaCallerCode_t caller = GetCaller();
1825 if (caller == kUSDRAW) { // valid only after usdraw
4aba9d66 1826 if (GENSTK.np > 0) {
1827 // Hadronic interaction
1828 if (isec >= 0 && isec < GENSTK.np) {
1829 particleId = PDGFromId(GENSTK.kpart[isec]);
1830 position.SetX(fXsco);
1831 position.SetY(fYsco);
1832 position.SetZ(fZsco);
1833 position.SetT(TRACKR.atrack);
1834 momentum.SetPx(GENSTK.plr[isec]*GENSTK.cxr[isec]);
1835 momentum.SetPy(GENSTK.plr[isec]*GENSTK.cyr[isec]);
1836 momentum.SetPz(GENSTK.plr[isec]*GENSTK.czr[isec]);
1837 momentum.SetE(GENSTK.tki[isec] + PAPROP.am[GENSTK.kpart[isec]+6]);
1838 }
1839 else if (isec >= GENSTK.np && isec < GENSTK.np + FHEAVY.npheav) {
1840 Int_t jsec = isec - GENSTK.np;
1841 particleId = FHEAVY.kheavy[jsec]; // this is Fluka id !!!
1842 position.SetX(fXsco);
1843 position.SetY(fYsco);
1844 position.SetZ(fZsco);
1845 position.SetT(TRACKR.atrack);
1846 momentum.SetPx(FHEAVY.pheavy[jsec]*FHEAVY.cxheav[jsec]);
1847 momentum.SetPy(FHEAVY.pheavy[jsec]*FHEAVY.cyheav[jsec]);
1848 momentum.SetPz(FHEAVY.pheavy[jsec]*FHEAVY.czheav[jsec]);
1849 if (FHEAVY.tkheav[jsec] >= 3 && FHEAVY.tkheav[jsec] <= 6)
1850 momentum.SetE(FHEAVY.tkheav[jsec] + PAPROP.am[jsec+6]);
1851 else if (FHEAVY.tkheav[jsec] > 6)
1852 momentum.SetE(FHEAVY.tkheav[jsec] + FHEAVY.amnhea[jsec]); // to be checked !!!
1853 }
1854 else
1855 Warning("GetSecondary","isec out of range");
1856 }
a9ea1616 1857 } else if (caller == kUSTCKV) {
4aba9d66 1858 Int_t index = OPPHST.lstopp - isec;
1859 position.SetX(OPPHST.xoptph[index]);
1860 position.SetY(OPPHST.yoptph[index]);
1861 position.SetZ(OPPHST.zoptph[index]);
1862 position.SetT(OPPHST.agopph[index]);
1863 Double_t p = OPPHST.poptph[index];
1864
1865 momentum.SetPx(p * OPPHST.txopph[index]);
1866 momentum.SetPy(p * OPPHST.tyopph[index]);
1867 momentum.SetPz(p * OPPHST.tzopph[index]);
1868 momentum.SetE(p);
829fb838 1869 }
1870 else
4aba9d66 1871 Warning("GetSecondary","no secondaries available");
7b203b6e 1872
829fb838 1873} // end of GetSecondary
1874
7b203b6e 1875
829fb838 1876//______________________________________________________________________________
1877TMCProcess TFluka::ProdProcess(Int_t) const
1878
1879{
1880// Name of the process that has produced the secondary particles
1881// in the current step
0dabe425 1882
a9ea1616 1883 Int_t mugamma = (TRACKR.jtrack == kFLUKAphoton ||
4aba9d66 1884 TRACKR.jtrack == kFLUKAmuplus ||
1885 TRACKR.jtrack == kFLUKAmuminus);
a9ea1616 1886 FlukaProcessCode_t icode = GetIcode();
1887
1888 if (icode == kKASKADdecay) return kPDecay;
1889 else if (icode == kKASKADpair || icode == kEMFSCOpair) return kPPair;
1890 else if (icode == kEMFSCOcompton) return kPCompton;
1891 else if (icode == kEMFSCOphotoel) return kPPhotoelectric;
1892 else if (icode == kKASKADbrems || icode == kEMFSCObrems) return kPBrem;
1893 else if (icode == kKASKADdray || icode == kKASHEAdray) return kPDeltaRay;
1894 else if (icode == kEMFSCOmoller || icode == kEMFSCObhabha) return kPDeltaRay;
1895 else if (icode == kEMFSCOanniflight || icode == kEMFSCOannirest) return kPAnnihilation;
1896 else if (icode == kKASKADinelint) {
4aba9d66 1897 if (!mugamma) return kPHadronic;
1898 else if (TRACKR.jtrack == kFLUKAphoton) return kPPhotoFission;
1899 else return kPMuonNuclear;
829fb838 1900 }
a9ea1616 1901 else if (icode == kEMFSCOrayleigh) return kPRayleigh;
829fb838 1902// Fluka codes 100, 300 and 400 still to be investigasted
a9ea1616 1903 else return kPNoProcess;
829fb838 1904}
1905
829fb838 1906
b496f27c 1907Int_t TFluka::StepProcesses(TArrayI &proc) const
1908{
1909 //
1910 // Return processes active in the current step
1911 //
a9ea1616 1912 FlukaProcessCode_t icode = GetIcode();
b496f27c 1913 proc.Set(1);
1914 TMCProcess iproc;
a9ea1616 1915 switch (icode) {
1916 case kKASKADtimekill:
1917 case kEMFSCOtimekill:
1918 case kKASNEUtimekill:
1919 case kKASHEAtimekill:
1920 case kKASOPHtimekill:
4aba9d66 1921 iproc = kPTOFlimit;
1922 break;
a9ea1616 1923 case kKASKADstopping:
1924 case kKASKADescape:
1925 case kEMFSCOstopping1:
1926 case kEMFSCOstopping2:
1927 case kEMFSCOescape:
1928 case kKASNEUstopping:
1929 case kKASNEUescape:
1930 case kKASHEAescape:
1931 case kKASOPHescape:
4aba9d66 1932 iproc = kPStop;
1933 break;
a9ea1616 1934 case kKASOPHabsorption:
4aba9d66 1935 iproc = kPLightAbsorption;
1936 break;
a9ea1616 1937 case kKASOPHrefraction:
4aba9d66 1938 iproc = kPLightRefraction;
a9923346 1939 case kEMFSCOlocaldep :
4aba9d66 1940 iproc = kPPhotoelectric;
1941 break;
b496f27c 1942 default:
4aba9d66 1943 iproc = ProdProcess(0);
b496f27c 1944 }
07f5b33e 1945 proc[0] = iproc;
b496f27c 1946 return 1;
1947}
829fb838 1948//______________________________________________________________________________
1949Int_t TFluka::VolId2Mate(Int_t id) const
1950{
1951//
1952// Returns the material number for a given volume ID
1953//
1954 return fMCGeo->VolId2Mate(id);
1955}
1956
1957//______________________________________________________________________________
1958const char* TFluka::VolName(Int_t id) const
1959{
1960//
1961// Returns the volume name for a given volume ID
1962//
1963 return fMCGeo->VolName(id);
1964}
1965
1966//______________________________________________________________________________
1967Int_t TFluka::VolId(const Text_t* volName) const
1968{
1969//
1970// Converts from volume name to volume ID.
1971// Time consuming. (Only used during set-up)
1972// Could be replaced by hash-table
1973//
09cd6497 1974 char sname[20];
1975 Int_t len;
1976 strncpy(sname, volName, len = strlen(volName));
1977 sname[len] = 0;
1978 while (sname[len - 1] == ' ') sname[--len] = 0;
1979 return fMCGeo->VolId(sname);
829fb838 1980}
1981
1982//______________________________________________________________________________
1983Int_t TFluka::CurrentVolID(Int_t& copyNo) const
1984{
1985//
1986// Return the logical id and copy number corresponding to the current fluka region
1987//
1988 if (gGeoManager->IsOutside()) return 0;
1989 TGeoNode *node = gGeoManager->GetCurrentNode();
1990 copyNo = node->GetNumber();
1991 Int_t id = node->GetVolume()->GetNumber();
1992 return id;
1993}
1994
1995//______________________________________________________________________________
1996Int_t TFluka::CurrentVolOffID(Int_t off, Int_t& copyNo) const
1997{
1998//
1999// Return the logical id and copy number of off'th mother
2000// corresponding to the current fluka region
2001//
2002 if (off<0 || off>gGeoManager->GetLevel()) return 0;
2003 if (off==0) return CurrentVolID(copyNo);
2004 TGeoNode *node = gGeoManager->GetMother(off);
2005 if (!node) return 0;
2006 copyNo = node->GetNumber();
2007 return node->GetVolume()->GetNumber();
2008}
2009
2010//______________________________________________________________________________
2011const char* TFluka::CurrentVolName() const
2012{
2013//
2014// Return the current volume name
2015//
2016 if (gGeoManager->IsOutside()) return 0;
2017 return gGeoManager->GetCurrentVolume()->GetName();
2018}
2019
2020//______________________________________________________________________________
2021const char* TFluka::CurrentVolOffName(Int_t off) const
2022{
2023//
2024// Return the volume name of the off'th mother of the current volume
2025//
2026 if (off<0 || off>gGeoManager->GetLevel()) return 0;
2027 if (off==0) return CurrentVolName();
2028 TGeoNode *node = gGeoManager->GetMother(off);
2029 if (!node) return 0;
2030 return node->GetVolume()->GetName();
2031}
2032
d59acfe7 2033const char* TFluka::CurrentVolPath() {
2034 // Return the current volume path
2035 return gGeoManager->GetPath();
2036}
829fb838 2037//______________________________________________________________________________
a60813de 2038Int_t TFluka::CurrentMaterial(Float_t & a, Float_t & z,
4aba9d66 2039 Float_t & dens, Float_t & radl, Float_t & absl) const
829fb838 2040{
2041//
a60813de 2042// Return the current medium number and material properties
829fb838 2043//
2044 Int_t copy;
2045 Int_t id = TFluka::CurrentVolID(copy);
2046 Int_t med = TFluka::VolId2Mate(id);
a60813de 2047 TGeoVolume* vol = gGeoManager->GetCurrentVolume();
2048 TGeoMaterial* mat = vol->GetMaterial();
2049 a = mat->GetA();
2050 z = mat->GetZ();
2051 dens = mat->GetDensity();
2052 radl = mat->GetRadLen();
2053 absl = mat->GetIntLen();
2054
829fb838 2055 return med;
2056}
2057
2058//______________________________________________________________________________
2059void TFluka::Gmtod(Float_t* xm, Float_t* xd, Int_t iflag)
2060{
2061// Transforms a position from the world reference frame
2062// to the current volume reference frame.
2063//
2064// Geant3 desription:
2065// ==================
2066// Computes coordinates XD (in DRS)
2067// from known coordinates XM in MRS
2068// The local reference system can be initialized by
2069// - the tracking routines and GMTOD used in GUSTEP
2070// - a call to GMEDIA(XM,NUMED)
2071// - a call to GLVOLU(NLEVEL,NAMES,NUMBER,IER)
2072// (inverse routine is GDTOM)
2073//
2074// If IFLAG=1 convert coordinates
2075// IFLAG=2 convert direction cosinus
2076//
2077// ---
2078 Double_t xmL[3], xdL[3];
2079 Int_t i;
2080 for (i=0;i<3;i++) xmL[i]=xm[i];
2081 if (iflag == 1) gGeoManager->MasterToLocal(xmL,xdL);
2082 else gGeoManager->MasterToLocalVect(xmL,xdL);
2083 for (i=0;i<3;i++) xd[i] = xdL[i];
2084}
2085
2086//______________________________________________________________________________
2087void TFluka::Gmtod(Double_t* xm, Double_t* xd, Int_t iflag)
2088{
2047b055 2089//
2090// See Gmtod(Float_t*, Float_t*, Int_t)
2091//
829fb838 2092 if (iflag == 1) gGeoManager->MasterToLocal(xm,xd);
2093 else gGeoManager->MasterToLocalVect(xm,xd);
2094}
2095
2096//______________________________________________________________________________
2097void TFluka::Gdtom(Float_t* xd, Float_t* xm, Int_t iflag)
2098{
2099// Transforms a position from the current volume reference frame
2100// to the world reference frame.
2101//
2102// Geant3 desription:
2103// ==================
2104// Computes coordinates XM (Master Reference System
2105// knowing the coordinates XD (Detector Ref System)
2106// The local reference system can be initialized by
2107// - the tracking routines and GDTOM used in GUSTEP
2108// - a call to GSCMED(NLEVEL,NAMES,NUMBER)
2109// (inverse routine is GMTOD)
2110//
2111// If IFLAG=1 convert coordinates
2112// IFLAG=2 convert direction cosinus
2113//
2114// ---
2115 Double_t xmL[3], xdL[3];
2116 Int_t i;
2117 for (i=0;i<3;i++) xdL[i] = xd[i];
2118 if (iflag == 1) gGeoManager->LocalToMaster(xdL,xmL);
2119 else gGeoManager->LocalToMasterVect(xdL,xmL);
2120 for (i=0;i<3;i++) xm[i]=xmL[i];
2121}
2122
2123//______________________________________________________________________________
2124void TFluka::Gdtom(Double_t* xd, Double_t* xm, Int_t iflag)
2125{
2047b055 2126//
2127// See Gdtom(Float_t*, Float_t*, Int_t)
2128//
829fb838 2129 if (iflag == 1) gGeoManager->LocalToMaster(xd,xm);
2130 else gGeoManager->LocalToMasterVect(xd,xm);
2131}
2132
2133//______________________________________________________________________________
2134TObjArray *TFluka::GetFlukaMaterials()
2135{
2047b055 2136//
2137// Get array of Fluka materials
829fb838 2138 return fGeom->GetMatList();
2139}
2140
2141//______________________________________________________________________________
a9ea1616 2142void TFluka::SetMreg(Int_t l, Int_t lttc)
829fb838 2143{
2144// Set current fluka region
2145 fCurrentFlukaRegion = l;
a9ea1616 2146 fGeom->SetMreg(l,lttc);
829fb838 2147}
2148
2149
b496f27c 2150
2151
4aba9d66 2152//______________________________________________________________________________
b496f27c 2153TString TFluka::ParticleName(Int_t pdg) const
2154{
2155 // Return particle name for particle with pdg code pdg.
2156 Int_t ifluka = IdFromPDG(pdg);
ece92b30 2157 return TString((CHPPRP.btype[ifluka - kFLUKAcodemin]), 8);
b496f27c 2158}
2159
2160
4aba9d66 2161//______________________________________________________________________________
b496f27c 2162Double_t TFluka::ParticleMass(Int_t pdg) const
2163{
2164 // Return particle mass for particle with pdg code pdg.
2165 Int_t ifluka = IdFromPDG(pdg);
ece92b30 2166 return (PAPROP.am[ifluka - kFLUKAcodemin]);
2167}
2168
4aba9d66 2169//______________________________________________________________________________
ece92b30 2170Double_t TFluka::ParticleMassFPC(Int_t fpc) const
2171{
2172 // Return particle mass for particle with Fluka particle code fpc
2173 return (PAPROP.am[fpc - kFLUKAcodemin]);
b496f27c 2174}
2175
4aba9d66 2176//______________________________________________________________________________
b496f27c 2177Double_t TFluka::ParticleCharge(Int_t pdg) const
2178{
2179 // Return particle charge for particle with pdg code pdg.
2180 Int_t ifluka = IdFromPDG(pdg);
ece92b30 2181 return Double_t(PAPROP.ichrge[ifluka - kFLUKAcodemin]);
b496f27c 2182}
2183
4aba9d66 2184//______________________________________________________________________________
b496f27c 2185Double_t TFluka::ParticleLifeTime(Int_t pdg) const
2186{
2187 // Return particle lifetime for particle with pdg code pdg.
2188 Int_t ifluka = IdFromPDG(pdg);
ece92b30 2189 return (PAPROP.tmnlf[ifluka - kFLUKAcodemin]);
b496f27c 2190}
2191
4aba9d66 2192//______________________________________________________________________________
b496f27c 2193void TFluka::Gfpart(Int_t pdg, char* name, Int_t& type, Float_t& mass, Float_t& charge, Float_t& tlife)
2194{
2195 // Retrieve particle properties for particle with pdg code pdg.
2196
2197 strcpy(name, ParticleName(pdg).Data());
2198 type = ParticleMCType(pdg);
2199 mass = ParticleMass(pdg);
2200 charge = ParticleCharge(pdg);
2201 tlife = ParticleLifeTime(pdg);
2202}
2203
4aba9d66 2204//______________________________________________________________________________
8e5bf079 2205void TFluka::PrintHeader()
2206{
2207 //
2208 // Print a header
2209 printf("\n");
2210 printf("\n");
2211 printf("------------------------------------------------------------------------------\n");
2212 printf("- You are using the TFluka Virtual Monte Carlo Interface to FLUKA. -\n");
2213 printf("- Please see the file fluka.out for FLUKA output and licensing information. -\n");
2214 printf("------------------------------------------------------------------------------\n");
2215 printf("\n");
2216 printf("\n");
2217}
2218
b496f27c 2219
81f1d030 2220#define pshckp pshckp_
2221#define ustckv ustckv_
3a625972 2222
2223
2224extern "C" {
81f1d030 2225 void pshckp(Double_t & px, Double_t & py, Double_t & pz, Double_t & e,
4aba9d66 2226 Double_t & vx, Double_t & vy, Double_t & vz, Double_t & tof,
2227 Double_t & polx, Double_t & poly, Double_t & polz, Double_t & wgt, Int_t& ntr)
81f1d030 2228 {
2229 //
2230 // Pushes one cerenkov photon to the stack
2231 //
2232
2233 TFluka* fluka = (TFluka*) gMC;
2234 TVirtualMCStack* cppstack = fluka->GetStack();
2235 Int_t parent = TRACKR.ispusr[mkbmx2-1];
2236 cppstack->PushTrack(0, parent, 50000050,
4aba9d66 2237 px, py, pz, e,
2238 vx, vy, vz, tof,
2239 polx, poly, polz,
2240 kPCerenkov, ntr, wgt, 0);
2241 if (fluka->GetVerbosityLevel() >= 3)
2242 printf("pshckp: track=%d parent=%d lattc=%d %s\n", ntr, parent, TRACKR.lt1trk, fluka->CurrentVolName());
81f1d030 2243 }
2244
2245 void ustckv(Int_t & nphot, Int_t & mreg, Double_t & x, Double_t & y, Double_t & z)
7b203b6e 2246 {
4aba9d66 2247 //
2248 // Calls stepping in order to signal cerenkov production
2249 //
2250 TFluka *fluka = (TFluka*)gMC;
2251 fluka->SetMreg(mreg, TRACKR.lt1trk); //LTCLCM.mlatm1);
2252 fluka->SetXsco(x);
2253 fluka->SetYsco(y);
2254 fluka->SetZsco(z);
2255 fluka->SetNCerenkov(nphot);
2256 fluka->SetCaller(kUSTCKV);
2257 if (fluka->GetVerbosityLevel() >= 3)
2258 printf("ustckv: %10d mreg=%d lattc=%d newlat=%d (%f, %f, %f) edep=%f vol=%s\n",
2259 nphot, mreg, TRACKR.lt1trk, LTCLCM.newlat, x, y, z, fluka->Edep(), fluka->CurrentVolName());
2260
2261 // check region lattice consistency (debug Ernesto)
2262 // *****************************************************
2263 Int_t nodeId;
2264 Int_t volId = fluka->CurrentVolID(nodeId);
2265 Int_t crtlttc = gGeoManager->GetCurrentNodeId()+1;
2266
2267 if( mreg != volId && !gGeoManager->IsOutside() ) {
2268 cout << " ustckv: track=" << TRACKR.ispusr[mkbmx2-1] << " pdg=" << fluka->PDGFromId(TRACKR.jtrack)
2269 << " icode=" << fluka->GetIcode() << " gNstep=" << fluka->GetNstep() << endl
2270 << " fluka mreg=" << mreg << " mlttc=" << TRACKR.lt1trk << endl
2271 << " TGeo volId=" << volId << " crtlttc=" << crtlttc << endl
2272 << " common TRACKR lt1trk=" << TRACKR.lt1trk << " lt2trk=" << TRACKR.lt2trk << endl
2273 << " common LTCLCM newlat=" << LTCLCM.newlat << " mlatld=" << LTCLCM.mlatld << endl
2274 << " mlatm1=" << LTCLCM.mlatm1 << " mltsen=" << LTCLCM.mltsen << endl
2275 << " mltsm1=" << LTCLCM.mltsm1 << " mlattc=" << LTCLCM.mlattc << endl;
2276 if( TRACKR.lt1trk == crtlttc ) cout << " *************************************************************" << endl;
2277 }
2278 // *****************************************************
2279
2280
2281
2282 (TVirtualMCApplication::Instance())->Stepping();
7b203b6e 2283 }
3a625972 2284}
a9ea1616 2285
4aba9d66 2286//______________________________________________________________________________
78df7be0 2287void TFluka::AddParticlesToPdgDataBase() const
2288{
2289
2290//
2291// Add particles to the PDG data base
2292
2293 TDatabasePDG *pdgDB = TDatabasePDG::Instance();
2294
78df7be0 2295 const Double_t kAu2Gev = 0.9314943228;
2296 const Double_t khSlash = 1.0545726663e-27;
2297 const Double_t kErg2Gev = 1/1.6021773349e-3;
2298 const Double_t khShGev = khSlash*kErg2Gev;
2299 const Double_t kYear2Sec = 3600*24*365.25;
2300//
2301// Ions
2302//
78df7be0 2303 pdgDB->AddParticle("Deuteron","Deuteron",2*kAu2Gev+8.071e-3,kTRUE,
13858fbd 2304 0,3,"Ion",GetIonPdg(1,2));
78df7be0 2305 pdgDB->AddParticle("Triton","Triton",3*kAu2Gev+14.931e-3,kFALSE,
13858fbd 2306 khShGev/(12.33*kYear2Sec),3,"Ion",GetIonPdg(1,3));
78df7be0 2307 pdgDB->AddParticle("Alpha","Alpha",4*kAu2Gev+2.424e-3,kTRUE,
13858fbd 2308 khShGev/(12.33*kYear2Sec),6,"Ion",GetIonPdg(2,4));
78df7be0 2309 pdgDB->AddParticle("HE3","HE3",3*kAu2Gev+14.931e-3,kFALSE,
13858fbd 2310 0,6,"Ion",GetIonPdg(2,3));
78df7be0 2311}
2312
4aba9d66 2313//
2314// Info about primary ionization electrons
2315//
2316
2317//______________________________________________________________________________
2318Int_t TFluka::GetNPrimaryElectrons()
f2a98602 2319{
2320 // Get number of primary electrons
2321 return ALLDLT.nalldl;
2322}
2323
4aba9d66 2324//______________________________________________________________________________
5125d6e5 2325Double_t TFluka::GetPrimaryElectronKineticEnergy(Int_t i) const
f2a98602 2326{
2327 // Returns kinetic energy of primary electron i
5125d6e5 2328
2329 Double_t ekin = -1.;
ea262cc6 2330
f2a98602 2331 if (i >= 0 && i < ALLDLT.nalldl) {
6c854012 2332 ekin = ALLDLT.talldl[i];
f2a98602 2333 } else {
4aba9d66 2334 Warning("GetPrimaryElectronKineticEnergy",
2335 "Primary electron index out of range %d %d \n",
2336 i, ALLDLT.nalldl);
f2a98602 2337 }
f0734960 2338 return ekin;
f2a98602 2339}
5125d6e5 2340
2341void TFluka::GetPrimaryElectronPosition(Int_t i, Double_t& x, Double_t& y, Double_t& z) const
2342{
2343 // Returns position of primary electron i
2344 if (i >= 0 && i < ALLDLT.nalldl) {
6c854012 2345 x = ALLDLT.xalldl[i];
2346 y = ALLDLT.yalldl[i];
2347 z = ALLDLT.zalldl[i];
5125d6e5 2348 return;
2349 } else {
2350 Warning("GetPrimaryElectronPosition",
2351 "Primary electron index out of range %d %d \n",
2352 i, ALLDLT.nalldl);
2353 return;
2354 }
2355 return;
2356}
2357
13858fbd 2358Int_t TFluka::GetIonPdg(Int_t z, Int_t a, Int_t i) const
2359{
2360// Acording to
2361// http://cepa.fnal.gov/psm/stdhep/pdg/montecarlorpp-2006.pdf
5125d6e5 2362
13858fbd 2363 return 1000000000 + 10*1000*z + 10*a + i;
2364}
2365
ea262cc6 2366void TFluka::PrimaryIonisationStepping(Int_t nprim)
2367{
2368// Call Stepping for primary ionisation electrons
2369 Int_t i;
2370// Protection against nprim > mxalld
2371
2372// Multiple steps for nprim > 0
2373 if (nprim > 0) {
2374 for (i = 0; i < nprim; i++) {
2375 SetCurrentPrimaryElectronIndex(i);
2376 (TVirtualMCApplication::Instance())->Stepping();
2377 if (i == 0) SetTrackIsNew(kFALSE);
2378 }
2379 } else {
2380 // No primary electron ionisation
2381 // Call Stepping anyway but flag nprim = 0 as index = -2
2382 SetCurrentPrimaryElectronIndex(-2);
2383 (TVirtualMCApplication::Instance())->Stepping();
2384 }
2385 // Reset the index
2386 SetCurrentPrimaryElectronIndex(-1);
2387}